WO2024008118A1 - 用于加热装置的控制方法及加热装置 - Google Patents

用于加热装置的控制方法及加热装置 Download PDF

Info

Publication number
WO2024008118A1
WO2024008118A1 PCT/CN2023/105904 CN2023105904W WO2024008118A1 WO 2024008118 A1 WO2024008118 A1 WO 2024008118A1 CN 2023105904 W CN2023105904 W CN 2023105904W WO 2024008118 A1 WO2024008118 A1 WO 2024008118A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
electromagnetic wave
reflection
heating
preset
Prior art date
Application number
PCT/CN2023/105904
Other languages
English (en)
French (fr)
Inventor
韩志强
张海洲
姬立胜
李春阳
刘勇豪
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024008118A1 publication Critical patent/WO2024008118A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/01Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment using microwaves or dielectric heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves

Definitions

  • the present invention relates to the field of food processing, and in particular to a control method and heating device for an electromagnetic wave heating device.
  • the quality of food is maintained during the freezing process, but frozen food needs to be thawed before processing or eating.
  • electromagnetic wave heating devices are usually used to defrost food.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art and provide a control method for a heating device.
  • a further object of the first aspect of the invention is to ensure the accuracy of the initial frequency.
  • Another further object of the first aspect of the invention is to improve the efficiency of determining the optimal frequency.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • a control method for a heating device includes a cavity for placing an object to be processed, and an electromagnetic wave generation system for generating electromagnetic waves in the cavity, To heat the object to be treated, wherein the control method includes:
  • Initial frequency determination step control the electromagnetic wave generation system to adjust the frequency of the electromagnetic wave it generates within the alternative frequency range according to the test power, obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, and use the reflection parameters according to the Determine the initial frequency;
  • the step of heating the object to be processed controlling the electromagnetic wave generating system to generate electromagnetic waves with a power of heating power and a frequency of the initial frequency to heat the object to be processed;
  • the test power is less than the heating power.
  • test power is 8W ⁇ 15W.
  • the alternative frequency range is 350MHz ⁇ 500MHz.
  • the heating power is 60W ⁇ 100W.
  • the frequency of the electromagnetic wave is first adjusted to the initial frequency, and then the power of the electromagnetic wave is adjusted to the heating power.
  • the initial frequency determination step it further includes:
  • Frequency matching step If the preset frequency modulation conditions are met, the step of heating the object to be processed is suspended, and the electromagnetic wave generating system is controlled to adjust the frequency of the electromagnetic waves it generates to meet the preset matching conditions, and the step of heating the object to be processed is The frequency of the electromagnetic wave is corrected to a frequency that meets the preset matching conditions and the step of heating the object to be processed is continued; wherein,
  • the power of the electromagnetic wave in the frequency matching step is the same as the power of the electromagnetic wave in the object-to-be-processed heating step.
  • the initial frequency determination step further includes:
  • Reference frequency determination step control the electromagnetic wave generation system to adjust the frequency of the electromagnetic wave it generates within a preset alternative frequency range according to the preset first step, and obtain the reflection corresponding to each frequency generated by the electromagnetic wave generation system. parameters, and determine the reference frequency based on the reflection parameters;
  • Optimal frequency determination step control the electromagnetic wave generation system to adjust the frequency of the electromagnetic waves it generates within a selected frequency range according to a preset second step, and obtain reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, And determine the optimal frequency according to the reflection parameter, the optimal frequency is the initial frequency;
  • the selected frequency range is a frequency within a range based on the reference frequency and having a radius of the absolute value of the first step length;
  • the absolute value of the second step size is smaller than the absolute value of the first step size.
  • the electromagnetic wave generating system is controlled to adjust the frequency of the electromagnetic wave it generates until the reflection parameter is less than a preset first reflection threshold, and the reflection parameter is less than the first preset reflection threshold.
  • the frequency of the reflection threshold is determined as the reference frequency;
  • the electromagnetic wave generating system is controlled to stop working.
  • control method also includes:
  • the electromagnetic wave generation system is controlled to stop working;
  • the second reflection threshold is less than the first reflection threshold.
  • the step of determining the optimal frequency first determine the search direction from the reference frequency to high frequency or to low frequency, and further control the electromagnetic wave generation system to adjust the electromagnetic wave generated in this search direction. frequency to a concave inflection point in the reflection parameter, and the frequency corresponding to the inflection point is determined as the optimal frequency.
  • a heating device comprising:
  • Cavity used to place objects to be processed
  • An electromagnetic wave generating system used to generate electromagnetic waves in the cavity to heat the object to be treated
  • a controller configured to perform any of the above control methods.
  • the present invention reduces the heating effect of the object to be processed in the initial frequency determination process and avoids the temperature of the food in the initial frequency determination process.
  • the large changes caused serious data lag problems in some of the reflection parameters used for comparison, thus ensuring the accuracy of the initial frequency and laying a good foundation for subsequent heating.
  • the present invention sets the test power to 8W ⁇ 15W and the alternative frequency range to 350MHz ⁇ 500MHz. While reducing the heating effect of the object to be processed in the initial frequency determination process, it avoids inaccurate reflection parameters due to too weak penetrating ability of electromagnetic waves. The problem of inaccurate initial frequency caused by the reflection of electromagnetic waves by food can be accurately reflected, further improving the heating efficiency and heating effect.
  • the present invention represents the rough position of the optimal frequency by first searching with a larger step size to determine the reference frequency, and then using a smaller step size to search near the reference frequency to determine the optimal frequency as the initial frequency.
  • the method of traversing all frequencies to determine the optimal frequency can increase the efficiency of determining the optimal frequency several times, thereby reducing the total heating time, reducing unnecessary energy loss, and improving the energy efficiency ratio of the heating device. .
  • Figure 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of the controller in Figure 1;
  • Figure 3 is a schematic line diagram of the relationship between electromagnetic wave frequency and reflection parameters
  • Figure 4 is a schematic flow chart of a control method for a heating device according to one embodiment of the present invention.
  • Figure 5 is a schematic detailed flow chart of a control method for a heating device according to one embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity 110 , an electromagnetic wave generation system, and a controller 140 .
  • the cavity 110 may include a barrel and a door.
  • the cylinder can be used to place objects 150 to be processed.
  • the door can be used to open and close the access port of the cylinder.
  • the cylinder and door can be equipped with electromagnetic shielding features to reduce electromagnetic leakage.
  • the barrel can be made of metal and set to be grounded.
  • the electromagnetic wave generating system can be at least partially disposed in the cavity 110 or communicate with the cavity 110 to generate electromagnetic waves in the cavity 110 to heat the object 150 to be processed.
  • the electromagnetic wave generation system may include an electromagnetic wave generation module 120, a radiation antenna 130 electrically connected to the electromagnetic wave generation module 120, and a power supply for supplying power to the electromagnetic wave generation module 120.
  • the electromagnetic wave generating module 120 may be configured to generate electromagnetic wave signals.
  • the radiation antenna 130 may be disposed in the cavity 110 to generate electromagnetic waves in the cavity 110 .
  • the electromagnetic wave generating module 120 may include a variable frequency source and a power amplifier.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1 .
  • the controller 140 may include a processing unit 141 and a storage unit 142.
  • the storage unit 142 stores a computer program 143, and when executed by the processing unit 141, the computer program 143 is used to implement the control method of the embodiment of the present invention.
  • the processing unit 141 can be configured to first control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates within the alternative frequency range according to the test power, obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, and calculate the frequency according to the reflection The parameters determine the initial frequency, and then the electromagnetic wave generating module 120 is controlled to generate an electromagnetic wave signal with a power of heating power and a frequency of the initial frequency to heat the object to be processed.
  • the test power can be smaller than the heating power to avoid serious data lag problems in some of the reflection parameters used for comparison due to large changes in the temperature of the object 150 to be processed during the initial frequency determination process, thereby ensuring the initial Frequency accuracy.
  • the test power may be 8W ⁇ 15W, such as 8W, 10W, or 15W.
  • the alternative frequency range is 350MHz ⁇ 500MHz to avoid the problem of inaccurate initial frequency caused by the weak penetrating ability of electromagnetic waves and the inability of the reflection parameters to accurately reflect the reflection of electromagnetic waves by the object 150 to be processed.
  • the alternative frequency range may be 400MHz ⁇ 460MHz to further improve the heating effect.
  • the heating power may be 60W ⁇ 100W, such as 60W, 70W, 80W or 100W, to improve heating efficiency and alleviate the problem of local overheating.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to first adjust the frequency of the electromagnetic wave signal to the initial frequency, and then adjust the power of the electromagnetic wave signal to the heating power.
  • the processing unit 141 may be configured to first determine the reference frequency fb used to search for the optimal frequency, and then determine the optimal frequency fg suitable for heating as the initial frequency.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates within a preset alternative frequency range according to the preset first step length W1, and obtain each signal generated by the electromagnetic wave generation module 120.
  • the reflection parameter corresponding to the frequency is determined based on the reflection parameter and the reference frequency fb is determined.
  • the processing unit 141 may be further configured to control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates within a selected frequency range according to the preset second step size W2, and obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation module 120. And determine the optimal frequency fg based on the reflection parameters.
  • the selected frequency range may be a frequency within a range based on the reference frequency fb and with the absolute value of the first step length W1 as the radius.
  • the absolute value of the second step length W2 may be smaller than the absolute value of the first step length W1.
  • the heating device 100 of the present invention first searches and determines the reference frequency with a larger step size to represent the rough position of the optimal frequency, and then searches with a smaller step size near the reference frequency to determine the optimal frequency as the initial frequency.
