WO2021114998A1 - 用于加热装置的控制方法及加热装置 - Google Patents

用于加热装置的控制方法及加热装置 Download PDF

Info

Publication number
WO2021114998A1
WO2021114998A1 PCT/CN2020/127829 CN2020127829W WO2021114998A1 WO 2021114998 A1 WO2021114998 A1 WO 2021114998A1 CN 2020127829 W CN2020127829 W CN 2020127829W WO 2021114998 A1 WO2021114998 A1 WO 2021114998A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching
electromagnetic wave
wave generating
generating module
module
Prior art date
Application number
PCT/CN2020/127829
Other languages
English (en)
French (fr)
Inventor
朱小兵
王铭
李春阳
韩志强
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021114998A1 publication Critical patent/WO2021114998A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating

Definitions

  • the present invention relates to the field of food processing, in particular to a control method and heating device for electromagnetic wave heating devices.
  • the quality of the food is maintained, but frozen food needs to be thawed before being processed or eaten.
  • the food is usually defrosted by an electromagnetic wave heating device.
  • Defrosting food through an electromagnetic wave heating device is not only fast and efficient, but also has low nutrient loss.
  • the prior art generally judges the end of thawing by the user setting time, which not only imposes excessive requirements on the user, it is easy to cause the food after thawing to be too cold or overheated, but also due to the penetration and absorption of water and ice by microwaves. Differences, and the distribution of substances inside the food is uneven, and the melted area absorbs a lot of energy, which is prone to uneven thawing and local overheating.
  • An object of the first aspect of the present invention is to provide a control method for an electromagnetic wave heating device, which adopts a new and more preferred method to determine the characteristic parameters of the object to be processed.
  • a further object of the first aspect of the present invention is to improve the efficiency of obtaining the impedance value of the matching module for optimal matching.
  • Another further object of the first aspect of the present invention is to improve the accuracy of the characteristic parameters.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • the heating device includes an electromagnetic wave generating module that generates an electromagnetic wave signal for heating an object to be processed, and adjusting the electromagnetic wave by adjusting its own impedance.
  • the matching module of the load impedance of the generating module includes:
  • the characteristic parameters of the object to be processed are determined according to the impedance value.
  • the matching module includes a plurality of matching branches that can be independently turned on and off, the impedance of the matching module is adjusted, and the impedance of the matching module that realizes the optimal load matching of the electromagnetic wave generating module is determined
  • the value steps include:
  • the on-off combination for achieving optimal load matching and the impedance value corresponding to the on-off combination are determined according to the comparison result.
  • the step of traversing the on-off combinations of the multiple matching branches, and obtaining a matching degree parameter corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module includes:
  • the branch number of the matching branch corresponding to each combination number is determined one by one according to the number set, and the corresponding matching branch is controlled on and off according to the branch number.
  • the branch numbers of the multiple matching branches are sequentially from 0 to the n-1 power of the constant A;
  • the combination number is the sum of the branch numbers of the matching branches in the on-off combination; where n is the number of the matching branches.
  • the step of traversing the on-off combinations of the multiple matching branches, and obtaining a matching degree parameter corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module includes:
  • the matching degree parameter is calculated according to the forward power signal and the reverse power signal.
  • the step of determining the characteristic parameter of the object to be processed according to the impedance value includes:
  • the corresponding characteristic parameter is matched according to the impedance value according to a preset comparison table, and the comparison table records the corresponding relationship between the impedance value and the characteristic parameter.
  • the characteristic parameter is weight and/or temperature and/or heating time and/or heating power for heating to a set temperature.
  • the step of matching corresponding characteristic parameters according to the impedance value according to a preset comparison table includes:
  • the characteristic parameters are weight and/or heating time and/or heating power to a set temperature.
  • the step of matching corresponding characteristic parameters according to the impedance value according to a preset comparison table includes:
  • the characteristic parameter is the initial temperature and/or the heating time and/or heating power to the set temperature.
  • the set temperature is -4 to 0°C.
  • the matching module is connected in series between the electromagnetic wave generating module and the cavity capacitor, and the control method further includes:
  • control the electromagnetic wave generating module to generate an electromagnetic wave signal with a preset heating power.
  • the matching module is connected in series between the electromagnetic wave generating module and the cavity capacitor, and the control method further includes:
  • control the electromagnetic wave generating module to generate an electromagnetic wave signal with a preset heating power.
  • control method further includes:
  • a heating device including:
  • Cavity capacitance used to place objects to be processed
  • An electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • a matching module configured to adjust the load impedance of the electromagnetic wave generating module by adjusting its own impedance
  • the controller is configured to execute any of the above control methods.
  • the matching module includes:
  • the first matching unit is connected in series between the electromagnetic wave generating module and the cavity capacitor;
  • One end of the second matching unit is electrically connected between the first matching unit and the cavity capacitor, and the other end is grounded;
  • the first matching unit and the second matching unit respectively include a plurality of matching branches connected in parallel, and each of the matching branches includes a fixed-value capacitor and a switch.
  • the capacitance values of the plurality of fixed value capacitors of the first matching unit and the second matching unit are not equal, and the capacitance value of the minimum fixed value capacitor of the second matching unit is greater than that of the The capacitance value of the maximum fixed-value capacitor of the first matching unit; the plurality of branch numbers increase in order according to the capacitance value of the corresponding matching branch from small to large.
  • the heating device and its control method of the present invention determine the characteristic parameters of the object to be processed through the impedance value of the matching module itself that achieves optimal load matching. Not only does it not require the user to manually input the characteristic parameters of the object to be processed based on experience or through measurement, but also reduces The corresponding sensing device for sensing the characteristic parameter in the cavity capacitor is further saved, and the error of the characteristic parameter is reduced.
  • the present invention by separately numbering each on-off combination of the matching module and each matching branch, can quickly match in the process of determining the impedance value of the matching module that realizes the optimal load matching of the electromagnetic wave generating module.
  • the on-off is performed to the matching branch corresponding to each on-off combination, thereby shortening the time required to determine the characteristic parameters of the object to be processed, and greatly improving the user experience.
  • the combination number can be directly used to compare with the preset upper or lower impedance threshold, which simplifies the control process and further shortens the matching time of the heating device.
  • the present invention determines the characteristic parameters of the object to be processed by combining the impedance value of the matching module itself for achieving optimal load matching with the comparison table, that is, the characteristic parameter of the object to be processed is determined by the capacitance value range of the cavity capacitance.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • Fig. 3 is a schematic circuit diagram of a matching module according to an embodiment of the present invention.
  • Fig. 4 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of the steps of adjusting the impedance of the matching module in FIG. 4, and determining the impedance value of the matching module that realizes the optimal load matching of the electromagnetic wave generating module;
  • FIG. 6 is a flowchart of the steps of traversing the on-off combinations of multiple matching branches in FIG. 5, and obtaining the matching degree parameters corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module;
  • FIG. 7 is a schematic flowchart of judging whether the cavity capacitor is empty or overloaded according to an embodiment of the present invention.
  • Fig. 8 is a detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110, an electromagnetic wave generating module 120, a matching module 130 and a controller 140.
  • the cavity capacitor 110 may include a cavity for placing the to-be-processed object 150 and a radiator plate arranged in the cavity.
  • a receiving plate may be further provided in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal to form a capacitor as a receiving plate and a radiating plate.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals and be electrically connected to the radiating plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110 to heat the object 150 in the cavity capacitor 110.
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or in parallel at both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance to achieve load matching. Improve heating efficiency.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1.
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, which is used to implement the control method of the embodiment of the present invention when the computer program 143 is executed by the processing unit 141.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power after obtaining the heating instruction, adjust the impedance of the matching module 130 to perform load matching, and determine the realization of the electromagnetic wave generating module 120 The impedance value of the matching module 130 for optimal load matching, and further determine the characteristic parameters of the to-be-processed object 150 according to the impedance value of the matching module 130 for achieving optimal load matching.
