WO2022206152A1 - 用于加热装置的控制方法及加热装置 - Google Patents

用于加热装置的控制方法及加热装置 Download PDF

Info

Publication number
WO2022206152A1
WO2022206152A1 PCT/CN2022/073777 CN2022073777W WO2022206152A1 WO 2022206152 A1 WO2022206152 A1 WO 2022206152A1 CN 2022073777 W CN2022073777 W CN 2022073777W WO 2022206152 A1 WO2022206152 A1 WO 2022206152A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
electromagnetic wave
frequency
parameter
matching
Prior art date
Application number
PCT/CN2022/073777
Other languages
English (en)
French (fr)
Inventor
韩志强
李春阳
王海娟
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022206152A1 publication Critical patent/WO2022206152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/08Control, e.g. of temperature, of power using compensating or balancing arrangements

Definitions

  • the invention relates to the field of food processing, in particular to a control method and a heating device for an electromagnetic wave heating device.
  • the quality of the food is preserved during the freezing process, however frozen food needs to be thawed before being processed or eaten.
  • the food is usually thawed by an electromagnetic wave heating device.
  • Defrost food by electromagnetic wave heating device is not only fast and efficient, but also has low loss of nutrients in food. Among them, it is necessary to ensure the heating efficiency of electromagnetic wave to food by ensuring the impedance matching degree of the electromagnetic wave generating module.
  • the impedance matching of the electromagnetic wave generating module is generally only achieved by adjusting the impedance of the impedance matching module itself. If the matching module can adjust the impedance change caused by the food in a wide range of weights, the circuit of the matching module needs to include more The electrical device, correspondingly, the connection structure and control logic of the circuit are also relatively complicated, which increases the production cost and maintenance cost of the heating device.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art, and to provide a control method for an electromagnetic wave heating device.
  • a further object of the first aspect of the present invention is to simplify the structure of the matching module and simplify the control logic.
  • Another further object of the first aspect of the present invention is to improve the accuracy of judging whether heating is completed.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • a control method for a heating device including an electromagnetic wave generating module for generating an electromagnetic wave signal for heating an object to be treated, and a method for reducing the electromagnetic wave generating module A return loss matching module, wherein the control method includes:
  • Heating startup step controlling the electromagnetic wave generating module to generate electromagnetic wave signals
  • Configuration confirmation step adjust the configuration of the matching module and the frequency of the electromagnetic wave signal, and determine the optimal configuration of the matching module and the optimal frequency of the electromagnetic wave signal to achieve the minimum return loss of the electromagnetic wave generating module ;
  • Impedance matching step adjusting the matching module to the optimal configuration, and controlling the electromagnetic wave generating module to generate an electromagnetic wave signal according to the optimal frequency.
  • control method further includes:
  • Parameter determination step determining the termination parameter threshold for completing the heating according to the optimal configuration
  • the heating termination step when the corresponding parameter reaches the termination parameter threshold, the electromagnetic wave generating module is controlled to stop generating the electromagnetic wave signal.
  • the termination parameter is the total heating time, the rate of change of S11, the rate of change of forward power, or the rate of change of reverse power.
  • the configuration confirmation step includes:
  • the change trend of the impedance value in the second configuration and the second configuration is the same as that in the first configuration
  • the optimal configuration is determined from other configurations of ;
  • the change trend of the impedance value in the first configuration and in the second configuration relative to the first configuration is opposite
  • the optimal configuration is determined from other configurations of .
  • the second frequency interval is divided by the frequency value corresponding to the first configuration, within the first frequency interval, according to a change trend opposite to that of the second configuration relative to the first configuration.
  • control method further includes:
  • the echo inspection step obtaining echo parameters reflecting the return loss, and the echo parameters are S11 coefficients;
  • Matching correction step when the echo parameter is greater than a preset upper threshold, readjust the configuration of the matching module and the frequency of the electromagnetic wave signal.
  • the minimum frequency value of the echo parameter is determined within a frequency range less than the previous frequency, if the minimum echo parameter is less than or equal to the upper limit. threshold, control the electromagnetic wave generating module to generate electromagnetic wave signals according to the minimum frequency value of the echo parameter; if the minimum echo parameter is greater than the upper threshold, adjust the configuration of the matching module so that the corresponding impedance value is greater than the current configuration and the most Approach the current configuration, and based on the configuration, determine a new minimum frequency value of the echo parameter within a frequency range smaller than the minimum frequency value of the previous echo parameter, until the new minimum echo parameter is less than or equal to the upper limit threshold .
  • control method further includes:
  • Parameter determination step determining the termination parameter threshold for completing the heating according to the optimal configuration
  • the heating termination step when the corresponding parameter reaches the termination parameter threshold, the electromagnetic wave generating module is controlled to stop generating the electromagnetic wave signal;
  • the termination parameter is the rate of change of S11, the rate of change of forward power, or the rate of change of reverse power
  • the matching correction step is performed when the corresponding parameter reaches the termination parameter threshold and the echo parameter is greater than the upper limit threshold.
  • the electromagnetic wave generating module is controlled to stop generating the electromagnetic wave signal.
  • a heating device comprising:
  • Cavity capacitor for placing the object to be processed
  • an electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • a matching module connected in series between the electromagnetic wave generating module and the cavity capacitor, and comprising a plurality of matching branches connected in parallel, for reducing the return loss of the electromagnetic wave generating module;
  • the electromagnetic wave generating module is provided with a voltage-controlled oscillator for adjusting the frequency of the electromagnetic wave signal.
  • the present invention reduces the return loss of the electromagnetic wave generating module by adjusting the configuration of the matching module and the frequency of the electromagnetic wave signal at the same time, and can adjust the impedance change caused by the food in a larger weight range by using the matching module with fewer electrical components.
  • the precise impedance adjustment is realized, the control logic is simple, and the production cost and maintenance cost of the heating device are reduced.
  • the present invention confirms or corrects the optimal configuration and the optimal frequency through the special matching module configuration and the adjustment logic of the frequency of the electromagnetic wave signal, which can greatly shorten the time consumed by impedance matching, thereby shortening the total heating time and reducing Energy consumption, and reduce the impact of electromagnetic waves in the impedance matching stage on the ingredients, ensure the quality of the heated food, and improve the user experience.
  • the present invention determines the termination parameter threshold for completing the heating through the optimal configuration of the matching module determined by the initial matching, which not only improves the user's operational convenience and saves costs, but also unexpectedly reduces or even eliminates the load on the object to be treated.
  • the influence of the object dish reduces the error of the termination parameter threshold, and the termination parameter threshold that makes the object to be processed end in the user's desired state can be obtained without manual input by the user and without adding an additional measuring device.
  • FIG. 1 is a schematic structural diagram of an electromagnetic wave heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • Fig. 3 is the schematic circuit diagram of the matching module in Fig. 1;
  • FIG. 4 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 5 is a schematic detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an electromagnetic wave heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110 , an electromagnetic wave generating module 120 , a matching module 130 and a controller 140 .
  • the cavity capacitor 110 may include a cavity for placing the object to be processed 150 and a radiation plate disposed in the cavity.
  • a receiving plate can also be arranged in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal, which serves as the receiver plate and the radiator plate to form a capacitor.
  • the electromagnetic wave generating module 120 can be configured to generate electromagnetic wave signals and be electrically connected to the radiation plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110, thereby heating the object to be processed 150 in the cavity capacitor 110.
  • the electromagnetic wave generating module 120 may include a voltage controlled oscillator 121 and a power amplifier to adjust the frequency and power of the electromagnetic wave generating signal.
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or in parallel with both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance, so as to reduce the electromagnetic wave generating module 120 return loss to achieve load matching and improve heating efficiency.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1 .
  • the controller 140 may include a processing unit 141 and a storage unit 142 .
  • the storage unit 142 stores a computer program 143, and when the computer program 143 is executed by the processing unit 141, is used to implement the control method of the embodiment of the present invention.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate electromagnetic wave signals, adjust the configuration of the matching module 130 and the frequency of the electromagnetic wave signals, and determine the optimal configuration of the matching module 130 to achieve the minimum return loss of the electromagnetic wave generating module 120 and the optimal frequency of the electromagnetic wave signal, then adjust the matching module 130 to the optimal configuration, and control the electromagnetic wave generating module 120 to generate the electromagnetic wave signal according to the optimal frequency.
  • the electromagnetic wave generating module 120 can generate an electromagnetic wave signal with a preset initial power; after adjusting the matching module 130 to the optimal configuration and the electromagnetic wave signal to the optimal frequency, the electromagnetic wave generating module 120 can An electromagnetic wave signal with a preset heating power is generated, and the object 150 to be processed starts to be formally heated.
  • the preset initial power may be smaller than the preset heating power, so as to reduce the influence of electromagnetic waves on the object to be processed 150 during impedance matching.
  • the heating device 100 of the present invention reduces the return loss of the electromagnetic wave generating module 120 by adjusting the configuration of the matching module 130 and the frequency of the electromagnetic wave signal at the same time, and the matching module 130 including fewer electrical components can be used to adjust a larger weight range
  • the impedance change caused by the food material can be adjusted precisely, the control logic is simple, and the production cost and maintenance cost of the heating device 100 are reduced.
