WO2021115056A1 - 一种柔性电极及其制备方法 - Google Patents

一种柔性电极及其制备方法 Download PDF

Info

Publication number
WO2021115056A1
WO2021115056A1 PCT/CN2020/129516 CN2020129516W WO2021115056A1 WO 2021115056 A1 WO2021115056 A1 WO 2021115056A1 CN 2020129516 W CN2020129516 W CN 2020129516W WO 2021115056 A1 WO2021115056 A1 WO 2021115056A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
flexible
metal
polydopamine
Prior art date
Application number
PCT/CN2020/129516
Other languages
English (en)
French (fr)
Inventor
吴天准
黄兆岭
曾齐
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021115056A1 publication Critical patent/WO2021115056A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00166Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes

Definitions

  • the invention relates to the technical field of flexible electrode preparation, in particular to a flexible electrode and a preparation method thereof.
  • the flexible electrodes manufactured based on the traditional MEMS (MEMS, Micro-Electro-Mechanical System) technology mainly include a flexible base layer and a metal electrode layer on it.
  • MEMS Micro-Electro-Mechanical System
  • the currently manufactured flexible electrodes mainly have two main defects: 1. Due to the mismatch of Young's modulus between the surface metal electrode layer and the flexible base layer, the metal electrode layer is prone to automatically warp or even fall off on the surface of the flexible base layer; 2. Because the electrode is implanted or used percutaneously In the process, most of the impedance circuits are formed on the surface interface, but the impedance of the flexible electrodes currently manufactured is very large, which leads to a large voltage or current required for the operation of the electrodes, which brings safety problems to the human body.
  • the present invention provides a flexible electrode and a preparation method thereof to solve the problem of low adhesion between the metal electrode layer and the flexible base layer due to the mismatch of Young's modulus, and at the same time reduce the excessive surface impedance of the flexible electrode The problem.
  • the first aspect of the present invention provides a flexible electrode, including a flexible base layer, and a polydopamine adhesion layer and a metal electrode layer stacked on the surface of the flexible base layer in sequence, wherein the polydopamine adhesion layer It has a three-dimensional porous grid structure, the metal electrode layer is formed by crossing metal nanowires, the polydopamine adhesion layer and the hydroxylated flexible base layer are connected by covalent bonds, and the polydopamine adhesion layer At the interface with the metal electrode layer, the polydopamine adhesion layer is chelated with metal atoms.
  • the adhesive polydopamine layer is used as the intermediate layer, which can form more chemical bonds with the flexible base layer and the metal electrode layer through its many molecular bonds.
  • the force of this chemical bond can greatly enhance the metal
  • the adhesion between the electrode layer and the flexible base layer solves the problem of low adhesion caused by the high Young's modulus of the metal electrode layer and the low Young's modulus of the flexible base layer to a certain extent;
  • the polydopamine adhesion layer can also be used as an inducing layer for the metal electrode layer, on which metal nanowires can be grown in situ; the metal layer composed of crossed metal nanowires increases the conductive layer area of the flexible electrode and reduces the electrode
  • the porous grid structure of the polydopamine adhesion layer is also conducive to forming an electronic barrier, reducing the loss of electrons inside the electrode, and further reducing the electrode interface impedance of the flexible electrode. It also improves the stretching function of the flexible electrode, which satisfies the application of the flexible electrode in
  • the polydopamine adhesion layer and the flexible base layer also interact through van der Waals forces and ⁇ - ⁇ bonds.
  • the porous pore size of the polydopamine adhesion layer is 10-100 nm.
  • the metal layer is formed by crossing metal nanowires, and the metal layer also has a porous structure.
  • the thickness of the flexible base layer is 2-6 ⁇ m.
  • the thickness of the polydopamine adhesion layer is 30-800 nm.
  • the thickness of the metal electrode layer is 0.5-10 ⁇ m.
  • it is 1-10 ⁇ m.
  • the total thickness of the polydopamine adhesion layer and the metal electrode layer is 1-11 ⁇ m.
  • the material of the flexible base layer is a flexible insulating material, which can be selected from polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN ), one of polymethyl methacrylate (PMMA) and polyurethane (PUA).
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • PUA polyurethane
  • the flexible base layer is polyimide, which has good bending resistance and insulation properties.
  • the material of the metal electrode layer is one or more of platinum, titanium, gold, silver, and copper.
  • the metal electrode layer is platinum, titanium, or silver. These metals have better biocompatibility and low toxicity.
  • the metal electrode layer includes oppositely arranged stimulation electrode sites and electrode connection points, and each of the stimulation electrode sites and the electrode connection points are connected in a one-to-one correspondence by a wire.
  • the flexible electrode further includes an encapsulation layer, and the encapsulation layer covers a portion of the flexible base layer that is not covered by the stimulation electrode site and the electrode connection point of the metal electrode layer. That is to say, the polydopamine adhesion layer and the metal electrode layer stacked on the flexible base layer and the gap between them are all located in the accommodating space of the encapsulation layer, but the stimulation electrode position of the metal electrode layer The point and the electrode connection point are exposed from the encapsulation layer.
  • the material of the encapsulation layer may be the same as or different from the material of the flexible base layer.
  • the material of the encapsulation layer is independently selected from one or more of polyimide, PDMS, silica gel, epoxy resin, polystyrene, and polybutylene terephthalate (PET) .
  • PET polybutylene terephthalate
  • the adhesive polydopamine layer is used as the intermediate layer, which can be enhanced by the covalent bond and non-covalent bond between the flexible base layer and the metal electrode layer.
  • the adhesion between the metal electrode layer and the flexible base layer; the di-polydopamine adhesion layer can also be used as the induction layer of the metal electrode layer, on which metal nanowires, crossed metal nanowires and dopamine adhesion layers can be grown in situ
  • the porous grid structure greatly reduces the electrical impedance of the flexible electrode, and also improves its stretching function.
  • the present invention provides a method for preparing a flexible electrode, which includes the following steps:
  • the polydopamine film on the elastic template is transferred to the surface of the hydroxylated flexible base layer by micro-contact printing to obtain a carrier board with a polydopamine adhesion layer; wherein, the polydopamine adhesion layer and The hydroxylated flexible base layer is connected by a covalent bond;