  • the heating device 100 of the present invention determines the characteristic parameters of the to-be-processed object 150 through the impedance value of the matching module 130 itself that achieves optimal load matching, not only does not require the user to manually input the characteristic parameters of the to-be-processed object 150 based on experience or through measurement, but also reduces The corresponding sensing device for sensing the characteristic parameter in the cavity capacitor 110 is further saved, and the error of the characteristic parameter is reduced.
  • the optimal load matching of the electromagnetic wave generating module 120 refers to the largest proportion of the output power allocated to the cavity capacitor 110 by the electromagnetic wave generating module 120 under the same heating device.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain the impedance value of the matching module 130 that achieves optimal load matching with high accuracy.
  • the characteristic parameter can be one parameter or a combination of multiple parameters among weight, temperature, heating time to set temperature, and heating power according to actual application requirements.
  • the matching module 130 may include a plurality of matching branches that can be independently turned on and off.
  • the processing unit 141 may be further configured to traverse the on-off combinations of multiple matching branches and obtain a matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each on-off combination, and compare the on-off combinations of the multiple matching branches. Combine the matching parameters of the combination, and determine the on-off combination that achieves optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • the storage unit 142 may store a pre-configured number set, the number set may include a combination number of on-off combinations of a plurality of matching branches, and the combination number corresponds to the impedance value of the matching module.
  • the processing unit 141 may be further configured to obtain a pre-configured number set after obtaining the heating instruction, and then determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the corresponding branch number according to the branch number.
  • the on-off of the matching branch can be realized to traverse the on-off combination of multiple matching branches.
  • the heating device 100 of the present invention separately numbers each on-off combination of the matching module 130 and each matching branch, which can be used in the process of determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 ,
  • the matching branch corresponding to each on-off combination is quickly matched for on-off, thereby shortening the time required to determine the characteristic parameters of the to-be-processed object 150, and greatly improving the user experience.
  • the branch numbers of multiple matching branches can be the 0 to n-1 power of the constant A in sequence, and the combination number can be the sum of the branch numbers of the matching branches in the on-off combination to pass only the branch
  • the number can accurately determine a unique set of matching branches that are turned on.
  • the constant A can be 2, 3, 4, etc., and n is the number of matching branches.
  • the constant A can be 2 to reduce the storage space occupied by the serial number and improve the matching efficiency.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 according to an embodiment of the present invention.
  • the matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end electrically connected to the first matching unit 131 and the cavity capacitor.
  • the second matching unit 132 between 110 and the other end is grounded.
  • the first matching unit 131 and the second matching unit 132 may respectively include multiple matching branches connected in parallel, and each matching branch includes a fixed-value capacitor and a switch, so as to simplify the circuit and improve the matching module.
  • the reliability and adjustment range of 130 can further improve the obtained impedance value of the matching module 130 that achieves optimal load matching.
  • the capacitance values of the plurality of fixed value capacitors of the plurality of second matching units 132 of the first matching unit 131 and the second matching unit 132 may all be unequal, and the capacitance value of the smallest fixed value capacitor of the second matching unit 132 may be greater than that of the first matching unit 132.
  • the number of multiple branches can be increased in order according to the capacitance value of the corresponding matching branch from small to large.
  • the matching branches corresponding to C 1 , C 2 , ..., C a , C x1 , C x2 , ..., C xb can be sequentially numbered as 2 0 , 2 1 , ..., 2 a -1 , 2 a , 2 a+1 ,..., 2 n-1 .
  • the matching module 130 may include a plurality of fixed-value inductors and a plurality of matching branches connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110.
  • each matching branch includes a fixed-value capacitor and a switch connected in series, and the input end of each matching branch is connected in series between two adjacent inductors and between the end inductor and the cavity capacitor 110.
  • the output terminals are all set to ground.
  • the present invention can also use other matching modules 130 with multiple matching branches that can be independently turned on and off.
  • the combination number can be directly compared with the preset impedance threshold to determine the impedance of the matching module 130, which simplifies the control process and further shortens the matching time of the heating device 100.
  • the heating device 100 may further include a two-way coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal output by the electromagnetic wave generating module 120 and the return electromagnetic wave generating module 120 The reverse power signal.
  • the processing unit 141 may also be configured to obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returned to the electromagnetic wave generating module 120 after the matching branch corresponding to each on-off combination is turned on and off, and based on the forward power signal Calculate the matching degree parameter with the reverse power signal.
  • S11 -20log (reverse power/forward power)
  • the smaller the value of the return loss S11 reflects the electromagnetic wave generation module 120
  • the impedance value of the matching module 130 corresponding to the minimum return loss S11 is the impedance value for achieving optimal load matching.
  • electromagnetic wave absorption rate (1-reverse power/forward power).
  • the greater the value of electromagnetic wave absorption rate reflects the electromagnetic wave generation module
  • the impedance value of the matching module 130 corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching.
  • the matching degree parameter may also be other parameters that can reflect the proportion of the output power allocated by the electromagnetic wave generating module 120 to the cavity capacitor.
  • the storage unit 142 may store a pre-configured comparison table, which records the correspondence between the impedance value and the characteristic parameter.
  • the processing unit 141 may be configured to match the corresponding characteristic parameters according to the preset comparison table according to the impedance value of the matching module 130 that achieves optimal load matching.
  • the heating device 100 of the present invention determines the characteristic parameters of the to-be-processed object 150 by combining the impedance value of the matching module 130 itself for achieving optimal load matching with the comparison table, that is, the capacitance value of the to-be-processed object 150 is determined by the capacitance value range of the cavity capacitor 110 Compared with directly measuring the capacitance value of the cavity capacitance 110 and then calculating the characteristic parameters of the object 150 according to the capacitance value, the characteristic parameter saves the cost of increasing the measuring device.
  • the inventor of the present application creatively found that the capacitance value range To determine the characteristic parameters, the error of the measuring device can be accommodated, the characteristic parameters with higher accuracy can be obtained, and the excellent heating effect can be obtained.
  • only one correspondence is recorded in the comparison table, and the characteristic parameter can be directly obtained from the impedance value according to the comparison table, so as to simplify the acquisition process of the characteristic parameter.
  • the corresponding relationship at different initial temperatures is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the initial temperature of the object 150 to be processed, match the corresponding relationship according to the initial temperature, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid temperature influence on the capacitance value of the cavity capacitor 110 Influence, and further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, heating time to a set temperature, and heating power.
  • the corresponding relationship under different weights of the objects 150 to be processed is recorded in the comparison table.
  • the processing unit 141 may be further configured to obtain the weight of the object 150 to be processed, match the corresponding relationship according to the weight, and further match the corresponding characteristic parameters according to the corresponding relationship in combination with impedance values, so as to avoid the influence of the weight on the capacitance value of the cavity capacitor 110, Further improve the accuracy of feature parameters.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among the initial temperature, the heating time to the set temperature, and the heating power.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 when the impedance value for achieving optimal load matching is greater than or equal to the preset upper threshold. Stop work to avoid the weight of the processed object 150 is too small, which will cause the matching module 130 to heat up, which will seriously reduce the heating efficiency, and the heat will cause safety hazards; when the impedance value for optimal load matching is less than or equal to the preset lower threshold, electromagnetic waves are controlled The module 120 stops working, so as to avoid the weight of the object 150 to be processed is too large and the heating effect is too poor.
  • the preset upper threshold may be the maximum impedance value of the matching module 130
  • the preset lower threshold may be the minimum impedance value of the matching module 130.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset heating power within a preset heating time, and start The treatment 150 is heated.
  • the preset heating time and the preset heating power are both obtained by matching the impedance value according to the preset comparison table.
  • the heating device 100 may further include an interactive module for sending visual and/or audible signals to the user.
  • the processing unit 141 may also be configured to control the interactive module to send a visual and/or audible signal to the user when the impedance value for optimal load matching is greater than or equal to the preset upper threshold; when the impedance value for optimal load matching is achieved When the value is less than or equal to the preset lower threshold, the control interaction module sends a visual and/or audible signal prompting the user to be overloaded, so as to improve the user experience.
  • Fig. 4 is a schematic flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 executed by the controller 140 of any of the above embodiments of the present invention may include the following steps:
  • Step S402 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain the impedance value of the matching module 130 that achieves optimal load matching with high accuracy.
  • Step S404 Adjust the impedance of the matching module 130, and determine the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • Step S406 Determine the characteristic parameter of the to-be-processed object 150 according to the impedance value.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among weight, temperature, heating time to a set temperature, and heating power according to actual application requirements.
  • the control method of the present invention determines the characteristic parameters of the to-be-processed object 150 through the impedance value of the matching module 130 itself that achieves optimal load matching, not only does not require the user to manually input the characteristic parameters of the to-be-processed object 150 based on experience or through measurement, but also reduces
  • the corresponding sensing device for sensing the characteristic parameter in the cavity capacitor 110 further saves cost and reduces the error of the characteristic parameter.
  • step S406 may be to match the corresponding characteristic parameters according to the impedance value according to a preset comparison table.
  • the comparison table records the corresponding relationship between the impedance value and the characteristic parameter.
  • the characteristic parameter can be directly obtained from the impedance value according to the comparison table, so as to simplify the process of acquiring the characteristic parameter.
  • step S406 may include the following steps:
  • the corresponding relationship is matched according to the initial temperature, and the corresponding characteristic parameter is further matched with the impedance value according to the corresponding relationship, so as to avoid the influence of temperature on the capacitance value of the cavity capacitor 110 and further improve the accuracy of the characteristic parameter.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among the weight, the heating time to the set temperature, and the heating power.
  • step S406 may include the following steps:
  • the corresponding relationship is matched according to the weight, and the corresponding characteristic parameter is further matched with the impedance value according to the corresponding relationship, so as to avoid the influence of weight on the capacitance value of the cavity capacitor 110 and further improve the accuracy of the characteristic parameter.
  • the characteristic parameter may be one parameter or a combination of multiple parameters among the initial temperature, the heating time to the set temperature, and the heating power.
  • FIG. 5 is a flowchart of the steps of adjusting the impedance of the matching module 130 in FIG. 4 and determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • the impedance of the matching module 130 is adjusted, and the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 is determined ( Step S404) may include the following specific steps:
  • Step S502 Traverse the on-off combinations of the multiple matching branches, and obtain the matching degree parameter corresponding to each on-off combination that reflects the load matching degree of the electromagnetic wave generating module 120.
  • Step S504 Compare the matching degree parameters of the on-off combinations of multiple matching branches.
  • Step S506 Determine the on-off combination for achieving optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • the control method of the present invention determines the characteristic parameters of the object 150 by combining the impedance value of the matching module 130 itself for optimal load matching with the comparison table, that is, the characteristic parameter of the object 150 is determined by the capacitance value range of the cavity capacitor 110 Compared with directly measuring the capacitance value of the cavity capacitance 110 and then calculating the characteristic parameters of the object 150 according to the capacitance value, the cost of increasing the measuring device is saved, and the inventor of the present application creatively found that the capacitance value range is used to Determining the characteristic parameters can contain the error of the measuring device and obtain the characteristic parameters with higher accuracy, thereby obtaining an excellent heating effect.
  • step S502 is a flowchart of the steps of traversing the on-off combinations of multiple matching branches in FIG. 5, and obtaining the matching degree parameters corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module 120.
  • step S502 the step of traversing the on-off combinations of multiple matching branches and obtaining the matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each on-off combination (step S502) may further include the following specific steps:
  • Step S602 Obtain a pre-configured number set.
  • the number set may include a combination number of on-off combinations of multiple matching branches, and the combination number corresponds to the impedance value of the matching module.
  • Step S604 Determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the on-off of the corresponding matching branch according to the branch number.
  • the branch numbers of the multiple matching branches may be 0 to the n-1 power of the constant A in sequence
  • the combination number may be the sum of the branch numbers of the matching branches that are turned on in the on-off combination.
  • the constant A can be 2, 3, 4, etc.
  • n is the number of matching branches.
  • Step S606 After the matching branch corresponding to each on-off combination is turned on and off, the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal of the returning electromagnetic wave generating module 120 are obtained.
  • the forward power signal and the reverse power signal can be measured by a bidirectional coupler.
  • Step S608 Calculate the matching degree parameter according to the forward power signal and the reverse power signal.
  • the matching degree parameter can be return loss or electromagnetic wave absorptivity.
  • the impedance value of the matching module 130 corresponding to the minimum return loss is the impedance value for achieving optimal load matching; the value of the electromagnetic wave absorption rate The larger the value, the higher the load matching degree of the electromagnetic wave generating module 120 is.
  • the impedance value of the matching module 130 corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching.
  • the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 can be determined in the process of determining the impedance value of the matching module 130
  • the matching branch corresponding to each on-off combination is quickly matched for on-off, thereby shortening the time required to determine the characteristic parameters of the to-be-processed object 150, and greatly improving the user experience.
  • FIG. 7 is a schematic flowchart of determining whether the cavity capacitor 110 is empty or overloaded according to an embodiment of the present invention.
  • the method for judging whether the cavity capacitor 110 is empty or overloaded according to the present invention may include the following steps:
  • Step S702 Determine whether the impedance value for achieving optimal load matching is greater than or equal to a preset upper threshold. If yes, go to step S704; if not, go to step S706.
  • the preset upper threshold may be the maximum impedance value of the matching module 130.
  • Step S704 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or audible signal to the user indicating no-load, so as to avoid the weight of the object 150 to be processed is too small, causing the matching module 130 to generate heat and seriously reduce the heating efficiency, and excessive heat may cause safety Hidden dangers.
  • Step S706 Determine whether the impedance value for achieving optimal load matching is less than or equal to the preset lower threshold. If yes, go to step S708; if not, go to step S710.
  • the preset lower threshold may be the minimum impedance value of the matching module 130.
  • Step S708 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or audible signal prompting the overload to the user, so as to prevent the object 150 from being too heavy and the heating effect is too poor.
  • Step S710 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset heating power.
  • the heating power may be greater than the initial power.
  • the preset heating power may be 50W ⁇ 150W, such as 50W, 100W, 150W, and so on.
  • FIG. 8 is a detailed flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may include the following detailed steps:
  • Step S802 Obtain a heating instruction.
  • Step S804 Obtain the initial temperature of the object 150 to be processed.
  • the initial temperature of the to-be-processed object 150 can be measured by a temperature sensor.
  • Step S806 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S808 Obtain a pre-configured number set.
  • Step S810 Determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the on-off of the corresponding matching branch according to the branch number.
  • Step S812 After the matching branch corresponding to each on-off combination is turned on and off, the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal of the returning electromagnetic wave generating module 120 are obtained.
  • Step S814 Calculate the matching degree parameter according to the forward power signal and the reverse power signal.
  • Step S816 Compare the matching degree parameters of the on-off combinations of the multiple matching branches.
  • Step S818 Determine the on-off combination for achieving optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • Step S820 Determine whether the impedance value for achieving optimal load matching is greater than or equal to a preset upper threshold. If yes, go to step S822; if not, go to step S824.
  • Step S822 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or audible signal prompting the user to be empty. Return to step S802.
  • Step S824 Determine whether the impedance value for achieving optimal load matching is less than or equal to the preset lower threshold. If yes, go to step S826; if not, go to step S828.
  • Step S826 Control the electromagnetic wave generating module 120 to stop working, and send a visual and/or audible signal prompting the overload to the user. Return to step S802.
  • Step S828 Match the corresponding heating time and heating power according to the initial temperature matching corresponding relationship, combined with the impedance value to achieve the optimal load matching.
  • Step S830 controlling the electromagnetic wave generating module 120 to generate an electromagnetic wave signal of heating power.
  • Step S832 It is judged whether the heating reaches the heating time. If yes, go to step S834; if no, go back to step S830.
  • Step S834 the heating is completed, and the electromagnetic wave generating module 120 is controlled to stop working. Return to step S802 to start the next cycle.
  • the heating device 100 and the control method of the present invention are particularly suitable for thawing food, especially for thawing food to -4 to 0°C, that is, the aforementioned set temperature is -4 to 0°C, and more accurate characteristic parameter values can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • General Induction Heating (AREA)

