WO2021213441A1 - 用于加热装置的解冻方法及加热装置 - Google Patents

用于加热装置的解冻方法及加热装置 Download PDF

Info

Publication number
WO2021213441A1
WO2021213441A1 PCT/CN2021/088715 CN2021088715W WO2021213441A1 WO 2021213441 A1 WO2021213441 A1 WO 2021213441A1 CN 2021088715 W CN2021088715 W CN 2021088715W WO 2021213441 A1 WO2021213441 A1 WO 2021213441A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching
electromagnetic wave
processed
value
frequency
Prior art date
Application number
PCT/CN2021/088715
Other languages
English (en)
French (fr)
Inventor
韩志强
王铭
李鹏
王海娟
李春阳
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to EP21792233.5A priority Critical patent/EP4114143A4/en
Priority to US17/996,891 priority patent/US20230164890A1/en
Priority to JP2022562436A priority patent/JP7475488B2/ja
Publication of WO2021213441A1 publication Critical patent/WO2021213441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications

Definitions

  • the invention relates to the field of food processing, in particular to a thawing method and a heating device used in an electromagnetic wave heating device.
  • the quality of the food is maintained, but frozen food needs to be thawed before being processed or eaten.
  • the food is usually defrosted by an electromagnetic wave heating device.
  • Defrosting food through an electromagnetic wave heating device is not only fast and efficient, but also has low nutrient loss.
  • the prior art generally judges the end of thawing by setting the time or temperature by the user, which not only imposes excessive requirements on the user, it is easy to cause the food after the thawing to be too cold or overheated, but also due to the penetration of water and ice by the microwave. There is a difference between penetration and absorption, and the distribution of substances inside the food is uneven, and the melted area absorbs a lot of energy, which is prone to uneven thawing and local overheating.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art and provide a thawing method for a heating device.
  • a further object of the first aspect of the present invention is to obtain the weight of the object to be processed more accurately.
  • Another further object of the first aspect of the present invention is to improve the efficiency of acquiring characteristic parameters.
  • An object of the second aspect of the present invention is to provide a heating device.
  • a thawing method for a heating device comprising a cavity capacitor for placing an object to be processed, and an electromagnetic wave generator that generates an electromagnetic wave signal for heating the object to be processed Module, wherein the thawing method includes:
  • the thawing progress of the to-be-processed object is determined according to the characteristic parameters, the power value and the rate of change.
  • the step of determining the thawing progress of the object to be processed according to the characteristic parameter, power value, and rate of change includes:
  • the electromagnetic wave generating module is controlled to stop working.
  • the step of determining the change threshold of the dielectric coefficient of the object to be processed according to the characteristic parameter and the power value includes:
  • the corresponding change threshold is matched according to a preset comparison relationship
  • the change threshold value is inversely proportional to the weight reflected by the characteristic parameter
  • the change threshold value is proportional to the power value.
  • the step of obtaining a characteristic parameter that reflects the weight of the object to be processed includes:
  • the characteristic parameter is the capacitance value.
  • the heating device further includes a matching module that adjusts the load impedance of the electromagnetic wave generating module by adjusting its own impedance, wherein the step of obtaining a characteristic parameter that reflects the weight of the object to be processed includes:
  • the impedance of the matching module is adjusted, and the impedance value of the matching module that realizes the optimal load matching of the electromagnetic wave generating module is determined.
  • the matching module includes a plurality of matching branches that can be turned on and off independently, wherein the impedance of the matching module is adjusted, and the matching module that realizes the optimal load matching of the electromagnetic wave generating module is determined
  • the steps of the impedance value include:
  • the on-off combination that achieves optimal load matching is determined according to the comparison result.
  • the step of traversing the on-off combinations of the multiple matching branches, and obtaining the matching degree parameter corresponding to each on-off combination and reflecting the load matching degree of the electromagnetic wave generating module includes:
  • the branch number of the matching branch corresponding to each combination number is determined one by one according to the number set, and the corresponding matching branch is controlled on and off according to the branch number.
  • the characteristic parameter is the impedance value of the matching module for optimal load matching, or the combination number.
  • the step of obtaining a characteristic parameter that reflects the weight of the object to be processed includes:
  • Adjust the frequency of the electromagnetic wave signal in the candidate frequency range and determine the frequency value of the electromagnetic wave signal that achieves the optimal frequency matching of the cavity capacitance, and the characteristic parameter is the electromagnetic wave signal that achieves the optimal frequency matching The frequency value.
  • a heating device including:
  • Cavity capacitance used to place objects to be processed
  • An electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • the controller is configured to execute any of the above-mentioned thawing methods.
  • the present invention determines the thawing progress according to the power of the electromagnetic wave signal, the weight of the object to be processed, and the rate of change of the dielectric coefficient of the object to be processed, compared to judging the thawing progress of the object to be processed based on the sensed temperature of the object to be processed , It is less affected by the accuracy of the sensing device itself, and the judgment is more accurate, which is beneficial for the user to further process the thawed objects to be processed.
  • the present invention compares the rate of change of the dielectric constant of the object to be processed with the change threshold determined by the power of the electromagnetic wave signal and the weight of the object to be processed to determine whether the thawing is complete, which can effectively prevent the object to be processed from being excessive.
  • Defrosting is especially suitable for processing objects whose thawing temperature is expected to be -4 to -1°C. After thawing, there is no blood and water produced in meat foods and it is easy to cut, and vegetable foods have no moisture outflow and little nutrient loss.
  • the present invention reflects the object to be processed by parameters related to the capacitance of the cavity capacitor (the capacitance itself, the impedance value of the matching module that achieves optimal load matching, the frequency value of the electromagnetic wave signal that achieves optimal frequency matching, etc.)
  • the user does not need to manually input the weight of the object to be processed based on experience or measurement, or add a load cell in the cavity capacitance, which not only saves costs, but also improves the fault tolerance rate.
  • the present invention by separately numbering each on-off combination of the matching module and each matching branch, can quickly match in the process of determining the impedance value of the matching module that realizes the optimal load matching of the electromagnetic wave generating module.
  • the on-off is performed to the matching branch corresponding to each on-off combination, thereby shortening the time required to determine the characteristic parameters of the object to be processed, and greatly improving the user experience.
  • the corresponding change threshold can be directly matched by the combination number, which simplifies the control process and further shortens the time required to determine the characteristic parameters of the object to be processed.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • Fig. 3 is a schematic circuit diagram of a matching module according to an embodiment of the present invention.
  • Fig. 4 is a schematic flowchart of a thawing method for a heating device according to an embodiment of the present invention
  • Fig. 5 is a detailed flowchart of a thawing method for a heating device according to an embodiment of the present invention
  • Fig. 6 is a schematic flow chart of determining the change threshold of the dielectric constant of the object to be processed according to another embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110, an electromagnetic wave generating module 120 and a controller 140.
  • the cavity capacitor 110 may include a cavity for placing the to-be-processed object 150 and a radiator plate arranged in the cavity.
  • a receiving plate may be further provided in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal to form a capacitor as a receiving plate and a radiating plate.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals and be electrically connected to the radiating plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110 to heat the object 150 in the cavity capacitor 110.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1.
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, which is used to implement the control method of the embodiment of the present invention when the computer program 143 is executed by the processing unit 141.
  • the processing unit 141 may be configured to, after receiving a defrosting instruction input by the user, obtain characteristic parameters that reflect the weight of the object 150, the power value of the electromagnetic wave signal used to heat the object 150 (ie heating power), and The rate of change of the dielectric coefficient of the object to be processed 150 is further determined according to the characteristic parameters, heating power, and the rate of change of the dielectric coefficient of the object to be processed 150 to determine the thawing progress of the object to be processed 150.
  • the heating device 100 of the present invention determines the thawing progress according to the power of the electromagnetic wave signal for heating the object 150, the weight of the object 150, and the rate of change of the dielectric coefficient of the object 150, compared to the sensing according to the
  • the temperature of the processed object 150 is used to determine the thawing progress of the processed object 150, which is less affected by the accuracy of the sensing device itself, and the judgment is more accurate, which is beneficial for the user to further process the processed object 150 after thawing.
  • the processing unit 141 may be further configured to determine the change threshold of the dielectric coefficient of the object to be processed 150 according to the characteristic parameter and the heating power for determining whether the thawing is completed.
  • the processing unit 141 can control the electromagnetic wave generating module 120 to stop working, that is, stop heating the processed object 150 to prevent the processed object 150 from being over-defrosted.
  • the processing unit 141 may be configured to match the corresponding change threshold according to the characteristic parameter and the heating power according to a preset comparison relationship.
  • the change threshold value and the weight reflected by the characteristic parameter may be roughly inversely proportional.
  • the change threshold value and the power value can be roughly proportional, so as to be suitable for different types and weights of food materials to avoid excessive or incomplete thawing.
  • the comparison relationship can be a formula, a comparison table, and so on.
  • the processing unit 141 may be configured to determine the power value of the electromagnetic wave signal for heating the object 150 according to the food group of the object 150, so as to reduce the heating failure caused by the different content of different food materials. Uniform and local overheating.
  • the food group can be input by the user, or judged by image recognition or spectral recognition.
  • Each food ingredient group can include at least one food ingredient variety to improve fault tolerance and reduce user requirements.
  • the change threshold can be determined by heating experiments with different heating powers for different types and weights of the to-be-treated 150, and detecting the rate of change of the dielectric coefficient of the to-be-treated 150 at -4 to -1°C to further improve the judgment.
  • the accuracy of thawing is completed, and the thawed meat ingredients have no blood and water and are easy to cut, and the vegetable ingredients have no moisture outflow and less nutrient loss.
  • the characteristic parameter reflecting the weight of the object to be processed 150 may be the capacitance value of the cavity capacitor 110, and it is not necessary for the user to manually input the weight of the object to be processed 150 based on experience or through measurement, or increase in the cavity capacitor 110.
  • the load cell not only saves costs, but also improves the fault tolerance rate.
  • the heating device 100 further includes a matching module 130.
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or in parallel at both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance to achieve load matching. Improve heating efficiency.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power, adjust the impedance of the matching module 130 to perform load matching, determine the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120, and The capacitance of the cavity capacitor 110 is further determined according to the impedance value of the matching module 130 that achieves optimal load matching, or the impedance value of the matching module 130 that achieves optimal load matching is directly used as a characteristic parameter.
  • the matching module 130 may include a plurality of matching branches that can be turned on and off independently.
  • the processing unit 141 may be further configured to traverse the on-off combinations of multiple matching branches and obtain a matching degree parameter reflecting the load matching degree of the electromagnetic wave generating module 120 corresponding to each on-off combination, and compare the on-off combinations of the multiple matching branches. Combine the matching parameters of the combination, and determine the on-off combination that achieves optimal load matching and the impedance value corresponding to the on-off combination according to the comparison result.
  • the storage unit 142 may store a pre-configured number set, the number set may include a combination number of on-off combinations of a plurality of matching branches, and the combination number corresponds to the impedance value of the matching module 130.
  • the processing unit 141 may be further configured to obtain a pre-configured number set after obtaining the heating instruction, and then determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the corresponding branch number according to the branch number.
  • the on-off of the matching branch can be realized to traverse the on-off combination of multiple matching branches.
  • the heating device 100 of the present invention separately numbers each on-off combination of the matching module 130 and each matching branch, and can be used in the process of determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120.
  • the matching branch corresponding to each on-off combination is quickly matched for on-off, thereby shortening the time required to determine the capacitance of the cavity capacitor 110, and greatly improving the user experience.
  • the characteristic parameter may be the impedance value of the matching module 130 for optimal load matching or a combination number to simplify the control process and further shorten the time required to determine the characteristic parameter of the object 150 to be processed.
  • the branch numbers of multiple matching branches can be the 0 to n-1 power of the constant A in sequence, and the combination number can be the sum of the branch numbers of the matching branches in the on-off combination to pass only the branch
  • the number can accurately determine a unique set of matching branches that are turned on.
  • the constant A can be 2, 3, 4, etc., and n is the number of matching branches. In the present invention, the constant A can be 2 to reduce the storage space occupied by the serial number and improve the matching efficiency.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 according to an embodiment of the present invention.
  • the matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110, and one end electrically connected to the first matching unit 131 and the cavity capacitor.
  • the second matching unit 132 between 110 and the other end is grounded.
  • the first matching unit 131 and the second matching unit 132 may respectively include multiple matching branches connected in parallel, and each matching branch includes a fixed-value capacitor and a switch, so as to simplify the circuit and improve the matching module.
  • the reliability and adjustment range of 130 can further improve the obtained impedance value of the matching module 130 that achieves optimal load matching.
  • the capacitance values of the plurality of fixed value capacitors of the plurality of second matching units 132 of the first matching unit 131 and the second matching unit 132 may all be unequal, and the capacitance value of the smallest fixed value capacitor of the second matching unit 132 may be greater than that of the first matching unit 132.
  • the number of multiple branches can be increased in order according to the capacitance value of the corresponding matching branch from small to large.
  • the matching branches corresponding to C 1 , C 2 , ..., C a , C x1 , C x2 , ..., C xb can be sequentially numbered as 2 0 , 2 1 , ..., 2 a -1 , 2 a , 2 a+1 ,..., 2 n-1 .
  • the capacitance of the cavity capacitor 110 is caused by placing different objects to be processed 150
  • the resonant frequency f applicable to the cavity capacitor 110 also changes.
  • the electromagnetic wave generating module 120 may include a variable frequency source and a power amplifier.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power after obtaining the heating instruction, adjust the frequency of the electromagnetic wave signal generated by the electromagnetic wave generating module 120 in a candidate frequency range, and determine the realization of the cavity The frequency value of the electromagnetic wave signal matched by the optimal frequency of the capacitor 110, and further determine the capacitance of the cavity capacitor 110 according to the frequency value for achieving the optimal frequency matching, or directly use the frequency value for achieving the optimal frequency matching as a characteristic parameter .
  • the minimum value of the alternative frequency range can be 32-38MHz, and the maximum value can be 42-48MHz, in order to improve the penetration of electromagnetic waves and achieve uniform heating.
  • the candidate frequency ranges are 32 to 48 MHz, 35 to 48 MHz, 35 to 45 MHz, 38 to 45 MHz, 38 to 42 MHz, and so on.
  • the processing unit 141 can be configured to adjust the frequency of the electromagnetic wave signal in the candidate frequency range in a dichotomy manner, gradually reduce the frequency approximation interval for achieving optimal frequency matching to the minimum approximation interval, and further determine the electromagnetic wave signal for achieving optimal frequency matching The frequency value.
  • the processing unit 141 may be configured to adjust the frequency of the electromagnetic wave signal to the minimum value, the middle value and the maximum value of the frequency approximation interval, and obtain the matching degree parameters that reflect the frequency matching degree of the cavity capacitor 110 corresponding to each frequency for comparison. Re-determine the frequency approximation interval according to the comparison result, and loop until the frequency approximation interval is the minimum approximation interval, adjust the frequency of the electromagnetic wave signal to the minimum, intermediate and maximum values of the minimum approximation interval, and obtain the corresponding cavity capacitance 110 for each frequency. The matching parameters of the frequency matching degree are compared, and the optimal frequency value is determined according to the comparison result.
  • the initial frequency approximation interval may be the aforementioned candidate frequency interval.
  • the heating device 100 of the present invention uses the dichotomy method to determine the frequency value that achieves optimal frequency matching in the candidate frequency range, which can quickly reduce the range of the optimal frequency value, thereby quickly determining the optimal frequency value, and shortening the determination cavity.
  • the time required for the capacitance of the bulk capacitor 110 greatly improves the user experience.
  • the minimum approximation interval in the present invention is not the interval of a specific frequency range, but the minimum range of the frequency approximation interval, that is, the accuracy of the optimal frequency value.
  • the minimum approximation interval may be any value from 0.2 to 20 KHz, such as 0.2 KHz, 1 KHz, 5 KHz, 10 KHz, or 20 KHz.
  • the time interval for adjusting the frequency of the electromagnetic wave signal twice can be 10-20ms, for example, 10ms, 15ms, or 20ms.
  • variable frequency source may be a voltage controlled oscillator, the input voltage of which corresponds to the output frequency.
  • the processing unit 141 may be configured to determine the capacitance of the cavity capacitor 110 according to the input voltage of the voltage controlled oscillator or directly use the input voltage as a characteristic parameter.
  • the optimal load matching of the electromagnetic wave generating module 120 and the optimal frequency matching of the cavity capacitor 110 means that the electromagnetic wave generating module 120 has the largest proportion of the output power allocated to the cavity capacitor 110 under the same heating device 100.
  • the preset initial power can be 10-20W, such as 10W, 15W or 20W, so as to save energy and obtain a highly accurate impedance value for optimal load matching or a frequency for optimal frequency matching. value.
  • the heating device 100 may further include a two-way coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal output by the electromagnetic wave generating module 120 and the return electromagnetic wave generating module 120 The reverse power signal.
  • the processing unit 141 may also be configured to obtain the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120 after each time the impedance value of the matching module 130 is adjusted or the frequency of the electromagnetic wave signal is adjusted, and Calculate the matching degree parameter based on the forward power signal and the reverse power signal.
  • S11 -20log (reverse power/forward power)
  • the smaller the value of the return loss S11 reflects the electromagnetic wave generation module 120
  • the impedance value or frequency value corresponding to the minimum return loss S11 is the impedance value for achieving optimal load matching or the frequency value for achieving optimal frequency matching.
  • electromagnetic wave absorption rate (1-reverse power/forward power).
  • the greater the value of electromagnetic wave absorption rate reflects the electromagnetic wave generation module
  • the impedance value or frequency value corresponding to the maximum electromagnetic wave absorption rate is the impedance value for achieving optimal load matching or the frequency value for achieving optimal frequency matching.
  • the matching degree parameter can also be another parameter that can reflect the proportion of the output power allocated by the electromagnetic wave generating module 120 to the cavity capacitor 110.
  • the capacitance of the cavity capacitor 110 can be directly measured by a capacitance measuring instrument.
  • Fig. 4 is a schematic flowchart of a thawing method for the heating device 100 according to an embodiment of the present invention.
  • the thawing method for the heating device 100 executed by the controller 140 of any of the above embodiments of the present invention may include the following steps:
  • Step S402 Receive a defrosting instruction input by the user.
  • Step S404 Obtain characteristic parameters that reflect the weight of the object 150, the power value of the electromagnetic wave signal used to heat the object 150, and the rate of change of the dielectric coefficient of the object 150.
  • Step S406 Determine the thawing progress of the to-be-processed object 150 according to the characteristic parameters, the power value and the rate of change.
  • the thawing method of the present invention determines the thawing progress according to the power of the electromagnetic wave signal, the weight of the object 150 to be processed, and the rate of change of the dielectric coefficient of the object 150 to be processed, compared to judging based on the sensed temperature of the object to be processed 150
  • the thawing progress of the to-be-processed object 150 is less affected by the accuracy of the sensing device itself, and the judgment is more accurate, which is beneficial for the user to further process the to-be-processed object 150 after thawing.
  • step S406 may include the following steps:
  • the rate of change of the dielectric coefficient of the object to be processed 150 is detected in real time, and when the rate of change is less than the change threshold, the electromagnetic wave generating module 120 is controlled to stop working.
  • the change threshold can be determined by matching the characteristic parameters and the heating power according to a preset comparison relationship.
  • the change threshold is inversely proportional to the weight reflected by the characteristic parameters.
  • the change threshold is proportional to the heating power.
  • the characteristic parameter reflecting the weight of the object 150 may be the capacitance itself of the cavity capacitor 110 after the object 150 is placed in the cavity, the impedance value of the matching module 130 that achieves optimal load matching, or the impedance value of the matching module 130 that achieves optimal frequency matching.
  • the frequency value of the electromagnetic wave signal, etc. does not require the user to manually input the weight of the object 150 based on experience or after measurement, or add a load cell in the cavity capacitor 110, which not only saves costs, but also improves the error tolerance rate.
  • obtaining characteristic parameters that reflect the weight of the object 150 may include the following steps:
  • Adjust the impedance of the matching module 130 determine the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120, and further determine the capacitance of the cavity capacitor 110 according to the impedance value of the matching module 130 that realizes the optimal load matching Or directly use the impedance value of the matching module 130 that achieves optimal load matching as a characteristic parameter.
  • adjusting the impedance of the matching module 130 and determining the impedance value of the matching module 130 that realizes the optimal load matching of the electromagnetic wave generating module 120 may be specifically traversing the on-off combinations of multiple matching branches, and obtaining the correspondence of each on-off combination.
  • FIG. 5 is a detailed flowchart of a thawing method for the heating device 100 according to an embodiment of the present invention (in the drawings of the specification of the present invention, "Y” means “Yes”; “N” means “No”).
  • the thawing method for the heating device 100 according to an embodiment of the present invention may include the following detailed steps:
  • Step S502 Obtain the unfreezing instruction input by the user.
  • Step S504 Obtain the food material group of the object 150 to be processed.
  • the food group can be input by the user, or determined by image recognition or spectral recognition.
  • Each food ingredient group can include at least one food ingredient variety to improve fault tolerance and reduce user requirements.
  • Step S506 Determine the heating power of the electromagnetic wave signal used to heat the object 150 to be processed according to the food material group, so as to reduce uneven heating and local overheating caused by the content of different food materials.
  • Step S508 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S510 Obtain a pre-configured number set.
  • Step S512 Determine the branch number of the matching branch corresponding to each combination number one by one according to the number set, and control the on-off of the corresponding matching branch according to the branch number, after the matching branch corresponding to each on-off combination is turned on and off , Obtain the forward power signal output by the electromagnetic generation module and the reverse power signal of the return electromagnetic wave generation module 120, and calculate the matching degree parameter according to the forward power signal and the reverse power signal, so as to quickly match the corresponding to each on-off combination
  • the matching branch is turned on and off, thereby shortening the time required to determine the capacitance of the cavity capacitor 110.
  • Step S514 Compare the matching degree parameters of the on-off combinations of multiple matching branches.
  • Step S516 Determine the on-off combination for achieving optimal load matching according to the comparison result.
  • Step S518 According to the combination number of the on-off combination for achieving optimal load matching and the heating power, the change threshold of the dielectric coefficient of the object to be processed 150 is matched according to the preset comparison relationship, so as to simplify the control process and further shorten the determination of the object to be processed.
  • Step S520 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal whose power is heating power.
  • Step S522 Obtain the rate of change of the dielectric coefficient of the object 150 to be processed.
  • Step S524 Determine whether the rate of change of the dielectric coefficient of the object to be processed 150 is less than the change threshold. If yes, go to step S526; if no, go back to step S522.
  • Step S526 Control the electromagnetic wave generating module 120 to stop working. Return to step S502 to start the next thawing cycle.
  • the difference from the previous embodiment is that obtaining characteristic parameters that reflect the weight of the object 150 may include the following steps:
  • Adjust the frequency of the electromagnetic wave signal in the candidate frequency range determine the frequency value of the electromagnetic wave signal that achieves the optimal frequency matching of the cavity capacitor 110, and further determine the electrical power of the cavity capacitor 110 according to the frequency value that achieves the optimal frequency matching. Capacity or directly use the frequency value that achieves optimal frequency matching as a characteristic parameter.
  • FIG. 6 is a schematic flowchart of determining the change threshold of the dielectric constant of the object 150 according to another embodiment of the present invention.
  • determining the change threshold of the dielectric constant of the object 150 to be processed according to another embodiment of the present invention may include the following steps:
  • Step S602 Obtain the initial frequency approximation interval.
  • the initial frequency approximation interval may be the aforementioned candidate frequency interval.
  • Step S604 Adjust the frequency of the electromagnetic wave signal to the minimum value, the middle value and the maximum value of the frequency approximation interval, and obtain the matching degree parameter reflecting the frequency matching degree of the cavity capacitor 110 corresponding to each frequency.
  • Step S606 Compare the matching degree parameters of each frequency.
  • Step S608 Determine whether the frequency approximation interval is the minimum approximation interval. If yes, go to step S610; if not, go to step S612.
  • Step S610 Determine the frequency value of the electromagnetic wave signal that achieves the optimal frequency matching according to the comparison result, and match the change threshold of the dielectric coefficient of the object 150 according to the frequency value and the heating power according to a preset comparison relationship.
  • Step S612 Re-determine the frequency approximation interval according to the comparison result to gradually narrow the frequency approximation interval to the minimum approximation interval for achieving optimal frequency matching, quickly reduce the range of the interval where the optimal frequency value is located, and then quickly determine the optimal frequency value. Return to step S604.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种用于加热装置的解冻方法及加热装置。加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块,其中,解冻方法包括:接收用户输入的解冻指令;获取体现待处理物重量的特征参数、电磁波信号的功率值、以及待处理物的介电系数的变化速率;根据特征参数、功率值以及变化速率确定待处理物的解冻进度。相比于根据感测到的待处理物的温度来判断待处理物的解冻进度,受感测器件本身的精度影响较小,判断更加准确,有利于用户对解冻后的待处理物作进一步的处理。

Description

用于加热装置的解冻方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的解冻方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但是,现有技术一般通过用户设定时间或设定温度来判定解冻结束,不仅对用户提出了过高的要求,容易造成解冻结束的食物过冷或过热,而且由于微波对水和冰的穿透和吸收有差别,且食物内部物质分布不均匀,已融化的区域吸收的能量多,易产生解冻不均匀和局部过热的问题。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于加热装置的解冻方法。
本发明第一方面的一个进一步的目的是要更加精确地获取待处理物的重量。
本发明第一方面的另一个进一步的目的是要提高获取特征参数的效率。
本发明第二方面的一个目的是要提供一种加热装置。
根据本发明的第一方面,提供了一种用于加热装置的解冻方法,所述加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块,其中,所述解冻方法包括:
接收用户输入的解冻指令;
获取体现待处理物重量的特征参数、所述电磁波信号的功率值、以及待处理物的介电系数的变化速率;
根据所述特征参数、功率值以及变化速率确定待处理物的解冻进度。
可选地,所述根据所述特征参数、功率值以及变化速率确定待处理物的解冻进度的步骤包括:
根据所述特征参数、所述功率值确定待处理物的介电系数的变化阈值;
在变化速率小于所述变化阈值时,控制所述电磁波发生模块停止工作。
可选地,所述根据所述特征参数、所述功率值确定待处理物的介电系数的变化阈值的步骤包括:
根据所述特征参数、所述功率值按照预设的对照关系匹配对应的变化阈值;其中
在所述功率值相同的情况下,所述变化阈值与所述特征参数体现的重量呈反比;和/或
在所述特征参数体现的重量相同的情况下,所述变化阈值与所述功率值呈正比。
可选地,所述获取体现待处理物重量的特征参数的步骤包括:
获取所述腔体电容的电容值,所述特征参数为所述电容值。
可选地,所述加热装置还包括通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,其中,所述获取体现待处理物重量的特征参数的步骤包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值。
可选地,所述匹配模块包括可独立通断的多个匹配支路,其中,所述调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
比较所述多个匹配支路的通断组合的匹配度参数;
根据比较结果确定实现最优负载匹配的所述通断组合。
可选地,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路 编号,并根据所述支路编号控制对应的匹配支路的通断。
可选地,所述特征参数为最优负载匹配的所述匹配模块的阻抗值、或所述组合编号。
可选地,所述获取体现待处理物重量的特征参数的步骤包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值,所述特征参数为该实现最优频率匹配的电磁波信号的频率值。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体电容,用于放置待处理物;
电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;以及
控制器,配置为用于执行以上任一所述的解冻方法。
本发明根据电磁波信号的功率、待处理物的重量、以及待处理物的介电系数的变化速率确定解冻进度,相比于根据感测到的待处理物的温度来判断待处理物的解冻进度,受感测器件本身的精度影响较小,判断更加准确,有利于用户对解冻后的待处理物作进一步的处理。
进一步地,本发明通过将待处理物的介电系数的变化速率与由电磁波信号的功率和待处理物的重量确定的变化阈值作比较,确定解冻是否完成,可有效地防止待处理物被过分解冻,特别适用于期望解冻温度为-4~-1℃的待处理物,解冻后的肉类食材无血水产生且便于切割,蔬菜类食材无水分流出营养流失少。
进一步地,本发明通过与腔体电容的电容量有关的参数(电容量本身、实现最优负载匹配的匹配模块阻抗值、实现最优频率匹配的电磁波信号的频率值等)来反映待处理物的重量,无需用户根据经验或经过测量手动输入待处理物的重量,或在腔体电容内增加称重传感器,不仅节约了成本,还提高了容错率。
进一步地,本发明通过对匹配模块的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块的最优负载匹配的匹配模块的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定待处理物的特征参数的所需时间,极大地提高了用户体验。特别地, 根据本发明的编号方法,可直接通过组合编号来匹配对应的变化阈值,简化了控制流程,进一步地缩短了确定待处理物的特征参数的所需时间。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是根据本发明一个实施例的匹配模块的示意性电路图;
图4是根据本发明一个实施例的用于加热装置的解冻方法的示意性流程图;
图5是根据本发明一个实施例的用于加热装置的解冻方法的详细流程图;
图6是根据本发明另一个实施例的确定待处理物的介电系数的变化阈值的示意性流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括腔体电容110、电磁波发生模块120和控制器140。
具体地,腔体电容110可包括用于放置待处理物150的腔体和设置于腔体内的辐射极板。在一些实施例中,腔体内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体可由金属制成,以作为接收极板与辐射极板组成电容器。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110内的待处理物150。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
特别地,处理单元141可配置为在接收到用户输入的解冻指令后,获取体现待处理物150重量的特征参数、用于加热待处理物150的电磁波信号的功率值(即加热功率)、以及待处理物150的介电系数的变化速率,并进一步根据特征参数、加热功率以及待处理物150的介电系数的变化速率确定待处理物150的解冻进度。
本发明的加热装置100根据加热待处理物150的电磁波信号的功率、待处理物150的重量、以及待处理物150的介电系数的变化速率确定解冻进度,相比于根据感测到的待处理物150的温度来判断待处理物150的解冻进度,受感测器件本身的精度影响较小,判断更加准确,有利于用户对解冻后的待处理物150作进一步的处理。
在一些实施例中,处理单元141可进一步配置为根据特征参数、加热功率确定待处理物150的介电系数的变化阈值,用于判断解冻是否完成。
当待处理物150的介电系数的变化速率小于变化阈值时,处理单元141可控制电磁波发生模块120停止工作,即停止对待处理物150的加热,以防止待处理物150被过分解冻。
处理单元141可配置为根据特征参数、加热功率按照预设的对照关系匹配对应的变化阈值。其中,在功率值相同的情况下,变化阈值与特征参数体现的重量可大致呈反比。在特征参数体现的重量相同的情况下,变化阈值与功率值可大致呈正比,以适用于不同种类、重量的食材,避免解冻过度或不彻底。对照关系可为公式、对照表等。
在一些进一步地实施例中,处理单元141可配置为根据待处理物150的食材组别确定加热待处理物150的电磁波信号的功率值,以减轻因不同食材内部物质含量不同而产生的加热不均匀和局部过热现象。
食材组别可由用户输入,或通过图像识别或光谱识别等判断得出。每一食材组别可包括至少一个食材品种,以提高容错率,降低对用户的要求。
变化阈值可具体通过对不同种类、重量的待处理物150进行不同加热功率的加热实验,并检测待处理物150在-4~-1℃时的介电系数的变化速率确定,以进一步提高判断解冻是否完成的准确性,并使解冻后的肉类食材无血水产生且便于切割,蔬菜类食材无水分流出营养流失少。
在一些实施例中,反映待处理物150的重量的特征参数可为腔体电容110的电容值,无需用户根据经验或经过测量手动输入待处理物150的重量, 或在腔体电容110内增加称重传感器,不仅节约了成本,还提高了容错率。
在一些进一步地实施例中,加热装置100还包括匹配模块130。匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
处理单元141可配置为控制电磁波发生模块120产生预设初始功率的电磁波信号,调节匹配模块130的阻抗进行负载匹配,确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值,并进一步根据该实现最优负载匹配的匹配模块130的阻抗值确定腔体电容110的电容量或直接将该实现最优负载匹配的匹配模块130的阻抗值作为特征参数。
匹配模块130可包括可独立通断的多个匹配支路。处理单元141可进一步地配置为遍历多个匹配支路的通断组合并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数,比较多个匹配支路的通断组合的匹配度参数,并根据比较结果确定实现最优负载匹配的通断组合及该通断组合对应的阻抗值。
具体地,存储单元142可存储有预先配置的编号集合,编号集合可包括多个匹配支路的通断组合的组合编号,且组合编号与匹配模块130的阻抗值相对应。处理单元141可更进一步地配置为在获取到加热指令后获取预先配置的编号集合,再按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,以实现遍历多个匹配支路的通断组合。
本发明的加热装置100通过对匹配模块130的每个通断组合和每个匹配支路分别进行编号,可在确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值的过程中,快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短了确定腔体电容110的电容量的所需时间,极大地提高了用户体验。
在该实施例中,特征参数可为最优负载匹配的匹配模块130的阻抗值、或组合编号,以简化控制流程,进一步地缩短确定待处理物150的特征参数的所需时间。
多个匹配支路的支路编号可依次为常数A的0至n-1次方,组合编号可为该通断组合中导通的匹配支路的支路编号之和,以仅通过支路编号便可准 确地确定唯一一组导通的匹配支路。其中常数A可为2、3或4等,n为匹配支路的数量。在本发明中,常数A可为2,以减少编号所占存储空间,并提高匹配效率。
图3是根据本发明一个实施例的匹配模块130的示意性电路图。参见图3,在一些进一步地实施例中,匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的第一匹配单元131和一端电连接于第一匹配单元131与腔体电容110之间且另一端接地的第二匹配单元132。其中,第一匹配单元131和第二匹配单元132可分别包括并联的多个匹配支路,且每个匹配支路包括一个定值电容和一个开关,以在使电路简单的同时,提高匹配模块130的可靠性和调节范围,进而提高获取到的实现最优负载匹配的匹配模块130的阻抗值。
第一匹配单元131和第二匹配单元132的多个第二匹配单元132的多个定值电容的电容值可均不相等,且第二匹配单元132的最小定值电容的电容值可大于第一匹配单元131的最大定值电容的电容值。多个支路编号可按照对应匹配支路的电容值由小至大依次增大。
参见图3,第一匹配单元131的电容C 1、C 2、…、C a的电容值依次增大,第二匹配单元132的电容C x1、C x2、…、C xb(其中,a+b=n)的电容值依次增大,且电容C x1的电容值大于电容C a的电容值。在常数A为2的实施例中,C 1、C 2、…、C a、C x1、C x2、…、C xb对应的匹配支路可依次编号为2 0、2 1、…、2 a-1、2 a、2 a+1、…、2 n-1
根据谐振频率计算公式f=1/(2·sqrt(L·C),对于相同加热装置100而言(电感L保持不变),当腔体电容110因放入不同待处理物150而发生电容值C变化,适用于该腔体电容110的谐振频率f也发生变化。在另一些实施例中,电磁波发生模块120可包括可变频率源和功率放大器。
处理单元141可配置为在获取到加热指令后,控制电磁波发生模块120产生预设初始功率的电磁波信号,在备选频率区间内调节电磁波发生模块120产生的电磁波信号的频率,并确定实现腔体电容110的最优频率匹配的电磁波信号的频率值,并进一步地根据该实现最优频率匹配的频率值确定腔体电容110的电容量或直接将该实现最优频率匹配的频率值作为特征参数。
备选频率区间的最小值可为32~38MHz,最大值可为42~48MHz,以提高电磁波的穿透性,实现均匀加热。例如,备选频率区间为32~48MHz、 35~48MHz、35~45MHz、38~45MHz、38~42MHz等。
处理单元141可配置为以二分法的方式在备选频率区间内调节电磁波信号的频率,逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,并进一步确定实现最优频率匹配的电磁波信号的频率值。
具体地,处理单元141可配置为调节电磁波信号的频率为频率逼近区间的最小值、中间值和最大值,分别获取各个频率对应的反映腔体电容110的频率匹配度的匹配度参数进行比较,根据比较结果重新确定频率逼近区间,如此循环直至频率逼近区间为最小逼近区间,调节电磁波信号的频率为最小逼近区间的最小值、中间值和最大值,分别获取各个频率对应的反映腔体电容110的频率匹配度的匹配度参数进行比较,根据比较结果确定最优频率值。其中,初始频率逼近区间可为前述备选频率区间。
本发明的加热装置100通过二分法在备选频率区间内确定实现最优频率匹配的频率值,可快速缩小最优频率值所在区间的范围,进而快速地确定最优频率值,缩短了确定腔体电容110的电容量的所需时间,极大地提高了用户体验。
需要说明的是,本发明中最小逼近区间并不是特定频率范围的区间,而是频率逼近区间的最小范围,即最优频率值的精度。在一些实施例中,最小逼近区间可为0.2~20KHz中的任一数值,例如0.2KHz、1KHz、5KHz、10KHz、或20KHz。相邻两次调节电磁波信号的频率的时间间隔可为10~20ms,例如10ms、15ms、或20ms等。
在一些实施例中,可变频率源可为压控振荡器,其输入电压与输出频率相对应。处理单元141可配置为根据压控振荡器的输入电压确定腔体电容110的电容量或直接将该输入电压作为特征参数。
在本发明中,电磁波发生模块120的最优负载匹配和腔体电容110的最优频率匹配是指相同加热装置100下电磁波发生模块120分配给腔体电容110的输出功率的占比最大。
在本发明中,预设初始功率可为10~20W,例如10W、15W或20W,以在节约能源的同时,获得准确性高的实现最优负载匹配的阻抗值或实现最优频率匹配的频率值。
在一些实施例中,加热装置100还可包括串联在腔体电容110与电磁波发生模块120之间的双向耦合器,用于实时监测电磁波发生模块120输出的 正向功率信号和返回电磁波发生模块120的反向功率信号。
处理单元141还可配置为在每次调节匹配模块130的阻抗值后或调节电磁波信号的频率后,获取电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号,并根据正向功率信号和反向功率信号计算匹配度参数。
匹配度参数可为回波损耗S11,其可根据公式S11=-20log(反向功率/正向功率)计算获得,在该实施例下,回波损耗S11的数值越小,反映电磁波发生模块120的负载匹配度或腔体电容110的频率匹配度越高,最小回波损耗S11对应的阻抗值或频率值为实现最优负载匹配的阻抗值或实现最优频率匹配的频率值。
匹配度参数也可为电磁波吸收率,其可根据公式电磁波吸收率=(1-反向功率/正向功率)计算获得,在该实施例下,电磁波吸收率的数值越大,反映电磁波发生模块120的负载匹配度或腔体电容110的频率匹配度越高,最大电磁波吸收率对应的阻抗值或频率值为实现最优负载匹配的阻抗值或实现最优频率匹配的频率值。
匹配度参数也可为其他可体现电磁波发生模块120分配给腔体电容110的输出功率的占比的参数。
在又一些进一步地实施例中,腔体电容110的电容量可通过电容测量仪直接测得。
图4是根据本发明一个实施例的用于加热装置100的解冻方法的示意性流程图。参见图4,本发明的由上述任一实施例的控制器140执行的用于加热装置100的解冻方法可包括如下步骤:
步骤S402:接收用户输入的解冻指令。
步骤S404:获取体现待处理物150重量的特征参数、用于加热待处理物150的电磁波信号的功率值、以及待处理物150的介电系数的变化速率。
步骤S406:根据特征参数、功率值以及变化速率确定待处理物150的解冻进度。
本发明的解冻方法根据电磁波信号的功率、待处理物150的重量、以及待处理物150的介电系数的变化速率确定解冻进度,相比于根据感测到的待处理物150的温度来判断待处理物150的解冻进度,受感测器件本身的精度影响较小,判断更加准确,有利于用户对解冻后的待处理物150作进一步的 处理。
在一些实施例中,步骤S406可包括如下步骤:
根据特征参数、用于加热待处理物150的电磁波信号的功率值确定待处理物150的介电系数的变化阈值;
实时检测待处理物150的介电系数的变化速率,在变化速率小于变化阈值时,控制电磁波发生模块120停止工作。
其中,变化阈值可由特征参数、加热功率按照预设的对照关系匹配确定,在加热功率相同的情况下,变化阈值与特征参数体现的重量呈反比。在特征参数体现的重量相同的情况下,变化阈值与加热功率呈正比。
反映待处理物150的重量的特征参数可为待处理物150放入腔体后的腔体电容110的电容量本身、实现最优负载匹配的匹配模块130阻抗值、或实现最优频率匹配的电磁波信号的频率值等,无需用户根据经验或经过测量手动输入待处理物150的重量,或在腔体电容110内增加称重传感器,不仅节约了成本,还提高了容错率。
在一些实施例中,获取体现待处理物150重量的特征参数可包括如下步骤:
控制电磁波发生模块120产生预设初始功率的电磁波信号;
调节匹配模块130的阻抗,确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值,并进一步根据该实现最优负载匹配的匹配模块130的阻抗值确定腔体电容110的电容量或直接将该实现最优负载匹配的匹配模块130的阻抗值作为特征参数。
具体地,调节匹配模块130的阻抗并确定实现电磁波发生模块120的最优负载匹配的匹配模块130的阻抗值可具体为遍历多个匹配支路的通断组合,并获取每个通断组合对应的反映电磁波发生模块120的负载匹配度的匹配度参数;比较多个匹配支路的通断组合的匹配度参数;根据比较结果确定实现最优负载匹配的通断组合。
图5是根据本发明一个实施例的用于加热装置100的解冻方法的详细流程图(在本发明的说明书附图中,“Y”表示“是”;“N”表示“否”)。参见图5,本发明一个实施例的用于加热装置100的解冻方法可包括如下详细步骤:
步骤S502:获取用户输入的解冻指令。
步骤S504:获取待处理物150的食材组别。在该步骤中,食材组别可由用户输入,或通过图像识别或光谱识别等判断得出。每一食材组别可包括至少一个食材品种,以提高容错率,降低对用户的要求。
步骤S506:根据食材组别确定用于加热待处理物150的电磁波信号的加热功率,以减轻因不同食材内部物质含量不同而产生的加热不均匀和局部过热现象。
步骤S508:控制电磁波发生模块120产生预设初始功率的电磁波信号。
步骤S510:获取预先配置的编号集合。
步骤S512:按照编号集合逐一确定每个组合编号对应的匹配支路的支路编号,并根据支路编号控制对应的匹配支路的通断,在通断每一通断组合对应的匹配支路后,获取电磁发生模块输出的正向功率信号和返回电磁波发生模块120的反向功率信号,并根据正向功率信号和反向功率信号计算匹配度参数,以快速地匹配到每一通断组合对应的匹配支路进行通断,进而缩短确定腔体电容110的电容量的所需时间。
步骤S514:比较多个匹配支路的通断组合的匹配度参数。
步骤S516:根据比较结果确定实现最优负载匹配的通断组合。
步骤S518:根据实现最优负载匹配的通断组合的组合编号以及加热功率按照预设的对照关系匹配待处理物150的介电系数的变化阈值,以简化控制流程,进一步地缩短确定待处理物150的特征参数的所需时间。
步骤S520:控制电磁波发生模块120产生功率为加热功率的电磁波信号。
步骤S522:获取待处理物150的介电系数的变化速率。
步骤S524:判断待处理物150的介电系数的变化速率是否小于变化阈值。若是,执行步骤S526;若否,返回步骤S522。
步骤S526:控制电磁波发生模块120停止工作。返回步骤S502,开始下一解冻循环。
在另一些实施例中,其与前一实施例的区别为,获取体现待处理物150重量的特征参数可包括如下步骤:
控制电磁波发生模块120产生预设初始功率的电磁波信号;
在备选频率区间内调节电磁波信号的频率,确定实现腔体电容110的最优频率匹配的电磁波信号的频率值,并进一步地根据该实现最优频率匹配的 频率值确定腔体电容110的电容量或直接将该实现最优频率匹配的频率值作为特征参数。
图6是根据本发明另一个实施例的确定待处理物150的介电系数的变化阈值的示意性流程图。参见图6,本发明另一个实施例的确定待处理物150的介电系数的变化阈值可包括如下步骤:
步骤S602:获取初始频率逼近区间。其中,初始频率逼近区间可为前述备选频率区间。
步骤S604:调节电磁波信号的频率为频率逼近区间的最小值、中间值和最大值,获取各个频率对应的反映腔体电容110的频率匹配度的匹配度参数。
步骤S606:比较各个频率的匹配度参数。
步骤S608:判断频率逼近区间是否为最小逼近区间。若是,执行步骤S610;若否,执行步骤S612。
步骤S610:根据比较结果确定实现最优频率匹配的电磁波信号的频率值,并根据该频率值以及加热功率按照预设的对照关系匹配待处理物150的介电系数的变化阈值。
步骤S612:根据比较结果重新确定频率逼近区间,以逐步缩小实现最优频率匹配的频率逼近区间至最小逼近区间,快速缩小最优频率值所在区间的范围,进而快速地确定最优频率值。返回步骤S604。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于加热装置的解冻方法,所述加热装置包括用于放置待处理物的腔体电容、以及产生用于加热待处理物的电磁波信号的电磁波发生模块,其中,所述解冻方法包括:
    接收用户输入的解冻指令;
    获取体现待处理物重量的特征参数、所述电磁波信号的功率值、以及待处理物的介电系数的变化速率;
    根据所述特征参数、功率值以及变化速率确定待处理物的解冻进度。
  2. 根据权利要求1所述的解冻方法,其中,所述根据所述特征参数、功率值以及变化速率确定待处理物的解冻进度的步骤包括:
    根据所述特征参数、所述功率值确定待处理物的介电系数的变化阈值;
    在变化速率小于所述变化阈值时,控制所述电磁波发生模块停止工作。
  3. 根据权利要求2所述的解冻方法,其中,所述根据所述特征参数、所述功率值确定待处理物的介电系数的变化阈值的步骤包括:
    根据所述特征参数、所述功率值按照预设的对照关系匹配对应的变化阈值;其中
    在所述功率值相同的情况下,所述变化阈值与所述特征参数体现的重量呈反比;和/或
    在所述特征参数体现的重量相同的情况下,所述变化阈值与所述功率值呈正比。
  4. 根据权利要求1所述的解冻方法,其中,所述获取体现待处理物重量的特征参数的步骤包括:
    获取所述腔体电容的电容值,所述特征参数为所述电容值。
  5. 根据权利要求1所述的解冻方法,所述加热装置还包括通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,其中,所述获取体现待处理物重量的特征参数的步骤包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    调节所述匹配模块的阻抗,并确定实现所述电磁波发生模块的最优负载匹配的所述匹配模块的阻抗值。
  6. 根据权利要求5所述的解冻方法,所述匹配模块包括可独立通断的多个匹配支路,其中,所述调节所述匹配模块的阻抗,并确定实现所述电磁波 发生模块的最优负载匹配的所述匹配模块的阻抗值的步骤包括:
    遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数;
    比较所述多个匹配支路的通断组合的匹配度参数;
    根据比较结果确定实现最优负载匹配的所述通断组合。
  7. 根据权利要求6所述的解冻方法,其中,所述遍历所述多个匹配支路的通断组合,并获取每个所述通断组合对应的反映所述电磁波发生模块的负载匹配度的匹配度参数的步骤包括:
    获取预先配置的编号集合,所述编号集合包括所述多个匹配支路的通断组合的组合编号,所述组合编号与所述阻抗值相对应;
    按照所述编号集合逐一确定每个所述组合编号对应的匹配支路的支路编号,并根据所述支路编号控制对应的匹配支路的通断。
  8. 根据权利要求7所述的解冻方法,其中,
    所述特征参数为最优负载匹配的所述匹配模块的阻抗值、或所述组合编号。
  9. 根据权利要求1所述的解冻方法,其中,所述获取体现待处理物重量的特征参数的步骤包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    在备选频率区间内调节所述电磁波信号的频率,并确定实现所述腔体电容的最优频率匹配的所述电磁波信号的频率值,所述特征参数为该实现最优频率匹配的电磁波信号的频率值。
  10. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;以及
    控制器,配置为用于执行权利要求1-9中任一所述的解冻方法。
PCT/CN2021/088715 2020-04-22 2021-04-21 用于加热装置的解冻方法及加热装置 WO2021213441A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21792233.5A EP4114143A4 (en) 2020-04-22 2021-04-21 DEFROST METHOD FOR HEATER, AND HEATER
US17/996,891 US20230164890A1 (en) 2020-04-22 2021-04-21 Thawing method for heating apparatus, and heating apparatus
JP2022562436A JP7475488B2 (ja) 2020-04-22 2021-04-21 加熱装置を用いた解凍方法及び加熱装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010324163.0 2020-04-22
CN202010324163.0A CN113519753B (zh) 2020-04-22 2020-04-22 用于加热装置的解冻方法及加热装置

Publications (1)

Publication Number Publication Date
WO2021213441A1 true WO2021213441A1 (zh) 2021-10-28

Family

ID=78094130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088715 WO2021213441A1 (zh) 2020-04-22 2021-04-21 用于加热装置的解冻方法及加热装置

Country Status (5)

Country Link
US (1) US20230164890A1 (zh)
EP (1) EP4114143A4 (zh)
JP (1) JP7475488B2 (zh)
CN (1) CN113519753B (zh)
WO (1) WO2021213441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521033A (zh) * 2020-11-20 2022-05-20 青岛海尔特种电冰箱有限公司 用于加热装置的控制方法及加热装置
CN116261235A (zh) * 2021-12-09 2023-06-13 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990535A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN209897300U (zh) * 2019-01-28 2020-01-03 青岛海尔特种电冰箱有限公司 加热装置及具有该加热装置的冰箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653482B2 (en) * 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
JP2013072618A (ja) * 2011-09-29 2013-04-22 Panasonic Corp 冷蔵庫
EP3280225B1 (en) 2016-08-05 2020-10-07 NXP USA, Inc. Defrosting apparatus with lumped inductive matching network and methods of operation thereof
CN106288626A (zh) * 2016-08-29 2017-01-04 合肥华凌股份有限公司 一种解冻装置、冰箱及其解冻控制方法
CN109000402B (zh) * 2017-06-06 2020-05-26 青岛海尔股份有限公司 冰箱
CN109000403B (zh) * 2017-06-06 2020-05-26 海尔智家股份有限公司 用于解冻装置的解冻方法
JPWO2019239995A1 (ja) * 2018-06-13 2021-06-24 シャープ株式会社 誘電加熱装置
CN114521033A (zh) * 2020-11-20 2022-05-20 青岛海尔特种电冰箱有限公司 用于加热装置的控制方法及加热装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990535A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN209897300U (zh) * 2019-01-28 2020-01-03 青岛海尔特种电冰箱有限公司 加热装置及具有该加热装置的冰箱

Also Published As

Publication number Publication date
US20230164890A1 (en) 2023-05-25
EP4114143A4 (en) 2023-07-26
JP7475488B2 (ja) 2024-04-26
CN113519753B (zh) 2023-10-24
JP2023522188A (ja) 2023-05-29
CN113519753A (zh) 2021-10-22
EP4114143A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
US10917065B2 (en) RF heating system with phase detection for impedance network tuning
US11129245B2 (en) Dynamic impedance matching in RF resonator cavity
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
CN113316280B (zh) 用于加热装置的控制方法以及加热装置
WO2021114998A1 (zh) 用于加热装置的控制方法及加热装置
JP2017511564A (ja) 食材の加熱を制御する方法及び装置
WO2022105501A1 (zh) 用于加热装置的控制方法及加热装置
CN112969248B (zh) 用于加热装置的控制方法及加热装置
WO2021114951A1 (zh) 用于加热装置的控制方法及加热装置
WO2021139363A1 (zh) 用于加热装置的控制方法及加热装置
WO2020026930A1 (ja) 高周波加熱装置
CN112584566A (zh) 一种射频加热控制方法及射频加热器具
WO2022206152A1 (zh) 用于加热装置的控制方法及加热装置
JP7216617B2 (ja) 誘電加熱システム
CN114468026A (zh) 一种冷冻食材快速解冻控制方法及系统
CN117412421A (zh) 用于加热装置的控制方法及加热装置
CN117412418A (zh) 用于加热装置的控制方法及加热装置
CN117412420A (zh) 用于加热装置的校准方法及加热装置
JPH0395314A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021792233

Country of ref document: EP

Effective date: 20220926

ENP Entry into the national phase

Ref document number: 2022562436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE