WO2021139363A1 - 用于加热装置的控制方法及加热装置 - Google Patents

用于加热装置的控制方法及加热装置 Download PDF

Info

Publication number
WO2021139363A1
WO2021139363A1 PCT/CN2020/125510 CN2020125510W WO2021139363A1 WO 2021139363 A1 WO2021139363 A1 WO 2021139363A1 CN 2020125510 W CN2020125510 W CN 2020125510W WO 2021139363 A1 WO2021139363 A1 WO 2021139363A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching
electromagnetic wave
frequency
processed
control method
Prior art date
Application number
PCT/CN2020/125510
Other languages
English (en)
French (fr)
Inventor
刘浩泉
姜波
费斌
辛若武
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021139363A1 publication Critical patent/WO2021139363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves

Definitions

  • the present invention relates to the field of food processing, in particular to a control method and heating device for electromagnetic wave heating devices.
  • the quality of the food is maintained, but frozen food needs to be thawed before being processed or eaten.
  • the food is usually defrosted by an electromagnetic wave heating device.
  • Defrosting food through an electromagnetic wave heating device is not only fast and efficient, but also has low nutrient loss.
  • the image recognition device such as a camera recognizes the type of food to defrost, which places high requirements on the user, or requires the image recognition device to have a higher image. Identify the problems of accuracy and resistance to electromagnetic interference.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art and provide a control method for an electromagnetic wave heating device.
  • a further object of the first aspect of the present invention is to improve the heating effect.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • a control method for a heating device including a cavity capacitor for placing an object to be processed, and an electromagnetic wave generator that generates an electromagnetic wave signal for heating the object to be processed Module, wherein the control method includes:
  • the type of food material of the object to be processed is determined according to the amount of capacitance change and the weight.
  • control method further includes:
  • the heating time for heating the object to be processed is determined according to the type of the food material and the weight.
  • the heating device further includes a matching module that adjusts the load impedance of the electromagnetic wave generating module by adjusting its own impedance, wherein the step of obtaining the capacitance change of the cavity capacitance includes:
  • the capacitance change amount is determined according to the impedance value.
  • the matching module includes a plurality of matching branches that can be turned on and off independently, wherein the impedance of the matching module is adjusted, and the matching module that realizes the optimal load matching of the electromagnetic wave generating module is determined
  • the steps of the impedance value include:
  • the on-off combination for achieving optimal load matching and the impedance value corresponding to the on-off combination are determined according to the comparison result.
  • the step of traversing the on-off combinations of the multiple matching branches, and obtaining a matching degree parameter corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module includes:
  • the branch number of the matching branch corresponding to each combination number is determined one by one according to the number set, and the corresponding matching branch is controlled on and off according to the branch number.
  • the step of obtaining the capacitance change of the cavity capacitance includes:
  • the capacitance change amount is determined according to the frequency value.
  • the step of adjusting the frequency of the electromagnetic wave signal in the candidate frequency interval and determining the frequency value of the electromagnetic wave signal that achieves the optimal frequency matching of the cavity capacitance includes:
  • Adjust the frequency of the electromagnetic wave signal in the candidate frequency interval in a dichotomy method gradually narrow the frequency approximation interval to the minimum approximation interval that achieves optimal frequency matching, and determine the electromagnetic wave signal that achieves optimal frequency matching Frequency value.
  • control method further includes:
  • the optimal impedance matching or the most frequency matching is determined according to the forward power signal and the reverse power signal.
  • the heating device further includes a container for carrying the object to be processed, and the container is movable to take and place the object to be processed, and the control method further includes:
  • the step of obtaining the capacitance change of the cavity capacitance and the weight of the object to be processed is executed.
  • a heating device including:
  • Cavity capacitance used to place objects to be processed
  • An electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • the controller is configured to execute any of the above control methods.
  • the invention automatically determines the type of food material of the object to be processed through the capacitance change of the cavity capacitance after the object to be processed is placed and the weight of the object to be processed, which reduces the user's demand for use and improves the accuracy of the type of food material.
  • the present invention determines the capacitance change of the cavity capacitance after placing the object to be processed by the impedance value of the matching module itself for achieving the optimal load matching or the frequency value for achieving the optimal frequency matching, thereby reducing the cost of measuring the cavity capacitance.
  • the capacitance measuring device saves cost, improves the accuracy of the capacitance change of the cavity capacitance, and further improves the suitability of the heating power and heating time of the electromagnetic wave signal, and the heating effect is improved.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • Fig. 3 is a schematic circuit diagram of a matching module according to an embodiment of the present invention.
  • Fig. 4 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of obtaining the capacitance change of the cavity capacitance according to an embodiment of the present invention
  • Fig. 6 is a schematic flow chart of obtaining a capacitance change of a cavity capacitance according to another embodiment of the present invention.
  • Fig. 7 is a detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110, an electromagnetic wave generating module 120 and a controller 140.
  • the cavity capacitor 110 may include a cavity for placing the to-be-processed object 150 and a radiator plate arranged in the cavity.
  • a receiving plate may be further provided in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal to form a capacitor as a receiving plate and a radiating plate.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals and be electrically connected to the radiating plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110 to heat the object 150 in the cavity capacitor 110.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1.
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, which is used to implement the control method of the embodiment of the present invention when the computer program 143 is executed by the processing unit 141.