Abstract

一种用于加热装置(100)的控制方法及加热装置(100)。该加热装置(100)包括产生用于加热待处理物(150)的电磁波信号的电磁波发生模块(120)、通过调节自身阻抗来调节电磁波发生模块(120)的负载阻抗的匹配模块(130)和控制器(140)。控制方法包括:控制电磁波发生模块(120)产生预设初始功率的电磁波信号(S402);调节匹配模块(130)的阻抗,并确定实现电磁波发生模块(120)的最优负载匹配的匹配模块(130)的阻抗值(S404);根据阻抗值确定待处理物(150)的特征参数(S406)。该加热装置(100)及其控制方法通过实现最优负载匹配的匹配模块(130)本身的阻抗值来确定待处理物(150)的特征参数,不仅无需用户根据经验或经过测量手动输入待处理物(150)的特征参数,而且减少了腔体电容(110)内的相应感测特征参数的感测装置,进而节约了成本,降低了特征参数的误差。

Description

用于加热装置的控制方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的控制方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但是,现有技术一般通过用户设定时间来判定解冻结束,不仅对用户提出了过高的要求,容易造成解冻结束的食物过冷或过热,而且由于微波对水和冰的穿透和吸收有差别,且食物内部物质分布不均匀,已融化的区域吸收的能量多,易产生解冻不均匀和局部过热的问题。
发明内容
本发明第一方面的一个目的是要提供一种用于电磁波加热装置的控制方法,其采用新的、更加优选的方法来确定待处理物的特征参数。
本发明第一方面的一个进一步的目的是要提高获取实现最优匹配的匹配模块阻抗值的效率。
本发明第一方面另一个进一步的目的是要提高特征参数的准确度。
本发明第二方面的一个目的是要提供一种电磁波加热装置。
根据本发明的第一方面,提供了一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值;
根据所述阻抗值确定待处理物的特征参数。
可选地,所述匹配模块包括可独立通断的多个匹配支路,所述调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
比较所述多个匹配支路的通断组合的匹配度参数;
根据比较结果确定实现最优负载匹配的所述通断组合及该通断组合对应的阻抗值。
可选地,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路编号,并根据所述支路编号控制对应的匹配支路的通断。
可选地,所述多个匹配支路的支路编号依次为常数A的0至n-1次方;且
所述组合编号为该通断组合中导通的匹配支路的支路编号之和;其中,n为所述匹配支路的数量。
可选地,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
在通断每一所述通断组合对应的匹配支路后,获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生模块的反向功率信号;
根据所述正向功率信号和所述反向功率信号计算所述匹配度参数。
可选地,所述根据所述阻抗值确定待处理物的特征参数的步骤包括:
根据所述阻抗值按照预设的对照表匹配对应的特征参数,所述对照表记录有所述阻抗值和所述特征参数的对应关系。
可选地,所述特征参数为重量和/或温度和/或加热至设定温度的加热时间和/或加热功率。
可选地,所述对照表中记录有不同初始温度下的对应关系,所述根据所述阻抗值按照预设的对照表匹配对应的特征参数的步骤包括:
获取待处理物的初始温度;
根据所述初始温度匹配所述对应关系,并进一步根据该对应关系结合实现最优负载匹配的阻抗值匹配对应的特征参数;其中
所述特征参数为重量和/或加热至设定温度的加热时间和/或加热功率。
可选地,所述对照表中记录有不同待处理物重量下的对应关系,所述根据所述阻抗值按照预设的对照表匹配对应的特征参数的步骤包括:
获取待处理物的重量;
根据所述重量匹配所述对应关系,并进一步根据该对应关系结合实现最优负载匹配的阻抗值匹配对应的特征参数;其中
所述特征参数为初始温度和/或加热至设定温度的加热时间和/或加热功率。
可选地,所述设定温度为-4~0℃。
可选地,所述匹配模块串联在所述电磁波发生模块与腔体电容之间,所述控制方法还包括:
判断实现最优负载匹配的所述阻抗值是否大于等于预设上限阈值;
若是,控制所述电磁波发生模块停止工作;
若否,控制所述电磁波发生模块产生预设加热功率的电磁波信号。
可选地,所述匹配模块串联在所述电磁波发生模块与腔体电容之间,所述控制方法还包括:
判断实现最优负载匹配的所述阻抗值是否小于等于预设下限阈值;
若是,控制所述电磁波发生模块停止工作;
若否,控制所述电磁波发生模块产生预设加热功率的电磁波信号。
可选地,所述控制方法还包括:
当实现最优负载匹配的阻抗值大于等于所述预设上限阈值时,向用户发送提示空载的视觉和/或听觉信号;和/或
当实现最优负载匹配的阻抗值小于等于所述预设下限阈值时,向用户发送提示超载的视觉和/或听觉信号。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体电容,用于放置待处理物;
电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
匹配模块,配置为可通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗;以及
控制器,配置为用于执行以上任一所述的控制方法。
可选地,所述匹配模块包括:
第一匹配单元,串联在所述电磁波发生模块与所述腔体电容之间;和
第二匹配单元,其一端电连接于所述第一匹配单元与所述腔体电容之间,另一端接地;其中
所述第一匹配单元和所述第二匹配单元分别包括并联的多个匹配支路,且每个所述匹配支路包括一个定值电容和一个开关。
可选地,所述第一匹配单元和所述第二匹配单元的多个所述定值电容的电容值均不相等,且所述第二匹配单元的最小定值电容的电容值大于所述第一匹配单元的最大定值电容的电容值;多个所述支路编号按照对应匹配支路的电容值由小至大依次增大。
本发明的加热装置及其控制方法通过实现最优负载匹配的匹配模块本身的阻抗值来确定待处理物的特征参数,不仅无需用户根据经验或经过测量手动输入待处理物的特征参数,而且减少了腔体电容内的相应感测特征参数的感测装置,进而节约了成本,降低了特征参数的误差。
进一步地,本发明通过对匹配模块的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块的最优负载匹配的匹配模块的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定待处理物的特征参数的所需时间,极大地提高了用户体验。特别地,根据本发明的编号方法,可直接通过组合编号来与预设的阻抗上限阈值或下限阈值进行比较,简化了控制流程,进一步地缩短了加热装置的匹配时间。
进一步地,本发明通过实现最优负载匹配的匹配模块本身的阻抗值结合对照表来确定待处理物的特征参数,即通过腔体电容的电容值范围来确定待处理物的特征参数,相 比于直接测量腔体电容的电容值再根据电容值计算待处理物的特征参数,节约了增加测量装置的成本,而且本申请的发明人创造性地发现,通过电容值范围来确定特征参数,可包容测量装置的误差,获得准确度更高的特征参数,进而获得极佳的加热效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是根据本发明一个实施例的匹配模块的示意性电路图;
图4是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图5是图4中调节匹配模块的阻抗,并确定实现电磁波发生模块的最优负载匹配的匹配模块的阻抗值的步骤的流程图;
图6是图5中遍历多个匹配支路的通断组合,并获取每个通断组合对应的反映电磁波发生模块的负载匹配度的匹配度参数的步骤的流程图;
图7是根据本发明一个实施例的判断腔体电容是否空载或超载的示意性流程图;
图8是根据本发明一个实施例的用于加热装置的控制方法的详细流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括腔体电容110、电磁波发生模块120、匹配模块130和控制器140。
具体地,腔体电容110可包括用于放置待处理物150的腔体和设置于腔体内的辐射极板。在一些实施例中,腔体内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体可由金属制成,以作为接收极板与辐射极板组成电容器。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110内的待处理物150。
匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