  • the carrier plate is removed to obtain a flexible electrode.
  • the material of the carrying plate includes glass, metal, silicon or ceramic.
  • the elastic template with electrode pattern is prepared by the following method: spin-coating photoresist on a hard substrate, and expose and develop a mask of a certain shape to obtain the positive film of the electrode pattern; The positive film is cast, and the film is uncovered after curing to obtain an elastic template with electrode patterns.
  • the elastic template has an electrode pattern complementary to the positive membrane.
  • the elastic template is made of the same material as the model glue.
  • the model glue may be polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the volume ratio of glue A to glue B in PDMS can be 1:10.
  • the model glue can also be polyethylene glycol diacrylate (PEGDA), polymethyl methacrylate (PMMA), ethylene-vinyl acetate (EVA) copolymer and polyurethane ( PUA), but not limited to this, as long as it is a mold glue suitable for soft lithography.
  • the pH of the Tris solution of dopamine hydrochloride is 6-9, and the concentration of dopamine hydrochloride is 2-5 mg/mL.
  • the immersion time of the elastic template in the Tris solution of dopamine hydrochloride is 10-24 h. Preferably it is 16-24h.
  • the applied pressure is 1.0-2.0N. This can better ensure that the polydopamine adhesive layer with electrode patterns is completely transferred to the surface of the flexible substrate layer, and it can also ensure that the carrier plate (for example, silicon wafer, glass substrate, etc.) will not be deformed under pressure And produce internal stress.
  • the carrier plate for example, silicon wafer, glass substrate, etc.
  • the time that the carrier plate of the polydopamine adhesion layer is placed in the metal ion solution can be determined according to the specific metal ion and its concentration. For example, when growing a platinum metal electrode layer, the placement time can be 60-72 hours; when growing a copper metal electrode layer, the placement time can be 1-5 hours.
  • the carrier board before removing the carrier board, it further includes: preparing an encapsulation layer on the metal conductive layer and the portion of the flexible base layer not covered by the metal conductive layer, and the stimulation electrode of the metal electrode layer The connection point between the site and the electrode is exposed from the encapsulation layer.
  • the preparation process of the encapsulation layer is as follows:
  • An encapsulation film is provided on the metal electrode layer, and the encapsulation film also fills the part of the flexible base layer that is not covered by the polydopamine adhesion layer and the metal electrode layer that are stacked;
  • the polydopamine adhesion layer can be quickly transferred to the surface of the hydroxylated flexible base layer by means of micro-contact printing, so as to realize the gap between it and the flexible base layer.
  • the strong combination of, can greatly improve its processing efficiency;
  • the chemical self-assembly in-situ deposition method with the polydopamine adhesion layer as the inducing layer is used, without the use of expensive deposition equipment for sputtering.
  • the cost of manufacturing the electrode can be greatly reduced; 3.
  • the existence of the metal electrode layer composed of crossed metal nanowires and the dopamine adhesion layer greatly reduces the electrical impedance of the flexible electrode and also improves its stretching function.
  • the elastic template with the polydopamine adhesion layer can be washed off the polydopamine layer on the surface after multiple transfers, and re-soaked, so as to realize the reuse of the elastic template and further reduce the manufacturing cost.
  • FIG. 1 is a structural design diagram of a metal electrode layer of a flexible electrode in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a PDMS elastic template having an electrode structure in an embodiment of the present invention
  • Fig. 3 is a processing flow chart of a flexible electrode in an embodiment of the present invention.
  • FIG. 4 is a scanning electron microscope image (a) of the adhesion layer of polydopamine in an embodiment of the present invention, and a scanning electron microscope image after the platinum metal electrode layer is grown thereon;
  • FIG. 5 is a schematic cross-sectional microscopic view (a) of an unencapsulated flexible electrode in an embodiment of the present invention, and a schematic view (b) of the structure of the polydopamine adhesion layer therein, as well as their analysis diagrams under force;
  • FIG. 6 is a schematic diagram of the structure of the flexible electrode obtained after processing in FIG. 3.
  • An embodiment of the present invention provides a method for preparing a flexible electrode. Please refer to FIG. 1 to FIG. 3 together, which includes the following steps:
  • a silicon wafer as a carrier plate.
  • Use two speeds on one surface of the silicon wafer (first level: 500 revolutions, 10 seconds; The second level: 2500 revolutions, 40 seconds) spin-coated the polyimide acid solution, and formed a 5 ⁇ m thick wet film; then baked at 100 °C for 3 minutes to form the film, and then moved to 300 °C vacuum dryer Bake at a high temperature for 30 minutes to cyclize the polyimide acid to form a polyimide (PI) film, and the PI flexible base layer 10 is obtained.
  • the obtained PI flexible base layer 10 is put into an oxygen plasma machine for treatment for 60 seconds to hydroxylate the surface of the PI flexible base layer and taken out for use.
  • a layer of SU-8 photoresist was spin-coated on the cleaned silicon wafer, and after curing at 95°C for 30 minutes, a mask of a certain shape was used for exposure under 180mJ/cm 2 ultraviolet light energy, using SU- 8
  • the developer is subjected to development processing to clean the parts other than the mask to obtain the positive film of the electrode pattern;
  • the model glue used can be, for example, polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the volume ratio of A glue to B glue in PDMS for pouring can be 1:10.
  • the curing process is carried out (for example, it can be baked in an oven at 80°C for 3 hours).
  • the electrode pattern in the positive mold can be reliably transferred to the mold glue. Then peel off the cured model adhesive layer from the silicon wafer to obtain a PDMS elastic template with electrode structure (as shown in Figure 2).
  • the PDA film on the PDMS elastic template in step 3 is transferred to the surface of the hydroxylated PI flexible substrate layer 10 in step 1 by micro-contact printing (it is better to keep the PI surface of the flexible substrate wet before transfer) to obtain The carrier board of the PDA adhesive layer 20 (as shown in FIG. 3). Wherein, during the micro-contact printing, the applied pressure is 1.8N.
  • the PDA adhesive layer after transfer is the same as the designed electrode pattern.
  • An encapsulation film 40' is provided on the platinum metal electrode layer 30, and the encapsulation film 40' also fills the part of the PI flexible base layer 10 that is not covered by the laminated PDA adhesive layer 20 and the metal electrode layer 30.