  • the processing unit 141 may be configured to determine the heating power of the electromagnetic wave signal for heating the object 150 according to the type of food material of the object to be processed 150; determine the heating power of the electromagnetic wave signal for heating the object 150 according to the type and weight of the food material to be processed 150 Heating time to reduce uneven heating and local overheating caused by the different contents of different ingredients.
  • the processing unit 141 may be configured to obtain the capacitance change of the cavity capacitor 110 relative to the no-load and the weight of the object 150 after obtaining the heating instruction, and determine the value of the object 150 according to the capacitance change and weight. Types of ingredients.
  • the processing unit 141 may be configured to directly match the heating power according to the capacitance change and weight according to a preset power comparison relationship, or it may further match according to the food type after the food type of the object to be processed 150 is determined. heating power.
  • the heating power can be roughly positively correlated with the ratio of capacitance change to weight, that is, the larger the ratio of capacitance change to weight, the higher the corresponding heating power, so as to reduce the local overheating of the processed object 150.
  • the processing unit 141 may be configured to match the time base of the heating time according to a preset time base comparison relationship according to the weight of the to-be-processed object 150, and to match the time base of the heating time according to a preset time coefficient comparison relationship according to the type of food material of the to-be-processed object 150 Match the time coefficient of the heating time, and calculate the heating time according to the time base and the time coefficient.
  • the time base can be roughly positively correlated with the weight, and the time coefficient can be roughly positively correlated with the ratio of capacitance change to weight, that is, the greater the weight, the higher the corresponding heating power, and the greater the ratio of capacitance change to weight, the corresponding heating power The higher is to avoid local overheating of the food and excessive heating of the power amplifier of the electromagnetic wave generating module 120, which affects safety.
  • the heating device 100 may further include a container 160 for carrying the object 150 to be processed.
  • the container 160 can be moved to take and place the object 150 to be processed.
  • the processing unit 141 may be configured to obtain a heating instruction after detecting the movement of the container 160 to save energy.
  • the container 160 may be provided with a load cell for measuring the weight of the object 150 to be processed.
  • the heating device 100 further includes a matching module 130.
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or in parallel at both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance to achieve load matching. Improve heating efficiency.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power, adjust the impedance of the matching module 130 to perform load matching, determine the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120, and The capacitance variation of the cavity capacitor 110 is further determined according to the impedance value of the matching module 130 that achieves optimal load matching, so as to save cost and improve the accuracy of the capacitance variation of the cavity capacitor 110.
  • the capacitance change of the cavity capacitor 110 can be obtained by calculating the impedance value of the matching module 130 for optimal load matching and the impedance value of the cavity capacitor 110 when no-load; it can also be obtained based on the matching module for optimal load matching.
  • the impedance value of 130 determines the capacitance value of the cavity capacitor 110, and is obtained by comparing it with the capacitance value of the cavity capacitor 110 when there is no load.
  • the matching module 130 may include a plurality of matching branches that can be turned on and off independently.
  • the processing unit 141 may be further configured to traverse the on-off combinations of multiple matching branches and obtain a matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each on-off combination, and compare the on-off combinations of the multiple matching branches. Combine the matching parameters of the combination, and determine the on-off combination that achieves optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • the storage unit 142 may store a preconfigured number set, the number set may include a combination number of on-off combinations of a plurality of matching branches, and the combination number corresponds to the impedance value of the matching module 130.
  • the processing unit 141 may be further configured to obtain a pre-configured number set after obtaining the heating instruction, and then determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the corresponding branch number according to the branch number.
  • the on-off of the matching branch can be realized to traverse the on-off combination of multiple matching branches.
  • the heating device 100 of the present invention separately numbers each on-off combination of the matching module 130 and each matching branch, and can be used in the process of determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • the matching branch corresponding to each on-off combination is quickly matched for on-off, thereby shortening the time required to determine the capacitance change of the cavity capacitor 110, and greatly improving the user experience.
  • the branch numbers of multiple matching branches can be the 0 to n-1 power of the constant A in sequence, and the combination number can be the sum of the branch numbers of the matching branches in the on-off combination to pass only the branch
  • the number can accurately determine a unique set of matching branches that are turned on.
  • the constant A can be 2, 3, 4, etc., and n is the number of matching branches. In the present invention, the constant A can be 2 to reduce the storage space occupied by the serial number and improve the matching efficiency.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 according to an embodiment of the present invention.
  • the matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end electrically connected to the first matching unit 131 and the cavity capacitor.
  • the second matching unit 132 between 110 and the other end is grounded.
  • the first matching unit 131 and the second matching unit 132 may respectively include multiple matching branches connected in parallel, and each matching branch includes a fixed-value capacitor and a switch, so as to simplify the circuit and improve the matching module.
  • the reliability and adjustment range of 130 can further improve the obtained impedance value of the matching module 130 that achieves optimal load matching.
  • the capacitance values of the plurality of fixed value capacitors of the plurality of second matching units 132 of the first matching unit 131 and the second matching unit 132 may all be unequal, and the capacitance value of the smallest fixed value capacitor of the second matching unit 132 may be greater than that of the first matching unit 132.
  • the number of multiple branches can be increased in order according to the capacitance value of the corresponding matching branch from small to large.
  • the values increase sequentially, and the capacitance value of the capacitor Cx1 is greater than the capacitance value of the capacitor Ca.