在一些实施例中,处理单元141可配置为在获取到加热指令后,控制电磁波发生模块120产生预设初始功率的电磁波信号,调节匹配模块130的阻抗进行负载匹配,确定 实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值,并进一步地根据实现最优负载匹配的匹配模块130的阻抗值确定待处理物150的特征参数。
本发明的加热装置100通过实现最优负载匹配的匹配模块130本身的阻抗值来确定待处理物150的特征参数,不仅无需用户根据经验或经过测量手动输入待处理物150的特征参数,而且减少了腔体电容110内的相应感测特征参数的感测装置,进而节约了成本,降低了特征参数的误差。
本领域技术人员均可理解地,电磁波发生模块120的最优负载匹配是指相同加热装置下电磁波发生模块120分配给腔体电容110的输出功率的占比最大。
在本发明中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优负载匹配的匹配模块130的阻抗值。
特征参数可根据实际应用的需要为重量、温度、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
在一些实施例中,匹配模块130可包括可独立通断的多个匹配支路。处理单元141可进一步地配置为遍历多个匹配支路的通断组合并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数,比较多个匹配支路的通断组合的匹配度参数,并根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
具体地,存储单元142可存储有预先配置的编号集合,编号集合可包括多个匹配支路的通断组合的组合编号,且组合编号与匹配模块的阻抗值相对应。处理单元141可更进一步地配置为在获取到加热指令后获取预先配置的编号集合,再按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,以实现遍历多个匹配支路的通断组合。
本发明的加热装置100通过对匹配模块130的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定待处理物150的特征参数的所需时间,极大地提高了用户体验。
多个匹配支路的支路编号可依次为常数A的0至n-1次方,组合编号可为该通断组合中导通的匹配支路的支路编号之和,以仅通过支路编号便可准确地确定唯一一组导通的匹配支路。其中常数A可为2、3或4等,n为匹配支路的数量。
在本发明中,常数A可为2,以减少编号所占存储空间,并提高匹配效率。
图3是根据本发明一个实施例的匹配模块130的示意性电路图。参见图3,在一些进一步地实施例中,匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的第一匹配单元131和一端电连接于第一匹配单元131与腔体电容110之间且另一端接地的第二匹配单元132。其中,第一匹配单元131和第二匹配单元132可分别包括并联的多个匹配支路,且每个匹配支路包括一个定值电容和一个开关,以在使电路简单的同时,提高匹配模块130的可靠性和调节范围,进而提高获取到的实现最优负载匹配的匹配模块130的阻抗值。
第一匹配单元131和第二匹配单元132的多个第二匹配单元132的多个定值电容的 电容值可均不相等,且第二匹配单元132的最小定值电容的电容值可大于第一匹配单元131的最大定值电容的电容值。多个支路编号可按照对应匹配支路的电容值由小至大依次增大。
参见图3,第一匹配单元131的电容C 1、C 2、…、C a的电容值依次增大,第二匹配单元132的电容C x1、C x2、…、C xb(其中,a+b=n)的电容值依次增大,且电容Cx1的电容值大于电容C a的电容值。在常数A为2的实施例中,C 1、C 2、…、C a、C x1、C x2、…、C xb对应的匹配支路可依次编号为2 0、2 1、…、2 a-1、2 a、2 a+1、…、2 n-1
在另一些进一步地实施例中,匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的多个定值电感器以及多个匹配支路。其中,每个匹配支路包括串联的一个定值电容器和一个开关,且每个匹配支路的输入端分别串联在相邻两个电感器之间和末端电感器与腔体电容110之间、输出端均设置为接地。
除上述两种电路之外,本发明还可采用其他具有多个可独立通断的匹配支路的匹配模块130。
特别地,根据本发明的编号方法,可直接通过组合编号来与预设的阻抗阈值进行比较,确定匹配模块130的阻抗大小,简化了控制流程,进一步地缩短了加热装置100的匹配时间。
在一些实施例中,加热装置100还可包括串联在腔体电容110与电磁波发生模块120之间的双向耦合器,用于实时监测电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。
处理单元141还可配置为在通断每一通断组合对应的匹配支路后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,并根据正向功率信号和反向功率信号计算匹配度参数。
匹配度参数可为回波损耗S11,其可根据公式S11=-20log(反向功率/正向功率)计算获得,在该实施例下,回波损耗S11的数值越小,反映电磁波发生模块120的负载匹配度越高,最小回波损耗S11对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值。
匹配度参数也可为电磁波吸收率,其可根据公式电磁波吸收率=(1-反向功率/正向功率)计算获得,在该实施例下,电磁波吸收率的数值越大,反映电磁波发生模块120的负载匹配度越高,最大电磁波吸收率对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值。
匹配度参数也可为其他可体现电磁波发生模块120分配给腔体电容的输出功率的占比的参数。
在一些实施例中,存储单元142可存储有预先配置的对照表,该对照表记录有阻抗值和特征参数的对应关系。处理单元141可配置为根据实现最优负载匹配的匹配模块130的阻抗值按照预设的对照表匹配对应的特征参数。
本发明的加热装置100通过实现最优负载匹配的匹配模块130本身的阻抗值结合对照表来确定待处理物150的特征参数,即通过腔体电容110的电容值范围来确定待处理物150的特征参数,相比于直接测量腔体电容110的电容值再根据电容值计算待处理物 150的特征参数,节约了增加测量装置的成本,而且本申请的发明人创造性地发现,通过电容值范围来确定特征参数,可包容测量装置的误差,获得准确度更高的特征参数,进而获得极佳的加热效果。
在一些进一步的实施例中,对照表中仅记录有一种对应关系,特征参数可由阻抗值按照对照表直接获得,以简化特征参数的获取流程。
在另一些进一步的实施例中,对照表中记录有不同初始温度下的对应关系。处理单元141可进一步配置为获取待处理物150的初始温度,根据该初始温度匹配对应关系,并进一步根据该对应关系结合阻抗值匹配对应的特征参数,以避免温度对腔体电容110的电容值影响,进一步提高特征参数的准确性。在该实施例中,特征参数可为重量、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
在又一些进一步的实施例中,对照表中记录有不同待处理物150重量下的对应关系。处理单元141可进一步配置为获取待处理物150的重量,根据该重量匹配对应关系,并进一步根据该对应关系结合阻抗值匹配对应的特征参数,以避免重量对腔体电容110的电容值影响,进一步提高特征参数的准确性。在该实施例中,特征参数可为初始温度、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
在匹配模块130串联在电磁波发生模块120与腔体电容110之间的实施例中,处理单元141可配置为在实现最优负载匹配的阻抗值大于等于预设上限阈值时,控制电磁波发生模块120停止工作,以避免待处理物150重量过小,导致匹配模块130发热严重降低加热效率,发热过大引起安全隐患;在实现最优负载匹配的阻抗值小于等于预设下限阈值时,控制电磁波发生模块120停止工作,以避免待处理物150重量过大,加热效果过差。在本发明中,预设上限阈值可为匹配模块130的最大阻抗值,预设下限阈值可为匹配模块130的最小阻抗值。
当实现最优负载匹配的阻抗值大于预设下限值且小于预设上限阈值时,处理单元141可配置为控制电磁波发生模块120在预设加热时间内产生预设加热功率的电磁波信号,开始对待处理物150进行加热。其中预设加热时间和预设加热功率均由阻抗值按照预设的对照表匹配获得。
在一些实施例中,加热装置100还可包括交互模块,用于向用户发送视觉和/或听觉信号。处理单元141还可配置为在实现最优负载匹配的阻抗值大于等于预设上限阈值时,控制交互模块向用户发送提示空载的视觉和/或听觉信号;在实现最优负载匹配的阻抗值小于等于预设下限阈值时,控制交互模块向用户发送提示超载的视觉和/或听觉信号,以提高用户体验。
图4是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图。参见图4,本发明的由上述任一实施例的控制器140执行的用于加热装置100的控制方法可包括如下步骤:
步骤S402:控制电磁波发生模块120产生预设初始功率的电磁波信号。在该步骤中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优负载匹配的匹配模块130的阻抗值。
步骤S404:调节匹配模块130的阻抗,并确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值。
步骤S406:根据阻抗值确定待处理物150的特征参数。其中,特征参数可根据实际应用的需要为重量、温度、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
本发明的控制方法通过实现最优负载匹配的匹配模块130本身的阻抗值来确定待处理物150的特征参数,不仅无需用户根据经验或经过测量手动输入待处理物150的特征参数,而且减少了腔体电容110内的相应感测特征参数的感测装置,进而节约了成本,降低了特征参数的误差。
在一些实施例中,步骤S406可为根据阻抗值按照预设的对照表匹配对应的特征参数。其中,对照表记录有阻抗值和特征参数的对应关系。
在一些进一步的实施例中,对照表中仅记录有一种对应关系,在步骤S406中,特征参数可由阻抗值按照对照表直接获得,以简化特征参数的获取流程。
在另一些进一步的实施例中,对照表中记录有不同初始温度下的对应关系,步骤S406可包括如下步骤:
获取待处理物150的初始温度;
根据初始温度匹配对应关系,并进一步根据该对应关系结合阻抗值匹配对应的特征参数,以避免温度对腔体电容110的电容值影响,进一步提高特征参数的准确性。其中特征参数可为重量、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
在又一些进一步的实施例中,对照表中记录有不同待处理物150重量下的对应关系,步骤S406可包括如下步骤:
获取待处理物150的重量;
根据重量匹配对应关系,并进一步根据该对应关系结合阻抗值匹配对应的特征参数,以避免重量对腔体电容110的电容值影响,进一步提高特征参数的准确性。其中特征参数可为初始温度、加热至设定温度的加热时间、和加热功率中的一个参数或多个参数的组合。
图5是图4中调节匹配模块130的阻抗,并确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的步骤的流程图。参见图5,基于包括可独立通断的多个匹配支路的匹配模块130,调节匹配模块130的阻抗,并确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的步骤(步骤S404)可包括如下具体步骤:
步骤S502:遍历多个匹配支路的通断组合,并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数。
步骤S504:比较多个匹配支路的通断组合的匹配度参数。
步骤S506:根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
本发明的控制方法通过实现最优负载匹配的匹配模块130本身的阻抗值结合对照表 来确定待处理物150的特征参数,即通过腔体电容110的电容值范围来确定待处理物150的特征参数,相比于直接测量腔体电容110的电容值再根据电容值计算待处理物150的特征参数,节约了增加测量装置的成本,而且本申请的发明人创造性地发现,通过电容值范围来确定特征参数,可包容测量装置的误差,获得准确度更高的特征参数,进而获得极佳的加热效果。
图6是图5中遍历多个匹配支路的通断组合,并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数的步骤的流程图。参见图6,遍历多个匹配支路的通断组合,并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数的步骤(步骤S502)可进一步包括如下具体步骤:
步骤S602:获取预先配置的编号集合。其中,编号集合可包括多个匹配支路的通断组合的组合编号,且组合编号与匹配模块的阻抗值相对应。
步骤S604:按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断。其中,多个匹配支路的支路编号可依次为常数A的0至n-1次方,组合编号可为该通断组合中导通的匹配支路的支路编号之和。常数A可为2、3或4等,n为匹配支路的数量。
步骤S606:在通断每一通断组合对应的匹配支路后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。其中,正向功率信号和反向功率信号可由双向耦合器测得。
步骤S608:根据正向功率信号和反向功率信号计算匹配度参数。其中,匹配度参数可为回波损耗或电磁波吸收率。具体地,回波损耗的数值越小,反映电磁波发生模块120的负载匹配度越高,最小回波损耗对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值;电磁波吸收率的数值越大,反映电磁波发生模块120的负载匹配度越高,最大电磁波吸收率对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值。
本发明的控制方法通过对匹配模块130的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定待处理物150的特征参数的所需时间,极大地提高了用户体验。
图7是根据本发明一个实施例的判断腔体电容110是否空载或超载的示意性流程图。参见图7,本发明的判断腔体电容110是否空载或超载的方法可包括如下步骤:
步骤S702:判断实现最优负载匹配的阻抗值是否大于等于预设上限阈值。若是,执行步骤S704;若否,执行步骤S706。其中,预设上限阈值可为匹配模块130的最大阻抗值。
步骤S704:控制电磁波发生模块120停止工作,向用户发送提示空载的视觉和/或听觉信号,以避免待处理物150重量过小,导致匹配模块130发热严重降低加热效率,发热过大引起安全隐患。
步骤S706:判断实现最优负载匹配的阻抗值是否小于等于预设下限阈值。若是,执行步骤S708;若否,执行步骤S710。其中,预设下限阈值可为匹配模块130的最小阻抗 值。
步骤S708:控制电磁波发生模块120停止工作,向用户发送提示超载的视觉和/或听觉信号,以避免待处理物150重量过大,加热效果过差。
步骤S710:控制电磁波发生模块120产生预设加热功率的电磁波信号。在本发明中,加热功率可大于初始功率。在一些实施例中,预设加热功率可为50W~150W,例如50W、100W、150W等。
图8是根据本发明一个实施例的用于加热装置100的控制方法的详细流程图。参见图8,本发明的用于加热装置100的控制方法可包括如下详细步骤:
步骤S802:获取加热指令。
步骤S804:获取待处理物150的初始温度。在该步骤中,待处理物150的初始温度可由温度传感器测得。
步骤S806:控制电磁波发生模块120产生预设初始功率的电磁波信号。
步骤S808:获取预先配置的编号集合。
步骤S810:按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断。
步骤S812:在通断每一通断组合对应的匹配支路后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。
步骤S814:根据正向功率信号和反向功率信号计算匹配度参数。
步骤S816:比较多个匹配支路的通断组合的匹配度参数。
步骤S818:根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
步骤S820:判断实现最优负载匹配的阻抗值是否大于等于预设上限阈值。若是,执行步骤S822;若否,执行步骤S824。
步骤S822:控制电磁波发生模块120停止工作,向用户发送提示空载的视觉和/或听觉信号。返回步骤S802。
步骤S824:判断实现最优负载匹配的阻抗值是否小于等于预设下限阈值。若是,执行步骤S826;若否,执行步骤S828。
步骤S826:控制电磁波发生模块120停止工作,向用户发送提示超载的视觉和/或听觉信号。返回步骤S802。
步骤S828:根据初始温度匹配对应关系,并结合实现最优负载匹配的阻抗值匹配对应的加热时间和加热功率。
步骤S830:控制电磁波发生模块120产生加热功率的电磁波信号。
步骤S832:判断加热是否达到加热时间。若是,执行步骤S834;若否,返回步骤S830。
步骤S834:加热完成,控制电磁波发生模块120停止工作。返回步骤S802,开始下一个循环。
本发明的加热装置100及控制方法特别适用于食物解冻,尤其是将食物解冻至 -4~0℃,即前述设定温度为-4~0℃,可获得更加准确的特征参数值。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (16)