  • the material of the packaging film 40' can also be PI, and the setting process is as follows:
  • Two-stage speed (first stage: 300 revolutions, 15 seconds; second stage: 3000 revolutions, 30 seconds) is used to coat the sacrificial material (specifically AZ4620 positive photoresist) on the aforementioned PI packaging film 40',
  • sacrificial material specifically AZ4620 positive photoresist
  • UV exposure exposure amount 40mJ/cm 2
  • post-baking treatment at 120°C after exposure, and develop it with AZ300 developer after cooling to room temperature
  • a patterned sacrificial layer 50 is formed.
  • the patterned sacrificial layer 50 does not cover the stimulation electrode sites 31 and the electrode connection points 32 of the metal electrode layer 30.
  • etching parameters are set as follows: oxygen flow rate: 40 sccm, chamber pressure: 20-14 pa, power: 150 W, etching time: 10 min, 4 consecutive times.
  • FIG. 1 is a structural design diagram of a metal electrode layer 30 of a flexible electrode in an embodiment of the present invention.
  • the metal electrode layer 30 includes 10 stimulation electrode sites 31 and 10 electrode connection points 32 oppositely arranged, and each stimulation electrode site 31 and the electrode connection point 32 are connected in a one-to-one correspondence with the electrode connection point 32 via a wire 33.
  • the diameter of the stimulation electrode site 31 in Figure 1 is 200 ⁇ m
  • the width of the wire 33 is 35 ⁇ m
  • the electrode connection point 32 is a 1*1mm square, which can be later connected to a PCB board with a chip or connected to other instruments for testing Wait.
  • the transferred PDA adhesion layer 20 and the hydroxylated PI flexible base layer 10 are connected by a covalent bond, wherein the amino group of the PDA and the -OH of the PI flexible base layer form a covalent bond, as shown in the following formula :
  • the PDA adhesion layer 20 chelates platinum metal atoms, as shown below:
  • FIG. 4 is a scanning electron microscope image (a) of the adhesion layer of polydopamine after transferring in an embodiment of the present invention, and a scanning electron microscope image of the platinum metal electrode layer being grown thereon. It can be seen from Figure 4 (a) that the adhesion layer of polydopamine (PDA) is distributed in a porous grid; from Figure 4 (b) it can be seen that the grown platinum metal electrode layer is composed of platinum nanowires, and Also cross to form a porous structure. The total thickness of the PDA adhesion layer and the platinum metal electrode layer is about 0.7 ⁇ m.
  • FIG. 5 is a schematic cross-sectional microscopic view (a) of an unencapsulated flexible electrode in an embodiment of the present invention, and a schematic view (b) of the structure of the polydopamine adhesion layer therein, and their analysis diagrams under force.
  • the PDA as a grid structure and the metal nanowires of the linear cross structure can deform under the action of the force, and with the direction of the torque The deformation occurs, but to a certain extent, it can bear greater force without breaking, so that the flexible electrode has good tensile properties.
  • FIG. 6 is a schematic diagram of the structure of the encapsulated flexible electrode in an embodiment of the present invention.
  • the flexible electrode includes a flexible base layer 10 and a polydopamine adhesion layer 20 and a metal electrode layer 30 stacked on the surface of the flexible base layer 10 in sequence.
  • the flexible electrode further includes an encapsulation layer 40 that covers the portion of the flexible base layer 10 that is not covered by the stimulation electrode sites 31 and the electrode connection points 31 of the metal electrode layer 30.
  • the polydopamine adhesion layer 20 and the metal electrode layer 30 stacked on the flexible base layer 10 and the gap between them are all located in the accommodating space of the encapsulation layer 40, but the stimulation electrode sites 31 of the metal electrode layer 30 and The electrode connection points 32 are exposed from the encapsulation layer 40, while the wires of the metal electrode layer 30 are not exposed.
  • the polydopamine adhesion layer 20 has a three-dimensional porous grid structure.
  • the metal electrode layer 30 is formed by crossing metal nanowires.
  • the polydopamine adhesion layer 20 and the hydroxylated flexible base layer 10 are connected by covalent bonds.
  • the polydopamine adhesion layer 20 chelates metal atoms.
  • Example 1 It has been verified that the electrochemical impedance of the flexible electrode improved in Example 1 at 1kHz is significantly lower than the traditional titanium/platinum electrode by 3 orders of magnitude, a decrease of about 99.54%; and its charge storage capacity (CSCc) is increased by 27 Times. Its mechanical adhesion performance is significantly improved by about 4 times compared with traditional magnetron sputtering electrodes. At the same time, the mechanical fatigue life (below 100kHz) is about twice that of traditional flexible electrodes.
  • the carrier plate with the PDA adhesion layer transferred can be placed in a 0.01% HAuCl 4 solution and 0.4 mM Hydroxylamine hydrochloride solution in a mixed solution of equal volume, react at 18-25°C for 20-30 minutes, take it out and wash with double distilled water, and blow dry with nitrogen. In this way, a gold electrode layer is formed on the adhesion layer of the PDA.
  • the carrier plate with the PDA adhesion layer transferred can be placed in the silver ion solution configured by the following method: Add ammonia water dropwise to the 10mM silver nitrate solution, and the solution becomes Light brown, continue to add ammonia water dropwise until the solution becomes colorless, and then add an equal volume of 3.33 mM glucose solution to the system. Soak the carrier plate with the PDA adhesive layer transferred in the silver ion solution, react at 18-25°C for 2-10 minutes, take it out, wash it with double distilled water, and dry it with nitrogen, so that it forms on the PDA adhesive layer Silver electrode layer.
  • the carrier plate with the adhesion layer transferred to the PDA can be placed in the copper ion solution configured by the following method: prepare a copper ion solution containing 50mM EDTA, 50mM CuCl 2 and 0.1M Adjust the pH of the H 3 BO 3 solution to 7, and then add a volume of 0.1M dimethylamine borane solution to obtain a mixed solution. Soak the carrier plate with the PDA adhesive layer transferred in the copper ion solution, and react with nitrogen at 40°C for 2 hours. After taking it out, it is cleaned with double distilled water and dried with nitrogen to form copper on the PDA adhesive layer. Electrode layer.
  • the encapsulation layer 40 can also be formed by injection molding, die casting, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种柔性电极,包括柔性基底层(10)以及依次层叠设置在所述柔性基底层(10)表面的聚多巴胺粘附层(20)和金属电极层(30),其中,所述聚多巴胺粘附层(20)具有三维多孔网格结构,所述金属电极层(30)由金属纳米线交叉而成,所述聚多巴胺粘附层(20)与羟基化的所述柔性基底层(10)通过共价键连接,在所述聚多巴胺粘附层(20)与所述金属电极层(30)的界面处,所述聚多巴胺粘附层(20)螯合有金属原子。由此,金属电极层(30)与柔性基底层(10)的粘附力大,交叉的金属纳米线和多巴胺粘附层(20)的多孔网格结构在很大程度上降低了柔性电极的电阻抗,提高了柔性电极的拉伸功能。一种柔性电极的制备方法,该制备方法简单易操作。