  • the matching branches corresponding to C1, C2,..., Ca, Cx1, Cx2,..., Cxb can be sequentially numbered as 20, 21,..., 2a-1, 2a, 2a+1, ..., 2n-1.
  • the combined number can be directly compared with the preset impedance threshold to determine the impedance of the matching module 130, which simplifies the control process and further shortens the matching time of the heating device 100.
  • the electromagnetic wave generating module 120 may include a variable frequency source and a power amplifier.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power after obtaining the heating instruction, adjust the frequency of the electromagnetic wave signal generated by the electromagnetic wave generating module 120 in a candidate frequency range, and determine the realization of the cavity
  • the optimal frequency of the capacitor 110 matches the frequency value of the electromagnetic wave signal, and further determines the capacitance value and the capacitance change of the cavity capacitor 110 according to the frequency value that achieves the optimal frequency matching, so as to save cost and increase the capacitance of the cavity capacitor 110 The accuracy of the amount of change.
  • the minimum value of the alternative frequency range can be 32-38MHz, and the maximum value can be 42-48MHz, in order to improve the penetration of electromagnetic waves and achieve uniform heating.
  • the candidate frequency ranges are 32 to 48 MHz, 35 to 48 MHz, 35 to 45 MHz, 38 to 45 MHz, 38 to 42 MHz, and so on.
  • the processing unit 141 can be configured to adjust the frequency of the electromagnetic wave signal in the candidate frequency interval in a dichotomy manner, gradually narrow the frequency approximation interval for achieving optimal frequency matching to the minimum approximation interval, and further determine the electromagnetic wave signal for achieving optimal frequency matching The frequency value.
  • the processing unit 141 may be configured to adjust the frequency of the electromagnetic wave signal to the minimum value, the middle value and the maximum value of the frequency approximation interval, and obtain the matching degree parameters that reflect the frequency matching degree of the cavity capacitor 110 corresponding to each frequency for comparison. Re-determine the frequency approximation interval according to the comparison result, and loop until the frequency approximation interval is the minimum approximation interval, adjust the frequency of the electromagnetic wave signal to the minimum, intermediate and maximum values of the minimum approximation interval, and obtain the corresponding cavity capacitance 110 for each frequency. The matching parameters of the frequency matching degree are compared, and the optimal frequency value is determined according to the comparison result.
  • the initial frequency approximation interval may be the aforementioned candidate frequency interval.
  • the heating device 100 of the present invention uses the dichotomy method to determine the frequency value that achieves optimal frequency matching in the candidate frequency range, which can quickly reduce the range of the optimal frequency value, thereby quickly determining the optimal frequency value, and shortening the determination cavity.
  • the time required for the capacitance change of the bulk capacitor 110 greatly improves the user experience.
  • the minimum approximation interval in the present invention is not the interval of a specific frequency range, but the minimum range of the frequency approximation interval, that is, the accuracy of the optimal frequency value.
  • the minimum approximation interval may be any value from 0.2 to 20 KHz, such as 0.2 KHz, 1 KHz, 5 KHz, 10 KHz, or 20 KHz.
  • the time interval for adjusting the frequency of the electromagnetic wave signal twice can be 10-20ms, for example, 10ms, 15ms, or 20ms.
  • variable frequency source may be a voltage controlled oscillator, the input voltage of which corresponds to the output frequency.
  • the processing unit 141 may be configured to determine the capacitance value of the cavity capacitor 110 according to the input voltage of the voltage controlled oscillator.
  • the optimal load matching of the electromagnetic wave generating module 120 and the optimal frequency matching of the cavity capacitor 110 means that the electromagnetic wave generating module 120 has the largest proportion of the output power allocated to the cavity capacitor 110 under the same heating device.
  • the preset initial power can be 10-20W, such as 10W, 15W or 20W, so as to save energy and obtain a highly accurate impedance value for optimal load matching or a frequency for optimal frequency matching. value.
  • the heating device 100 may further include a two-way coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal output by the electromagnetic wave generating module 120 and the return electromagnetic wave generating module 120 The reverse power signal.
  • the processing unit 141 may also be configured to obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120 after each time the impedance value of the matching module 130 is adjusted or the frequency of the electromagnetic wave signal is adjusted, and Calculate the matching degree parameter based on the forward power signal and the reverse power signal.
  • S11 -20log (reverse power/forward power)
  • the impedance value or frequency value corresponding to the minimum return loss S11 is the impedance value for achieving optimal load matching or the frequency value for achieving optimal frequency matching.
  • electromagnetic wave absorption rate (1-reverse power/forward power).
  • the greater the value of electromagnetic wave absorption rate reflects the electromagnetic wave generation module
  • the impedance value or frequency value corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching or the frequency value for achieving optimal frequency matching.
  • the matching degree parameter can also be another parameter that can reflect the proportion of the output power allocated by the electromagnetic wave generating module 120 to the cavity capacitor 110.
  • Fig. 4 is a schematic flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may include the following steps:
  • Step S402 Obtain the capacitance change of the cavity capacitor 110 and the weight of the object 150 to be processed.
  • Step S404 Determine the food type of the object to be processed according to the capacitance change of the cavity capacitor 110 and the weight of the object to be processed 150.
  • the control method of the present invention automatically determines the type of food material of the to-be-processed object 150 through the capacitance change of the cavity capacitor 110 after the to-be-processed object 150 is placed and the weight of the to-be-processed object 150, which reduces the demand for users and improves The accuracy of the types of ingredients.
  • FIG. 5 is a schematic flowchart of obtaining the capacitance change of the cavity capacitor 110 according to an embodiment of the present invention.
  • obtaining the capacitance change of the cavity capacitor 110 may include the following steps:
  • Step S502 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain the impedance value of the matching module 130 that achieves optimal load matching with high accuracy.
  • Step S504 Adjust the impedance of the matching module 130, and determine the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • Step S506 Determine the capacitance change of the cavity capacitor 110 according to the impedance value.