  • the method of traversing all frequencies to determine the optimal frequency can increase the efficiency of determining the optimal frequency several times, thereby reducing the total heating time, reducing unnecessary energy loss, and improving the energy efficiency ratio of the heating device 100 .
  • the reflection parameter may be return loss S11.
  • the reflection parameter may also be the reflected power value of the electromagnetic wave signal reflected back to the electromagnetic wave generating module 120 .
  • the processing unit 141 may be configured to incrementally search the reference frequency fb from the minimum value of the alternative frequency range. That is, the first step length W1 is a positive number.
  • the processing unit 141 may also be configured to search the reference frequency fb decrementally from the maximum value of the alternative frequency range. That is, the first step length W1 is negative.
  • the absolute value of the first step length W1 can be 5MHz ⁇ 10MHz. For example, 5MHz, 7MHz, or 10MHz.
  • the absolute value of the second step size W2 can be 1MHz ⁇ 2MHz. For example, 1MHz, 1.5MHz, or 2MHz.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates until the reflection parameter is smaller than the preset first reflection threshold S1, and adjust the reflection parameter to be smaller than the first reflection threshold S1.
  • the frequency is determined as the base frequency fb. That is, the processing unit 141 determines the frequency at which the reflection parameter is smaller than the first reflection threshold S1 for the first time as the reference frequency fb, so as to further improve the efficiency of determining the optimal frequency fg while obtaining the accurate optimal frequency fg.
  • the first reflection threshold S1 may be -8dB ⁇ -5dB.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to stop working when the reflection parameter corresponding to each frequency generated by the electromagnetic wave generation module 120 is greater than the first reflection threshold S1 to avoid heating. The effect is too poor and the electromagnetic wave generating system will be damaged.
  • the processing unit 141 may also be configured to, when the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation module 120 are greater than the first reflection threshold S1, send a visual signal and/or an auditory signal to prompt the user for a fault, so as to improve safety and user experience.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates to an inflection point where the reflection parameter becomes concave, and determine the frequency corresponding to the inflection point as the optimal frequency fg to obtain Excellent heating effect.
  • the reflection parameters corresponding to the previous frequency of the optimal frequency fg and the reflection parameters corresponding to the subsequent frequency are both greater than the reflection parameters of the optimal frequency fg (that is, they have a concave inflection point).
  • Figure 3 is a schematic line diagram of the relationship between electromagnetic wave frequency and reflection parameters (in Figure 3, "f” represents “frequency”, “S” stands for "reflection parameter”).
  • f represents "frequency”
  • S stands for "reflection parameter”
  • the inventor of the present application creatively realized that the reflection parameters of the electromagnetic wave generation system mutate at the optimal frequency fg and the reflection parameter changes at frequencies adjacent to the optimal frequency fg have obvious rules, while those at other frequencies The reflection parameters have small fluctuations.
  • First determining the reference frequency fb based on the first reflection threshold S1 can effectively prevent misjudgment of the inflection point of the optimal frequency fg and improve the accuracy of the optimal frequency fg.
  • the processing unit 141 may be configured to first determine a search direction from the reference frequency fb to high frequency or to low frequency, and then further control the electromagnetic wave generation module 120 to adjust the electromagnetic wave signal generated by it in the search direction. There is a concave inflection point from frequency to reflection parameter.
  • the processing unit 141 may be configured to obtain reflection parameters of frequencies greater than the second step size W2 than the reference frequency fb and frequencies smaller than the second step size W2 than the reference frequency fb, respectively, and compare the two The size of the reflection parameter, and the direction corresponding to the frequency with the smaller reflection parameter is determined as the search direction.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to stop working when the reflection parameter corresponding to the optimal frequency fg is greater than the preset second reflection threshold S2 to avoid poor heating effect. .
  • the second reflection threshold S2 may be smaller than the first reflection threshold S1.
  • the second reflection threshold S2 may be -10dB ⁇ -7dB. For example, -10dB, -8dB, or -7dB.
  • the processing unit 141 may also be configured to send a visual signal and/or an auditory signal to indicate a fault when the reflection parameter corresponding to the optimal frequency fg is greater than the preset second reflection threshold S2 to improve safety and user experience.
  • the processing unit 141 may be configured to determine the remaining heating according to the optimal frequency fg when the optimal frequency fg is greater than or equal to the preset minimum frequency threshold fi and less than or equal to the preset maximum frequency threshold fa. time.
  • the processing unit 141 may be configured to start a countdown after determining the remaining heating time, and when the remaining heating time is 0, control the electromagnetic wave generation module 120 to stop working, and send out a visual signal and/or an auditory signal to prompt that the heating is completed.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to stop working when the optimal frequency fg is less than the minimum frequency threshold fi to avoid excessive heating time.
  • the difference between the minimum frequency threshold fi and the minimum value of the alternative frequency range may be 15% ⁇ 30% of the difference between the maximum value and the minimum value of the alternative frequency range. For example, 15%, 20%, 25%, or 30%.
  • the processing unit 141 may also be configured to send a visual signal and/or an auditory signal to indicate overload when the optimal frequency fg is less than the minimum frequency threshold fi, so as to improve user experience.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to stop working when the optimal frequency fg is greater than the maximum frequency threshold fa to avoid damaging the electromagnetic wave generation system.
  • the difference between the maximum value of the alternative frequency range and the maximum frequency threshold fa may be 5% ⁇ 10% of the difference between the maximum value and the minimum value of the alternative frequency range. For example, 5%, 7%, 8%, or 10%.
  • the processing unit 141 may also be configured to send a visual signal and/or an auditory signal to indicate no load when the optimal frequency fg is greater than the maximum frequency threshold fa, so as to improve safety and user experience.
  • the processing unit 141 may be configured to, after controlling the electromagnetic wave generation module 120 to generate an electromagnetic wave signal with a frequency of the initial frequency, and if the preset frequency modulation conditions are met, control the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates. frequency to meet the preset matching conditions, and controls the electromagnetic wave generation module 120 to generate electromagnetic wave signals with frequencies that meet the preset matching conditions until the next time the preset frequency modulation conditions are met, so as to improve heating efficiency.
  • the preset frequency modulation condition may be that the reflection parameter of the electromagnetic wave generating system is greater than the preset third reflection threshold.
  • the preset matching condition may be a concave inflection point in the reflection parameter of the electromagnetic wave generating system.
  • the power of the electromagnetic wave signal generated by the electromagnetic wave generating module 120 may be the same as the heating power or the electromagnetic wave between the last time the preset matching condition is met and the current time the preset frequency modulation condition is met.
  • the power of the signals is the same to ensure heating efficiency.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 to shift the frequency of the electromagnetic wave signal from the initial frequency or the previous time the preset matching condition is met to the current time the preset frequency modulation condition is met to a low frequency. Directional adjustment to shorten frequency matching time and avoid unexpected waste of energy consumption.
  • the processing unit 141 may be configured to control the electromagnetic wave generation module 120 when the accumulated frequency difference ⁇ f of the frequencies that meet the preset matching condition any one or more times within the preset number of times is greater than the power reduction frequency difference threshold.
  • the power of the electromagnetic wave signal generated is reduced to effectively prevent the hot spot from continuing to heat up rapidly and improve the temperature uniformity of the object 150 to be processed.
  • the processing unit 141 may be configured to calculate a single frequency difference between the frequency that satisfies the preset frequency modulation condition and the frequency that satisfies the preset matching condition each time, and stores the most recent preset number of single frequency differences in the storage unit 142 for timely processing. Determine the cumulative frequency difference ⁇ f for any one or more frequency adjustments.
  • the single frequency difference is the absolute value of the difference between the frequency that meets the preset frequency modulation conditions and the frequency that meets the preset matching conditions.
  • the cumulative frequency difference ⁇ f is the sum of the corresponding number of single frequency differences.
  • the processing unit 141 may be further configured to extend the remaining heating time while controlling the electromagnetic wave generating module 120 to reduce the power of the electromagnetic wave signal it generates to avoid incomplete heating.
  • the reduction ratio of the power of the electromagnetic wave signal may be smaller than the extension ratio of the remaining heating time, so that the heating of the object to be processed 150 is stopped in a state desired by the user while improving the temperature uniformity.
  • the heating device 100 of the present invention is particularly suitable for use in refrigerators, and the cavity 110 can be disposed in a storage compartment of the refrigerator.
  • FIG. 4 is a schematic flow chart of a control method for the heating device 100 according to one embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may include the following steps:
  • Initial frequency determination step (step S402): Control the electromagnetic wave generation system to adjust the frequency of the electromagnetic wave it generates within the alternative frequency range according to the test power, obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, and determine the initial frequency based on the reflection parameters. frequency;
  • the object to be processed heating step (step S404): Control the electromagnetic wave generation system to generate electromagnetic waves with the heating power and the initial frequency to heat the object to be processed 150; wherein, the test power can be smaller than the heating power to avoid heating the object 150.
  • the temperature changes greatly during the initial frequency determination process, which causes serious data lag problems in some of the reflection parameters used for comparison, thus ensuring the accuracy of the initial frequency.
  • the test power may be 8W ⁇ 15W, such as 8W, 10W, or 15W.
  • the alternative frequency range is 350MHz ⁇ 500MHz to avoid the problem of inaccurate initial frequency caused by the weak penetrating ability of electromagnetic waves and the inability of the reflection parameters to accurately reflect the reflection of electromagnetic waves by the object 150 to be processed.
  • the alternative frequency range may be 400MHz ⁇ 460MHz to further improve the heating effect.
  • the heating power may be 60W ⁇ 100W, such as 60W, 70W, 80W or 100W, to improve heating efficiency and alleviate the problem of local overheating.
  • the step of heating the object to be processed can control the electromagnetic wave generation module 120 to first adjust the frequency of the electromagnetic wave signal to the initial frequency, and then adjust the power of the electromagnetic wave signal to the heating power.
  • the initial frequency determination step may further include a reference frequency determination step and an optimal frequency determination step.