  • the processing unit 141 may be further configured to control the electromagnetic wave generating module 120 to stop generating the electromagnetic wave signal when the optimal frequency is less than the preset frequency threshold, so as to avoid the higher absorption capacity of the object 150 for electromagnetic waves. poor and waste of energy.
  • the processing unit 141 may be further configured to determine a termination parameter threshold for completing the heating according to the determined optimal configuration of the matching module 130, and control the electromagnetic wave generating module 120 to stop generating electromagnetic waves when the corresponding parameter reaches the termination parameter threshold Signal to end the heating of the object to be processed 150, so as to improve the user's operational convenience, save costs, and reduce errors, so that the object to be processed 150 ends in a state desired by the user.
  • the termination parameter may be the total heating time, the rate of change of S11, the rate of change of forward power, or the rate of change of reverse power.
  • the termination parameter is the total heating time, and the current heating time is greater than or equal to the total heating time, which means that the corresponding parameter reaches the termination parameter threshold;
  • the termination parameter is the rate of change of S11, or the rate of change of forward power, and the current rate of change of S11 is less than or equal to
  • the preset S11 change rate threshold or the current forward power change rate is less than or equal to the preset forward change rate threshold, which means that the corresponding parameter reaches the termination parameter threshold;
  • the termination parameter is the change rate of the reverse power, and the current reverse power
  • the change rate of the forward power is greater than or equal to the preset reverse change rate threshold, which means that the corresponding parameter reaches the termination parameter threshold.
  • the heating device 100 may further include a forward coupler and/or a reverse coupler connected in series between the matching module 130 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal and/or returning electromagnetic waves output by the electromagnetic wave generating module 120
  • the reverse power signal of the generating module 120 is generated, and then the S11 coefficient, the S11 change rate, the change rate of the forward power, or the change threshold of the reverse power are calculated.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 in FIG. 1 (in the figure, "IN” represents the end connected to the electromagnetic wave generating module 120; “OUT” represents the end connected to the cavity capacitor 110).
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 , and includes a plurality of matching branches connected in parallel.
  • the plurality of matching branches include capacitors C 1 , C 2 , . . . , C n , and C n +1 , respectively, wherein the capacitors C 1 , C 2 , . 2 , ..., K n independent control.
  • the capacitance values of the capacitors C 1 , C 2 , . . . , C n may be unequal to improve the adjustment range of the matching module 130 .
  • the module 130 can form 8 configurations according to the different opening and closing states of the three switches, and the 8 configurations are sequentially numbered as P0 to P7 according to the impedance value from large to small.
  • Table 1 and Table 2 show the frequency value and S11 coefficient of the minimum return loss corresponding to each configuration measured under the same test conditions for beef of different weights within the range of 39.7MHz to 42.2MHz in 20kHz steps. .
  • the weight in the table is only the weight of beef; marking "removing the container” means that the cavity capacitor 110 does not contain a container (such as a tray, drawer) during the test; not marking "removing the container” means that the test When the cavity capacitor 110 is provided with a container to carry the beef to be tested.
  • the weight and material of the container used in the test are the same; the beef used in the test is all lean meat of the same part, but due to the slight differences in the parameters such as the fat content of different beef, the same method is used for the same weight of beef.
  • the results of the tests performed will vary slightly.
  • the optimal configuration is the same when the container is removed from the cavity capacitor 110 and when the container is provided in the cavity capacitor 110. That is, combined with the determination of the optimal frequency, the weight of the object to be processed 150 or the threshold value of the termination parameter for completing the heating can be determined according to the optimal configuration, and the error caused by the setting of the object holder in the cavity capacitor 110 can be completely ignored. Different trays can be flexibly used to carry the objects to be processed 150 in the .
  • the impedance matching of the electromagnetic wave generating module 120 is realized only by adjusting the impedance of the matching module 130 itself, and the weight of the beef is determined by the optimal configuration of the matching module 130, even if a set of parallel independent circuits is added on the basis of the existing circuit
  • the beef of about 150 grams (g) is determined to be about 300g of beef, and the beef of about 300g is determined to be about 500g of beef. has a large error.
  • the processing unit 141 may be further configured to first narrow the screening interval of the optimal configuration and optimal frequency one or more times, and then perform the narrowed screening The optimal configuration and optimal frequency are determined within the interval to improve the matching efficiency.
  • the processing unit 141 can sequentially adjust the matching module 130 to the preset first configuration and the second configuration, and adjust the frequency of the electromagnetic wave signal in the preset first frequency interval and the second frequency interval respectively, and determine and record the frequency.
  • the optimal configuration is subsequently determined in the second configuration and other configurations with the same trend of impedance value change as the second configuration relative to the first configuration ; If the return loss reflected by the echo parameter corresponding to the first configuration is smaller than the second configuration, then the first configuration and other configurations that are opposite to the impedance value change trend of the second configuration relative to the first configuration are subsequently determined to determine the optimal configuration.
  • the second frequency interval can be divided by the frequency value corresponding to the first configuration, within the first frequency interval, according to a change trend opposite to that of the second configuration relative to the first configuration, so as to further improve the matching efficiency.
  • the bandwidth of the first frequency interval may be 2MHz ⁇ 3MHz, for example, 39.7MHz ⁇ 42.2MHz.
  • the processing unit 141 can adjust the frequency of the electromagnetic wave signal in steps of 15kHz ⁇ 30kHz, for example, 20kHz.
  • the processing unit 141 may determine the optimal configuration and the optimal frequency in other configurations and the newly divided frequency interval according to the similar filtering scope narrowing logic.
  • the echo parameter can be the S11 coefficient, the forward power value, or the reverse power value of the line between the matching module 130 and the electromagnetic wave generating module 120 .
  • the S11 coefficient corresponding to the first configuration is greater than the S11 coefficient corresponding to the second configuration, which means that the return loss of the first configuration is greater than that of the second configuration;
  • the echo parameter is the reverse power value
  • the reverse power value corresponding to the first configuration is smaller than the reverse power value corresponding to the second configuration, which means that the return loss of the first configuration is greater than that of the second configuration.
  • the process of confirming the optimal configuration and optimal frequency may include: adjusting the configuration of the matching module 130 to P3, and performing S11 on all frequency values within 39.7MHz to 42.2MHz in steps of 20kHz. Coefficient test, it is determined that the minimum S11 coefficient is -14.5, and the corresponding frequency is 40.864MHz.
  • the configuration of the adjustment matching module 130 is P2, and the S11 coefficient test is performed on all frequency values within 40.864MHz-42.2MHz with a step of 20kHz, and it is determined that the minimum S11 coefficient is -9.5, and the corresponding frequency is 40.9315MHz. It is judged that the minimum S11 coefficient corresponding to configuration P2 is greater than the minimum S11 coefficient corresponding to configuration P3, so the optimal configuration is determined in configurations P3 to P7.
  • the configuration of the adjustment and matching module 130 is P4, and the S11 coefficient test is performed on all frequency values within 39.7MHz-40.864MHz with a step of 20kHz, and it is determined that the minimum S11 coefficient is -32, and the corresponding frequency is 40.7605MHz. It is judged that the minimum S11 coefficient corresponding to configuration P4 is smaller than the minimum S11 coefficient corresponding to configuration P3, so the optimal configuration is determined in configurations P4 to P7.
  • the configuration of the adjustment and matching module 130 is P5, and the S11 coefficient test is performed on all frequency values within 39.7MHz ⁇ 40.7605MHz with a step of 20kHz, and the minimum S11 coefficient is determined to be -22, and the corresponding frequency is 40.702MHz. It is judged that the minimum S11 coefficient corresponding to configuration P5 is greater than the minimum S11 coefficient corresponding to configuration P4, so the optimal configuration is determined to be P4.
  • the processing unit 141 may be further configured to obtain an S11 coefficient reflecting the return loss, where the S11 coefficient is greater than a preset value
  • the configuration of the matching module 130 and the frequency of the electromagnetic wave signal are re-adjusted (that is, the optimal configuration and the optimal frequency are corrected), so that the S11 coefficient is less than or equal to the preset upper limit threshold, so as to ensure that the object to be treated 150 is effective against electromagnetic waves. Absorption rate.
  • the processing unit 141 may be configured to determine, based on the current configuration of the matching module 130, to determine a return frequency within a frequency range smaller than the previous frequency.
  • the minimum frequency value of the wave parameter if the minimum echo parameter is less than or equal to the preset upper limit threshold, the electromagnetic wave generating module 120 is controlled to generate an electromagnetic wave signal according to the minimum frequency value of the echo parameter; if the minimum echo parameter is still greater than the preset value
  • the configuration of the matching module 130 is adjusted so that the corresponding impedance value is greater than the current configuration and is closest to the current configuration, and based on the configuration, a new echo is determined within a frequency range smaller than the minimum frequency value of the previous echo parameter
  • the frequency value of the parameter is the minimum until the new minimum echo parameter is less than or equal to the preset upper limit threshold, so as to shorten the time for re-matching.
  • the electromagnetic wave generating module 120 can generate an electromagnetic wave signal with a preset initial power to reduce the influence of the electromagnetic wave on the object to be processed 150 during readjustment.
  • Table 3 is to test 500g beef, in the process of readjusting the configuration of the matching module 130 and the frequency of the electromagnetic wave signal, the configuration of the matching module 130, the frequency of the electromagnetic wave signal and the corresponding S11 coefficient at different times recorded.
  • "'" means “minutes”
  • “"” means “seconds”.
  • the upper limit threshold of the S11 coefficient may be -13, and the S11 coefficient is re-acquired every 30′′.
  • the table only records the S11 coefficient and the corresponding time of the first and last acquisitions after each readjustment, and other not shown The S11 coefficients obtained at all times are all less than or equal to the preset upper limit threshold.
