WO2023005289A1 - 加热方法及冷藏冷冻装置 - Google Patents

加热方法及冷藏冷冻装置 Download PDF

Info

Publication number
WO2023005289A1
WO2023005289A1 PCT/CN2022/088793 CN2022088793W WO2023005289A1 WO 2023005289 A1 WO2023005289 A1 WO 2023005289A1 CN 2022088793 W CN2022088793 W CN 2022088793W WO 2023005289 A1 WO2023005289 A1 WO 2023005289A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating unit
unit
electromagnetic wave
storage compartment
Prior art date
Application number
PCT/CN2022/088793
Other languages
English (en)
French (fr)
Inventor
赵弇锋
朱小兵
李春阳
王铭
韩志强
艾景海
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to US18/580,209 priority Critical patent/US20240318903A1/en
Priority to JP2024504217A priority patent/JP2024527895A/ja
Priority to EP22847907.7A priority patent/EP4354058A4/en
Publication of WO2023005289A1 publication Critical patent/WO2023005289A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • Thawing food through the electromagnetic wave heating unit is not only fast and efficient, but also has low loss of nutrients in the food.
  • users generally input heating parameters for thawing, or automatically confirm heating parameters for thawing according to the food parameters (weight, temperature, size, etc.) detected by the detection device.
  • the production cost of the heating unit is increased, and precise thawing of the food cannot be achieved, and the quality of the thawed food is poor, and multiple thawings are even required.
  • the design requires a heating method that can realize precise heating of the object to be treated, prevent the object from being overheated, and a refrigerating and freezing device with a heating unit.
  • a heating method comprising:
  • the heating unit includes an electromagnetic wave generating module for generating electromagnetic wave signals, and a cavity capacitor electrically connected to the electromagnetic wave generating module for accommodating the object to be treated, wherein the heating unit under control Before the step, the heating method also includes:
  • the initial heating parameters include at least one of heating power, and a termination threshold for terminating the heating procedure.
  • the heating suspension condition includes opening the door corresponding to the storage compartment;
  • the continuous heating condition includes that the door corresponding to the storage compartment is closed, and the door body of the heating unit does not open or close during the opening and closing process of the door.
  • the heating method also includes:
  • the heating unit is arranged in a storage compartment of a refrigerating and freezing device, wherein, before the step of controlling the heating unit to work, the heating method further includes:
  • the heating method further includes:
  • the heating instruction is received again.
  • a box body defining at least one storage compartment
  • At least one box door for opening and closing the at least one storage compartment
  • the present invention determines the opening and closing action of the door of the refrigerating and freezing device and/or the door of the heating unit, supplies power to the heating unit, activates the interactive unit, suspends or terminates the thawing program, not only does not need to increase the sensing device, but the overall This not only reduces the production cost and energy consumption of the refrigerating and freezing device, but also effectively reduces or even avoids the leakage of electromagnetic waves, eliminates adverse effects on the health of users, and improves user experience.
  • FIG. 1 is a schematic structural diagram of a heating unit according to an embodiment of the present invention.
  • Fig. 2 is a schematic circuit diagram of the impedance matching module in Fig. 1;
  • Fig. 3 is a schematic cross-sectional view of a refrigerator-freezer according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a heating method according to an embodiment of the present invention.
  • Fig. 7 is a schematic flowchart of determining initial heating parameters according to the configuration of the impedance matching module
  • FIG. 1 is a schematic structural view of a heating unit 100 according to an embodiment of the present invention.
  • the heating unit 100 may include a cavity capacitor 110 , an electromagnetic wave generating module 120 and a controller 140 .
  • the cavity capacitor 110 may further include a door 112 for closing the access opening of the cavity 111 to reduce leakage of electromagnetic waves.
  • the processing unit can be configured to control the heating unit 100 to heat the object to be treated 150; when the heating pause condition is met, record the current heating parameters of the heating unit 100, and control the heating unit 100 to stop working; , control the heating unit 100 to continue working according to the recorded heating parameters.
  • the termination threshold may be the total heating time, the change threshold of the dielectric coefficient, and the like.
  • the heating unit 100 may also include a directional coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for monitoring the reverse wave power returning to the electromagnetic wave generating module 120 in real time.
  • the storage unit may store a pre-configured comparison table, which records the correspondence between on-off combination numbers and initial heating parameters.
  • the processing unit may be configured to match the corresponding initial heating parameters according to the on-off combination number that realizes the minimum reflected wave power according to a preset comparison table.
  • FIG. 2 is a schematic circuit diagram of the impedance matching module 130 in FIG. 1 .
  • the impedance matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end is electrically connected between the first matching unit 131 and the cavity capacitor 110, and the other end is grounded.
  • the second matching unit 132 is a schematic circuit diagram of the impedance matching module 130 in FIG. 1 .
  • the impedance matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end is electrically connected between the first matching unit 131 and the cavity capacitor 110, and the other end is grounded.
  • the second matching unit 132 is a schematic circuit diagram of the impedance matching module 130 in FIG. 1 .
  • the impedance matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end is electrically connected between the first matching unit 131 and the
  • the first matching unit 131 and the second matching unit 132 can respectively include a plurality of matching branches connected in parallel, and each matching branch includes a fixed-value capacitor and a switch, so as to make the circuit simple while improving the impedance matching module 130. reliability and adjustment range.
  • the capacitance values of the fixed capacitors of the first matching unit 131 and the second matching unit 132 may not be equal.
  • the processing unit can control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with preset initial power, adjust the frequency of the electromagnetic wave signal, and determine the electromagnetic wave signal that realizes the minimum reflected wave power returning to the electromagnetic wave generating module 120
  • the initial heating parameter is determined according to the frequency of the electromagnetic wave signal with the smallest reflected wave power.
  • Fig. 3 is a schematic cross-sectional view of a refrigerator-freezer 200 according to an embodiment of the present invention.
  • the present invention also provides a refrigerating and freezing device 200 .
  • the refrigerating and freezing apparatus 200 may include a box body 210 defining at least one storage compartment, a box door for opening and closing the at least one storage compartment, a refrigeration system for providing cold energy to the storage compartment, and a controller 140 .
  • the cavity capacitor 110 of the heating unit 100 can be set in a storage compartment; a part of the controller 140 can be set in the cavity capacitor 110, and is mainly used to control the electromagnetic wave generating module 120, the impedance matching module 130, etc.
  • the other part is arranged in the compressor compartment or the top of the box body 210, and is mainly used to control the work of the refrigeration system.
  • At least one storage compartment may include a refrigerating compartment 211 and a freezing compartment 212 disposed below the refrigerating compartment 211 .
  • At least one door may include a refrigerator door 221 for opening and closing the refrigerator compartment 211 and a freezer door 222 for opening and closing the freezer compartment 212 .
  • the cavity capacitor 110 can be disposed in the freezer compartment 212 to facilitate the user to pick and place the object 150 to be processed.
  • the processing unit can be further configured to open and close the door 112 of the heating unit 100 after the heating unit 100 suspends heating, and control the heating unit 100 to terminate the heating program, that is, to control the electromagnetic wave generating module 120 to stop working, so as to prevent the user from taking it out for processing.