  • step S504 may include the following steps:
  • the forward power signal output by the generating module 120 and the reverse power signal returned to the electromagnetic wave generating module 120 are calculated based on the forward power signal and the reverse power signal;
  • the number set may include a combination number of on-off combinations of a plurality of matching branches, and the combination number corresponds to the impedance value of the matching module 130.
  • the branch numbers of the multiple matching branches may be 0 to the n-1 power of the constant A in sequence, and the combination number may be the sum of the branch numbers of the matching branches that are turned on in the on-off combination.
  • the constant A can be 2, 3, 4, etc., and n is the number of matching branches.
  • the forward power signal and the reverse power signal can be measured by a bidirectional coupler.
  • the matching degree parameter can be return loss or electromagnetic wave absorptivity. Specifically, the smaller the value of the return loss, the higher the load matching degree of the electromagnetic wave generating module 120 is reflected, the impedance value of the matching module 130 corresponding to the minimum return loss is the impedance value for achieving optimal load matching; the value of the electromagnetic wave absorption rate The larger the value, the higher the load matching degree of the electromagnetic wave generating module 120 is. The impedance value of the matching module 130 corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching.
  • the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 can be determined in the process of determining the impedance value of the matching module 130.
  • FIG. 6 is a schematic flowchart of obtaining the capacitance change of the cavity capacitor 110 according to another embodiment of the present invention. Referring to FIG. 6, in other embodiments, obtaining the capacitance change of the cavity capacitor 110 may include the following steps:
  • Step S602 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • the preset initial power may be 10-20W, such as 10W, 15W, or 20W, so as to save energy and obtain a frequency value with high accuracy for achieving optimal frequency matching.
  • Step S604 Adjust the frequency of the electromagnetic wave signal in the candidate frequency range, and determine the frequency value of the electromagnetic wave signal that realizes the optimal frequency matching of the cavity capacitor 110.
  • the minimum value of the candidate frequency range can be 32-38 MHz, and the maximum value can be 42-48 MHz, so as to improve the penetration of electromagnetic waves and achieve uniform heating.
  • the candidate frequency ranges are 32 to 48 MHz, 35 to 48 MHz, 35 to 45 MHz, 38 to 45 MHz, 38 to 42 MHz, and so on.
  • Step S606 Determine the capacitance change of the cavity capacitor 110 according to the frequency value.
  • step S604 may be to adjust the frequency of the electromagnetic wave signal in the candidate frequency interval in a dichotomy manner, gradually reduce the frequency approximation interval for achieving optimal frequency matching to the minimum approximation interval, and determine to achieve the optimal The frequency value of the electromagnetic wave signal with frequency matching. Specifically, it can include the following steps:
  • the initial frequency approximation interval may be the aforementioned candidate frequency interval.
  • the minimum approximation interval is not the interval of a specific frequency range, but the minimum range of the frequency approximation interval, that is, the accuracy of the optimal frequency value.
  • the minimum approximation interval may be any value from 0.2 to 20 KHz, such as 0.2 KHz, 1 KHz, 5 KHz, 10 KHz, or 20 KHz.
  • the frequency value of the electromagnetic wave signal that realizes the optimal frequency matching is determined.
  • the control method of the present invention uses dichotomy to determine the frequency value that achieves optimal frequency matching in the candidate frequency interval, which can quickly reduce the range of the interval where the optimal frequency value is located, thereby quickly determining the optimal frequency value, and shortening the determination cavity
  • the time required for the capacitance of the capacitor 110 greatly improves the user experience.
  • step S404 it may further include:
  • the heating time of the to-be-processed object 150 is determined according to the type and weight of the food material.
  • the heating power can be roughly positively correlated with the ratio of capacitance change to weight, that is, the larger the ratio of capacitance change to weight, the higher the corresponding heating power, so as to reduce the local overheating of the processed object 150.
  • the heating time can be roughly positively correlated with the ratio of weight, capacitance change and weight, that is, the greater the weight, the higher the corresponding heating power, and the greater the ratio of capacitance change to weight, the higher the corresponding heating power to avoid local food Overheating or excessive heat generation of the power amplifier of the electromagnetic wave generating module 120 affects safety.
  • Fig. 7 is a detailed flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may include the following detailed steps:
  • Step S702 Determine whether the container 160 moves. If yes, perform step S704; if not, repeat step S702 to save energy.
  • Step S704 Obtain a heating instruction.
  • Step S706 In the case of obtaining the heating instruction, obtain the weight of the object 150 to be processed. In this step, the weight can be measured by a load cell.
  • Step S708 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S710 Obtain a pre-configured number set.
  • Step S712 Determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the on-off of the corresponding matching branch according to the branch number, after the matching branch corresponding to each on-off combination is turned on and off , Obtain the forward power signal output by the electromagnetic generation module and the reverse power signal of the return electromagnetic wave generation module 120, and calculate the matching degree parameter according to the forward power signal and the reverse power signal.
  • Step S714 Compare the matching degree parameters of the on-off combinations of the multiple matching branches.
  • Step S716 Determine the on-off combination for achieving optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • Step S718 Determine the capacitance change of the cavity capacitor 110 according to the impedance value.
  • Step S720 Determine the heating power and heating time of the electromagnetic wave signal according to the capacitance change and the weight.
  • Step S722 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal of heating power.
  • Step S724 It is judged whether the electromagnetic wave generating module 120 operates for greater than or equal to the heating time. If yes, go to step S726; if no, go back to step S722.
  • Step S726 Control the electromagnetic wave generating module 120 to stop working. Return to step S702 to start the next cycle.
  • the heating device 100 and the control method of the present invention are particularly suitable for thawing food, especially thawing food to -4 to 0°C.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种用于加热装置的控制方法及加热装置。加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块。控制方法包括:获取腔体电容的电容变化量以及待处理物的重量;根据电容变化量和重量确定待处理物的食材种类。本发明通过放置待处理物后的腔体电容的电容变化量和待处理物的重量来自动地确定待处理物的食材种类,降低了对用户的使用需求,提高了食材种类的准确性。