  • the process of readjusting the configuration of the matching module 130 and the frequency of the electromagnetic wave signal may include: the initial optimal configuration is P4, the optimal frequency is 40.86 MHz, and the corresponding S11 coefficient is -35.
  • the obtained S11 coefficient is -10.4 and is greater than the preset upper threshold, keep the configuration of the matching module 130 unchanged, adjust the frequency of the electromagnetic wave signal and re-determine the frequency with the smallest return loss within 39.7MHz to 40.86MHz
  • the value is 40.765MHz
  • the corresponding S11 coefficient is -18.6 and less than or equal to the preset upper limit threshold, and the heating is continued at this frequency value. And so on.
  • the obtained S11 coefficient is -11.6 and is greater than the preset upper limit threshold, keep the configuration of the matching module 130 unchanged, adjust the frequency of the electromagnetic wave signal and re-determine the frequency with the smallest return loss within 39.7MHz to 40.615MHz
  • the value is 40.57MHz, and the corresponding S11 coefficient is -12.9 but larger than the preset upper threshold.
  • the configuration of the matching module 130 is adjusted to P5 and P6 in turn, and the frequency value with the smallest return loss is re-determined, and the corresponding S11 coefficient is still greater than the preset upper limit threshold.
  • the configuration of the adjustment matching module 130 is P7, adjust the frequency of the electromagnetic wave signal and re-determine the frequency value with the minimum return loss between 39.7MHz and the frequency value with the minimum return loss corresponding to P6 to 40.395MHz, and the corresponding S11 coefficient is - 30 and less than or equal to the preset upper limit threshold, continue heating at this frequency value.
  • the S11 coefficient is greater than the preset upper limit threshold, keep the configuration of the matching module 130 as P7 unchanged, and adjust the frequency of the electromagnetic wave signal. Until the S11 change rate is less than or equal to the preset S11 change rate threshold.
  • the termination parameter is the rate of change of S11, the rate of change of forward power, or the rate of change of reverse power
  • the configuration of the matching module 130 and the frequency of the electromagnetic wave signal are preferentially corrected to prevent misjudgment.
  • the processing unit 141 can obtain the S11 coefficient again, and if the corresponding parameter still reaches the termination parameter threshold, the electromagnetic wave generating module 120 is controlled to stop generating the electromagnetic wave signal.
  • FIG. 4 is a schematic flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 executed by the controller 140 of any of the above embodiments of the present invention may include the following steps:
  • Step S402 control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal.
  • Step S404 (configuration confirmation step): Adjust the configuration of the matching module 130 and the frequency of the electromagnetic wave signal, and determine the optimal configuration of the matching module 130 and the optimal frequency of the electromagnetic wave signal to achieve the smallest return loss of the electromagnetic wave generating module 120 .
  • the power of the electromagnetic wave signal may be a preset initial power.
  • Step S406 adjust the matching module 130 to the optimal configuration, and control the electromagnetic wave generating module 120 to generate electromagnetic wave signals according to the optimal frequency.
  • the power of the electromagnetic wave signal may be a preset heating power.
  • the preset initial power may be smaller than the preset heating power, so as to reduce the influence of electromagnetic waves on the object to be processed 150 during impedance matching.
  • the control method of the present invention reduces the return loss of the electromagnetic wave generating module 120 by adjusting the configuration of the matching module 130 and the frequency of the electromagnetic wave signal at the same time, and the matching module 130 that only includes fewer electrical components can adjust the food with a larger weight range
  • the resulting impedance change can be achieved, and fine impedance adjustment can be realized, the control logic is simple, and the production cost and maintenance cost of the heating device 100 are reduced.
  • control method of the present invention may further include the following steps:
  • the electromagnetic wave generating module 120 is controlled to stop generating electromagnetic wave signals, so as to avoid wasting energy due to the poor ability of the object to be treated 150 to absorb electromagnetic waves.
  • control method of the present invention may further include the following steps:
  • Parameter determination step determine the termination parameter threshold for completing the heating.
  • the termination parameter may be the total heating time, the rate of change of S11, the rate of change of forward power, or the rate of change of reverse power.
  • the heating termination step when the corresponding parameter reaches the termination parameter threshold, the electromagnetic wave generating module 120 is controlled to stop generating electromagnetic wave signals, and the heating of the object to be processed 150 is ended, so as to improve the user's convenience of operation, save costs, and reduce errors, so that the object to be processed is reduced. 150 ends in the state desired by the user.
  • step S404 (configuration confirmation step) may further include the following steps:
  • the optimal configuration is determined in the first configuration and other configurations whose impedance value change trend is opposite to that of the second configuration relative to the first configuration.
  • the invention narrows the screening interval of the optimal configuration and the optimal frequency one or more times, and then determines the optimal configuration and the optimal frequency in the narrowed screening interval, so as to improve the matching efficiency, thereby shortening the time required to complete the heating.
  • the total time is reduced, the energy consumption is reduced, and the influence of the electromagnetic wave in the impedance matching stage on the ingredients is reduced, the quality of the heated food is guaranteed, and the user experience is improved.
  • the second frequency interval can be divided by the frequency value corresponding to the first configuration, within the first frequency interval, according to a change trend opposite to that of the second configuration relative to the first configuration, so as to further improve the matching efficiency.
  • the echo parameter can be the S11 coefficient, the forward power value, or the reverse power value of the line between the matching module 130 and the electromagnetic wave generating module 120 .
  • control method of the present invention may further include the following steps:
  • the echo inspection step obtain the echo parameters reflecting the return loss, and the echo parameters are the S11 coefficients;
  • Matching correction step when the echo parameter is greater than the preset upper threshold, re-adjust the configuration of the matching module 130 and the frequency of the electromagnetic wave signal, so that the S11 coefficient is less than or equal to the preset upper threshold, to ensure the object to be processed 150 The absorption of electromagnetic waves Rate.
  • the minimum frequency value of the echo parameter may be determined within a frequency range smaller than the previous frequency, if the minimum echo parameter is less than or equal to the upper limit threshold, the electromagnetic wave generating module 120 is controlled to generate an electromagnetic wave signal according to the minimum frequency value of the echo parameter; if the minimum echo parameter is greater than the upper threshold, the configuration of the matching module 130 is adjusted so that the corresponding impedance value is greater than the current configuration and is closest to the current configuration , and based on the configuration, determine the minimum frequency value of the new echo parameter within the frequency range that is smaller than the minimum frequency value of the previous echo parameter, until the new minimum echo parameter is less than or equal to the upper limit threshold, in order to shorten the frequency value for the new echo parameter. matching time.
  • the matching correction step is performed first to prevent misjudgment. After the correction is completed, the S11 coefficient is re-acquired to determine whether the heating termination condition is satisfied.
  • control method of the present invention will be described in detail below by taking the preset impedance value of the first configuration greater than the impedance value of the second configuration as an example.
  • control method for the heating device 100 may include the following detailed steps:
  • Step S502 Obtain a heating instruction.
  • Step S504 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S506 Adjust the matching module 130 to the preset first configuration and the second configuration in turn, and adjust the frequency of the electromagnetic wave signal in the first frequency interval and the second frequency interval respectively, and determine and record based on the first configuration and the second frequency interval respectively.
  • the frequency value of the electromagnetic wave signal (respectively denoted as the first frequency value and the second frequency value) and the corresponding S11 coefficient (respectively denoted as the first S11 coefficient and the second S11 coefficient) ).
  • the second frequency interval may be a portion of the first frequency interval greater than the first frequency value.
  • Step S508 Determine whether the first S11 coefficient is greater than the second S11 coefficient. If yes, go to step S510; if not, go to step S512.
  • Step S510 Determine the optimal configuration of the matching module 130 in other configurations whose impedance value is smaller than the second configuration, and determine the optimal frequency in the part of the first frequency interval that is greater than the second frequency value.
  • Step S512 Determine the optimal configuration of the matching module 130 in other configurations whose impedance value is greater than the first configuration, and determine the optimal frequency in the part of the first frequency interval that is smaller than the first frequency value.
  • Step S514 Determine whether the optimal frequency is less than a preset frequency threshold. If yes, go to step S526; if not, go to step S516.
  • Step S516 Adjust the configuration of the matching module 130 to the determined optimal configuration, and control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset heating power according to the determined optimal frequency to start the formal heating of the object to be processed 150. And the total heating time required to heat the object to be treated 150 is determined according to the optimal configuration.
  • Step S518 Determine whether the current heating time is greater than or equal to the determined total heating time. If yes, go to step S526; if not, go to step S520.
  • Step S520 Obtain the S11 coefficient that currently reflects the return loss of the electromagnetic wave generating module 120. Steps S518 and S522 are performed.
  • Step S522 Determine whether the current S11 coefficient is less than a preset lower limit threshold. If yes, go back to step S520; if no, go to step S524.
  • Step S524 Based on the current configuration of the matching module 130, determine the minimum frequency value of the echo parameter within the frequency range less than the previous frequency, if the minimum echo parameter is less than or equal to the preset upper limit threshold, then control the electromagnetic wave generation module 120 according to The minimum frequency value of the echo parameter generates an electromagnetic wave signal; if the minimum echo parameter is still greater than the preset upper limit threshold, the configuration of the matching module 130 is adjusted so that the corresponding impedance value is greater than the current configuration and closest to the current configuration, and based on the The configuration determines the minimum frequency value of the new echo parameter within the frequency range smaller than the minimum frequency value of the previous echo parameter.
  • Step S526 Control the electromagnetic wave generating module 120 to stop working, that is, stop generating the electromagnetic wave signal, and end the heating of the object to be processed 150 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

一种用于加热装置的控制方法及加热装置。加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和用于减少电磁波发生模块的回波损耗的匹配模块,控制方法包括:加热启动步骤:控制电磁波发生模块产生电磁波信号;配置确认步骤:调节匹配模块的配置和电磁波信号的频率,并确定实现电磁波发生模块的回波损耗最小的匹配模块的最优配置和电磁波信号的最优频率;阻抗匹配步骤:调节匹配模块为最优配置,并控制电磁波发生模块按照最优频率产生电磁波信号。本发明采用仅包括较少电器件的匹配模块便可调节较大重量范围食材引起的阻抗变化,并实现精细地阻抗调节,控制逻辑简单,降低了加热装置的生产成本和维护成本。

Description

用于加热装置的控制方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的控制方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低,其中,需要通过保证电磁波发生模块的阻抗匹配度来保证电磁波对食物的加热效率。但是,现有技术一般仅通过调节阻抗匹配模块本身的阻抗来实现电磁波发生模块的阻抗匹配,若要使匹配模块可调节较大重量范围食材引起的阻抗变化,匹配模块的电路需要包括较多的电器件,相应的,电路的连接结构和控制逻辑也较为复杂,提高了加热装置的生产成本和维护成本。
综合考虑,在设计上需要提供一种结构简单、控制逻辑简单并可较大范围调节阻抗的用于电磁波加热装置的控制方法及加热装置。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于电磁波加热装置的控制方法。
本发明第一方面的一个进一步的目的是要简化匹配模块的结构、简化控制逻辑。
本发明第一方面的另一个进一步的目的是要提高判断加热是否完成的准确性。
本发明第二方面的一个目的是要提供一种电磁波加热装置。
根据本发明的第一方面,提供了一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和用于减少所述电磁波发生模块的回波损耗的匹配模块,其中,所述控制方法包括:
加热启动步骤:控制所述电磁波发生模块产生电磁波信号;
配置确认步骤:调节所述匹配模块的配置和所述电磁波信号的频率,并确定实现所述电磁波发生模块的回波损耗最小的所述匹配模块的最优配置和所述电磁波信号的最优频率;
阻抗匹配步骤:调节所述匹配模块为所述最优配置,并控制所述电磁波发生模块按照所述最优频率产生电磁波信号。
可选地,所述控制方法还包括:
参数确定步骤:根据所述最优配置确定完成加热的终止参数阈值;
加热终止步骤:在对应参数达到所述终止参数阈值时,控制所述电磁波发生模块停止产生电磁波信号。
可选地,所述终止参数为加热总时间、S11变化速率、正向功率的变化速率、或反向功率的变化速率。
可选地,所述配置确认步骤包括:
依次调节所述匹配模块为预设的第一配置和第二配置,并分别在预设的第一频率区间和第二频率区间内调节所述电磁波信号的频率,确定并记录所述第一配置和所述第二配置对应的实现回波损耗最小的频率值、及反映回波损耗的回波参数;
比较所述第一配置和所述第二配置对应的回波参数;
若所述第一配置对应的回波参数反映的回波损耗大于所述第二配置,在所述第二配置、以及与所述第二配置相对于所述第一配置的阻抗值变化趋势相同的其他配置中确定出所述最优配置;
若所述第一配置对应的回波参数反映的回波损耗小于所述第二配置,在所述第一配置、以及与所述第二配置相对于所述第一配置的阻抗值变化趋势相反的其他配置中确定出所述最优配置。
可选地,所述第二频率区间由所述第一配置对应的频率值、在所述第一频率区间内、按照与所述第二配置相对于所述第一配置相反的变化趋势划分出。
可选地,在所述阻抗匹配步骤之后,所述控制方法还包括:
回波检验步骤:获取反映回波损耗的回波参数,所述回波参数为S11系数;
匹配修正步骤:在所述回波参数大于预设的上限阈值时,重新调节所述匹配模块的配置和所述电磁波信号的频率。
可选地,在所述匹配修正步骤中,基于所述匹配模块的当前配置在小于前一频率的频率范围内确定出回波参数最小的频率值,若该最小回波参数小于等于所述上限阈值,控制所述电磁波发生模块按照该回波参数最小的频率值产生电磁波信号;若该最小回波参数大于所述上限阈值,调节所述匹配模块的配置为对应的阻抗值大于当前配置且最接近该当前配置,并基于该配置在小于前一回波参数最小的频率值的频率范围内确定出新的回波参数最小的频率值,直至该新的最小回波参数小于等于所述上限阈值。
可选地,所述控制方法还包括:
参数确定步骤:根据所述最优配置确定完成加热的终止参数阈值;
加热终止步骤:在对应参数达到所述终止参数阈值时,控制所述电磁波发生模块停止产生电磁波信号;其中
所述终止参数为S11变化速率、正向功率的变化速率、或反向功率的变化速率;且
在对应参数达到所述终止参数阈值且所述回波参数大于所述上限阈值时,执行所述匹配修正步骤。
可选地,若所述最优频率小于预设的频率阈值,控制所述电磁波发生模块停止产生电磁波信号。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体电容,用于放置待处理物;
电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
匹配模块,串联在所述电磁波发生模块与所述腔体电容之间,并包括并联的多个匹配支路,用于减少所述电磁波发生模块的回波损耗;以及
控制器,配置为用于执行以上任一所述的控制方法;其中
所述电磁波发生模块设置有压控振荡器,用于调节所述电磁波信号的频率。
本发明通过同时对匹配模块的配置和电磁波信号的频率进行调节,减少电磁波发生模块的回波损耗,采用仅包括较少电器件的匹配模块便可调节较大重量范围食材引起的阻抗变化,并实现精细地阻抗调节,控制逻辑简单,降低了加热装置的生产成本和维护成本。
进一步地,本发明通过特别的匹配模块配置和电磁波信号频率的调节逻 辑确认或修正最优配置和最优频率,可极大地缩短阻抗匹配消耗的时间,进而缩短了完成加热的总时间,降低了能耗,并降低了阻抗匹配阶段的电磁波对食材的影响,保证了完成加热的食物的品质,提高了用户体验。
进一步地,本发明通过初次匹配确定的匹配模块的最优配置确定完成加热的终止参数阈值,不仅提高了用户的操作便利性、节约了成本,还意想不到地减小甚至消除了待处理物承物皿的影响,降低了终止参数阈值的误差,无需用户手动输入、无需增加额外的测量装置便可获得使待处理物结束在用户期望状态的终止参数阈值。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的电磁波加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是图1中匹配模块的示意性电路图;
图4是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图5是根据本发明一个实施例的用于加热装置的控制方法的示意性详细流程图。
具体实施方式
图1是根据本发明一个实施例的电磁波加热装置100的示意性结构图。参见图1,加热装置100可包括腔体电容110、电磁波发生模块120、匹配模块130和控制器140。
具体地,腔体电容110可包括用于放置待处理物150的腔体和设置于腔体内的辐射极板。在一些实施例中,腔体内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体可由金属制成,以作为接收极板与辐射极板组成电容器。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐 射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110内的待处理物150。
在一些实施例中,电磁波发生模块120可包括压控振荡器121和功率放大器,以调节电磁波发生信号的频率和功率。
匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以减少电磁波发生模块120的回波损耗,实现负载匹配,提高加热效率。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
特别地,处理单元141可配置为控制电磁波发生模块120产生电磁波信号,调节匹配模块130的配置和电磁波信号的频率,并确定实现电磁波发生模块120的回波损耗最小的匹配模块130的最优配置和电磁波信号的最优频率,再调节匹配模块130为最优配置、控制电磁波发生模块120按照最优频率产生电磁波信号。
在确认最优配置和最优频率的过程中,电磁波发生模块120可产生预设初始功率的电磁波信号;在调节匹配模块130为最优配置和电磁波信号为最优频率后,电磁波发生模块120可产生预设加热功率的电磁波信号,对待处理物150开始正式的加热。其中,预设初始功率可小于预设加热功率,以降低阻抗匹配时电磁波对待处理物150的影响。
本发明的加热装置100通过同时对匹配模块130的配置和电磁波信号的频率进行调节,减少电磁波发生模块120的回波损耗,采用仅包括较少电器件的匹配模块130便可调节较大重量范围食材引起的阻抗变化,并实现精细地阻抗调节,控制逻辑简单,降低了加热装置100的生产成本和维护成本。
在一些实施例中,处理单元141可进一步配置为在最优频率小于预设的频率阈值的情况下,控制电磁波发生模块120停止产生电磁波信号,以避免因待处理物150对电磁波的吸收能力较差而浪费能源。
在一些实施例中,处理单元141可进一步配置为根据确定出的匹配模块130的最优配置确定完成加热的终止参数阈值,并在对应参数达到终止参数阈值时,控制电磁波发生模块120停止产生电磁波信号,结束对待处理物150 的加热,以提高用户的操作便利性、节约成本,并降低误差,使待处理物150结束在用户期望的状态。
终止参数可为加热总时间、S11变化速率、正向功率的变化速率、或反向功率的变化速率。
例如,终止参数为加热总时间,当前的加热时间大于等于加热总时间,意味着对应参数达到终止参数阈值;终止参数为S11变化速率、或正向功率的变化速率,当前的S11变化速率小于等于预设的S11变化速率阈值、或当前的正向功率的变化速率小于等于预设的正向变化速率阈值,意味着对应参数达到终止参数阈值;终止参数为反向功率的变化速率,当前的反向功率的变化速率大于等于预设的反向变化速率阈值,意味着对应参数达到终止参数阈值。
加热装置100还可包括串联在匹配模块130与电磁波发生模块120之间的正向耦合器和/或反向耦合器,用于实时监测电磁波发生模块120输出的正向功率信号和/或返回电磁波发生模块120的反向功率信号,进而计算出S11系数、S11变化速率、正向功率的变化速率、或反向功率的变化阈值。
图3是图1中匹配模块130的示意性电路图(图中,“IN”表示与电磁波发生模块120连接的一端;“OUT”表示与腔体电容110连接的一端)。参见图3,匹配模块130可串联在电磁波发生模块120与腔体电容110之间,并包括并联的多个匹配支路。
在图示实施例中,多个匹配支路分别包括电容C 1、C 2、…、C n和C n+1,其中电容C 1、C 2、…、C n分别由开关K 1、K 2、…、K n独立控制。电容C 1、C 2、…、C n的电容值可不相等,以提高匹配模块130的调节范围。
在一些示例性的实施例中,多个匹配支路共包括3个由开关独立控制的匹配支路(即n=3),且每个匹配支路的电容的电容值均不相等,故匹配模块130根据3个开关不同的开闭状态可形成8种配置,按照阻抗值由大至小将该8种配置依次编号为P0~P7。
表1和表2为以20kHz的步进在39.7MHz~42.2MHz内针对不同重量的牛肉在相同的测试条件下进行测试,测得的每一配置对应的回波损耗最小的频率值和S11系数。表格中的重量均仅为牛肉的重量;标注“去除承物皿”意味着测试时腔体电容110内不含承物皿(例如托盘、抽屉);未标注“去除承物皿”意味着测试时腔体电容110内设置有承物皿来承载待测牛肉。其 中,测试使用的承物皿中重量、材质均相同;测试使用的牛肉均为相同部位的瘦肉,但由于不同牛肉的脂肪含量等参数存在细微差别,故对相同重量的牛肉以相同的方法进行测试的测试结果会略有不同。
表1
Figure PCTCN2022073777-appb-000001
表2
Figure PCTCN2022073777-appb-000002
从表1的测试结果可以看出,不同重量的牛肉对应的回波损耗最小的匹配模块130的配置均不相同。也即是,结合最优频率的确定,根据最优配置可准确地确定出待处理物150的重量,进而可准确地确定出完成加热的终止参数阈值,使待处理物150结束在用户期望的状态。
从表2的测试结果可以看出,相同重量的牛肉在腔体电容110内去除承物皿的情况下和腔体电容110内设置有承物皿的情况下,确定出的最优配置相同。也即是,结合最优频率的确定,根据最优配置确定待处理物150的重量或完成加热的终止参数阈值可完全忽略腔体电容110内设置承物皿引起的误差,使得用户在使用过程中可灵活地采用不同的承物皿来承载待处理物150。
而若仅通过调节匹配模块130本身的阻抗来实现电磁波发生模块120的阻抗匹配,并通过匹配模块130的最优配置确定牛肉的重量,即使在现有电 路的基础上再增加一组并联的独立可控的接地电容,在腔体电容110内设置有承物皿的情况下,会将150克(g)左右的牛肉确定为300g左右的牛肉,将300g左右的牛肉确定为500g左右的牛肉,具有较大的误差。
在一些实施例中,在确认最优配置和最优频率的过程中,处理单元141可进一步配置为先一次或多次地缩小最优配置和最优频率的筛选区间,再在缩小后的筛选区间内确定出最优配置和最优频率,以提高匹配效率。
具体地,处理单元141可通过依次调节匹配模块130为预设的第一配置和第二配置,并分别在预设的第一频率区间和第二频率区间内调节电磁波信号的频率,确定并记录第一配置和第二配置对应的实现回波损耗最小的频率值、及反映回波损耗的回波参数,比较第一配置和第二配置对应的回波参数,实现对最优配置和最优频率的筛选区间的一次缩小。
若第一配置对应的回波参数反映的回波损耗大于第二配置,后续在第二配置、以及与第二配置相对于第一配置的阻抗值变化趋势相同的其他配置中确定出最优配置;若第一配置对应的回波参数反映的回波损耗小于第二配置,后续在第一配置、以及与第二配置相对于第一配置的阻抗值变化趋势相反的其他配置中确定出最优配置。
第二频率区间可由第一配置对应的频率值、在第一频率区间内、按照与第二配置相对于第一配置相反的变化趋势划分出,以进一步提高匹配效率。第一频率区间的带宽可为2MHz~3MHz,例如39.7MHz~42.2MHz。处理单元141可按照15kHz~30kHz的步进调节电磁波信号的频率,例如20kHz。
相似地,处理单元141可根据相似的筛选范围缩小逻辑在其他配置和新划分的频率区间内确定出最优配置和最优频率。
回波参数可为匹配模块130与电磁波发生模块120之间线路的S11系数、正向功率值、或反向功率值。
例如,当回波参数为S11系数时,第一配置对应的S11系数大于第二配置对应的S11系数,意味着第一配置的回波损耗大于第二配置;当回波参数为反向功率值时,第一配置对应的反向功率值小于第二配置对应的反向功率值,意味着第一配置的回波损耗大于第二配置。
以表1中450g的牛肉为例,确认最优配置和最优频率的过程可包括:调节匹配模块130的配置为P3,以20kHz的步进在39.7MHz~42.2MHz内对所有频率值进行S11系数测试,确定出S11系数最小为-14.5、对应频率为 40.864MHz。调节匹配模块130的配置为P2,以20kHz的步进在40.864MHz~42.2MHz内对所有频率值进行S11系数测试,确定出S11系数最小为-9.5、对应频率为40.9315MHz。判断配置P2对应的最小S11系数大于配置P3对应的最小S11系数,故最优配置在配置P3~P7中确定。
调节匹配模块130的配置为P4,以20kHz的步进在39.7MHz~40.864MHz内对所有频率值进行S11系数测试,确定出S11系数最小为-32、对应频率为40.7605MHz。判断配置P4对应的最小S11系数小于配置P3对应的最小S11系数,故最优配置在配置P4~P7中确定。
调节匹配模块130的配置为P5,以20kHz的步进在39.7MHz~40.7605MHz内对所有频率值进行S11系数测试,确定出S11系数最小为-22、对应频率为40.702MHz。判断配置P5对应的最小S11系数大于配置P4对应的最小S11系数,故确定最优配置为P4。
在一些实施例中,在首次完成阻抗匹配后(即在首次确定最优配置和最优频率后),处理单元141可进一步配置为获取反映回波损耗的S11系数,在S11系数大于预设的上限阈值时,重新调节匹配模块130的配置和电磁波信号的频率(即对最优配置和最优频率进行修正),以使S11系数小于等于预设的上限阈值,保证待处理物150对电磁波的吸收率。
在一些进一步的实施例中,在重新调节匹配模块130的配置和电磁波信号的频率的过程中,处理单元141可配置为基于匹配模块130的当前配置在小于前一频率的频率范围内确定出回波参数最小的频率值,若该最小回波参数小于等于预设的上限阈值,则控制电磁波发生模块120按照该回波参数最小的频率值产生电磁波信号;若该最小回波参数仍然大于预设的上限阈值,调节匹配模块130的配置为对应的阻抗值大于当前配置且最接近该当前配置,并基于该配置在小于前一回波参数最小的频率值的频率范围内确定出新的回波参数最小的频率值,直至该新的最小回波参数小于等于预设的上限阈值,以缩短用于重新匹配的时间。
在重新调节匹配模块130的配置和电磁波信号的频率的过程中,电磁波发生模块120可产生预设初始功率的电磁波信号,以降低重新调节时电磁波对待处理物150的影响。
表3为对500g牛肉进行测试,在重新调节匹配模块130的配置和电磁波信号的频率的过程中,记录的不同时间下匹配模块130的配置、电磁波信 号的频率以及相应的S11系数。其中“′”意味着“分”;“″”意味着“秒”。
表3
Figure PCTCN2022073777-appb-000003
在表3实施例中,S11系数的上限阈值可为-13,每30″重新获取S11系数。表格仅记录每次重新调节后首次获取和末次获取的S11系数和对应时刻,未示出的其他时刻获取的S11系数均小于等于预设的上限阈值。
重新调节匹配模块130的配置和电磁波信号的频率的过程可包括:初始最优配置为P4、最优频率为40.86MHz,对应的S11系数为-35。
至1′时,获取的S11系数为-10.4且大于预设的上限阈值,保持匹配模块130的配置不变,调节电磁波信号的频率并在39.7MHz~40.86MHz内重新确定回波损耗最小的频率值为40.765MHz,对应的S11系数为-18.6且小于等于预设的上限阈值,以该频率值继续加热。以此类推。
至3′时,获取的S11系数为-11.6且大于预设的上限阈值,保持匹配模块130的配置不变,调节电磁波信号的频率并在39.7MHz~40.615MHz内重新确定回波损耗最小的频率值为40.57MHz,对应的S11系数为-12.9但大于预设的上限阈值。依次调节匹配模块130的配置为P5和P6,重新确定回波损耗最小的频率值,对应的S11系数仍大于预设的上限阈值。
调节匹配模块130的配置为P7,调节电磁波信号的频率并在39.7MHz与P6对应的回波损耗最小的频率值之间重新确定回波损耗最小的频率值为40.395MHz,对应的S11系数为-30且小于等于预设的上限阈值,以该频率值继续加热。
后续若S11系数大于预设的上限阈值,保持匹配模块130的配置为P7不变,对电磁波信号的频率进行调节。直至S11变化速率小于等于预设的S11变化速率阈值。
在终止参数为S11变化速率、正向功率的变化速率、或反向功率的变化速率的情况下,在对应参数达到终止参数阈值且回波参数大于上限阈值时(即同时满足加热终止条件和重新阻抗匹配条件),优先对匹配模块130的配置和电磁波信号的频率进行修正,以防止误判。完成修正后,处理单元141可重新获取S11系数,若对应参数仍然达到终止参数阈值,控制电磁波发生模块120停止产生电磁波信号。
图4是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图。参见图4,本发明的由上述任一实施例的控制器140执行的用于加热装置100的控制方法可包括如下步骤:
步骤S402(加热启动步骤):控制电磁波发生模块120产生电磁波信号。
步骤S404(配置确认步骤):调节匹配模块130的配置和电磁波信号的频率,并确定实现电磁波发生模块120的回波损耗最小的匹配模块130的最优配置和电磁波信号的最优频率。在该步骤中,电磁波信号的功率可为预设初始功率。
步骤S406(阻抗匹配步骤):调节匹配模块130为最优配置,并控制电磁波发生模块120按照最优频率产生电磁波信号。在该步骤中,电磁波信号的功率可为预设加热功率。其中,预设初始功率可小于预设加热功率,以降低阻抗匹配时电磁波对待处理物150的影响。
本发明的控制方法通过同时对匹配模块130的配置和电磁波信号的频率进行调节,减少电磁波发生模块120的回波损耗,采用仅包括较少电器件的匹配模块130便可调节较大重量范围食材引起的阻抗变化,并实现精细地阻抗调节,控制逻辑简单,降低了加热装置100的生产成本和维护成本。
在一些实施例中,在步骤S406之前,本发明的控制方法还可包括如下步骤:
若最优频率小于预设的频率阈值,控制电磁波发生模块120停止产生电磁波信号,以避免因待处理物150对电磁波的吸收能力较差而浪费能源。
在一些实施例中,在步骤S404之后,本发明的控制方法还可包括如下 步骤:
参数确定步骤:根据最优配置确定完成加热的终止参数阈值。其中,终止参数可为加热总时间、S11变化速率、正向功率的变化速率、或反向功率的变化速率。
加热终止步骤:在对应参数达到终止参数阈值时,控制电磁波发生模块120停止产生电磁波信号,结束对待处理物150的加热,以提高用户的操作便利性、节约成本,并降低误差,使待处理物150结束在用户期望的状态。
在一些实施例中,步骤S404(配置确认步骤)可进一步包括如下步骤:
依次调节匹配模块130为预设的第一配置和第二配置,并分别在预设的第一频率区间和第二频率区间内调节电磁波信号的频率,确定并记录第一配置和第二配置对应的实现回波损耗最小的频率值、及反映回波损耗的回波参数;
比较第一配置和第二配置对应的回波参数;
若第一配置对应的回波参数反映的回波损耗大于第二配置,在第二配置、以及与第二配置相对于第一配置的阻抗值变化趋势相同的其他配置中确定出最优配置;
若第一配置对应的回波参数反映的回波损耗小于第二配置,在第一配置、以及与第二配置相对于第一配置的阻抗值变化趋势相反的其他配置中确定出最优配置。
本发明通过先一次或多次地缩小最优配置和最优频率的筛选区间,再在缩小后的筛选区间内确定出最优配置和最优频率,以提高匹配效率,进而缩短了完成加热的总时间,降低了能耗,并降低了阻抗匹配阶段的电磁波对食材的影响,保证了完成加热的食物的品质,提高了用户体验。
第二频率区间可由第一配置对应的频率值、在第一频率区间内、按照与第二配置相对于第一配置相反的变化趋势划分出,以进一步提高匹配效率。
回波参数可为匹配模块130与电磁波发生模块120之间线路的S11系数、正向功率值、或反向功率值。
在一些实施例中,在步骤S406(阻抗匹配步骤)之后,本发明的控制方法还可包括如下步骤:
回波检验步骤:获取反映回波损耗的回波参数,回波参数为S11系数;
匹配修正步骤:在回波参数大于预设的上限阈值时,重新调节匹配模块 130的配置和电磁波信号的频率,以使S11系数小于等于预设的上限阈值,保证待处理物150对电磁波的吸收率。
在一些进一步的实施例中,在匹配修正步骤中,可基于匹配模块130的当前配置在小于前一频率的频率范围内确定出回波参数最小的频率值,若该最小回波参数小于等于上限阈值,控制电磁波发生模块120按照该回波参数最小的频率值产生电磁波信号;若该最小回波参数大于上限阈值,调节匹配模块130的配置为对应的阻抗值大于当前配置且最接近该当前配置,并基于该配置在小于前一回波参数最小的频率值的频率范围内确定出新的回波参数最小的频率值,直至该新的最小回波参数小于等于上限阈值,以缩短用于重新匹配的时间。
在一些终止参数为S11变化速率、正向功率的变化速率、或反向功率的变化阈值的实施例中,在对应参数达到终止参数阈值且回波参数大于上限阈值时(即同时满足加热终止条件和重新阻抗匹配条件),优先执行匹配修正步骤,以防止误判。完成修正后,在重新获取S11系数对是否满足加热终止条件进行判断。
下面以预设的第一配置的阻抗值大于第二配置的阻抗值为例,对本发明的控制方法作详细介绍。
图5是根据本发明一个实施例的用于加热装置100的控制方法的示意性详细流程图(图中,“Y”表示“是”;“N”表示“否”)。参见图5,本发明的用于加热装置100的控制方法可包括如下详细步骤:
步骤S502:获取加热指令。
步骤S504:控制电磁波发生模块120产生预设初始功率的电磁波信号。
步骤S506:依次调节匹配模块130为预设的第一配置和第二配置,并分别在第一频率区间和第二频率区间内调节电磁波信号的频率,确定并记录分别基于第一配置和第二配置实现电磁波发生模块120的回波损耗最小的电磁波信号的频率值(分别记作第一频率值和第二频率值)、以及相应的S11系数(分别记作第一S11系数和第二S11系数)。在该步骤中,第二频率区间可为第一频率区间的大于第一频率值的部分。
步骤S508:判断第一S11系数是否大于第二S11系数。若是,执行步骤S510;若否,执行步骤S512。
步骤S510:在阻抗值小于第二配置的其他配置中确定出匹配模块130 的最优配置,在第一频率区间的大于第二频率值的部分中确定出最优频率。
步骤S512:在阻抗值大于第一配置的其他配置中确定出匹配模块130的最优配置,在第一频率区间的小于第一频率值的部分中确定出最优频率。
步骤S514:判断最优频率是否小于预设的频率阈值。若是,执行步骤S526;若否,执行步骤S516。
步骤S516:调节匹配模块130的配置为确定出的最优配置,控制电磁波发生模块120按照确定出的最优频率产生预设加热功率的电磁波信号,以开始对待处理物150正式的加热。并根据最优配置确定加热待处理物150所需要的加热总时间。
步骤S518:判断当前加热时间是否大于等于确定出的加热总时间。若是,执行步骤S526;若否,执行步骤S520。
步骤S520:获取当前反映电磁波发生模块120的回波损耗的S11系数。执行步骤S518和步骤S522。
步骤S522:判断当前S11系数是否小于预设的下限阈值。若是,返回步骤S520;若否,执行步骤S524。
步骤S524:基于匹配模块130的当前配置在小于前一频率的频率范围内确定出回波参数最小的频率值,若该最小回波参数小于等于预设的上限阈值,则控制电磁波发生模块120按照该回波参数最小的频率值产生电磁波信号;若该最小回波参数仍然大于预设的上限阈值,调节匹配模块130的配置为对应的阻抗值大于当前配置且最接近该当前配置,并基于该配置在小于前一回波参数最小的频率值的频率范围内确定出新的回波参数最小的频率值。
步骤S526:控制电磁波发生模块120停止工作,即停止产生电磁波信号,结束对待处理物150的加热。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和用于减少所述电磁波发生模块的回波损耗的匹配模块,其中,所述控制方法包括:
    加热启动步骤:控制所述电磁波发生模块产生电磁波信号;
    配置确认步骤:调节所述匹配模块的配置和所述电磁波信号的频率,并确定实现所述电磁波发生模块的回波损耗最小的所述匹配模块的最优配置和所述电磁波信号的最优频率;
    阻抗匹配步骤:调节所述匹配模块为所述最优配置,并控制所述电磁波发生模块按照所述最优频率产生电磁波信号。
  2. 根据权利要求1所述的控制方法,还包括:
    参数确定步骤:根据所述最优配置确定完成加热的终止参数阈值;
    加热终止步骤:在对应参数达到所述终止参数阈值时,控制所述电磁波发生模块停止产生电磁波信号。
  3. 根据权利要求2所述的控制方法,其中,
    所述终止参数为加热总时间、S11变化速率、正向功率的变化速率、或反向功率的变化速率。
  4. 根据权利要求1所述的控制方法,其中,所述配置确认步骤包括:
    依次调节所述匹配模块为预设的第一配置和第二配置,并分别在预设的第一频率区间和第二频率区间内调节所述电磁波信号的频率,确定并记录所述第一配置和所述第二配置对应的实现回波损耗最小的频率值、及反映回波损耗的回波参数;
    比较所述第一配置和所述第二配置对应的回波参数;
    若所述第一配置对应的回波参数反映的回波损耗大于所述第二配置,在所述第二配置、以及与所述第二配置相对于所述第一配置的阻抗值变化趋势相同的其他配置中确定出所述最优配置;
    若所述第一配置对应的回波参数反映的回波损耗小于所述第二配置,在所述第一配置、以及与所述第二配置相对于所述第一配置的阻抗值变化趋势 相反的其他配置中确定出所述最优配置。
  5. 根据权利要求4所述的控制方法,其中,
    所述第二频率区间由所述第一配置对应的频率值、在所述第一频率区间内、按照与所述第二配置相对于所述第一配置相反的变化趋势划分出。
  6. 根据权利要求1所述的控制方法,其中,在所述阻抗匹配步骤之后,所述控制方法还包括:
    回波检验步骤:获取反映回波损耗的回波参数,所述回波参数为S11系数;
    匹配修正步骤:在所述回波参数大于预设的上限阈值时,重新调节所述匹配模块的配置和所述电磁波信号的频率。
  7. 根据权利要求6所述的控制方法,其中,
    在所述匹配修正步骤中,基于所述匹配模块的当前配置在小于前一频率的频率范围内确定出回波参数最小的频率值,若该最小回波参数小于等于所述上限阈值,控制所述电磁波发生模块按照该回波参数最小的频率值产生电磁波信号;若该最小回波参数大于所述上限阈值,调节所述匹配模块的配置为对应的阻抗值大于当前配置且最接近该当前配置,并基于该配置在小于前一回波参数最小的频率值的频率范围内确定出新的回波参数最小的频率值,直至该新的最小回波参数小于等于所述上限阈值。
  8. 根据权利要求6所述的控制方法,还包括:
    参数确定步骤:根据所述最优配置确定完成加热的终止参数阈值;
    加热终止步骤:在对应参数达到所述终止参数阈值时,控制所述电磁波发生模块停止产生电磁波信号;其中
    所述终止参数为S11变化速率、正向功率的变化速率、或反向功率的变化速率;且
    在对应参数达到所述终止参数阈值且所述回波参数大于所述上限阈值时,执行所述匹配修正步骤。
  9. 根据权利要求1所述的控制方法,其中,
    若所述最优频率小于预设的频率阈值,控制所述电磁波发生模块停止产生电磁波信号。
  10. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
    匹配模块,串联在所述电磁波发生模块与所述腔体电容之间,并包括并联的多个匹配支路,用于减少所述电磁波发生模块的回波损耗;以及
    控制器,配置为用于执行权利要求1-9中任一所述的控制方法;其中
    所述电磁波发生模块设置有压控振荡器,用于调节所述电磁波信号的频率。
PCT/CN2022/073777 2021-04-02 2022-01-25 用于加热装置的控制方法及加热装置 WO2022206152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110361543.6A CN115175392A (zh) 2021-04-02 2021-04-02 用于加热装置的控制方法及加热装置
CN202110361543.6 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022206152A1 true WO2022206152A1 (zh) 2022-10-06

Family

ID=83455561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073777 WO2022206152A1 (zh) 2021-04-02 2022-01-25 用于加热装置的控制方法及加热装置

Country Status (2)

Country Link
CN (1) CN115175392A (zh)
WO (1) WO2022206152A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651946A (zh) * 2018-06-29 2020-01-07 夏普株式会社 解冻装置以及解冻方法
CN111436481A (zh) * 2020-05-09 2020-07-24 上海点为智能科技有限责任公司 射频脉冲解冻加热设备及其闭环控制方法
CN212211438U (zh) * 2019-12-13 2020-12-22 海尔智家股份有限公司 加热装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651946A (zh) * 2018-06-29 2020-01-07 夏普株式会社 解冻装置以及解冻方法
CN212211438U (zh) * 2019-12-13 2020-12-22 海尔智家股份有限公司 加热装置
CN111436481A (zh) * 2020-05-09 2020-07-24 上海点为智能科技有限责任公司 射频脉冲解冻加热设备及其闭环控制方法

Also Published As

Publication number Publication date
CN115175392A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US20220277934A1 (en) Adjustment of power and frequency based on three or more states
US9754767B2 (en) RF pulse reflection reduction for processing substrates
US8203859B2 (en) High frequency device with variable frequency and variable load impedance matching
US20130214683A1 (en) Impedance-Based Adjustment of Power and Frequency
CN112585716B (zh) 具有乘数模式的射频(rf)脉冲阻抗调谐
TW201724920A (zh) 用於處理基板之射頻功率傳輸調節
WO2013134026A2 (en) Envelope tracking power amplifier system with delay calibration
KR20100125376A (ko) 개선된 주파수 튜닝을 위한 방법 및 장치
WO2009024051A1 (fr) Procédé de réalisation de l'adaptation d'impédance de rf et système d'adaptation d'impédance de rf
WO2022206152A1 (zh) 用于加热装置的控制方法及加热装置
JP2021106354A (ja) 高周波電源システム
US20230254952A1 (en) Microwave cooking apparatus, control method and storage medium
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
JP4682335B2 (ja) 自己較正ミキサ
CN113099569B (zh) 用于加热装置的控制方法及加热装置
WO2022105501A1 (zh) 用于加热装置的控制方法及加热装置
CN113316280B (zh) 用于加热装置的控制方法以及加热装置
JP5267455B2 (ja) 歪補正制御装置及び歪補正制御方法
US20170012586A1 (en) Amplification phase correction in a pulse burst
US20220139674A1 (en) Systems and methods combining match networks and frequency tuning
US11329608B1 (en) Oscillator circuit with negative resistance margin testing
KR20230145182A (ko) 임피던스 매칭을 위한 방법, 임피던스 매칭 장치 및 플라즈마 시스템
JP6391706B2 (ja) Rf高電力発生のための装置および方法
CN117412418A (zh) 用于加热装置的控制方法及加热装置
WO2024008118A1 (zh) 用于加热装置的控制方法及加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778340

Country of ref document: EP

Kind code of ref document: A1