Description

一种柔性电极及其制备方法 技术领域
本发明涉及柔性电极制备技术领域,具体涉及一种柔性电极及其制备方法。
背景技术
目前基于传统MEMS(MEMS,Micro-Electro-Mechanical System)技术加工制造的柔性电极,主要包括柔性基底层及位于其上的金属电极层,但目前所制造的柔性电极主要存在于两个主要缺陷:1、由于表面金属电极层与柔性基底层之间的杨氏模量不匹配,导致金属电极层容易自动在柔性基底层表面出现翘曲、甚至脱落;2、由于电极在植入或经皮使用过程中大都会在其表界面形成阻抗电路,但是当前制造的柔性电极的阻抗很大,这就导致电极工作所需要的电压或电流很大,给人体带来安全问题。
因此,有必要提供一种低阻抗的柔性电极,且使其中金属电极层与柔性基底层之间的粘附力较大。
发明内容
鉴于此,本发明提供了一种柔性电极及其制备方法,以解决金属电极层与柔性基底层因杨氏模量不匹配所造成的粘附力较低问题,同时降低柔性电极表面阻抗过高的问题。
具体地,本发明第一方面提供了一种柔性电极,包括柔性基底层以及依次层叠设置在所述柔性基底层表面的聚多巴胺粘附层和金属电极层,其中,所述聚多巴胺粘附层具有三维多孔网格结构,所述金属电极层由金属纳米线交叉而成,所述聚多巴胺粘附层与羟基化的所述柔性基底层通过共价键连接,在所述聚多巴胺粘附层与所述金属电极层的界面处,所述聚多巴胺粘附层螯合有金属原子。
本发明中,通过粘附性的聚多巴胺层作为中间层,一来可以通过其繁多的分子键与柔性基底层、金属电极层形成较多的化学键,这种化学键的作用力可以极大地增强金属电极层与柔性基底层之间的粘附力,在一定程度上解决了金属电极层的高杨氏模量和柔性基底层的低杨氏模量所造成的粘附力低的问题;二来聚多巴胺粘附层还可以作为金属电极层的诱导层,可以在其上原位生长金属纳米线;交叉的金属纳米线构成的金属层增加了所述柔性电极的导电层面积,减小了电极界面阻抗值,而聚多巴胺粘附层的多孔网格结构也有利于形成电子屏障,减少电子在电极内部的损失,进而进一步降低了所述柔性电极的电极界面阻抗值,在两者的共同作用下还提高了所述柔性电极的拉伸功能,满足柔性电极在多种场合的应用。
其中,所述聚多巴胺粘附层与所述柔性基底层之间还通过范德华力和π-π键相互作用。
其中,所述聚多巴胺粘附层的多孔孔径为10-100nm。
本发明中,所述金属层由金属纳米线交叉而成,所述金属层也具有多孔结构。
可选地,所述柔性基底层的厚度为2-6μm。
可选地,所述聚多巴胺粘附层的厚度为30-800nm。
可选地,所述金属电极层的厚度为0.5-10μm。例如为1-10μm。
可选地,所述聚多巴胺粘附层与所述金属电极层的总厚度为1-11μm。
其中,所述柔性基底层的材质为柔性绝缘材料,可以选自聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚甲基丙烯酸甲酯(PMMA)和聚氨酯(PUA)中的一种。优选地,所述柔性基底层为聚酰亚胺,具有较好的耐弯折和绝缘性能。
其中,所述金属电极层的材质为铂、钛、金、银、铜中的一种或多种。优选地,所述金属电极层为铂、钛、银。这些金属的生物相容性更好,毒性小。
其中,所述金属电极层包括相对设置的刺激电极位点和电极连接点,每个所述刺激电极位点与电极连接点通过导线一一对应连接。
其中,所述柔性电极还包括封装层,所述封装层覆盖所述柔性基底层上未被所述金属电极层的刺激电极位点与电极连接点所覆盖的部分。也就是说,所述柔性基底层上层叠设置的聚多巴胺粘附层和金属电极层及其之间的间隙均位于所述封装层的容置空间内,但所述金属电极层的刺激电极位点与电极连接点从所述封装层中露出。
本发明中,所述封装层的材质可以与所述柔性基底层的材质相同或不同。可选地,所述封装层的材质独立地选自聚酰亚胺、PDMS、硅胶、环氧树脂、聚苯乙烯和聚对苯二甲酸丁二醇酯(PET)中的一种或多种。所述封装层的设置目的是为了尽量保护所述金属电极层,但又不影响其使用。
本发明第一方面提供的柔性电极中,通过粘附性的聚多巴胺层作为中间层,一来可以通过其与柔性基底层、金属电极层之间的共价键、非共价键作用来增强金属电极层与柔性基底层的粘附力;二来聚多巴胺粘附层还可以作为金属电极层的诱导层,可以在其上原位生长金属纳米线,交叉的金属纳米线和多巴胺粘附层的多孔网格结构在很大程度上降低了所述柔性电极的电阻抗,还提高了其拉伸功能。
第二方面,本发明提供了一种柔性电极的制备方法,包括以下步骤:
提供承载板,在所述承载板的一面形成柔性基底层,并对干燥后的所述柔性基底层进行氧等离子体处理,以使述柔性基底层羟基化;
制备具有电极图案的弹性模板,将所述弹性模板置于盐酸多巴胺的Tris溶液中浸泡,以在所述弹性模板表面形成具有电极图案的聚多巴胺膜;
将所述弹性模板上的聚多巴胺膜通过微接触印刷的方式转印到所述羟基化的柔性基底层表面,得到具有聚多巴胺粘附层的承载板;其中,所述聚多巴胺粘附层与所述羟基化的柔性基底层通过共价键连接;
将转印有所述聚多巴胺粘附层的承载板置于金属离子的溶液中,以在所述聚多巴胺粘附层上生长金属纳米线,得到图案化的金属电极层;
去除所述承载板,得到柔性电极。
其中,所述承载板的材质包括玻璃、金属、硅或陶瓷。