  • the cavity is heated to damage the electromagnetic wave generating module 120.
  • the processing unit can be configured to activate the interaction unit 230 after the freezer door 222 is closed if the door body 112 opens and closes during the opening and closing process of the freezer door 222 , and then receive heating instructions, so as to save power and reduce the waiting time of users.
  • the processing unit can be configured to supply power to the heating unit 100 when the freezer door 222 is opened, so as to save power and start heating quickly.
  • the processing unit is further configured to stop supplying power to the heating unit 100 when the freezing door 222 is closed and no heating instruction is received within a preset standby time, so as to save electric energy.
  • the processing unit can be configured to control the heating unit 100 to terminate the heating program when the heating completion condition is satisfied, and to receive the heating instruction again when the object 150 to be treated is taken out, so as to prevent waiting
  • the processed object 150 is repeatedly heated.
  • the condition for completing the heating can be that the corresponding parameter reaches the termination threshold, for example, the heating time of the object 150 reaches the total heating time, and the change rate of the dielectric coefficient of the object 150 decreases to less than or equal to the change threshold.
  • Step S402 Control the operation of the heating unit 100 to heat the object 150 to be treated.
  • the heating method of the present invention records the latest heating parameters before the heating unit 100 stops heating, and continues to heat according to the recorded heating parameters after resuming heating, which not only simplifies the control process, but also avoids that the re-determined heating parameters cause the object to be processed 150 Being overheated, the heating time is shortened and unnecessary energy consumption is reduced.
  • the suspending heating condition may include opening the chamber door corresponding to the cavity capacitance 110 .
  • the condition for continuing heating may include that the box door corresponding to the cavity capacitor 110 is closed, and the door body 112 does not open or close during the opening and closing process of the box door. That is, during the heating process, if the box door corresponding to the cavity capacitor 110 is opened, the processing unit controls the electromagnetic wave generating module 120 to stop working, so as to reduce or even eliminate the influence of the electromagnetic wave on the user; if the box door corresponding to the cavity capacitor 110 is closed And during this process, the door 112 does not open or close, and the processing unit controls the electromagnetic wave generating module 120 to continue working according to the recorded heating parameters, so as to avoid the object 150 to be overheated.
  • the heating method may also include the following steps:
  • the heating unit 100 is controlled to terminate the heating process, so as to avoid heating the cavity and damaging the electromagnetic wave generating module 120 when the user takes out the object 150 to be processed.
  • step S402 it may also include:
  • the interaction unit 230 is activated after the door corresponding to the cavity capacitor 110 is closed, and then receives a heating command to save electric energy and reduce User wait time.
  • step S402 it may also include:
  • step S402 it may also include:
  • the initial heating parameters of the heating unit 100 are determined according to the configuration of the impedance matching module 130 , so as to reduce sensing devices and realize precise heating of the object 150 to be treated.
  • the initial heating parameters include at least one of heating power and a termination threshold for terminating the heating procedure.
  • step S402 it may also include:
  • the initial heating parameters of the heating unit 100 are determined according to the frequency of the electromagnetic wave signal, so as to reduce the number of sensing devices and realize precise heating of the object 150 to be treated.
  • the initial heating parameters include at least one of heating power and a termination threshold for terminating the heating procedure.
  • the termination threshold may be the total heating time, the change threshold of the dielectric coefficient, and the like.
  • the heating unit 100 is controlled to stop working (wherein, the heating completion condition can be that the corresponding parameter reaches the termination threshold, for example, the heating time of the object to be treated 150 reaches the total heating time, the dielectric coefficient of the object to be processed 150 rate of change drops to less than or equal to the change threshold);
  • the step of receiving the heating instruction again is performed to prevent the electromagnetic wave generating module 120 from overheating for a long time and prolong the electromagnetic wave generating module 120. service life.
  • Step S502 Determine whether the freezer door 222 is open. If yes, execute step S504; if no, return to step S502.
  • Step S510 activate the interaction unit 230.
  • Step S514 Determine whether the activation time of the interaction unit 230 is greater than or equal to a preset standby time. If yes, execute step S516; if no, return to step S512.
  • Step S516 Stop supplying power to the heating unit 100, and lock the interaction unit 230.
  • Step S602 Determine the heating power and total heating time according to the configuration of the matching module 130 .
  • Step S604 Control the electromagnetic wave generating module 120 to generate electromagnetic wave signals according to the heating power and the total heating time.
  • Step S606 Determine whether the freezer door 222 is open. If yes, go to step S610; if not, go to step 608.
  • Step 608 Control the electromagnetic wave generating module 120 to continue generating electromagnetic wave signals according to the heating power and the current remaining time. Execute step S616.
  • Step S610 Record the current remaining time, and control the electromagnetic wave generating module 120 to stop working.
  • Step S612 Determine whether the freezer door 222 is closed and whether the door body 112 does not open or close. If yes, execute step S614; if not, execute step S618.
  • Step S614 Control the electromagnetic wave generating module 120 to generate electromagnetic wave signals according to the heating power and the remaining recording time. Execute step S616.
  • Step S616 Determine whether the remaining time is zero. If yes, execute step S618; if no, return to step S606.
  • Step S618 Control the electromagnetic wave generating module 120 to stop working.
  • Step S620 Determine whether the door 112 is opened and the time interval from the previous stop of work is greater than or equal to a preset interval time. If yes, execute step S622; if no, return to step S620.
  • Step S622 Stop supplying power to the heating unit 100 . Return to step S502.
  • FIG. 7 is a schematic flowchart of determining initial heating parameters according to the configuration of the impedance matching module 130 .
  • determining the initial heating parameters according to the configuration of the impedance matching module 130 may specifically include the following steps:
  • Step S702 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W or 20W, so as to reduce the impact on the object 150 to be treated and save energy.
  • Step S704 Adjust the configuration of the matching module 130, and determine the configuration of the matching module 130 that achieves the minimum reflected wave power.
  • the reverse wave power can be measured by a directional coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 .
  • Step S706 Determine the initial heating parameters according to the configuration of the matching module 130 that realizes the minimum reflected wave power.
  • Fig. 8 is a schematic flowchart of determining initial heating parameters according to the frequency of electromagnetic wave signals.
  • determining the initial heating parameters according to the frequency of the electromagnetic wave signal may specifically include the following steps:
  • Step S802 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W or 20W, so as to reduce the impact on the object 150 to be treated and save energy.
  • Step S804 Adjust the frequency of the electromagnetic wave signal, and determine the frequency of the electromagnetic wave signal that achieves the minimum reflected wave power.
  • the reverse wave power can be measured by a directional coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 .
  • Step S806 Determine initial heating parameters according to the frequency of the electromagnetic wave signal that achieves the minimum reflected wave power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

一种加热方法及具有加热单元(100)的冷藏冷冻装置(200)。加热方法包括:控制加热单元(100)工作,对待处理物(150)进行加热;若满足暂停加热条件,记录加热单元(100)当前的加热参数,并控制加热单元(100)停止工作;若满足继续加热条件,控制加热单元(100)按照记录的加热参数继续工作。通过在加热单元(100)中止加热前记录最近的加热参数,在恢复加热后继续按照记录的加热参数进行加热,简化了控制流程,避免重新确定的加热参数导致待处理物(150)被过分地加热,缩短了加热时间,减少了不必要的能耗。

Description

加热方法及冷藏冷冻装置 技术领域
本发明涉及食物处理领域,特别是涉及一种加热方法及具有加热单元的冷藏冷冻装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热单元来解冻食物。
通过电磁波加热单元来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但是,现有技术一般通过用户输入加热参数进行解冻、或根据检测器件检测到的食物参数(重量、温度、尺寸等)自动地确认加热参数进行解冻,不是对用户提出了过高的要求,就是增加了加热单元的生产成本,而且无法实现对食物的精准解冻,解冻后的食物品质较差,甚至需要进行多次解冻。综合考虑,在设计上需要一种可实现对待处理物精准加热、防止待处理物被过分加热的加热方法及具有加热单元的冷藏冷冻装置。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种加热方法。
本发明第一方面的一个进一步的目的是要防止待处理物被过分加热。
本发明第一方面的另一个进一步的目的是要节约能耗。
本发明第二方面的一个目的是要提供一种具有加热单元的冷藏冷冻装置。
根据本发明的第一方面,提供了一种加热方法,包括:
控制加热单元工作,对待处理物进行加热;
若满足暂停加热条件,记录所述加热单元当前的加热参数,并控制所述加热单元停止工作;
若满足继续加热条件,控制所述加热单元按照记录的加热参数继续工作。
可选地,所述加热单元包括用于产生电磁波信号的电磁波发生模块、用 于容置待处理物的腔体电容、以及串联在所述电磁波发生模块与所述腔体电容之间或并联在所述腔体电容的两端的阻抗匹配模块,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
调节所述阻抗匹配模块的配置,减小返回所述电磁波发生模块的反射波功率;
根据所述阻抗匹配模块的配置确定所述加热单元的初始加热参数;其中
所述初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
可选地,所述加热单元包括用于产生电磁波信号的电磁波发生模块、和与所述电磁波发生模块电连接的用于容置待处理物的腔体电容,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
调节所述电磁波信号的频率,减小返回所述电磁波发生模块的反射波功率;
根据所述电磁波信号的频率确定所述加热单元的初始加热参数;其中
所述初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
可选地,所述加热单元设置于冷藏冷冻装置的一个储物间室内,其中
所述暂停加热条件包括所述储物间室对应的箱门打开;
所述继续加热条件包括所述储物间室对应的箱门关闭、且在所述箱门的开闭过程中所述加热单元的门体未发生开闭动作。
可选地,所述加热方法还包括:
若所述加热单元暂停加热后,所述加热单元的门体发生开闭动作,控制所述加热单元终止加热程序。
可选地,所述加热单元设置于冷藏冷冻装置的一个储物间室内,且所述冷藏冷冻装置的一个箱门设置有交互单元,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
若在所述储物间室对应的箱门的开闭过程中,所述加热单元的门体发生开闭动作,在所述储物间室对应的箱门关闭后激活所述交互单元,以接收加热指令。
可选地,所述加热单元设置于冷藏冷冻装置的一个储物间室内,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
若所述储物间室对应的箱门打开,向所述加热单元供电;
若所述储物间室对应的箱门关闭预设待机时间内未收到加热指令,停止向所述加热单元供电。
可选地,在所述控制加热单元工作的步骤之后,所述加热方法还包括:
若满足完成加热条件,控制所述加热单元终止加热程序;
若待处理物被取出,再次接收加热指令。
可选地,若所述加热单元的门体打开,判断待处理物被取出;和/或
在满足完成加热条件预设间隔时间后,执行所述若待处理物被取出,再次接收加热指令的步骤。
根据本发明的第二方面,提供了一种冷藏冷冻装置,包括:
箱体,限定有至少一个储物间室;
至少一个箱门,用于开闭所述至少一个储物间室;
加热单元,用于对待处理物进行加热;以及
控制器,配置为用于执行以上任一的加热方法。
本申请的发明人创造性地认识到,在对食物的加热过程中,食物的内外温差、形状尺寸、介电性质等食物参数均会发生变化,若加热中止后按照与加热初始相同的方法重新确定加热参数,可能会引起极大的误差,导致食物被过分地加热。本发明通过在加热单元中止加热前记录最近的加热参数,在恢复加热后继续按照记录的加热参数进行加热,不仅简化了控制流程,而且避免重新确定的加热参数导致待处理物被过分地加热,缩短了加热时间,减少了不必要的能耗。