Description

用于加热装置的控制方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的控制方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但是,现有技术中,或由用户手动输入食材种类进行解冻,或由摄像头等图像识别装置识别食物种类进行解冻,存在对用户提出了过高的要求,或需要图像识别装置具有较高的图像识别精度和抗电磁波干扰能力的问题。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于电磁波加热装置的控制方法。
本发明第一方面的一个进一步的目的是要提高加热效果。
本发明第二方面的一个目的是要提供一种电磁波加热装置。
根据本发明的第一方面,提供了一种用于加热装置的控制方法,所述加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块,其中,所述控制方法包括:
获取所述腔体电容的电容变化量以及所述待处理物的重量;
根据所述电容变化量和所述重量确定所述待处理物的食材种类。
可选地,所述的控制方法还包括:
根据所述食材种类确定加热待处理物的电磁波信号的加热功率;和/或
根据所述食材种类和所述重量确定加热待处理物的加热时间。
可选地,所述加热装置还包括通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,其中,所述获取所述腔体电容的电容变化量的步骤包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值;
根据所述阻抗值确定所述电容变化量。
可选地,所述匹配模块包括可独立通断的多个匹配支路,其中,所述调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
比较所述多个匹配支路的通断组合的匹配度参数;
根据比较结果确定实现最优负载匹配的所述通断组合及该通断组合对应的阻抗值。
可选地,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路编号,并根据所述支路编号控制对应的匹配支路的通断。
可选地,所述获取所述腔体电容的电容变化量的步骤包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值;
根据所述频率值确定所述电容变化量。
可选地,所述在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值的步骤包括:
以二分法的方式在所述备选频率区间内调节所述电磁波信号的频率,逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,并确定实现最优频率匹配的所述电磁波信号的频率值。
可选地,所述控制方法还包括:
获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生 模块的反向功率信号;
根据所述正向功率信号和所述反向功率信号确定最优阻抗匹配或最有频率匹配。
可选地,所述加热装置还包括用于承载待处理物的承物皿,且所述承物皿可移动以取放待处理物,所述控制方法还包括:
在检测到所述承物皿移动后,获取加热指令;
若获取到所述加热指令,执行所述获取所述腔体电容的电容变化量以及所述待处理物的重量的步骤。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体电容,用于放置待处理物;
电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;以及
控制器,配置为用于执行以上任一所述的控制方法。
本发明通过放置待处理物后的腔体电容的电容变化量和待处理物的重量来自动地确定待处理物的食材种类,降低了对用户的使用需求,提高了食材种类的准确性。
进一步地,本发明通过实现最优负载匹配的匹配模块本身的阻抗值或实现最优频率匹配的频率值来确定放置待处理物后的腔体电容的电容变化量,减少了测量腔体电容的电容量的测量装置,节约了成本,提高了腔体电容的电容变化量的精度,进而提高了电磁波信号的加热功率和加热时间的合适性,提高了加热效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是根据本发明一个实施例的匹配模块的示意性电路图;
图4是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图5是根据本发明一个实施例的获取腔体电容的电容变化量的示意性流程图;
图6是根据本发明另一个实施例的获取腔体电容的电容变化量的示意性流程图;
图7是根据本发明一个实施例的用于加热装置的控制方法的详细流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括腔体电容110、电磁波发生模块120和控制器140。
具体地,腔体电容110可包括用于放置待处理物150的腔体和设置于腔体内的辐射极板。在一些实施例中,腔体内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体可由金属制成,以作为接收极板与辐射极板组成电容器。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110内的待处理物150。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
在一些实施例中,处理单元141可配置为根据待处理物150的食材种类确定加热待处理物150的电磁波信号的加热功率;根据待处理物150的食材种类和重量确定加热待处理物150的加热时间,以减轻因不同食材内部物质含量不同而产生的加热不均匀和局部过热现象。
特别地,处理单元141可配置为在获取到加热指令后,获取腔体电容110相对于空载的电容变化量以及待处理物150的重量,并根据电容变化量和重量确定待处理物150的食材种类。
在一些实施例中,处理单元141可配置为直接根据电容变化量和重量按照预设的功率对照关系匹配加热功率,也可在确定出待处理物150的食材种 类后再根据食材种类进一步地匹配加热功率。
加热功率可与电容变化量和重量的比值大致呈正相关,即电容变化量和重量的比值越大,对应的加热功率越高,以减轻待处理物150局部过热的现象。
在一些实施例中,处理单元141可配置为根据待处理物150的重量按照预设的时间基数对照关系匹配加热时间的时间基数、根据待处理物150的食材种类按照预设的时间系数对照关系匹配加热时间的时间系数,并根据时间基数和时间系数计算加热时间。
时间基数可与重量大致呈正相关,时间系数可与电容变化量和重量的比值大致呈正相关,即重量越大,对应的加热功率越高,电容变化量和重量的比值越大,对应的加热功率越高,以避免食材局部过热、电磁波发生模块120的功率放大器发热过多,影响安全。
在一些实施例中,加热装置100还可包括用于承载待处理物150的承物皿160。承物皿160可被移动以取放待处理物150。
处理单元141可配置为在检测到承物皿160移动后,再获取加热指令,以节约能源。
在一些实施例中,承物皿160可设置有称重传感器,用于测量待处理物150的重量。
在一些实施例中,加热装置100还包括匹配模块130。匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
处理单元141可配置为控制电磁波发生模块120产生预设初始功率的电磁波信号,调节匹配模块130的阻抗进行负载匹配,确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值,并进一步地根据实现最优负载匹配的匹配模块130的阻抗值确定腔体电容110的电容变化量,以节约成本,提高腔体电容110的电容变化量的精度。
其中,腔体电容110的电容变化量可通过实现最优负载匹配的匹配模块130的阻抗值与空载时腔体电容110的阻抗值计算获得;也可先根据实现最优负载匹配的匹配模块130的阻抗值确定腔体电容110的电容值,再与空载时的腔体电容110的电容值比较获得。
匹配模块130可包括可独立通断的多个匹配支路。处理单元141可进一步地配置为遍历多个匹配支路的通断组合并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数,比较多个匹配支路的通断组合的匹配度参数,并根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
具体地,存储单元142可存储有预先配置的编号集合,编号集合可包括多个匹配支路的通断组合的组合编号,且组合编号与匹配模块130的阻抗值相对应。处理单元141可更进一步地配置为在获取到加热指令后获取预先配置的编号集合,再按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,以实现遍历多个匹配支路的通断组合。
本发明的加热装置100通过对匹配模块130的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定腔体电容110的电容变化量的所需时间,极大地提高了用户体验。
多个匹配支路的支路编号可依次为常数A的0至n-1次方,组合编号可为该通断组合中导通的匹配支路的支路编号之和,以仅通过支路编号便可准确地确定唯一一组导通的匹配支路。其中常数A可为2、3或4等,n为匹配支路的数量。在本发明中,常数A可为2,以减少编号所占存储空间,并提高匹配效率。
图3是根据本发明一个实施例的匹配模块130的示意性电路图。参见图3,在一些进一步地实施例中,匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的第一匹配单元131和一端电连接于第一匹配单元131与腔体电容110之间且另一端接地的第二匹配单元132。其中,第一匹配单元131和第二匹配单元132可分别包括并联的多个匹配支路,且每个匹配支路包括一个定值电容和一个开关,以在使电路简单的同时,提高匹配模块130的可靠性和调节范围,进而提高获取到的实现最优负载匹配的匹配模块130的阻抗值。
第一匹配单元131和第二匹配单元132的多个第二匹配单元132的多个定值电容的电容值可均不相等,且第二匹配单元132的最小定值电容的电容 值可大于第一匹配单元131的最大定值电容的电容值。多个支路编号可按照对应匹配支路的电容值由小至大依次增大。
参见图3,第一匹配单元131的电容C1、C2、…、Ca的电容值依次增大,第二匹配单元132的电容Cx1、Cx2、…、Cxb(其中,a+b=n)的电容值依次增大,且电容Cx1的电容值大于电容Ca的电容值。在常数A为2的实施例中,C1、C2、…、Ca、Cx1、Cx2、…、Cxb对应的匹配支路可依次编号为20、21、…、2a-1、2a、2a+1、…、2n-1。
根据本发明的编号方法,可直接通过组合编号来与预设的阻抗阈值进行比较,确定匹配模块130的阻抗大小,简化了控制流程,进一步地缩短了加热装置100的匹配时间。
根据谐振频率计算公式f=1/(2π·sqrt(L·C)),对于相同加热装置100而言(电感L保持不变),当腔体电容110因放入不同待处理物150而发生电容值C变化,适用于该腔体电容110的谐振频率f也发生变化。在另一些实施例中,电磁波发生模块120可包括可变频率源和功率放大器。
处理单元141可配置为在获取到加热指令后,控制电磁波发生模块120产生预设初始功率的电磁波信号,在备选频率区间内调节电磁波发生模块120产生的电磁波信号的频率,并确定实现腔体电容110的最优频率匹配的电磁波信号的频率值,并进一步地根据实现最优频率匹配的频率值确定腔体电容110的电容值及电容变化量,以节约成本,提高腔体电容110的电容变化量的精度。
备选频率区间的最小值可为32~38MHz,最大值可为42~48MHz,以提高电磁波的穿透性,实现均匀加热。例如,备选频率区间为32~48MHz、35~48MHz、35~45MHz、38~45MHz、38~42MHz等。
处理单元141可配置为以二分法的方式在备选频率区间内调节电磁波信号的频率,逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,并进一步确定实现最优频率匹配的电磁波信号的频率值。
具体地,处理单元141可配置为调节电磁波信号的频率为频率逼近区间的最小值、中间值和最大值,分别获取各个频率对应的反映腔体电容110的频率匹配度的匹配度参数进行比较,根据比较结果重新确定频率逼近区间,如此循环直至频率逼近区间为最小逼近区间,调节电磁波信号的频率为最小逼近区间的最小值、中间值和最大值,分别获取各个频率对应的反映腔体电 容110的频率匹配度的匹配度参数进行比较,根据比较结果确定最优频率值。其中,初始频率逼近区间可为前述备选频率区间。
本发明的加热装置100通过二分法在备选频率区间内确定实现最优频率匹配的频率值,可快速缩小最优频率值所在区间的范围,进而快速地确定最优频率值,缩短了确定腔体电容110的电容变化量的所需时间,极大地提高了用户体验。
需要说明的是,本发明中所述最小逼近区间并不是特定频率范围的区间,而是频率逼近区间的最小范围,即最优频率值的精度。在一些实施例中,最小逼近区间可为0.2~20KHz中的任一数值,例如0.2KHz、1KHz、5KHz、10KHz、或20KHz。相邻两次调节电磁波信号的频率的时间间隔可为10~20ms,例如10ms、15ms、或20ms等。
在一些实施例中,可变频率源可为压控振荡器,其输入电压与输出频率相对应。处理单元141可配置为根据压控振荡器的输入电压确定腔体电容110的电容值。
在本发明中,电磁波发生模块120的最优负载匹配和腔体电容110的最优频率匹配是指相同加热装置下电磁波发生模块120分配给腔体电容110的输出功率的占比最大。
在本发明中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优负载匹配的阻抗值或实现最优频率匹配的频率值。
在一些实施例中,加热装置100还可包括串联在腔体电容110与电磁波发生模块120之间的双向耦合器,用于实时监测电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。
处理单元141还可配置为在每次调节匹配模块130的阻抗值后或调节电磁波信号的频率后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,并根据正向功率信号和反向功率信号计算匹配度参数。
匹配度参数可为回波损耗S11,其可根据公式S11=-20log(反向功率/正向功率)计算获得,在该实施例下,回波损耗S11的数值越小,反映电磁波发生模块120的负载匹配度或腔体电容110的频率匹配度越高,最小回波损耗S11对应的阻抗值或频率值为实现最优负载匹配的阻抗值或实现最优频 率匹配的频率值。
匹配度参数也可为电磁波吸收率,其可根据公式电磁波吸收率=(1-反向功率/正向功率)计算获得,在该实施例下,电磁波吸收率的数值越大,反映电磁波发生模块120的负载匹配度或腔体电容110的频率匹配度越高,最大电磁波吸收率对应的阻抗值或频率值为实现最优负载匹配的阻抗值或实现最优频率匹配的频率值。
匹配度参数也可为其他可体现电磁波发生模块120分配给腔体电容110的输出功率的占比的参数。
图4是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图。参见图4,本发明用于加热装置100的控制方法可包括如下步骤:
步骤S402:获取腔体电容110的电容变化量以及待处理物150的重量。
步骤S404:根据腔体电容110的电容变化量和待处理物150的重量确定待处理物的食材种类。
本发明的控制方法通过放置待处理物150后的腔体电容110的电容变化量和待处理物150的重量来自动地确定待处理物150的食材种类,降低了对用户的使用需求,提高了食材种类的准确性。
图5是根据本发明一个实施例的获取腔体电容110的电容变化量的示意性流程图。参见图5,在一些实施例中,获取腔体电容110的电容变化量可包括如下步骤:
步骤S502:控制电磁波发生模块120产生预设初始功率的电磁波信号。在该步骤中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优负载匹配的匹配模块130的阻抗值。
步骤S504:调节匹配模块130的阻抗,并确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值。
步骤S506:根据阻抗值确定腔体电容110的电容变化量。
在一些进一步的实施例中,基于包括可独立通断的多个匹配支路的匹配模块130,步骤S504可包括如下步骤:
获取预先配置的编号集合;
按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,在通断每一通断组合对应的匹配支 路后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,根据正向功率信号和反向功率信号计算匹配度参数;
比较多个匹配支路的通断组合的匹配度参数;
根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
在该实施例中,编号集合可包括多个匹配支路的通断组合的组合编号,且组合编号与匹配模块130的阻抗值相对应。
多个匹配支路的支路编号可依次为常数A的0至n-1次方,组合编号可为该通断组合中导通的匹配支路的支路编号之和。常数A可为2、3或4等,n为匹配支路的数量。
正向功率信号和反向功率信号可由双向耦合器测得。匹配度参数可为回波损耗或电磁波吸收率。具体地,回波损耗的数值越小,反映电磁波发生模块120的负载匹配度越高,最小回波损耗对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值;电磁波吸收率的数值越大,反映电磁波发生模块120的负载匹配度越高,最大电磁波吸收率对应的匹配模块130的阻抗值为实现最优负载匹配的阻抗值。