其中,所述具有电极图案的弹性模板是通过以下方法制备:在硬质衬底上旋涂光刻胶,利用一定形状的掩膜版进行曝光、显影,得到电极图案的阳膜;用模型胶浇注所述阳膜,固化后揭膜,得到具有电极图案的弹性模板。其中,所述弹性模板具有与所述阳膜互补的电极图案。显然地,所述弹性模板与所述模型胶的材质相同。
可选地,所述模型胶可以是聚二甲基硅氧烷(PDMS)。其中,PDMS中A胶与B胶的体积比可以为1:10。当然,在本发明其他实施方式中,所述模型胶还可以为聚乙二醇二丙烯酸酯(PEGDA)、聚甲基丙烯酸甲酯(PMMA)、乙烯-醋酸乙烯(EVA)共聚物和聚氨酯(PUA)中的一种,但不限于此,只要是适用于软光刻法的模型胶即可。
其中,所述盐酸多巴胺的Tris溶液的pH为6-9,盐酸多巴胺的浓度为2-5mg/mL。可选地,所述弹性模板在所述盐酸多巴胺的Tris溶液中的浸泡时间为10-24h。优选为16-24h。
其中,在所述微接触印刷时,所施加的压力为1.0-2.0N。这样可以较好地保证具有电极图案的聚多巴胺粘附层完整地转印到柔性基底层表面,又能保证承载板(例如,硅晶圆,玻璃基底等)在压力的作用下不至于发生形变和产生内应力。
所述聚多巴胺粘附层的承载板置于金属离子的溶液中的时间可根据具体的金属离子及其浓度来确定。例如,当生长铂金属电极层时,置入时间可以为60-72小时;当生长铜金属电极层时,置入时间可以为1-5小时。
其中,在去除所述承载板之前还包括:在所述金属导电层上及所述柔性基底层上未被所述金属导电层覆盖的部分上制备封装层,且所述金属电极层的刺激电极位点与电极连接点从所述封装层中露出。
在本发明一实施方式中,所述封装层的制备过程如下:
b1、在所述金属电极层上设置封装膜,所述封装膜还填充所述柔性基底层上未被层叠设置的所述聚多巴胺粘附层和金属电极层覆盖的部分;
b2、在所述封装膜上涂布牺牲材料,对形成的牺牲层进行刻蚀,形成图案化的牺牲层;
b3、以图案化的牺牲层为掩膜版,对所述封装膜进行干法刻蚀,以使所述金属电极层暴露;
b4、剥离所述牺牲层,形成所述封装层。
本发明第二方面提供的柔性电极的制备方法中,1、采用微接触印刷的方式可以将聚多巴胺粘附层快速转印到羟基化的柔性基底层表面,以实现其与柔性基底层之间的牢固结合,可以极大地提高其加工效率;2、对于金属电极层的加工采用的是聚多巴胺粘附层作诱导层的化学自组装原位沉积方法,没有使用昂贵的沉积仪器来溅射,可以极大地降低制造电极的成本;3、交叉的金属纳米线构成的金属电极层和多巴胺粘附层的存在很大程度上降低了所述柔性电极的电阻抗,还提高了其拉伸功能。此外,具有聚多巴胺粘附层的弹性模板在多次转印后,可以洗去其表面的聚多巴胺层,重新浸泡,进而实现该弹性模板的重复利用,并进一步降低制造成本。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为本发明实施例中柔性电极的金属电极层的结构设计图;
图2为本发明实施例中具有电极结构的PDMS弹性模板的结构示意图;
图3为本发明一实施例中柔性电极的加工流程图;
图4为本发明一实施例中转印完聚多巴胺粘附层的扫描电镜图(a),以及在其上生长完铂金属电极层后的扫描电镜图;
图5为本发明一实施例中未封装的柔性电极的截面微观示意图(a),以及其中聚多巴胺粘附层的结构示意图(b),以及它们在受力时的分析图;
图6为经图3加工后所得柔性电极的结构示意图。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术 人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本发明一实施例提供了一种柔性电极的制备方法,请一并参阅图1-图3,包括以下步骤:
1、提供一硅片作为承载板,首先使用丙酮、无水乙醇以及去离子水依次清洁该硅片,在该硅片的一表面上采用两级速度(第一级:500转,10秒;第二级:2500转,40秒)旋涂聚酰亚胺酸的溶液,并形成5μm厚的湿膜;然后在100℃烘烤3分钟成膜,然后移到300℃的真空干燥器中进行高温烘烤30分钟,以使聚酰亚胺酸环化生成聚酰亚胺(PI)薄膜,即获得了PI柔性基底层10。
之后将获得的PI柔性基底层10,放入到氧气等离子体机器中进行处理60秒,以使该PI柔性基底层表面羟基化,取出待用。
2、制备具有电极图案的弹性模板:
2.1另取一硅片作为硬质衬底,根据设计好的柔性电极的图形模板(如图1),采用光刻法在其上制作电极图案的阳膜,具体包括以下步骤;
在清洗干净后的硅片上旋涂一层SU-8光刻胶,在95℃固化30分钟之后,利用一定形状的掩膜版在180mJ/cm 2的紫外光能量下进行曝光,使用SU-8显影液进行显影处理,清洗掉掩膜版以外的部分,得到电极图案的阳膜;
然后使用120℃的热板进行坚膜处理15分钟,以使残留的光刻胶中的溶剂全部挥发,进而使该阳膜更牢固地粘附在硅片表面,以便后续重复利用;
2.2往上述阳膜中浇注模型胶,经脱气泡、固化后揭膜,得到具有电极图案的弹性模板;所述弹性模板具有与所述阳膜互补的图案。所用模型胶例如可以是聚二甲基硅氧烷(PDMS)。其中,浇筑用PDMS中A胶与B胶的体积比可以为1:10。经过脱泡机脱除气泡后,再进行固化处理(例如可以是在80℃的烘箱中烘烤3小时)。固化后,上述阳模中的电极图案能够可靠地转印到模型胶。然后从硅片上揭下固化后的模型胶层,即得到具有电极结构的PDMS弹性模板(如图2所示)。