  • Reference frequency determination step control the electromagnetic wave generation system to adjust the frequency of the electromagnetic waves it generates within the preset alternative frequency range according to the preset first step length W1, obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, and Determine the reference frequency fb according to the reflection parameters;
  • Optimal frequency determination step control the electromagnetic wave generation system to adjust the frequency of the electromagnetic waves it generates within the selected frequency range according to the preset second step size W2, obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system, and calculate the frequency according to the reflection
  • the parameters determine the optimal frequency fg as the initial frequency.
  • the selected frequency range may be a frequency within a range based on the reference frequency fb and with the absolute value of the first step length W1 as the radius.
  • the absolute value of the second step length W2 may be smaller than the absolute value of the first step length W1.
  • the control method of the present invention represents the rough position of the optimal frequency by first searching with a larger step size to determine the reference frequency, and then using a smaller step size to search near the reference frequency to determine the optimal frequency as the initial frequency.
  • the method of traversing all frequencies to determine the optimal frequency can increase the efficiency of determining the optimal frequency several times, thereby reducing the total heating time, reducing unnecessary energy loss, and improving the energy efficiency ratio of the heating device 100 .
  • the reflection parameter may be return loss S11.
  • the reflection parameter may also be the reflected power value of the electromagnetic wave signal reflected back to the electromagnetic wave generating module 120 .
  • the reference frequency determining step may incrementally search for the reference frequency fb from the minimum value of the alternative frequency range. That is, the first step length W1 is a positive number.
  • the reference frequency determining step may also search the reference frequency fb in descending order from the maximum value of the alternative frequency range. That is, the first step length W1 is negative.
  • the absolute value of the first step length W1 can be 5MHz ⁇ 10MHz. For example, 5MHz, 7MHz, or 10MHz.
  • the absolute value of the second step size W2 can be 1MHz ⁇ 2MHz. For example, 1MHz, 1.5MHz, or 2MHz.
  • the electromagnetic wave generation module 120 can be controlled to adjust the frequency of the electromagnetic wave signal it generates until the reflection parameter is less than the preset first reflection threshold S1, and the reflection parameter is less than the first reflection threshold.
  • the frequency of S1 is determined as the base frequency fb. That is, the frequency where the reflection parameter for the first time is less than the first reflection threshold S1 is determined as the reference frequency fb, so as to obtain an accurate optimal frequency fg and further improve the efficiency of determining the optimal frequency fg.
  • the first reflection threshold S1 may be -8dB ⁇ -5dB.
  • the electromagnetic wave generation module 120 if in the reference frequency determination step, the reflection parameter corresponding to each frequency generated by the electromagnetic wave generation module 120 is greater than the first reflection threshold S1, the electromagnetic wave generation module 120 is controlled to stop working to avoid excessive heating effect. Poor or damaged electromagnetic wave generation system.
  • the reflection parameter corresponding to each frequency generated by the electromagnetic wave generation module 120 is greater than the first reflection threshold S1, a visual signal and/or an auditory signal will be sent to prompt the user of a fault to improve safety and user experience.
  • the electromagnetic wave generation module 120 can be controlled to adjust the frequency of the electromagnetic wave signal it generates to an inflection point where the reflection parameter becomes concave, and determine the frequency corresponding to the inflection point as the optimal frequency fg. , to obtain excellent heating effect.
  • the reflection parameters corresponding to the previous frequency of the optimal frequency fg and the reflection parameters corresponding to the subsequent frequency are both greater than the reflection parameters of the optimal frequency fg (that is, they have a concave inflection point).
  • the search direction from the reference frequency fb to high frequency or to low frequency can be determined first, and then the electromagnetic wave generation module 120 is further controlled to adjust the generated energy in the search direction.
  • the frequency of the electromagnetic wave signal reaches a concave inflection point in the reflection parameter.
  • the reflection parameters of the frequency that is greater than the second step size W2 than the reference frequency fb and the frequency that is less than the second step size W2 than the reference frequency fb can be obtained respectively, and the sizes of the two reflection parameters are compared, and The direction corresponding to the frequency with the smaller reflection parameter is determined as the search direction.
  • the electromagnetic wave generating module 120 can be controlled to stop working to avoid poor heating effect.
  • the second reflection threshold S2 may be smaller than the first reflection threshold S1.
  • the second reflection threshold S2 may be -10dB ⁇ -7dB. For example, -10dB, -8dB, or -7dB.
  • a visual signal and/or an auditory signal may be sent to indicate a fault to improve safety and user experience.
  • the remaining heating time can be determined according to the optimal frequency fg.
  • the electromagnetic wave generating module 120 can be controlled to stop working and send out a visual signal and/or an auditory signal to prompt that the heating is completed.
  • the electromagnetic wave generating module 120 can be controlled to stop working to avoid excessive heating time.
  • the difference between the minimum frequency threshold fi and the minimum value of the alternative frequency range may be 15% ⁇ 30% of the difference between the maximum value and the minimum value of the alternative frequency range. For example, 15%, 20%, 25%, or 30%.
  • a visual signal and/or an auditory signal may be sent to indicate overloading to improve user experience.
  • the electromagnetic wave generating module 120 can be controlled to stop working to avoid damaging the electromagnetic wave generating system.
  • the difference between the maximum value of the alternative frequency range and the maximum frequency threshold fa may be 5% ⁇ 10% of the difference between the maximum value and the minimum value of the alternative frequency range. For example, 5%, 7%, 8%, or 10%.
  • a visual signal and/or an auditory signal can be sent to indicate no load to improve safety and user experience.
  • control method of the present invention may further include a frequency matching step after the initial frequency determination step.
  • the frequency matching step may include pausing the step of heating the object to be processed when the preset frequency modulation conditions are met, controlling the electromagnetic wave generation module 120 to adjust the frequency of the electromagnetic wave signal it generates to meet the preset matching conditions, and heating the object to be processed.
  • the frequency of the electromagnetic wave is corrected to a frequency that meets the preset matching conditions and the step of heating the object to be processed is continued to improve the heating efficiency.
  • the preset frequency modulation condition may be that the reflection parameter of the electromagnetic wave generating system is greater than the preset third reflection threshold.
  • the preset matching condition may be a concave inflection point in the reflection parameter of the electromagnetic wave generating system.
  • the power of the electromagnetic wave signal in the frequency matching step can be the same as the power of the electromagnetic wave signal in the object-to-be-processed heating step preceding the frequency matching step to ensure heating efficiency.
  • the electromagnetic wave generating module 120 can be controlled to adjust the frequency of the electromagnetic wave signal from the object-to-be-processed heating step before the frequency matching step to a low frequency, so as to shorten the frequency matching time and avoid undesirable energy consumption. of waste.
  • control method of the present invention may further include a power adjustment step.
  • the power adjustment step can control the electromagnetic wave generation module 120 to reduce the power of the electromagnetic wave signal it generates when the cumulative frequency difference ⁇ f of the frequencies that meet the preset matching conditions one or more times within the preset number of times is greater than the power reduction frequency difference threshold. , to effectively prevent the hot spot from continuing to heat up rapidly and improve the temperature uniformity of the object 150 to be processed.
  • the frequency matching step may also include: calculating the single frequency difference before frequency adjustment and after frequency adjustment, and storing the most recent frequency difference.
  • the preset number of single frequency differences is used to determine the cumulative frequency difference ⁇ f of any one or more frequency adjustments in a timely manner.
  • the single frequency difference is the absolute value of the difference between the frequency before frequency adjustment and the frequency after frequency adjustment.
  • the cumulative frequency difference ⁇ f is the sum of the corresponding number of single frequency differences.
  • FIG. 5 is a schematic detailed flow chart of a control method for the heating device 100 according to one embodiment of the present invention (in Figure 5, "Y” represents “yes”; “N” represents “no”).
  • the control method for the heating device 100 of the present invention may include the following detailed steps:
  • Step S502 Control the electromagnetic wave generation system to adjust the frequency of the electromagnetic waves it generates within the preset alternative frequency range according to the preset first step length W1, and obtain the reflection parameters corresponding to each frequency generated by the electromagnetic wave generation system;
  • Step S504 Determine whether any reflection parameter is smaller than the first reflection threshold S1. If yes, execute step S506; if not, execute step S508.
  • Step S506 Determine the reference frequency fb from the frequency corresponding to the first occurrence of the reflection parameter smaller than the first reflection threshold S1. Execute step S510.
  • Step S508 Control the electromagnetic wave generating system to stop working.
  • Step S510 Determine the search direction from the reference frequency fb to high frequency or low frequency within the selected frequency range, and further control the electromagnetic wave generation system to adjust the frequency of the electromagnetic wave generated by the second step size W2 in the search direction, and Obtain the reflection parameters corresponding to each frequency to the inflection point where the reflection coefficient becomes concave.
  • Step S512 Determine whether the reflection parameter corresponding to the inflection point is less than the second reflection threshold S2. If yes, perform step S514; if not, perform step S508.
  • Step S514 Determine whether the frequency corresponding to the inflection point is less than the minimum frequency threshold fi. If yes, execute step S508; if not, execute step S516.
  • Step S516 Determine whether the frequency corresponding to the inflection point is greater than the maximum frequency threshold fa. If yes, perform step S518; if not, perform step S508.
  • Step S518 Determine the frequency corresponding to the inflection point as the optimal frequency fg, control the electromagnetic wave generation system to generate electromagnetic waves with an initial frequency of the optimal frequency fg, and determine the remaining heating time based on the initial frequency.
  • Step S520 Determine whether the remaining heating time is equal to 0. If yes, execute step S508; if not, execute step S522.
  • Step S522 Determine whether the preset frequency modulation conditions are met. If yes, execute step S524; if not, return to step S520.
  • Step S524 Control the electromagnetic wave generation system to adjust the frequency from the current frequency to a low frequency direction to meet the preset matching conditions, and control the electromagnetic wave generation system to generate electromagnetic waves with a frequency that meets the preset matching conditions. Return to step S520.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Resistance Heating (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

本发明提供了一种用于加热装置的控制方法及加热装置;控制方法包括:控制电磁波发生系统按照测试功率在备选频率范围内调节其产生的电磁波的频率,获取电磁波发生系统产生的每一频率对应的反射参数,并根据反射参数确定初始频率;控制电磁波发生系统产生功率为加热功率、频率为初始频率的电磁波;其中,测试功率小于加热功率。

Description

用于加热装置的控制方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的控制方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为提高解冻效率并保证解冻品质,通常通过电磁波加热装置来解冻食物。
不同参数的食物对电磁波吸收的能力不同,为了进一步提高解冻效率,现有技术通过遍历系统所有可选择的频率比较确定出解冻效果最好的最优频率,并按照确定出的最优频率进行解冻。然而,该方法不仅需在确定最优频率上花费过多的时间,而且保证最优频率的准确性和食物的品质困难。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于加热装置的控制方法。
本发明第一方面的一个进一步的目的是要保证初始频率的准确性。
本发明第一方面的另一个进一步的目的是要提高确定最优频率的效率。
本发明第二方面的一个目的是要提供一种电磁波加热装置。
根据本发明的第一方面,提供了一种用于加热装置的控制方法,所述加热装置包括用于放置待处理物的腔体、以及用于在所述腔体内产生电磁波的电磁波发生系统,以加热所述待处理物,其中,所述控制方法包括:
初始频率确定步骤:控制所述电磁波发生系统按照测试功率在备选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定初始频率;
待处理物加热步骤:控制所述电磁波发生系统产生功率为加热功率、频率为所述初始频率的电磁波,以加热所述待处理物;其中,
所述测试功率小于所述加热功率。
可选地,所述测试功率为8Wˉ15W;且
所述备选频率范围为350MHzˉ500MHz。
可选地,所述加热功率为60Wˉ100W。
可选地,在所述待处理物加热步骤中,先将所述电磁波的频率调节为所述初始频率,再将所述电磁波的功率调节为所述加热功率。
可选地,在所述初始频率确定步骤之后还包括:
频率匹配步骤:若满足预设调频条件,暂停所述待处理物加热步骤,控制所述电磁波发生系统调节其产生的电磁波的频率,以满足预设匹配条件,将所述待处理物加热步骤中的电磁波的频率更正为满足所述预设匹配条件的频率并继续所述待处理物加热步骤;其中,
所述频率匹配步骤中的电磁波的功率与所述待处理物加热步骤中的电磁波的功率相同。
可选地,所述初始频率确定步骤进一步包括:
基准频率确定步骤:控制所述电磁波发生系统按照预设的第一步长在预设的备选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定基准频率;
最优频率确定步骤:控制所述电磁波发生系统按照预设的第二步长在精选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定最优频率,所述最优频率为所述初始频率;其中,
所述精选频率范围是基于所述基准频率以所述第一步长的绝对值为半径的范围内的频率;且
所述第二步长的绝对值小于所述第一步长的绝对值。
可选地,在所述基准频率确定步骤中,控制所述电磁波发生系统调节其产生的电磁波的频率至所述反射参数小于预设的第一反射阈值,并将该反射参数小于所述第一反射阈值的频率确定为所述基准频率;且
若在所述基准频率确定步骤中,所述电磁波发生系统产生的每一频率对应的反射参数均大于所述第一反射阈值,控制所述电磁波发生系统停止工作。
可选地,所述控制方法,还包括:
若所述最优频率对应的反射参数大于预设的第二反射阈值,控制所述电磁波发生系统停止工作;其中,
所述第二反射阈值小于所述第一反射阈值。
可选地,在所述最优频率确定步骤中,先确定自所述基准频率向高频或向低频搜索的搜索方向,并进一步在该搜索方向上控制所述电磁波发生系统调节其产生的电磁波的频率至所述反射参数出现下凹的拐点,并将该拐点对应的频率确定为所述最优频率。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体,用于放置待处理物;
电磁波发生系统,用于在所述腔体内产生电磁波,以加热所述待处理物;以及
控制器,配置为用于执行以上任一所述的控制方法。
本发明通过使初始频率确定过程中的测试功率小于待处理物加热过程中的加热功率,降低了初始频率确定过程中对待处理物的加热作用,避免因食物的温度在初始频率确定过程中发生较大的改变而导致的部分用于比较的反射参数出现严重的数据滞后问题,进而保证了初始频率的准确性,为后续加热奠定了良好的基础。
特别地,本发明将测试功率设置为8Wˉ15W、备选频率范围设置为350MHzˉ500MHz,在降低初始频率确定过程中对待处理物的加热作用的同时,避免因电磁波的穿透能力过弱反射参数不能够准确地反映食物对电磁波的反射情况而导致的初始频率不准确的问题发生,进一步地提高了加热效率和加热效果。
进一步地,本发明通过先以较大步长搜索确定出基准频率来表示最优频率的粗略位置,再以较小步长在基准频率的附近搜索确定出最优频率作为初始频率,相比于现有技术中通过遍历所有频率确定最优频率的方法,可以将确定最优频率的效率提高数倍,进而减小了加热总时间,减少了不必要的能源损耗,提高了加热装置的能效比。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是电磁波频率与反射参数的示意性关系线形图;
图4是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图5是根据本发明一个实施例的用于加热装置的控制方法的示意性详细流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括腔体110、电磁波发生系统和控制器140。
腔体110可包括筒体和门体。筒体可用于放置待处理物150。门体可用于开闭筒体的取放口。
筒体和门体可设置有电磁屏蔽特征,以减少电磁泄漏。其中,筒体可由金属制成,并设置为接地。
电磁波发生系统可至少部分设置于腔体110内或通达至腔体110,以在腔体110内产生电磁波,进而加热待处理物150。
电磁波发生系统可包括电磁波发生模块120、与电磁波发生模块120电连接的辐射天线130、以及用于向电磁波发生模块120供电的供电电源。
电磁波发生模块120可配置为产生电磁波信号。辐射天线130可设置于腔体110内,以在腔体110内产生电磁波。其中,电磁波发生模块120可包括可变频率源和功率放大器。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中,存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
特别地,处理单元141可配置为先控制电磁波发生模块120按照测试功率在备选频率范围内调节其产生的电磁波信号的频率,获取电磁波发生系统产生的每一频率对应的反射参数,并根据反射参数确定初始频率,再控制电磁波发生模块120产生功率为加热功率、频率为初始频率的电磁波信号,以加热待处理物。其中,测试功率可小于加热功率,以避免因待处理物150的温度在初始频率确定过程中发生较大的改变而导致的部分用于比较的反射参数出现严重的数据滞后问题,进而保证了初始频率的准确性。
在一些实施例中,测试功率可为8Wˉ15W,例如8W、10W、或15W。备选频率范围为350MHzˉ500MHz,以避免因电磁波的穿透能力过弱反射参数不能够准确地反映待处理物150对电磁波的反射情况而导致的初始频率不准确的问题发生。
在一些进一步的实施例中,备选频率范围可为400MHzˉ460MHz,以进一步提高加热效果。
在一些实施例中,加热功率可为60Wˉ100W,例如60W、70W、80W或100W,以提高加热效率并减轻局部过热的问题。
在一些实施例中,处理单元141可配置为控制电磁波发生模块120先将电磁波信号的频率调节为初始频率,再将电磁波信号的功率调节为加热功率。
在一些实施例中,处理单元141可配置为先确定用于搜索最优频率的基准频率fb,再确定适于加热的最优频率fg作为初始频率。
具体地,处理单元141可配置为控制电磁波发生模块120按照预设的第一步长W1在预设的备选频率范围内调节其产生的电磁波信号的频率,获取电磁波发生模块120产生的每一频率对应的反射参数并根据反射参数确定基准频率fb。
处理单元141可进一步配置为控制电磁波发生模块120按照预设的第二步长W2在精选频率范围内调节其产生的电磁波信号的频率,获取电磁波发生模块120产生的每一频率对应的反射参数并根据反射参数确定最优频率fg。其中,精选频率范围可为基于基准频率fb以第一步长W1的绝对值为半径的范围内的频率。
第二步长W2的绝对值可小于第一步长W1的绝对值。
本发明的加热装置100通过先以较大步长搜索确定出基准频率来表示最优频率的粗略位置,再以较小步长在基准频率的附近搜索确定出最优频率作为初始频率,相比于现有技术中通过遍历所有频率确定最优频率的方法,可以将确定最优频率的效率提高数倍,进而减小加热总时间,减少不必要的能源损耗,提高加热装置100的能效比。
在一些实施例中,反射参数可为回波损耗S11。反射参数也可为反射回电磁波发生模块120的电磁波信号的反射功率值。
在一些实施例中,处理单元141可配置为自备选频率范围的最小值递增搜索基准频率fb。即,第一步长W1为正数。
在一些替代性实施例中,处理单元141也可配置为自备选频率范围的最大值递减搜索基准频率fb。即,第一步长W1为负数。
第一步长W1的绝对值可为5MHzˉ10MHz。例如,5MHz、7MHz、或10MHz。
第二步长W2的绝对值可为1MHzˉ2MHz。例如,1MHz、1.5MHz、或2MHz。
在一些实施例中,处理单元141可配置为控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数小于预设的第一反射阈值S1,并将该反射参数小于第一反射阈值S1的频率确定为基准频率fb。即,处理单元141将首次出现反射参数小于第一反射阈值S1的频率确定为基准频率fb,以在获得准确的最优频率fg的同时,进一步提高确定最优频率fg的效率。
第一反射阈值S1可为-8dBˉ-5dB。例如,-8dB、-6dB、或-5dB。
在一些进一步的实施例中,处理单元141可配置为在电磁波发生模块120产生的每一频率对应的反射参数均大于第一反射阈值S1的情况下,控制电磁波发生模块120停止工作,以避免加热效果过差、损坏电磁波发生系统。
处理单元141还可配置为在电磁波发生模块120产生的每一频率对应的反射参数均大于第一反射阈值S1的情况下,发出视觉信号和/或听觉信号向用户提示故障,以提高安全性和用户体验。
在一些实施例中,处理单元141可配置为控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数出现下凹的拐点,并将该拐点对应的频率确定为最优频率fg,以获得极佳的加热效果。最优频率fg的前一频率对应的反射参数和后一频率对应的反射参数均大于最优频率fg的反射参数(即具有下凹的拐点)。
图3是电磁波频率与反射参数的示意性关系线形图(在图3中,“f”表示“频率”, “S”表示“反射参数”)。参见图3,本申请的发明人创造性地认识到,电磁波发生系统的反射参数在最优频率fg处发生突变且邻近最优频率fg的频率的反射参数变化具有明显规律,而在其他频率处的反射参数具有小幅波动,先根据第一反射阈值S1确定基准频率fb可有效地防止最优频率fg的拐点的误判,提高最优频率fg的准确性。
在一些进一步的实施例中,处理单元141可配置为先确定自基准频率fb向高频或向低频搜索的搜索方向,再进一步在该搜索方向上控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数出现下凹的拐点。
在一些示例性的实施例中,处理单元141可配置为分别获取比基准频率fb大于第二步长W2的频率和比基准频率fb小于第二步长W2的频率的反射参数,比较该两个反射参数的大小,并将反射参数更小的频率对应的方向确定为搜索方向。
在一些进一步的实施例中,处理单元141可配置为在最优频率fg对应的反射参数大于预设的第二反射阈值S2的情况下,控制电磁波发生模块120停止工作,以避免加热效果不好。
第二反射阈值S2可小于第一反射阈值S1。第二反射阈值S2可为-10dBˉ-7dB。例如,-10dB、-8dB、或-7dB。
处理单元141还可配置为在最优频率fg对应的反射参数大于预设的第二反射阈值S2的情况下,发出视觉信号和/或听觉信号提示故障,以提高安全性和用户体验。
在一些进一步的实施例中,处理单元141可配置为在最优频率fg大于等于预设的最小频率阈值fi且小于等于预设的最大频率阈值fa的情况下,根据最优频率fg确定剩余加热时间。
处理单元141可配置为在确定剩余加热时间后开始倒计时,并在剩余加热时间为0时,控制电磁波发生模块120停止工作,并发出视觉信号和/或听觉信号提示加热完成。
在一些进一步的实施例中,处理单元141可配置为在最优频率fg小于最小频率阈值fi的情况下,控制电磁波发生模块120停止工作,以避免加热时间过长。
最小频率阈值fi与备选频率范围的最小值的差值可为备选频率范围的最大值与最小值的差值的15%ˉ30%。例如,15%、20%、25%、或30%。
处理单元141还可配置为在最优频率fg小于最小频率阈值fi的情况下,发出视觉信号和/或听觉信号提示超载,以提高用户体验。
在一些进一步的实施例中,处理单元141可配置为在最优频率fg大于最大频率阈值fa的情况下,控制电磁波发生模块120停止工作,以避免损坏电磁波发生系统。
备选频率范围的最大值与最大频率阈值fa的差值可为备选频率范围的最大值与最小值的差值的5%ˉ10%。例如,5%、7%、8%、或10%。
处理单元141还可配置为在最优频率fg大于最大频率阈值fa的情况下,发出视觉信号和/或听觉信号提示空载,以提高安全性和用户体验。
在一些实施例中,处理单元141可配置为在控制电磁波发生模块120产生频率为初始频率的电磁波信号之后,在满足预设调频条件的情况下,控制电磁波发生模块120调节其产生的电磁波信号的频率,以满足预设匹配条件,并控制电磁波发生模块120产生满足预设匹配条件的频率的电磁波信号直至下一次满足预设调频条件,以提高加热效率。
预设调频条件可为电磁波发生系统的反射参数大于预设的第三反射阈值。
预设匹配条件可为电磁波发生系统的反射参数出现下凹的拐点。
在满足预设调频条件至满足预设匹配条件的过程中,电磁波发生模块120产生的电磁波信号的功率可与加热功率或前一次满足预设匹配条件至本次满足预设调频条件之间的电磁波信号的功率相同,以保证加热效率。
在满足预设调频条件的情况下,处理单元141可配置为控制电磁波发生模块120自初始频率或前一次满足预设匹配条件至本次满足预设调频条件之间的电磁波信号的频率向低频的方向调节,以缩短频率匹配的时间,避免能耗不期望的浪费。
在一些实施例中,处理单元141可配置为在预设次数内任意一次或多次的满足预设匹配条件的频率的累计频差Δf大于降功率频差阈值的情况下,控制电磁波发生模块120降低其产生的电磁波信号的功率,以有效地避免热点部分继续快速地升温,提高待处理物150的温度均匀性。
处理单元141可配置为计算每一次满足预设调频条件的频率与满足预设匹配条件的频率的单次频差,并将最近预设次数的单次频差存储在存储单元142,以便于及时确定任意一次或多次频率调节的累计频差Δf。
单次频差为满足预设调频条件的频率与满足预设匹配条件的频率的差值的绝对值。累计频差Δf为相应次数的单次频差之和。
处理单元141可进一步配置为在控制电磁波发生模块120降低其产生的电磁波信号的功率的同时延长剩余加热时间,以避免加热不完全。
电磁波信号的功率的降低比例可小于剩余加热时间的延长比例,以在提高温度均匀性的同时,使对待处理物150的加热停止在用户期望的状态。
需要说明的是,本发明的加热装置100特别适合应用于冰箱,腔体110可设置于冰箱的一个储物间室内。
图4是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图。参见图4,本发明的用于加热装置100的控制方法可包括如下步骤:
初始频率确定步骤(步骤S402):控制电磁波发生系统按照测试功率在备选频率范围内调节其产生的电磁波的频率,获取电磁波发生系统产生的每一频率对应的反射参数,并根据反射参数确定初始频率;
待处理物加热步骤(步骤S404):控制电磁波发生系统产生功率为加热功率、频率为初始频率的电磁波,以加热待处理物150;其中,测试功率可小于加热功率,以避免因待处理物150的温度在初始频率确定过程中发生较大的改变而导致的部分用于比较的反射参数出现严重的数据滞后问题,进而保证了初始频率的准确性。
在一些实施例中,测试功率可为8Wˉ15W,例如8W、10W、或15W。备选频率范围为350MHzˉ500MHz,以避免因电磁波的穿透能力过弱反射参数不能够准确地反映待处理物150对电磁波的反射情况而导致的初始频率不准确的问题发生。
在一些进一步的实施例中,备选频率范围可为400MHzˉ460MHz,以进一步提高加热效果。
在一些实施例中,加热功率可为60Wˉ100W,例如60W、70W、80W或100W,以提高加热效率并减轻局部过热的问题。
在一些实施例中,待处理物加热步骤可控制电磁波发生模块120先将电磁波信号的频率调节为初始频率,再将电磁波信号的功率调节为加热功率。
在一些实施例中,初始频率确定步骤可进一步包括基准频率确定步骤和最优频率确定步骤。
基准频率确定步骤:控制电磁波发生系统按照预设的第一步长W1在预设的备选频率范围内调节其产生的电磁波的频率,获取电磁波发生系统产生的每一频率对应的反射参数,并根据反射参数确定基准频率fb;
最优频率确定步骤:控制电磁波发生系统按照预设的第二步长W2在精选频率范围内调节其产生的电磁波的频率,获取电磁波发生系统产生的每一频率对应的反射参数,并根据反射参数确定最优频率fg作为初始频率。其中,精选频率范围可为基于基准频率fb以第一步长W1的绝对值为半径的范围内的频率。
第二步长W2的绝对值可小于第一步长W1的绝对值。
本发明的控制方法通过先以较大步长搜索确定出基准频率来表示最优频率的粗略位置,再以较小步长在基准频率的附近搜索确定出最优频率作为初始频率,相比于现有技术中通过遍历所有频率确定最优频率的方法,可以将确定最优频率的效率提高数倍,进而减小加热总时间,减少不必要的能源损耗,提高加热装置100的能效比。
在一些实施例中,反射参数可为回波损耗S11。反射参数也可为反射回电磁波发生模块120的电磁波信号的反射功率值。
在一些实施例中,基准频率确定步骤可自备选频率范围的最小值递增搜索基准频率fb。即,第一步长W1为正数。
在一些替代性实施例中,基准频率确定步骤也可自备选频率范围的最大值递减搜索基准频率fb。即,第一步长W1为负数。
第一步长W1的绝对值可为5MHzˉ10MHz。例如,5MHz、7MHz、或10MHz。
第二步长W2的绝对值可为1MHzˉ2MHz。例如,1MHz、1.5MHz、或2MHz。
在一些实施例中,在基准频率确定步骤中,可控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数小于预设的第一反射阈值S1,并将该反射参数小于第一反射阈值S1的频率确定为基准频率fb。即,将首次出现反射参数小于第一反射阈值S1的频率确定为基准频率fb,以在获得准确的最优频率fg的同时,进一步提高确定最优频率fg的效率。
第一反射阈值S1可为-8dBˉ-5dB。例如,-8dB、-6dB、或-5dB。
在一些进一步的实施例中,若在基准频率确定步骤中,电磁波发生模块120产生的每一频率对应的反射参数均大于第一反射阈值S1,控制电磁波发生模块120停止工作,以避免加热效果过差、损坏电磁波发生系统。
若在基准频率确定步骤中,电磁波发生模块120产生的每一频率对应的反射参数均大于第一反射阈值S1,发出视觉信号和/或听觉信号向用户提示故障,以提高安全性和用户体验。
在一些实施例中,在最优频率确定步骤中,可控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数出现下凹的拐点,并将该拐点对应的频率确定为最优频率fg,以获得极佳的加热效果。最优频率fg的前一频率对应的反射参数和后一频率对应的反射参数均大于最优频率fg的反射参数(即具有下凹的拐点)。
在一些进一步的实施例中,在最优频率确定步骤中,可先确定自基准频率fb向高频或向低频搜索的搜索方向,再进一步在该搜索方向上控制电磁波发生模块120调节其产生的电磁波信号的频率至反射参数出现下凹的拐点。
在一些示例性的实施例中,可分别获取比基准频率fb大于第二步长W2的频率和比基准频率fb小于第二步长W2的频率的反射参数,比较该两个反射参数的大小,并 将反射参数更小的频率对应的方向确定为搜索方向。
在一些进一步的实施例中,若最优频率fg对应的反射参数大于预设的第二反射阈值S2,可控制电磁波发生模块120停止工作,以避免加热效果不好。
第二反射阈值S2可小于第一反射阈值S1。第二反射阈值S2可为-10dBˉ-7dB。例如,-10dB、-8dB、或-7dB。
若最优频率fg对应的反射参数大于预设的第二反射阈值S2,可发出视觉信号和/或听觉信号提示故障,以提高安全性和用户体验。
在一些进一步的实施例中,若最优频率fg大于等于预设的最小频率阈值fi且小于等于预设的最大频率阈值fa,可根据最优频率fg确定剩余加热时间。
在确定剩余加热时间后开始倒计时,并在剩余加热时间为0时,可控制电磁波发生模块120停止工作,并发出视觉信号和/或听觉信号提示加热完成。
在一些进一步的实施例中,若最优频率fg小于最小频率阈值fi,可控制电磁波发生模块120停止工作,以避免加热时间过长。
最小频率阈值fi与备选频率范围的最小值的差值可为备选频率范围的最大值与最小值的差值的15%ˉ30%。例如,15%、20%、25%、或30%。
若最优频率fg小于最小频率阈值fi,可发出视觉信号和/或听觉信号提示超载,以提高用户体验。
在一些进一步的实施例中,若最优频率fg大于最大频率阈值fa,可控制电磁波发生模块120停止工作,以避免损坏电磁波发生系统。
备选频率范围的最大值与最大频率阈值fa的差值可为备选频率范围的最大值与最小值的差值的5%ˉ10%。例如,5%、7%、8%、或10%。
若最优频率fg大于最大频率阈值fa,可发出视觉信号和/或听觉信号提示空载,以提高安全性和用户体验。
在一些实施例中,本发明的控制方法在初始频率确定步骤之后还可包括频率匹配步骤。
频率匹配步骤可为在满足预设调频条件的情况下,暂停待处理物加热步骤,控制电磁波发生模块120调节其产生的电磁波信号的频率,以满足预设匹配条件,将待处理物加热步骤中的电磁波的频率更正为满足预设匹配条件的频率并继续待处理物加热步骤,以提高加热效率。
预设调频条件可为电磁波发生系统的反射参数大于预设的第三反射阈值。
预设匹配条件可为电磁波发生系统的反射参数出现下凹的拐点。
在频率匹配步骤中的电磁波信号的功率可与该频率匹配步骤前一个的待处理物加热步骤的电磁波信号的功率相同,以保证加热效率。
频率匹配步骤可在频率匹配步骤中控制电磁波发生模块120自该频率匹配步骤前一个的待处理物加热步骤的电磁波信号的频率向低频的方向调节,以缩短频率匹配的时间,避免能耗不期望的浪费。
在一些实施例中,本发明的控制方法还可包括功率调节步骤。功率调节步骤可在预设次数内任意一次或多次的满足预设匹配条件的频率的累计频差Δf大于降功率频差阈值的情况下,控制电磁波发生模块120降低其产生的电磁波信号的功率,以有效地避免热点部分继续快速地升温,提高待处理物150的温度均匀性。
频率匹配步骤还可包括:计算频率调节前与频率调节后的单次频差,并存储最近 预设次数的单次频差,以便于及时确定任意一次或多次频率调节的累计频差Δf。
单次频差为频率调节前的频率与频率调节后的频率的差值的绝对值。累计频差Δf为相应次数的单次频差之和。
图5是根据本发明一个实施例的用于加热装置100的控制方法的示意性详细流程图(在图5中,“Y”表示“是”;“N”表示“否”)。参见图5,本发明的用于加热装置100的控制方法可包括如下详细步骤:
步骤S502:控制电磁波发生系统按照预设的第一步长W1在预设的备选频率范围内调节其产生的电磁波的频率,获取电磁波发生系统产生的每一频率对应的反射参数;
步骤S504:判断是否有反射参数小于第一反射阈值S1。若是,执行步骤S506;若否,执行步骤S508。
步骤S506:将首个出现的小于第一反射阈值S1的反射参数对应的频率确定基准频率fb。执行步骤S510。
步骤S508:控制电磁波发生系统停止工作。
步骤S510:在精选频率范围内确定自基准频率fb向高频或向低频搜索的搜索方向,进一步在该搜索方向上按照第二步长W2控制电磁波发生系统调节其产生的电磁波的频率,并获取每一频率对应的反射参数至反射系数出现下凹的拐点。
步骤S512:判断拐点对应的反射参数是否小于第二反射阈值S2。若是,执行步骤S514;若否,执行步骤S508。
步骤S514:判断拐点对应的频率是否小于最小频率阈值fi。若是,执行步骤S508;若否,执行步骤S516。
步骤S516:判断拐点对应的频率是否大于最大频率阈值fa。若是,执行步骤S518;若否,执行步骤S508。
步骤S518:将拐点对应的频率确定为最优频率fg,控制电磁波发生系统产生初始频率为最优频率fg的电磁波,并根据初始频率确定剩余加热时间。
步骤S520:判断剩余加热时间是否等于0。若是,执行步骤S508;若否,执行步骤S522。
步骤S522:判断是否满足预设调频条件。若是,执行步骤S524;若否,返回步骤S520。
步骤S524:控制电磁波发生系统自当前频率向低频的方向调节频率至满足预设匹配条件,控制电磁波发生系统产生该满足预设匹配条件的频率的电磁波。返回步骤S520。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于加热装置的控制方法,所述加热装置包括用于放置待处理物的腔体、以及用于在所述腔体内产生电磁波的电磁波发生系统,以加热所述待处理物,其中,所述控制方法包括:
    初始频率确定步骤:控制所述电磁波发生系统按照测试功率在备选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定初始频率;
    待处理物加热步骤:控制所述电磁波发生系统产生功率为加热功率、频率为所述初始频率的电磁波,以加热所述待处理物;其中,
    所述测试功率小于所述加热功率。
  2. 根据权利要求1所述的控制方法,其中,
    所述测试功率为8W-15W;且
    所述备选频率范围为350MHz-500MHz。
  3. 根据权利要求1所述的控制方法,其中,
    所述加热功率为60W-100W。
  4. 根据权利要求1所述的控制方法,其中,
    在所述待处理物加热步骤中,先将所述电磁波的频率调节为所述初始频率,再将所述电磁波的功率调节为所述加热功率。
  5. 根据权利要求1所述的控制方法,其中,在所述初始频率确定步骤之后还包括:
    频率匹配步骤:若满足预设调频条件,暂停所述待处理物加热步骤,控制所述电磁波发生系统调节其产生的电磁波的频率,以满足预设匹配条件,将所述待处理物加热步骤中的电磁波的频率更正为满足所述预设匹配条件的频率并继续所述待处理物加热步骤;其中,
    所述频率匹配步骤中的电磁波的功率与所述待处理物加热步骤中的电磁波的功率相同。
  6. 根据权利要求1所述的控制方法,其中,所述初始频率确定步骤进一步包括:
    基准频率确定步骤:控制所述电磁波发生系统按照预设的第一步长在预设的备选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定基准频率;
    最优频率确定步骤:控制所述电磁波发生系统按照预设的第二步长在精选频率范围内调节其产生的电磁波的频率,获取所述电磁波发生系统产生的每一频率对应的反射参数,并根据所述反射参数确定最优频率,所述最优频率为所述初始频率;其中,
    所述精选频率范围是基于所述基准频率以所述第一步长的绝对值为半径的范围内的频率;且
    所述第二步长的绝对值小于所述第一步长的绝对值。
  7. 根据权利要求6所述的控制方法,其中,
    在所述基准频率确定步骤中,控制所述电磁波发生系统调节其产生的电磁波的频率至所述反射参数小于预设的第一反射阈值,并将该反射参数小于所述第一反射阈值的频率确定为所述基准频率;且
    若在所述基准频率确定步骤中,所述电磁波发生系统产生的每一频率对应的反射参数均大于所述第一反射阈值,控制所述电磁波发生系统停止工作。
  8. 根据权利要求7所述的控制方法,还包括:
    若所述最优频率对应的反射参数大于预设的第二反射阈值,控制所述电磁波发生系统停止工作;其中,
    所述第二反射阈值小于所述第一反射阈值。
  9. 根据权利要求6所述的控制方法,其中,
    在所述最优频率确定步骤中,先确定自所述基准频率向高频或向低频搜索的搜索方向,并进一步在该搜索方向上控制所述电磁波发生系统调节其产生的电磁波的频率至所述反射参数出现下凹的拐点,并将该拐点对应的频率确定为所述最优频率。
  10. 一种加热装置,包括:
    腔体,用于放置待处理物;
    电磁波发生系统,用于在所述腔体内产生电磁波,以加热所述待处理物;以及
    控制器,配置为用于执行权利要求1所述的控制方法。
PCT/CN2023/105904 2022-07-06 2023-07-05 用于加热装置的控制方法及加热装置 WO2024008118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210800515.4A CN117412423A (zh) 2022-07-06 2022-07-06 用于加热装置的控制方法及加热装置
CN202210800515.4 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024008118A1 true WO2024008118A1 (zh) 2024-01-11

Family

ID=89454439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105904 WO2024008118A1 (zh) 2022-07-06 2023-07-05 用于加热装置的控制方法及加热装置

Country Status (2)

Country Link
CN (1) CN117412423A (zh)
WO (1) WO2024008118A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224623A1 (en) * 2007-10-18 2010-09-09 Kenji Yasui Microwave heating apparatus
JP2011129341A (ja) * 2009-12-17 2011-06-30 Panasonic Corp マイクロ波処理装置源
KR20150093466A (ko) * 2014-02-07 2015-08-18 이동현 Rf 가열 장치 및 그의 구동방법
CN106500143A (zh) * 2016-10-31 2017-03-15 广东美的厨房电器制造有限公司 微波炉及其加热控制方法
WO2019162086A1 (de) * 2018-02-20 2019-08-29 BSH Hausgeräte GmbH Betreiben eines haushaltsgeräts mit auftaufunktion
WO2021056821A1 (zh) * 2019-09-29 2021-04-01 青岛海尔智能技术研发有限公司 一种射频加热控制方法及射频加热器具
CN112969248A (zh) * 2019-12-13 2021-06-15 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
WO2021139387A1 (zh) * 2020-01-08 2021-07-15 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
CN113316280A (zh) * 2020-02-27 2021-08-27 青岛海尔电冰箱有限公司 用于加热装置的控制方法以及加热装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224623A1 (en) * 2007-10-18 2010-09-09 Kenji Yasui Microwave heating apparatus
JP2011129341A (ja) * 2009-12-17 2011-06-30 Panasonic Corp マイクロ波処理装置源
KR20150093466A (ko) * 2014-02-07 2015-08-18 이동현 Rf 가열 장치 및 그의 구동방법
CN106500143A (zh) * 2016-10-31 2017-03-15 广东美的厨房电器制造有限公司 微波炉及其加热控制方法
WO2019162086A1 (de) * 2018-02-20 2019-08-29 BSH Hausgeräte GmbH Betreiben eines haushaltsgeräts mit auftaufunktion
WO2021056821A1 (zh) * 2019-09-29 2021-04-01 青岛海尔智能技术研发有限公司 一种射频加热控制方法及射频加热器具
CN112969248A (zh) * 2019-12-13 2021-06-15 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
WO2021139387A1 (zh) * 2020-01-08 2021-07-15 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
CN113316280A (zh) * 2020-02-27 2021-08-27 青岛海尔电冰箱有限公司 用于加热装置的控制方法以及加热装置

Also Published As

Publication number Publication date
CN117412423A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US9398646B2 (en) Microwave heating device and microwave heating control method
US10820383B2 (en) Control of microwave source efficiency in a microwave heating apparatus
CN106340974A (zh) 应用于无线电能传输原边控制的阻感性负载在线识别算法
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
CN110473764B (zh) 一种基于射频电源的阻抗调节方法及射频电源系统
WO2024008118A1 (zh) 用于加热装置的控制方法及加热装置
CN106255246B (zh) 电力加热设备的电力控制方法
CN112969248B (zh) 用于加热装置的控制方法及加热装置
CN109091760B (zh) 一种微波功率源、治疗设备及微波信号生成方法
JPWO2015129678A1 (ja) 整合器及び整合方法
JP2023522188A (ja) 加熱装置を用いた解凍方法及び加熱装置
CN113316280B (zh) 用于加热装置的控制方法以及加热装置
WO2024008119A1 (zh) 用于加热装置的控制方法及加热装置
EP4230935A1 (en) Control method for heating device, and heating device
CN117412421A (zh) 用于加热装置的控制方法及加热装置
WO2023103706A1 (zh) 用于加热装置的控制方法及加热装置
CN109221882B (zh) 开关匹配模块及使用该开关匹配模块的解冻装置
EP4114143B1 (en) Defrosting method for heating apparatus, and heating apparatus
WO2022036712A1 (zh) 一种频率控制方法及装置
AU2022370260A1 (en) Control method for heating device and heating device
WO2021056821A1 (zh) 一种射频加热控制方法及射频加热器具
WO2024124985A1 (zh) 射频解冻设备的控制方法、装置、设备及存储介质
CN117412417A (zh) 用于加热装置的控制方法及加热装置
CN111227023A (zh) 射频解冻装置及其控制方法及装置、解冻机、存储介质
CN117412416A (zh) 用于加热装置的控制方法及加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834885

Country of ref document: EP

Kind code of ref document: A1