本发明的控制方法通过对匹配模块130的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定腔体电容110的电容变化量的所需时间,极大地提高了用户体验。
图6是根据本发明另一个实施例的获取腔体电容110的电容变化量的示意性流程图。参见图6,在另一些实施例中,获取腔体电容110的电容变化量可包括如下步骤:
步骤S602:控制电磁波发生模块120产生预设初始功率的电磁波信号。其中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优频率匹配的频率值。
步骤S604:在备选频率区间内调节电磁波信号的频率,并确定实现腔体电容110的最优频率匹配的电磁波信号的频率值。其中,备选频率区间的最小值可为32~38MHz,最大值可为42~48MHz,以提高电磁波的穿透性,实现均匀加热。例如,备选频率区间为32~48MHz、35~48MHz、35~45MHz、 38~45MHz、38~42MHz等。
步骤S606:根据频率值确定腔体电容110的电容变化量。
在一些进一步的实施例中,步骤S604可为以二分法的方式在备选频率区间内调节电磁波信号的频率,逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,并确定实现最优频率匹配的电磁波信号的频率值。具体可包括如下步骤:
获取初始频率逼近区间。其中,初始频率逼近区间可为前述备选频率区间。
调节电磁波信号的频率为频率逼近区间的最小值、中间值和最大值,在每次调节电磁波信号的频率后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,根据正向功率信号和反向功率信号计算该频率的匹配度参数。其中,正向功率信号和反向功率信号可由串联在腔体电容110与电磁波发生模块120之间的双向耦合器测得。
比较各个频率的匹配度参数,直至频率逼近区间为最小逼近区间。其中,最小逼近区间并不是特定频率范围的区间,而是频率逼近区间的最小范围,即最优频率值的精度。在一些实施例中,最小逼近区间可为0.2~20KHz中的任一数值,例如0.2KHz、1KHz、5KHz、10KHz、或20KHz。
根据比较结果确定实现最优频率匹配的电磁波信号的频率值。
本发明的控制方法通过二分法在备选频率区间内确定实现最优频率匹配的频率值,可快速缩小最优频率值所在区间的范围,进而快速地确定最优频率值,缩短了确定腔体电容110的电容量的所需时间,极大地提高了用户体验。
在一些实施例中,在步骤S404之后还可包括:
根据食材种类确定加热待处理物150的电磁波信号的加热功率;和/或
根据食材种类和重量确定待处理物150的加热时间。
加热功率可与电容变化量和重量的比值大致呈正相关,即电容变化量和重量的比值越大,对应的加热功率越高,以减轻待处理物150局部过热的现象。
加热时间可与重量、电容变化量和重量的比值大致呈正相关,即重量越大,对应的加热功率越高,电容变化量和重量的比值越大,对应的加热功率越高,以避免食材局部过热、电磁波发生模块120的功率放大器发热过多, 影响安全。
图7是根据本发明一个实施例的用于加热装置100的控制方法的详细流程图。参见图7,本发明用于加热装置100的控制方法可包括如下详细步骤:
步骤S702:判断承物皿160是否移动。若是,执行步骤S704;若否,重复步骤S702,以节约能源。
步骤S704:获取加热指令。
步骤S706:在获取到加热指令的情况下,获取待处理物150的重量。在该步骤中,重量可通过称重传感器测得。
步骤S708:控制电磁波发生模块120产生预设初始功率的电磁波信号。
步骤S710:获取预先配置的编号集合。
步骤S712:按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,在通断每一通断组合对应的匹配支路后,获取电磁发生模块输出的正向功率信号和返回电磁波发生模块120的反向功率信号,并根据正向功率信号和反向功率信号计算匹配度参数。
步骤S714:比较多个匹配支路的通断组合的匹配度参数。
步骤S716:根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
步骤S718:根据阻抗值确定腔体电容110的电容变化量。
步骤S720:根据电容变化量和重量确定电磁波信号的加热功率和加热时间。
步骤S722:控制电磁波发生模块120产生加热功率的电磁波信号。
步骤S724:判断电磁波发生模块120是否运行大于等于加热时间。若是,执行步骤S726;若否,返回步骤S722。
步骤S726:控制电磁波发生模块120停止工作。返回步骤S702,开始下一循环。
本发明的加热装置100及控制方法特别适用于食物解冻,尤其是将食物解冻至-4~0℃。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于加热装置的控制方法,所述加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块,其中,所述控制方法包括:
    获取所述腔体电容的电容变化量以及所述待处理物的重量;
    根据所述电容变化量和所述重量确定所述待处理物的食材种类。
  2. 根据权利要求1所述的控制方法,其中,还包括:
    根据所述食材种类确定加热待处理物的电磁波信号的加热功率;和/或
    根据所述食材种类和所述重量确定加热待处理物的加热时间。
  3. 根据权利要求1所述的控制方法,所述加热装置还包括通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,其中,所述获取所述腔体电容的电容变化量的步骤包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值;
    根据所述阻抗值确定所述电容变化量。
  4. 根据权利要求3所述的控制方法,所述匹配模块包括可独立通断的多个匹配支路,其中,所述调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
    遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
    比较所述多个匹配支路的通断组合的匹配度参数;
    根据比较结果确定实现最优负载匹配的所述通断组合及该通断组合对应的阻抗值。
  5. 根据权利要求4所述的控制方法,其中,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
    获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
    按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路编号,并根据所述支路编号控制对应的匹配支路的通断。
  6. 根据权利要求1所述的控制方法,其中,所述获取所述腔体电容的电容变化量的步骤包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值;
    根据所述频率值确定所述电容变化量。
  7. 根据权利要求6所述的控制方法,其中,所述在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值的步骤包括:
    以二分法的方式在所述备选频率区间内调节所述电磁波信号的频率,逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,并确定实现最优频率匹配的所述电磁波信号的频率值。
  8. 根据权利要求3或6所述的控制方法,还包括:
    获取所述电磁波发生模块输出的正向功率信号和返回所述电磁波发生模块的反向功率信号;
    根据所述正向功率信号和所述反向功率信号确定最优阻抗匹配或最有频率匹配。
  9. 根据权利要求1所述的控制方法,其中所述加热装置还包括用于承载待处理物的承物皿,且所述承物皿可移动以取放待处理物,所述控制方法还包括:
    在检测到所述承物皿移动后,获取加热指令;
    若获取到所述加热指令,执行所述获取所述腔体电容的电容变化量以及所述待处理物的重量的步骤。
  10. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;以及
    控制器,配置为用于执行权利要求1-9中任一所述的控制方法。
PCT/CN2020/125510 2020-01-06 2020-10-30 用于加热装置的控制方法及加热装置 WO2021139363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010011074.0 2020-01-06
CN202010011074.0A CN113079603B (zh) 2020-01-06 2020-01-06 用于加热装置的控制方法及加热装置

Publications (1)

Publication Number Publication Date
WO2021139363A1 true WO2021139363A1 (zh) 2021-07-15

Family

ID=76609247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125510 WO2021139363A1 (zh) 2020-01-06 2020-10-30 用于加热装置的控制方法及加热装置

Country Status (2)

Country Link
CN (1) CN113079603B (zh)
WO (1) WO2021139363A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242714B1 (en) * 1998-09-02 2001-06-05 Mayekawa Mfg. Co., Ltd. Noncontact article temperature measuring device for food
CN107327879A (zh) * 2017-07-30 2017-11-07 深圳市宝思创科技有限公司 一种食物识别方法及系统
CN108668395A (zh) * 2017-12-29 2018-10-16 恩智浦美国有限公司 用于rf加热系统的平面电感器
CN110189919A (zh) * 2019-06-13 2019-08-30 上海点为智能科技有限责任公司 可变电容、射频解冻设备及其解冻方法
CN110507209A (zh) * 2019-08-28 2019-11-29 惠而浦(中国)股份有限公司 一种智能烹饪方法和具有探针的智能烹饪器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950002483B1 (ko) * 1992-12-29 1995-03-20 주식회사금성사 전자레인지의 무게센서 보호장치
JP2013157303A (ja) * 2012-01-27 2013-08-15 Kiwa Bijutsu Co Ltd プラズマ発生装置
US11284742B2 (en) * 2015-09-01 2022-03-29 Illinois Tool Works, Inc. Multi-functional RF capacitive heating food preparation device
US10785834B2 (en) * 2017-12-15 2020-09-22 Nxp Usa, Inc. Radio frequency heating and defrosting apparatus with in-cavity shunt capacitor
US10952289B2 (en) * 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242714B1 (en) * 1998-09-02 2001-06-05 Mayekawa Mfg. Co., Ltd. Noncontact article temperature measuring device for food
CN107327879A (zh) * 2017-07-30 2017-11-07 深圳市宝思创科技有限公司 一种食物识别方法及系统
CN108668395A (zh) * 2017-12-29 2018-10-16 恩智浦美国有限公司 用于rf加热系统的平面电感器
CN110189919A (zh) * 2019-06-13 2019-08-30 上海点为智能科技有限责任公司 可变电容、射频解冻设备及其解冻方法
CN110507209A (zh) * 2019-08-28 2019-11-29 惠而浦(中国)股份有限公司 一种智能烹饪方法和具有探针的智能烹饪器具

Also Published As

Publication number Publication date
CN113079603B (zh) 2022-07-26
CN113079603A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN108012401B (zh) 射频阻抗匹配方法、匹配器和半导体处理装置
US10917065B2 (en) RF heating system with phase detection for impedance network tuning
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
TW201724158A (zh) 用於處理基板的射頻脈衝反射減量
US20080087381A1 (en) Matching network characterization using variable impedance analysis
CN107710869B (zh) 高频感应加热装置
CN108337758A (zh) 微波烹饪设备、微波加热控制方法和存储介质
CN114866096B (zh) 天线阻抗调谐方法、装置、终端设备及存储介质
CN113316280B (zh) 用于加热装置的控制方法以及加热装置
WO2021114951A1 (zh) 用于加热装置的控制方法及加热装置
WO2021114998A1 (zh) 用于加热装置的控制方法及加热装置
WO2021139363A1 (zh) 用于加热装置的控制方法及加热装置
CN112969248B (zh) 用于加热装置的控制方法及加热装置
WO2022105501A1 (zh) 用于加热装置的控制方法及加热装置
EP3902376B1 (en) Electromagnetic wave generation system, and heating apparatus with electromagnetic wave generation system
CN115325577A (zh) 微波加热控制方法及微波加热装置、计算机存储介质
US11244809B2 (en) Control method of driving frequency of pulsed variable frequency RF generator
CN112584566B (zh) 一种射频加热控制方法及射频加热器具
CN114468026A (zh) 一种冷冻食材快速解冻控制方法及系统
CN116190190B (zh) 自动阻抗匹配方法、装置、系统、电子设备及存储介质
CN117412418A (zh) 用于加热装置的控制方法及加热装置
CN114340070A (zh) 微波加热方法、装置、系统及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912728

Country of ref document: EP

Kind code of ref document: A1