3、将盐酸多巴胺(3-羟基酪胺盐酸盐)溶解于10mM的Tris缓冲溶液(pH=8.5)中,其中,盐酸多巴胺在该缓冲液的最终浓度为2mg/mL。将上述PDMS弹性模板置于上述盐酸多巴胺的Tris缓冲液中浸泡,浸泡16小时后取出。在浸泡过程中,多巴胺会在PDMS弹性模板上自动形成聚多巴胺(PDA)膜,该PDA膜的形貌同设计好的电极图案(同图2)。
4、将步骤3中PDMS弹性模板上的PDA膜通过微接触印刷的方式转印到步骤1中羟基化的PI柔性基底层10表面(转印前最好保持柔性基底PI表面湿润),得到具有PDA粘附层20的承载板(如图3所示)。其中,所述微接触印刷时,所施加的压力为1.8N。转印后的PDA粘附层同设计好的电极图案。
转印完成后,使用去离子水冲洗下该承载板上的PDA粘附层,并用氮气吹干,等待下一步使用。
5、将80mL、2.5mM的氯铂酸水溶液与甲酸混合,加入去离子水,使混合后的溶液总体积为100mL,得到生长铂金属纳米线所需的铂离子溶液。将步骤4中转印有PDA粘附层20的承载板置于上述铂离子的溶液中,以PDA粘附层20为诱导层在其上生长铂金属电极层30,72小时后用去离子水清洗电极样品并干燥。
6、制作柔性电极的封装层40:
b1、在铂金属电极层30上设置封装膜40’,该封装膜40’还填充PI柔性基底层10上未被层叠设置的PDA粘附层20和金属电极层30覆盖的部分。该封装膜40’的材质也可以为PI,其设置过程如下:
先将带铂金属电极层30的承载板在120℃下加热5分钟以去除水蒸气,然后通过匀胶机在其表面旋涂聚酰亚胺酸的溶液,形成5μm厚的湿膜;然后在100℃烘烤3分钟,将软化3min后的样品放入烘箱后,先从室温(约25℃)快速加热至40℃,然后以3℃/min的速率升温至300℃,高温烘烤30分钟后,以使聚酰亚胺酸环化生成PI,自然冷却至室温。
b2、在上述PI封装膜40’上采用两级速度(第一级:300转,15秒;第二级:3000转,30秒)涂布牺牲材料(具体为AZ4620正性光刻胶),以构建约3μm厚的牺牲层;对形成的牺牲层进行紫外曝光(曝光量为40mJ/cm 2),并在曝光后进行 120℃的后烘处理,待冷至室温后用AZ300显影液进行显影,形成图案化的牺牲层50。其中,图案化的牺牲层50未覆盖金属电极层30的刺激电极位点31与电极连接点32。
b3、以图案化的牺牲层50为掩膜版,对上述PI封装膜40’进行等离子(RIE)刻蚀,以使被覆盖的金属电极层30的刺激电极位点31与电极连接点32暴露出来,而不暴露导线等其他部分,形成封装层40。其中刻蚀参数设置为:氧气流量:40sccm,室压:20-14pa,功率:150W,刻蚀时间:10min,连续4次。
b4、将RIE蚀刻后的样品浸泡在丙酮中,以将残留的牺牲材料(AZ4620正性光刻胶)完全溶解在丙酮中,然后用去离子水清洗表面,氮气干燥,得到具有封装层40的柔性电极。
7、去除与PI柔性基底层10连接的承载板,完成整个柔性电极的制作。最终所得的柔性电极产品如图6所示。
图1为本发明实施例中柔性电极的金属电极层30的结构设计图。所述金属电极层30包括相对设置的10个刺激电极位点31和10个电极连接点32,每个刺激电极位点31与电极连接点32通过导线33一一对应连接。图1中刺激电极位点31的直径为200μm,导线33的宽度为35μm,电极连接点32为1*1毫米的正方形,其后期可与带芯片的PCB板进行连接,或者连接其他仪器进行测试等。
经过上述步骤5,转印的PDA粘附层20与羟基化的PI柔性基底层10通过共价键连接,其中,PDA的氨基与PI柔性基底层的-OH形成共价键,如下式所示:
Figure PCTCN2020129516-appb-000001
而在PDA粘附层20与铂金属电极层30的界面处,PDA粘附层20螯合有铂金属原子,如下所示:
Figure PCTCN2020129516-appb-000002
图4为本发明一实施例中转印完聚多巴胺粘附层的扫描电镜图(a),以及在其上生长完铂金属电极层的扫描电镜图。从图4中(a)可以看出,聚多巴胺(PDA)粘附层呈多孔网格分布;从图4中(b)可以看出,生长的铂金属电极层是由铂纳米线构成,且也交叉形成多孔结构。PDA粘附层和铂金属电极层的总厚度约为0.7μm。
图5为本发明一实施例中未封装的柔性电极的截面微观示意图(a),以及其中聚多巴胺粘附层的结构示意图(b),以及它们在受力时的分析图。从图5中可以看出,当柔性电极表面受拉伸力或者其他横向力时,作为网格结构的PDA和线 性交叉结构的金属纳米线能在力的作用下发生变形,随着力矩的方向而发生形变,但是在一定程度下,可以承载更大的力而不会出现断裂现象,使得柔性电极具有良好的拉伸性能。
图6为本发明一实施例中封装后的柔性电极的结构示意图。请一并参阅图1,该柔性电极包括柔性基底层10以及依次层叠设置在柔性基底层10表面的聚多巴胺粘附层20和金属电极层30。该柔性电极还包括封装层40,封装层40覆盖柔性基底层10上未被金属电极层30的刺激电极位点31与电极连接点31所覆盖的部分。即,柔性基底层上10层叠设置的聚多巴胺粘附层20和金属电极层30及其之间的间隙均位于封装层40的容置空间内,但金属电极层30的刺激电极位点31与电极连接点32从该封装层40中露出,而金属电极层30的导线未露出。
如上所述,聚多巴胺粘附层20具有三维多孔网格结构,金属电极层30由金属纳米线交叉而成,聚多巴胺粘附层20与羟基化的柔性基底层10通过共价键连接,在聚多巴胺粘附层20与金属电极层30的界面处,聚多巴胺粘附层20螯合金属原子。
经验证,本实施例1提高的柔性电极在1kHz时的电化学阻抗比传统的钛/铂电极大幅度降低了3个数量级,约降低了99.54%;而其电荷存储容量(CSCc)提高了27倍。其机械粘附性能比传统磁控溅射电极明显提高4倍左右。同时,机械疲劳寿命(100kHz以下)是传统柔性电极的2倍左右。
需要说明的是,在本发明的其他实施例中,当需要在PDA粘附层上沉积金离子时,可以将转印有PDA粘附层的承载板置于0.01%的HAuCl 4溶液与0.4mM盐酸羟胺溶液等体积混合的溶液中,于18-25℃下反应20-30分钟,取出用双蒸水清洗,氮气吹干。这样在PDA粘附层上形成金电极层。当需要在PDA粘附层上沉积银离子时,可以将转印有PDA粘附层的承载板置于通过以下方式配置的银离子溶液:向10mM的硝酸银溶液中滴加氨水,溶液变为淡棕色,继续滴加氨水直到溶液变为无色,然后向该体系加入等体积的3.33mM的葡萄糖溶液。将转印有PDA粘附层的承载板浸泡于该银离子溶液中,于18-25℃下反应2-10分钟,取出用双蒸水清洗,氮气吹干,这样在PDA粘附层上形成银电极层。当需要在PDA粘附层上沉积铜离 子时,可以将转印有PDA粘附层的承载板置于通过以下方式配置的铜离子溶液:配制含有50mM的EDTA、50mM的CuCl 2和0.1M的H 3BO 3的溶液,调节pH为7,再加入体积的浓度为0.1M的二甲基胺硼烷溶液,得到混合溶液。将转印有PDA粘附层的承载板浸泡于该铜离子溶液中,40℃下通氮气反应2小时,取出后用双蒸水清洗,并用氮气吹干,这样在PDA粘附层上形成铜电极层。
此外,上述封装层40的制作除了采用光刻法之外,还可以通过注塑、压铸等方式形成。
以上所述实施例仅表达了本发明的示例性实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种柔性电极,其特征在于,包括柔性基底层以及依次层叠设置在所述柔性基底层表面的聚多巴胺粘附层和金属电极层,其中,所述聚多巴胺粘附层具有三维多孔网格结构,所述金属电极层由金属纳米线交叉而成,所述聚多巴胺粘附层与羟基化的所述柔性基底层通过共价键连接,在所述聚多巴胺粘附层与所述金属电极层的界面处,所述聚多巴胺粘附层螯合有金属原子。
  2. 如权利要求1所述的柔性电极,其特征在于,所述聚多巴胺粘附层的多孔孔径为10-100nm。
  3. 如权利要求1所述的柔性电极,其特征在于,所述聚多巴胺粘附层的厚度为30-800nm。
  4. 如权利要求1所述的柔性电极,其特征在于,所述金属电极层的厚度为0.5-10μm。
  5. 如权利要求1-4任一项所述的柔性电极,其特征在于,所述柔性电极还包括封装层,所述封装层覆盖所述金属电极层,以及所述柔性基底层上未被所述金属电极层覆盖的部分,但所述金属电极层的刺激电极位点与电极连接点从所述封装层中露出。
  6. 一种柔性电极的制备方法,其特征在于,包括以下步骤:
    提供承载板,在所述承载板的一面形成柔性基底层,并对干燥后的所述柔性基底层进行氧等离子体处理,以使述柔性基底层羟基化;
    制备具有电极图案的弹性模板,将所述弹性模板置于盐酸多巴胺的Tris溶液中浸泡,以在所述弹性模板表面形成具有电极图案的聚多巴胺膜;
    将所述弹性模板上的聚多巴胺膜通过微接触印刷的方式转印到所述羟基化的柔性基底层表面,得到具有聚多巴胺粘附层的承载板;其中,所述聚多巴胺粘附层与所述羟基化的柔性基底层通过共价键连接;
    将转印有所述聚多巴胺粘附层的承载板置于金属离子的溶液中,以在所述聚多巴胺粘附层上生长金属纳米线,得到图案化的金属电极层;
    去除所述承载板,得到柔性电极。
  7. 如权利要求6所述的柔性电极的制备方法,其特征在于,所述具有电极图案的弹性模板是通过以下方法制备:
    在硬质衬底上旋涂光刻胶,利用一定形状的掩膜版进行曝光、显影,得到电极图案的阳膜;
    用模型胶浇注所述阳膜,固化后揭膜,得到具有电极图案的弹性模板。
  8. 如权利要求6所述的柔性电极的制备方法,其特征在于,所述盐酸多巴胺的Tris溶液的pH为6-9,盐酸多巴胺的浓度为2-5mg/mL;所述弹性模板在所述盐酸多巴胺的Tris溶液中的浸泡时间为10-24h。
  9. 如权利要求6所述的柔性电极的制备方法,其特征在于,在所述微接触印刷时,所施加的压力为1.0-2.0N。
  10. 如权利要求6-9任一项所述的柔性电极的制备方法,其特征在于,在去除所述承载板之前还包括:制备封装层,其中,所述封装层覆盖所述金属电极层,以及所述柔性基底层上未被所述金属电极层覆盖的部分,但所述金属电极层的刺激电极位点与电极连接点从所述封装层中露出。
PCT/CN2020/129516 2019-12-13 2020-11-17 一种柔性电极及其制备方法 WO2021115056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911285531.9 2019-12-13
CN201911285531.9A CN110980631B (zh) 2019-12-13 2019-12-13 一种柔性电极及其制备方法

Publications (1)

Publication Number Publication Date
WO2021115056A1 true WO2021115056A1 (zh) 2021-06-17

Family

ID=70093596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129516 WO2021115056A1 (zh) 2019-12-13 2020-11-17 一种柔性电极及其制备方法

Country Status (2)

Country Link
CN (1) CN110980631B (zh)
WO (1) WO2021115056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933371A (zh) * 2021-10-25 2022-01-14 扬州大学 一种柔性生物传感器电极的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980631B (zh) * 2019-12-13 2023-06-06 深圳先进技术研究院 一种柔性电极及其制备方法
CN112164751A (zh) * 2020-09-29 2021-01-01 陕西科技大学 一种金/1,-10葵二硫醇/铜三明治结构分子结及其溶液法制备方法
CN112635103B (zh) * 2020-12-18 2022-07-29 深圳先进技术研究院 导电图案及其制备方法、柔性电子设备
CN114771120B (zh) * 2022-06-18 2022-09-02 南通人民彩印有限公司 微接触印刷过程压力控制方法、装置及人工智能系统
CN115504430B (zh) * 2022-09-27 2023-04-21 甘肃省科学院传感技术研究所 一种mems电子器件有机介电层的低温制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100853A1 (en) * 2016-10-09 2018-04-12 The University Of Kansas Graphene oxide-based nanolab and methods of detecting of exosomes
CN108365776A (zh) * 2018-01-29 2018-08-03 清华大学 一种湿气发电机及其制备方法
CN108751117A (zh) * 2018-05-28 2018-11-06 深圳市中科先见医疗科技有限公司 微电极阵列及其制备方法
CN110066505A (zh) * 2019-05-27 2019-07-30 王飞 哑光pc-abs合金材料及其制备方法
CN110551299A (zh) * 2019-10-23 2019-12-10 广东工业大学 一种自粘附性聚丙烯酰胺复合水凝胶及其制备方法与应用
CN110980631A (zh) * 2019-12-13 2020-04-10 深圳先进技术研究院 一种柔性电极及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856764B2 (en) * 2014-08-07 2020-12-08 The Regents Of The University Of California Method for forming a multielectrode conformal penetrating array
CN107221660B (zh) * 2017-06-15 2020-02-14 北京理工大学 一种柔性的锂硫电池正极材料
CN110060885B (zh) * 2019-04-23 2020-09-22 华南理工大学 一种柔性织物电极及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100853A1 (en) * 2016-10-09 2018-04-12 The University Of Kansas Graphene oxide-based nanolab and methods of detecting of exosomes
CN108365776A (zh) * 2018-01-29 2018-08-03 清华大学 一种湿气发电机及其制备方法
CN108751117A (zh) * 2018-05-28 2018-11-06 深圳市中科先见医疗科技有限公司 微电极阵列及其制备方法
CN110066505A (zh) * 2019-05-27 2019-07-30 王飞 哑光pc-abs合金材料及其制备方法
CN110551299A (zh) * 2019-10-23 2019-12-10 广东工业大学 一种自粘附性聚丙烯酰胺复合水凝胶及其制备方法与应用
CN110980631A (zh) * 2019-12-13 2020-04-10 深圳先进技术研究院 一种柔性电极及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933371A (zh) * 2021-10-25 2022-01-14 扬州大学 一种柔性生物传感器电极的制备方法
CN113933371B (zh) * 2021-10-25 2023-12-22 扬州大学 一种柔性生物传感器电极的制备方法

Also Published As

Publication number Publication date
CN110980631A (zh) 2020-04-10
CN110980631B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2021115056A1 (zh) 一种柔性电极及其制备方法
CN110132457B (zh) 一种多功能传感的柔性传感器及其制备方法
CN110763256B (zh) 聚二甲基硅氧烷薄膜、柔性电容传感器及其制备方法
KR101685069B1 (ko) 패턴이 형성된 플렉서블 투명전극의 제조방법
CN104392904B (zh) 基于柔性基底的可延展导电薄膜及其制备工艺
CN109186817A (zh) 一种电容式柔性压力传感器及其制造方法
JP4741616B2 (ja) フォトレジスト積層基板の形成方法
JP2007501525A5 (zh)
CN101138663A (zh) 基于柔性基底的生物微电极阵列的制备方法
CN101700869B (zh) 基于衬底图形化的柔性衬底生物微电极阵列制备方法
KR101197037B1 (ko) 나노와이어 소자를 임의 형태로 프린팅하여 나노 소자를 제조하는 방법 및 상기 방법에 사용되는 중간체 빌딩 블록
KR20160051487A (ko) 유기 용매 증기를 이용한 접착력 제어 방식의 나노 구조체 제조 방법 및 나노 전사 프린팅 방법
CN109166847B (zh) 柔性电子器件及其制造方法
CN111017870B (zh) 一种柔性电极及其制备方法
WO2021114287A1 (zh) 一种柔性电极及其制备方法
CN101654217B (zh) 一种制作微元件的方法
WO2024093022A1 (zh) 一种基于半加成工艺的精细线路板及其制备方法、表面处理方法和应用
CN115219575B (zh) 一种可拉伸的电化学三维微电极及其在生物分子检测方面的应用
CN100395171C (zh) 碳纳米管微结构的制备方法
CN116313762A (zh) 一种金属电极的转移方法
CN115821337A (zh) 基于多层结构硅橡胶芯模的压印金属模板微电铸成形方法
JP2023553168A (ja) 延伸性acf、その製造方法、これを含む界面接合部材及び素子
CN111621816B (zh) 一种超高深宽比金属微柱阵列的制作方法
US8262898B2 (en) Nanotube position controlling method, nanotube position controlling flow path pattern and electronic element using nanotube
CN114334643A (zh) 一种图案化电极的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898072

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20898072

Country of ref document: EP

Kind code of ref document: A1