  1. 一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,其中,所述控制方法包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值;
    根据所述阻抗值确定待处理物的特征参数。
  2. 根据权利要求1所述的控制方法,所述匹配模块包括可独立通断的多个匹配支路,其中,所述调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
    遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
    比较所述多个匹配支路的通断组合的匹配度参数;
    根据比较结果确定实现最优负载匹配的所述通断组合及该通断组合对应的阻抗值。
  3. 根据权利要求2所述的控制方法,其中,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
    获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
    按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路编号,并根据所述支路编号控制对应的匹配支路的通断。
  4. 根据权利要求3所述的控制方法,其中,
    所述多个匹配支路的支路编号依次为常数A的0至n-1次方;且
    所述组合编号为该通断组合中导通的匹配支路的支路编号之和;其中,n为所述匹配支路的数量。
  5. 根据权利要求2所述的控制方法,其中,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
    在通断每一所述通断组合对应的匹配支路后,获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生模块的反向功率信号;
    根据所述正向功率信号和所述反向功率信号计算所述匹配度参数。
  6. 根据权利要求1所述的控制方法,其中,所述根据所述阻抗值确定待处理物的特征参数的步骤包括:
    根据所述阻抗值按照预设的对照表匹配对应的特征参数,所述对照表记录有所述阻抗值和所述特征参数的对应关系。
  7. 根据权利要求6所述的控制方法,其中,
    所述特征参数为重量和/或温度和/或加热至设定温度的加热时间和/或加热功率。
  8. 根据权利要求6所述的控制方法,所述对照表中记录有不同初始温度下的对应关系,其中,所述根据所述阻抗值按照预设的对照表匹配对应的特征参数的步骤包括:
    获取待处理物的初始温度;
    根据所述初始温度匹配所述对应关系,并进一步根据该对应关系结合实现最优负载匹配的阻抗值匹配对应的特征参数;其中
    所述特征参数为重量和/或加热至设定温度的加热时间和/或加热功率。
  9. 根据权利要求8所述的控制方法,所述对照表中记录有不同待处理物重量下的对应关系,其中,所述根据所述阻抗值按照预设的对照表匹配对应的特征参数的步骤包括:
    获取待处理物的重量;
    根据所述重量匹配所述对应关系,并进一步根据该对应关系结合实现最优负载匹配的阻抗值匹配对应的特征参数;其中
    所述特征参数为初始温度和/或加热至设定温度的加热时间和/或加热功率。
  10. 根据权利要求7-9中任一所述的控制方法,其中,
    所述设定温度为-4~0℃。
  11. 根据权利要求1所述的控制方法,所述匹配模块串联在所述电磁波发生模块与腔体电容之间,所述控制方法还包括:
    判断实现最优负载匹配的所述阻抗值是否大于等于预设上限阈值;
    若是,控制所述电磁波发生模块停止工作;
    若否,控制所述电磁波发生模块产生预设加热功率的电磁波信号。
  12. 根据权利要求1所述的控制方法,所述匹配模块串联在所述电磁波发生模块与腔体电容之间,所述控制方法还包括:
    判断实现最优负载匹配的所述阻抗值是否小于等于预设下限阈值;
    若是,控制所述电磁波发生模块停止工作;
    若否,控制所述电磁波发生模块产生预设加热功率的电磁波信号。
  13. 根据权利要求11或12所述的控制方法,还包括:
    当实现最优负载匹配的阻抗值大于等于所述预设上限阈值时,向用户发送提示空载的视觉和/或听觉信号;和/或
    当实现最优负载匹配的阻抗值小于等于所述预设下限阈值时,向用户发送提示超载的视觉和/或听觉信号。
  14. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
    匹配模块,配置为可通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗;以及
    控制器,配置为用于执行权利要求1-13中任一所述的控制方法。
  15. 根据权利要求14所述的加热装置,其中,所述匹配模块包括:
    第一匹配单元,串联在所述电磁波发生模块与所述腔体电容之间;和
    第二匹配单元,其一端电连接于所述第一匹配单元与所述腔体电容之间,另一端接地;其中
    所述第一匹配单元和所述第二匹配单元分别包括并联的多个匹配支路,且每个所述匹配支路包括一个定值电容和一个开关。
  16. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
    匹配模块,配置为可通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗;以及
    控制器,配置为用于执行权利要求4所述的控制方法;其中所述匹配模块包括:
    第一匹配单元,串联在所述电磁波发生模块与所述腔体电容之间;和
    第二匹配单元,其一端电连接于所述第一匹配单元与所述腔体电容之间,另一端接地;其中所述第一匹配单元和所述第二匹配单元分别包括并联的多个匹配支路,且每个所述匹配支路包括一个定值电容和一个开关;且
    所述第一匹配单元和所述第二匹配单元的多个所述定值电容的电容值均不相等,且所述第二匹配单元的最小定值电容的电容值大于所述第一匹配单元的最大定值电容的电容值;多个所述支路编号按照对应匹配支路的电容值由小至大依次增大。
PCT/CN2020/127829 2019-12-13 2020-11-10 用于加热装置的控制方法及加热装置 WO2021114998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911283870.3 2019-12-13
CN201911283870.3A CN112996158B (zh) 2019-12-13 2019-12-13 用于加热装置的控制方法及加热装置

Publications (1)

Publication Number Publication Date
WO2021114998A1 true WO2021114998A1 (zh) 2021-06-17

Family

ID=76329112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127829 WO2021114998A1 (zh) 2019-12-13 2020-11-10 用于加热装置的控制方法及加热装置

Country Status (2)

Country Link
CN (1) CN112996158B (zh)
WO (1) WO2021114998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190190A (zh) * 2023-04-25 2023-05-30 季华实验室 自动阻抗匹配方法、装置、系统、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521033A (zh) * 2020-11-20 2022-05-20 青岛海尔特种电冰箱有限公司 用于加热装置的控制方法及加热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255682A (ja) * 1995-03-16 1996-10-01 Sharp Corp 高周波解凍装置
CN107710869A (zh) * 2015-07-03 2018-02-16 东洋制罐集团控股株式会社 高频感应加热装置
CN108233886A (zh) * 2018-03-12 2018-06-29 锐石创芯(深圳)科技有限公司 宽频阻抗匹配模块及包含其的装置
CN108848589A (zh) * 2018-06-20 2018-11-20 广东威特真空电子制造有限公司 烹饪设备及其烹饪方法和烹饪装置
CN108991339A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109000397A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN110521912A (zh) * 2018-09-10 2019-12-03 恩智浦美国有限公司 具有质量估计的解冻设备和其操作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157303A (ja) * 2012-01-27 2013-08-15 Kiwa Bijutsu Co Ltd プラズマ発生装置
CN109000403B (zh) * 2017-06-06 2020-05-26 海尔智家股份有限公司 用于解冻装置的解冻方法
US10785834B2 (en) * 2017-12-15 2020-09-22 Nxp Usa, Inc. Radio frequency heating and defrosting apparatus with in-cavity shunt capacitor
CN109990554B (zh) * 2017-12-29 2021-02-26 海尔智家股份有限公司 解冻装置及具有该解冻装置的冰箱
US10305192B1 (en) * 2018-08-13 2019-05-28 At&T Intellectual Property I, L.P. System and method for launching guided electromagnetic waves with impedance matching

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255682A (ja) * 1995-03-16 1996-10-01 Sharp Corp 高周波解凍装置
CN107710869A (zh) * 2015-07-03 2018-02-16 东洋制罐集团控股株式会社 高频感应加热装置
CN108991339A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109000397A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN108233886A (zh) * 2018-03-12 2018-06-29 锐石创芯(深圳)科技有限公司 宽频阻抗匹配模块及包含其的装置
CN108848589A (zh) * 2018-06-20 2018-11-20 广东威特真空电子制造有限公司 烹饪设备及其烹饪方法和烹饪装置
CN110521912A (zh) * 2018-09-10 2019-12-03 恩智浦美国有限公司 具有质量估计的解冻设备和其操作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190190A (zh) * 2023-04-25 2023-05-30 季华实验室 自动阻抗匹配方法、装置、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN112996158A (zh) 2021-06-18
CN112996158B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021114998A1 (zh) 用于加热装置的控制方法及加热装置
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
JP5400885B2 (ja) マイクロ波加熱装置
US8680446B2 (en) Microwave heating apparatus
US20200336124A1 (en) Rf heating system with phase detection for impedance network tuning
US9131543B2 (en) Dynamic impedance matching in RF resonator cavity
KR101569235B1 (ko) Rf 에너지를 사용하여 가열하는 장치 및 방법
US20120067873A1 (en) Microwave heating device and microwave heating method
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
WO2022105501A1 (zh) 用于加热装置的控制方法及加热装置
US20130175262A1 (en) Microwave oven with antenna array
CN112969248B (zh) 用于加热装置的控制方法及加热装置
WO2021114951A1 (zh) 用于加热装置的控制方法及加热装置
CN113316280B (zh) 用于加热装置的控制方法以及加热装置
KR20200078376A (ko) 2요소 질량 추정을 갖는 제상 장치 및 그 동작 방법
WO2021139363A1 (zh) 用于加热装置的控制方法及加热装置
WO2021056821A1 (zh) 一种射频加热控制方法及射频加热器具
JP7349603B2 (ja) 高周波加熱装置
WO2023005289A1 (zh) 加热方法及冷藏冷冻装置
CN105282888B (zh) 高频电磁加热设备及其电力控制方法
TW202010356A (zh) 負載掃描裝置及其使用方法以及使用此負載掃描裝置的塑膠成型機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898637

Country of ref document: EP

Kind code of ref document: A1