进一步地,本发明根据阻抗匹配模块的配置或电磁波信号的频率确定加热单元的初始加热参数,相比于直接测量待处理物的食物参数,节约了增加测量装置的成本,包容测量装置的误差,获得准确度更高的特征参数,进而获得极佳的加热效果。
进一步地,本发明通过确定冷藏冷冻装置的箱门和/或加热单元的门体发生开闭动作,向加热单元供电、激活交互单元、暂停或终止解冻程序,不仅无需增加感测装置,在整体上降低了冷藏冷冻装置的生产成本和能耗,还可以有效地减少甚至避免电磁波泄露,消除了对用户健康的不利影响,提高了用户体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将 会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热单元的示意性结构图;
图2是图1中的阻抗匹配模块的示意性电路图;
图3是根据本发明一个实施例的冷藏冷冻装置的示意性剖视图;
图4是根据本发明一个实施例的加热方法的示意性流程图;
图5是根据本发明一个实施例的加热方法的示意性详细流程图的一部分;
图6是根据本发明一个实施例的加热方法的示意性详细流程图的另一部分;
图7是根据阻抗匹配模块的配置确定初始加热参数的示意性流程图;
图8是根据电磁波信号的频率确定初始加热参数的示意性流程图。
具体实施方式
图1是根据本发明一个实施例的加热单元100的示意性结构图。参见图1,加热单元100可包括腔体电容110、电磁波发生模块120和控制器140。
具体地,腔体电容110可包括用于容置待处理物150的腔体111和设置于腔体111内的辐射极板。在一些实施例中,腔体111内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体111可由金属制成,以作为接收极板与辐射极板组成电容器。
腔体电容110还可包括用于关闭腔体111的取放口的门体112,以减少电磁波的泄露。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110的待处理物150。
控制器140可包括处理单元和存储单元。其中存储单元存储有计算机程序,计算机程序处理单元执行时用于实现本发明实施例的控制方法。
特别地,处理单元可配置为控制加热单元100工作,对待处理物150进 行加热;在满足暂停加热条件时,记录加热单元100当前的加热参数,并控制加热单元100停止工作;在满足继续加热条件时,控制加热单元100按照记录的加热参数继续工作。
本申请的发明人创造性地认识到,在对食物的加热过程中,食物的内外温差、形状尺寸、介电性质等食物参数均会发生变化,若加热中止后按照与加热初始相同的方法重新确定加热参数,可能会引起极大的误差,导致食物被过分地加热。本发明的加热单元100通过在加热单元100中止加热前记录最近的加热参数,在恢复加热后继续按照记录的加热参数进行加热,不仅简化了控制流程,而且避免重新确定的加热参数导致待处理物150被过分地加热,缩短了加热时间,减少了不必要的能耗。
初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
终止阈值可为加热总时间、介电系数的变化阈值等。在对待处理物150的加热时间达到该加热总时间、在待处理物150的介电系数的变化速率下降至小于等于变化阈值时,判定完成对待处理物150的加热。
在一些实施例中,加热单元100还可包括阻抗匹配模块130。阻抗匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
处理单元可进一步配置为在控制加热单元100工作的步骤之前,根据阻抗匹配模块130的配置确定初始加热参数。即,调节阻抗匹配模块130的配置,减小返回电磁波发生模块120的反射波功率;根据阻抗匹配模块130的配置确定加热单元100的初始加热参数,以减少感测装置,实现对待处理物150的精准加热。
具体地,处理单元可在接收到加热指令后,控制电磁波发生模块120产生预设初始功率的电磁波信号,调节阻抗匹配模块130的配置,并确定出实现返回电磁波发生模块120的反射波功率最小的阻抗匹配模块130的配置,根据该反射波功率最小的阻抗匹配模块130的配置确定初始加热参数。
在本发明中,预设初始功率可为10~20W,例如10W、15W或20W,以减少对待处理物150的影响,节约能源。
加热单元100还可包括串联在腔体电容110与电磁波发生模块120之间 的定向耦合器,用于实时监测返回电磁波发生模块120的反向波功率。
在一些进一步地实施例中,阻抗匹配模块130可包括可独立通断的多个匹配支路。处理单元可进一步配置为根据多个匹配支路的通断组合编号确定初始加热参数,以缩短确定初始加热参数的时间。
存储单元可存储有预先配置的对照表,该对照表记录有通断组合编号和初始加热参数的对应关系。处理单元可配置为根据实现反射波功率最小的通断组合编号按照预设的对照表匹配对应的初始加热参数。
图2是图1中的阻抗匹配模块130的示意性电路图。参见图2,阻抗匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的第一匹配单元131和一端电连接于第一匹配单元131与腔体电容110之间且另一端接地的第二匹配单元132。
第一匹配单元131和第二匹配单元132可分别包括并联的多个匹配支路,且每个匹配支路包括一个定值电容和一个开关,以在使电路简单的同时,提高阻抗匹配模块130的可靠性和调节范围。第一匹配单元131和第二匹配单元132的多个定值电容的电容值可均不相等。
在另一些实施例中,电磁波发生模块120可包括频率源、功率放大器、以及用于调节频率源的输出频率(电磁波信号的频率)的压控振荡器。
处理单元可进一步配置为在控制加热单元100工作的步骤之前,根据电磁波信号的频率确定初始加热参数。即,调节电磁波信号的频率,减小返回电磁波发生模块120的反射波功率;根据电磁波信号的频率确定加热单元100的初始加热参数,以减少感测装置,实现对待处理物150的精准加热。
具体地,处理单元可在接收到加热指令后,控制电磁波发生模块120产生预设初始功率的电磁波信号,调节电磁波信号的频率,并确定出实现返回电磁波发生模块120的反射波功率最小的电磁波信号的频率,根据该反射波功率最小的电磁波信号的频率确定初始加热参数。
图3是根据本发明一个实施例的冷藏冷冻装置200的示意性剖视图。参见图3,本发明还提供了一种冷藏冷冻装置200。冷藏冷冻装置200可包括限定有至少一个储物间室的箱体210、用于开闭至少一个储物间室的箱门、向储物间室提供冷量的制冷系统、以及控制器140。在该实施例中,加热单元100的腔体电容110可设置于一个储物间室内;控制器140可一部分设置于腔体电容110内,主要用于控制电磁波发生模块120、阻抗匹配模块130 等器件的工作,另一部分设置于箱体210的压机舱或顶部,主要用于控制制冷系统的工作。
在图示实施例中,至少一个储物间室可包括冷藏间室211和设置于冷藏间室211下方的冷冻间室212。至少一个箱门可包括用于开闭冷藏间室211的冷藏门221和用于开闭冷冻间室212的冷冻门222。腔体电容110可设置于冷冻间室212内,以便于用户取放待处理物150。
下面以腔体电容110设置于冷冻间室212为例对本发明的冷藏冷冻装置200作详细介绍。
在一些实施例中,暂停加热条件可包括冷冻门222打开。继续加热条件可包括冷冻门222关闭、且在冷冻门222的开闭过程中门体112未发生开闭动作。即,在加热的过程中,若冷冻门222被打开,处理单元控制电磁波发生模块120停止工作,以减少甚至消除电磁波对用户的影响;若冷冻门222关闭且在此过程中门体112未发生开闭动作,处理单元控制电磁波发生模块120按照记录的加热参数继续工作,以避免待处理物150被过分加热。
处理单元可进一步配置为在加热单元100暂停加热后、加热单元100的门体112发生开闭动作,控制加热单元100终止加热程序,即控制电磁波发生模块120停止工作,以避免在用户取出待处理物150的情况下,对空腔加热,损坏电磁波发生模块120。
在一些实施例中,冷藏冷冻装置200还可包括交互单元230,用于接收加热指令。交互单元230可设置于一个箱门,例如位于上侧的冷藏门221。
处理单元可配置为在冷冻门222的开闭过程中,若门体112发生开闭动作,在冷冻门222关闭后激活交互单元230,进而接收加热指令,以节约电能并减少用户的等待时间。
在一些实施例中,在加热单元100未处于工作状态的情况下,处理单元可配置为当冷冻门222打开时,向加热单元100供电,以节约电能,并快速地开始加热。
加热单元100还可包括供电模块,用于接收市电并向电磁波发生模块120、以及腔体电容110内的电器件供电。在本发明中,向加热单元100供电指向供电模块提供电能。
处理单元进一步地配置为在冷冻门222关闭预设待机时间内均未收到加热指令的情况下,停止向加热单元100供电,以节约电能。
在一些实施例中,在加热过程中,处理单元可配置为在满足完成加热条件时,控制加热单元100终止加热程序,并在待处理物150被取出的情况下再次接收加热指令,以防止待处理物150被重复地加热。其中,完成加热条件可为相应参数达到终止阈值,例如,对待处理物150的加热时间达到该加热总时间、待处理物150的介电系数的变化速率下降至小于等于变化阈值。
在一些进一步地实施例中,处理单元可配置为在门体112打开时,判断待处理物150被取出,以减少检测装置。
在一些进一步地实施例中,处理单元可配置为在满足完成加热条件预设间隔时间后,再次接收加热指令,以防止电磁波发生模块120长时间过热,延长电磁波发生模块120的使用寿命。
图4是根据本发明一个实施例的加热方法的示意性流程图。参见图4,本发明的由上述任一实施例的控制器140执行的加热方法可包括如下步骤:
步骤S402:控制加热单元100工作,对待处理物150进行加热。
步骤S404:若满足暂停加热条件,记录加热单元100当前的加热参数,并控制加热单元100停止工作。
步骤S406:若满足继续加热条件,控制加热单元100按照记录的加热参数继续工作。
本发明的加热方法通过在加热单元100中止加热前记录最近的加热参数,在恢复加热后继续按照记录的加热参数进行加热,不仅简化了控制流程,而且避免重新确定的加热参数导致待处理物150被过分地加热,缩短了加热时间,减少了不必要的能耗。
在一些实施例中,暂停加热条件可包括腔体电容110对应的箱门打开。继续加热条件可包括腔体电容110对应的箱门关闭、且在箱门的开闭过程中门体112未发生开闭动作。即,在加热的过程中,若腔体电容110对应的箱门被打开,处理单元控制电磁波发生模块120停止工作,以减少甚至消除电磁波对用户的影响;若腔体电容110对应的箱门关闭且在此过程中门体112未发生开闭动作,处理单元控制电磁波发生模块120按照记录的加热参数继续工作,以避免待处理物150被过分加热。
在一些进一步地实施例中,加热方法还可包括如下步骤:
若加热单元100暂停加热后,门体112发生开闭动作,控制加热单元100终止加热程序,以避免在用户取出待处理物150的情况下,对空腔加热,损 坏电磁波发生模块120。
在一些实施例中,在步骤S402之前还可包括:
若在腔体电容110对应的箱门的开闭过程中,门体112发生开闭动作,在腔体电容110对应的箱门关闭后激活交互单元230,进而接收加热指令,以节约电能并减少用户的等待时间。
在一些实施例中,在步骤S402之前还可包括:
若腔体电容110对应的箱门打开,向加热单元100供电(即,向供电模块供电),以节约电能,并快速地开始加热;
若腔体电容110对应的箱门关闭预设待机时间内未收到加热指令,停止向加热单元100供电,以节约电能。
在一些实施例中,在步骤S402之前还可包括:
调节阻抗匹配模块130的配置,减小返回电磁波发生模块120的反射波功率;
根据阻抗匹配模块130的配置确定加热单元100的初始加热参数,以减少感测装置,实现对待处理物150的精准加热。其中,初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
在一些实施例中,在步骤S402之前还可包括:
调节电磁波信号的频率,减小返回电磁波发生模块120的反射波功率;
根据电磁波信号的频率确定加热单元100的初始加热参数,以减少感测装置,实现对待处理物150的精准加热。其中,初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
终止阈值可为加热总时间、介电系数的变化阈值等。在对待处理物150的加热时间达到该加热总时间、在待处理物150的介电系数的变化速率下降至小于等于变化阈值时,判定完成对待处理物150的加热。
在一些实施例中,在步骤S402之后还可包括:
若满足完成加热条件,控制加热单元100停止工作(其中,完成加热条件可为相应参数达到终止阈值,例如,对待处理物150的加热时间达到该加热总时间、待处理物150的介电系数的变化速率下降至小于等于变化阈值);
若待处理物150被取出,再次接收加热指令,以防止待处理物150被重复地加热。
在一些进一步地实施例中,若加热单元100的门体112打开,判断待处 理物150被取出,以减少检测装置。
在一些进一步地实施例中,在满足完成加热条件预设间隔时间后,执行若待处理物150被取出,再次接收加热指令的步骤,以防止电磁波发生模块120长时间过热,延长电磁波发生模块120的使用寿命。
下面以腔体电容110设置于冷藏冷冻装置200的冷冻间室212、初始加热参数为加热功率和加热总时间为例对本发明的冷藏冷冻装置200作详细介绍。
图5是根据本发明一个实施例的加热方法的示意性详细流程图的一部分;图6是根据本发明一个实施例的加热方法的示意性详细流程图的另一部分(其中,“Y”表示“是”;“N”表示“否”)。在图5和图6中,“A”表示接续点,由于该方法较为复杂,单一图面不易表达,故将其表示在图5和图6中,由接续标识相接,对此本领域技术人员均可理解。参见图5和图6,本发明的加热方法可包括如下详细步骤:
步骤S502:判断冷冻门222是否打开。若是,执行步骤S504;若否,返回步骤S502。
步骤S504:向加热单元100供电;
步骤S506:判断冷冻门222是否关闭。若是,执行步骤S508;若否,返回步骤S506。
步骤S508:判断冷冻门222开闭过程中门体112是否发生开闭动作。若是,执行步骤S510;若否,返回步骤S502。
步骤S510:激活交互单元230。
步骤S512:判断是否接收到加热指令。若是,执行步骤S602;若否,执行步骤S514。
步骤S514:判断交互单元230的激活时间是否大于等于预设待机时间。若是,执行步骤S516;若否,返回步骤S512。
步骤S516:停止向加热单元100供电,并锁定交互单元230。
步骤S602:根据匹配模块130的配置确定加热功率和加热总时间。
步骤S604:控制电磁波发生模块120按照加热功率和加热总时间产生电磁波信号。
步骤S606:判断冷冻门222是否打开。若是,执行步骤S610;若否,执行步骤608。
步骤608:控制电磁波发生模块120按照加热功率和当前的剩余时间继续产生电磁波信号。执行步骤S616。
步骤S610:记录当前的剩余时间,并控制电磁波发生模块120停止工作。
步骤S612:判断冷冻门222关闭且门体112是否未发生开闭动作。若是,执行步骤S614;若否,执行步骤S618。
步骤S614:控制电磁波发生模块120按照加热功率和记录的剩余时间产生电磁波信号。执行步骤S616。
步骤S616:判断剩余时间是否为零。若是,执行步骤S618;若否,返回步骤S606。
步骤S618:控制电磁波发生模块120停止工作。
步骤S620:判断门体112打开且距离前次停止工作的时间间隔是否大于等于预设间隔时间。若是,执行步骤S622;若否,返回步骤S620。
步骤S622:停止向加热单元100供电。返回步骤S502。
图7是根据阻抗匹配模块130的配置确定初始加热参数的示意性流程图。参见图7,根据阻抗匹配模块130的配置确定初始加热参数可具体包括如下步骤:
步骤S702:控制电磁波发生模块120产生预设初始功率的电磁波信号。其中,预设初始功率可为10~20W,例如10W、15W或20W,以减少对待处理物150的影响,节约能源。
步骤S704:调节匹配模块130的配置,并确定出实现反射波功率最小的匹配模块130的配置。其中,反向波功率可由串联在腔体电容110与电磁波发生模块120之间的定向耦合器测得。
步骤S706:根据该实现反射波功率最小的匹配模块130的配置确定初始加热参数。
图8是根据电磁波信号的频率确定初始加热参数的示意性流程图。参见图8,根据电磁波信号的频率确定初始加热参数可具体包括如下步骤:
步骤S802:控制电磁波发生模块120产生预设初始功率的电磁波信号。其中,预设初始功率可为10~20W,例如10W、15W或20W,以减少对待处理物150的影响,节约能源。
步骤S804:调节电磁波信号的频率,并确定出实现反射波功率最小的 电磁波信号的频率。其中,反向波功率可由串联在腔体电容110与电磁波发生模块120之间的定向耦合器测得。
步骤S806:根据该实现反射波功率最小的电磁波信号的频率确定初始加热参数。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种加热方法,包括:
    控制加热单元工作,对待处理物进行加热;
    若满足暂停加热条件,记录所述加热单元当前的加热参数,并控制所述加热单元停止工作;
    若满足继续加热条件,控制所述加热单元按照记录的加热参数继续工作。
  2. 根据权利要求1所述的加热方法,所述加热单元包括用于产生电磁波信号的电磁波发生模块、用于容置待处理物的腔体电容、以及串联在所述电磁波发生模块与所述腔体电容之间或并联在所述腔体电容的两端的阻抗匹配模块,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
    调节所述阻抗匹配模块的配置,减小返回所述电磁波发生模块的反射波功率;
    根据所述阻抗匹配模块的配置确定所述加热单元的初始加热参数;其中
    所述初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
  3. 根据权利要求1所述的加热方法,所述加热单元包括用于产生电磁波信号的电磁波发生模块、和与所述电磁波发生模块电连接的用于容置待处理物的腔体电容,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
    调节所述电磁波信号的频率,减小返回所述电磁波发生模块的反射波功率;
    根据所述电磁波信号的频率确定所述加热单元的初始加热参数;其中
    所述初始加热参数包括加热功率、和用于终止加热程序的终止阈值中的至少一个。
  4. 根据权利要求1所述的加热方法,所述加热单元设置于冷藏冷冻装置的一个储物间室内,其中
    所述暂停加热条件包括所述储物间室对应的箱门打开;
    所述继续加热条件包括所述储物间室对应的箱门关闭、且在所述箱门的开闭过程中所述加热单元的门体未发生开闭动作。
  5. 根据权利要求4所述的加热方法,还包括:
    若所述加热单元暂停加热后,所述加热单元的门体发生开闭动作,控制所述加热单元终止加热程序。
  6. 根据权利要求1所述的加热方法,所述加热单元设置于冷藏冷冻装置的一个储物间室内,且所述冷藏冷冻装置的一个箱门设置有交互单元,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
    若在所述储物间室对应的箱门的开闭过程中,所述加热单元的门体发生开闭动作,在所述储物间室对应的箱门关闭后激活所述交互单元,以接收加热指令。
  7. 根据权利要求1所述的加热方法,所述加热单元设置于冷藏冷冻装置的一个储物间室内,其中,在所述控制加热单元工作的步骤之前,所述加热方法还包括:
    若所述储物间室对应的箱门打开,向所述加热单元供电;
    若所述储物间室对应的箱门关闭预设待机时间内未收到加热指令,停止向所述加热单元供电。
  8. 根据权利要求1所述的加热方法,在所述控制加热单元工作的步骤之后还包括:
    若满足完成加热条件,控制所述加热单元终止加热程序;
    若待处理物被取出,再次接收加热指令。
  9. 根据权利要求8所述的加热方法,其中
    若所述加热单元的门体打开,判断待处理物被取出;和/或
    在满足完成加热条件预设间隔时间后,执行所述若待处理物被取出,再次接收加热指令的步骤。
  10. 一种冷藏冷冻装置,包括:
    箱体,限定有至少一个储物间室;
    至少一个箱门,用于开闭所述至少一个储物间室;
    加热单元,用于对待处理物进行加热;以及
    控制器,配置为用于执行权利要求1-9中任一所述的加热方法。
PCT/CN2022/088793 2021-07-28 2022-04-24 加热方法及冷藏冷冻装置 WO2023005289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/580,209 US20240318903A1 (en) 2021-07-28 2022-04-24 Heating method, and refrigerating and freezing apparatus
JP2024504217A JP2024527895A (ja) 2021-07-28 2022-04-24 加熱方法及び冷蔵冷凍装置
EP22847907.7A EP4354058A4 (en) 2021-07-28 2022-04-24 HEATING METHODS AND COOLING AND FREEZING DEVICES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859060.9 2021-07-28
CN202110859060.9A CN115682615A (zh) 2021-07-28 2021-07-28 加热方法及冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2023005289A1 true WO2023005289A1 (zh) 2023-02-02

Family

ID=85059182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088793 WO2023005289A1 (zh) 2021-07-28 2022-04-24 加热方法及冷藏冷冻装置

Country Status (5)

Country Link
US (1) US20240318903A1 (zh)
EP (1) EP4354058A4 (zh)
JP (1) JP2024527895A (zh)
CN (1) CN115682615A (zh)
WO (1) WO2023005289A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940351A (zh) * 2009-07-10 2011-01-12 乐金电子(天津)电器有限公司 微波炉的食物解冻方法
US20150118368A1 (en) * 2013-10-24 2015-04-30 Ching-Chuan Lin Method for executing heating according property of food
CN108076552A (zh) * 2016-11-18 2018-05-25 恩智浦美国有限公司 在固态加热设备中建立rf激励信号参数
CN108153182A (zh) * 2016-12-06 2018-06-12 佛山市顺德区美的电热电器制造有限公司 烹饪设备启停方法、装置以及烹饪设备
CN109845949A (zh) * 2017-12-15 2019-06-07 恩智浦美国有限公司 具有腔室内并联电容器的射频加热和解冻设备
CN209893782U (zh) * 2019-01-30 2020-01-03 青岛海尔特种电冰箱有限公司 冷藏冷冻装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000419B (zh) * 2017-06-06 2020-06-23 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
EP3783283B1 (en) * 2018-04-18 2023-09-27 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
US10952289B2 (en) * 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
CN213273345U (zh) * 2020-06-29 2021-05-25 青岛海尔特种电冰箱有限公司 冷藏冷冻装置
CN112799446B (zh) * 2020-12-31 2022-04-08 杭州老板电器股份有限公司 自动化烹饪方法、装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940351A (zh) * 2009-07-10 2011-01-12 乐金电子(天津)电器有限公司 微波炉的食物解冻方法
US20150118368A1 (en) * 2013-10-24 2015-04-30 Ching-Chuan Lin Method for executing heating according property of food
CN108076552A (zh) * 2016-11-18 2018-05-25 恩智浦美国有限公司 在固态加热设备中建立rf激励信号参数
CN108153182A (zh) * 2016-12-06 2018-06-12 佛山市顺德区美的电热电器制造有限公司 烹饪设备启停方法、装置以及烹饪设备
CN109845949A (zh) * 2017-12-15 2019-06-07 恩智浦美国有限公司 具有腔室内并联电容器的射频加热和解冻设备
CN209893782U (zh) * 2019-01-30 2020-01-03 青岛海尔特种电冰箱有限公司 冷藏冷冻装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4354058A4 *

Also Published As

Publication number Publication date
CN115682615A (zh) 2023-02-03
EP4354058A4 (en) 2024-09-11
EP4354058A1 (en) 2024-04-17
US20240318903A1 (en) 2024-09-26
JP2024527895A (ja) 2024-07-26

Similar Documents

Publication Publication Date Title
KR102196228B1 (ko) Rf 가열 시스템에서의 해동 동작을 위한 장치 및 방법
CN107688118B (zh) 用于检测解冻操作完成的设备和方法
WO2018223939A1 (zh) 冰箱
JP5400885B2 (ja) マイクロ波加熱装置
WO2020220789A1 (zh) 用于冷藏冷冻装置的解冻方法及冷藏冷冻装置
WO2020156333A1 (zh) 加热装置及具有该加热装置的冰箱
US11953261B2 (en) Food treatment device
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
WO2020156332A1 (zh) 冷藏冷冻装置
CN113915936A (zh) 冰箱及其控制方法
CN109000397A (zh) 用于解冻装置的解冻方法
CN109990554A (zh) 解冻装置及具有该解冻装置的冰箱
WO2023005289A1 (zh) 加热方法及冷藏冷冻装置
CN112969248B (zh) 用于加热装置的控制方法及加热装置
CN109990530A (zh) 解冻装置及具有该解冻装置的冰箱
WO2021114998A1 (zh) 用于加热装置的控制方法及加热装置
CN109257025A (zh) 开关匹配模块、解冻装置及自动解冻方法
CN109990552A (zh) 冰箱
CN109990562A (zh) 冰箱
WO2020140721A1 (zh) 用于冷藏冷冻装置的解冻方法及冷藏冷冻装置
WO2023066000A1 (zh) 电磁波处理装置
CN111380268B (zh) 加热装置以及冰箱
CN212519470U (zh) 电磁加热系统和包括其的制冷装置
CN115638584A (zh) 用于风冷冰箱的控制方法及风冷冰箱
WO2023103706A1 (zh) 用于加热装置的控制方法及加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022847907

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022847907

Country of ref document: EP

Effective date: 20240109

WWE Wipo information: entry into national phase

Ref document number: 18580209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2024504217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE