WO2021056821A1 - 一种射频加热控制方法及射频加热器具 - Google Patents

一种射频加热控制方法及射频加热器具 Download PDF

Info

Publication number
WO2021056821A1
WO2021056821A1 PCT/CN2019/122843 CN2019122843W WO2021056821A1 WO 2021056821 A1 WO2021056821 A1 WO 2021056821A1 CN 2019122843 W CN2019122843 W CN 2019122843W WO 2021056821 A1 WO2021056821 A1 WO 2021056821A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
electromagnetic waves
frequency heating
power
module
Prior art date
Application number
PCT/CN2019/122843
Other languages
English (en)
French (fr)
Inventor
贾晓芸
张力潇
沈兵
劳春峰
Original Assignee
青岛海尔智能技术研发有限公司
青岛海尔智慧厨房电器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 青岛海尔智慧厨房电器有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2021056821A1 publication Critical patent/WO2021056821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • A47J37/0623Small-size cooking ovens, i.e. defining an at least partially closed cooking cavity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • A47J37/0623Small-size cooking ovens, i.e. defining an at least partially closed cooking cavity
    • A47J37/0629Small-size cooking ovens, i.e. defining an at least partially closed cooking cavity with electric heating elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the invention belongs to the technical field of heating devices, and specifically relates to a radio frequency heating control technology applied to food heating appliances.
  • Heating tubes As heat sources to generate heat and transfer it to the food in the oven cavity for cooking.
  • the heating tube due to the limitation of the heating tube itself, when the heating tube is used to heat the food, the surface of the food is easy to be cooked, while the internal maturation of the food is slower, and the heating time is usually longer. For example, it takes more than 1 hour to roast a chicken. Burning or blackening of the food surface will affect the satisfaction of the heating device.
  • Radio frequency heating technology is a technology that uses electromagnetic waves emitted by solid-state semiconductor sources to heat food. This solid-state semiconductor source can effectively adjust and control the power, frequency, and phase of the electromagnetic waves it emits, which is more conducive to improving the heating quality of food.
  • the radio frequency heating module (module designed by applying the radio frequency heating technology) can only heat food according to the frequency and cooking time selected by the user during operation.
  • the corresponding optimal electromagnetic wave frequency and optimal cooking time will be correspondingly different. If only the user's judgment is made, it will obviously cause great troubles to the user, and it is easy to appear.
  • the food is under-cooked or over-cooked.
  • some radio frequency heating devices require the user to manually input the thickness of the food to assist the user in selecting the appropriate electromagnetic wave frequency and cooking time.
  • the process of measuring and inputting the thickness of the food is obviously cumbersome and troublesome for the user, which affects the user's experience to a certain extent.
  • the object of the present invention is to provide a radio frequency heating control method for radio frequency heating appliances, which can automatically determine the appropriate electromagnetic wave frequency and cooking time without the user inputting the thickness of the food, which is helpful to improve the heating quality of the food.
  • the present invention adopts the following technical solutions to achieve:
  • the process of determining the optimal frequency is completed within the time T0 before the start of cooking; within the time T0, the incident power Po of electromagnetic waves of each frequency remains unchanged, and each frequency is continuously or regularly detected
  • the minimum value of the reflected power Pb is selected to participate in the calculation of the difference A, that is, the difference A is the difference between the incident power Po of the electromagnetic wave of each frequency and the minimum value of the reflected power Pb.
  • the cooking time Tm it is preferable to use a test method to determine the correspondence between the optimal frequency Fm and the cooking time Tm in advance, and generate a comparison table; after the optimal frequency Fm is determined for the food to be heated , The cooking time Tm corresponding to the optimal frequency Fm is determined by looking up the comparison table.
  • the electromagnetic waves of the remaining N-1 frequencies are preferably emitted alternately within the duration of T2, and the emission duration of the electromagnetic waves of the remaining N-1 frequencies is the same.
  • the electromagnetic waves of the N frequencies are preferably emitted and output by a radio frequency heating module in cooperation with a radiator, and the incident power Po of the electromagnetic wave is preferably the maximum transmission power of the radio frequency heating module.
  • the present invention also proposes a radio frequency heating appliance, including a heating cavity, a radio frequency heating module, a power detection module and a control module; wherein a radiator is provided on the inner wall of the heating cavity;
  • the radio frequency heating module emits electromagnetic waves into the heating cavity through the radiator;
  • the power detection module is used to detect the power of the electromagnetic waves;
  • the control module controls the radio frequency heating module to pass through the radiator before cooking starts
  • the incident power Po emits electromagnetic waves of N frequencies to the food in the heating cavity, N ⁇ 2, and the reflected power Pb of electromagnetic waves of each frequency is detected by the power detection module, and then the incident power of electromagnetic waves of each frequency is calculated
  • the control module uses the electromagnetic wave frequency corresponding to the maximum difference as the optimal frequency Fm, and determines the cooking time Tm according to the optimal frequency Fm, and then controls the radio frequency heating module Enter the cooking process with a duration of Tm, and emit electromagnetic waves of the best frequency within the duration of T1, and
  • the control module controls the radio frequency heating module to emit electromagnetic waves of N frequencies with the maximum transmission power during the T0 time before the cooking starts, and controls the power detection module to continuously or periodically detect each type within the T0 time
  • the reflected power Pb of the electromagnetic wave of the frequency, the minimum value of the reflected power Pb is selected to participate in the calculation of the difference A, that is, the difference A corresponding to the electromagnetic wave of each frequency is the maximum transmit power of the radio frequency heating module and the frequency
  • a comparison table of the corresponding relationship between the optimal frequency Fm and the cooking time Tm is stored in the control module, and the control module determines the optimal frequency Fm by looking up the comparison table.
  • control module preferably controls the radio frequency heating module to alternately emit electromagnetic waves of the remaining N-1 frequencies during the T2 time period to adapt to the time period of the food.
  • the change in thickness during heating is preferably controlled by the control module to alternately emit electromagnetic waves of the remaining N-1 frequencies during the T2 time period to adapt to the time period of the food.
  • the present invention also proposes another radio frequency heating control method, which is applied in the process of heating food using electromagnetic waves, including: using two radio frequency heating modules and two radiators to respectively emit to the food to be heated N frequency electromagnetic waves, N ⁇ 2; configure the first radio frequency heating module to emit electromagnetic waves of each frequency with incident power Po1, and detect the reflected power of electromagnetic waves of each frequency Pb1; configure the second radio frequency heating module to incident power Po2 emits electromagnetic waves of each frequency and detects the reflected power Pb2 of electromagnetic waves of each frequency; calculates the difference A1 between the incident power Po1 and the reflected power Pb1 of the first radio frequency heating module when emitting electromagnetic waves of each frequency; Calculate the difference A2 between the incident power Po2 and the reflected power Pb2 of the second radio frequency heating module when emitting electromagnetic waves of each frequency; take the electromagnetic wave frequency corresponding to the maximum value of the difference A1 as the best value of the first radio frequency heating module Frequency Fm1, and determine the cooking time Tm1 of the first radio frequency heating module according to the optimal
  • the process of determining the best frequencies Fm1 and Fm2 within the time T0 before the start of cooking; within the time T0, continuously or regularly detect the emission of each radio frequency heating module
  • the reflected power Pb1 and Pb2 of the electromagnetic wave of each frequency are selected, and the minimum value of the reflected power Pb1 and Pb2 of the electromagnetic wave of each frequency is selected to participate in the calculation of the difference A1, A2, that is, the first radio frequency heating module emits
  • the difference A1 corresponding to the electromagnetic wave of each frequency is the difference between the incident power Po1 and the minimum value of the reflected power Pb1 of the electromagnetic wave of that frequency; the difference corresponding to the electromagnetic wave of each frequency emitted by the second radio frequency heating module
  • the value A2 is the difference between the incident power Po2 and the minimum value of the reflected power Pb2 of the electromagnetic wave of the frequency.
  • a test method to predetermine the corresponding relationship between the optimal frequency Fm1 and the cooking time Tm1 and the corresponding relationship between the optimal frequency Fm2 and the cooking time Tm2, and generate a comparison table; determine the optimal frequency for the food to be heated After Fm1 and Fm2, the cooking time Tm1 corresponding to the optimal frequency Fm1 and the cooking time Tm2 corresponding to the optimal frequency Fm2 are determined by looking up the comparison table.
  • the first radio frequency heating module alternately emits electromagnetic waves of the remaining N-1 frequencies except Fm1 during the T12 time period with the same duration
  • the second radio frequency The heating module alternately emits electromagnetic waves of the remaining N-1 frequencies except Fm2 with an equal duration during the T22 duration.
  • the incident power Po1 is the maximum transmission power of the first radio frequency heating module
  • the incident power Po2 is the maximum transmission power of the second radio frequency heating module
  • the transmit power of the first radio frequency heating module is preferably configured as During the period of electromagnetic wave heating of the food to be heated by the second radio frequency heating module for a duration of Tm2, it is preferable to configure the transmission power of the second radio frequency heating module to be
  • the B is a preset correction coefficient.
  • the first radio frequency heating module and the second radio frequency heating module are used to cook the food to be heated at the same time, and the correction coefficient B preferably takes a value between 0.1-10.
  • the present invention also proposes another radio frequency heating appliance, including a heating cavity, a first radio frequency heating module, a second radio frequency heating module, a first power detection module, a second power detection module, and a control module;
  • a first radiator and a second radiator are provided on the inner wall of the heating cavity;
  • the first radio frequency heating module emits electromagnetic waves into the heating cavity through the first radiator;
  • the second radio frequency The heating module emits electromagnetic waves into the heating cavity through the second radiator;
  • the first power detection module detects the power of the reflected electromagnetic waves received through the first radiator;
  • the second power detection module detects that the second The power of the reflected electromagnetic wave received by the radiator;
  • the control module controls the first radio frequency heating module to transmit electromagnetic waves of N frequencies to the food in the heating cavity with incident power Po1 through the first radiator before the cooking starts , N ⁇ 2, and detect the reflected power Pb1 of the electromagnetic wave of each frequency through the first power detection module, and then calculate the difference A1 between the incident power Po1 and the reflected power Pb
  • the control module controls the first radio frequency heating module to emit electromagnetic waves of N frequencies at its maximum transmission power and controls the second radio frequency heating module to transmit electromagnetic waves of N frequencies at its maximum transmission power within T0 time before the cooking starts.
  • the control module controls the first radio frequency heating module and the second radio frequency heating module to cook the food in the heating cavity at the same time, and preferably adjusts within the cooking time Tm1 where the first radio frequency heating module is located
  • the transmitting power of the first radio frequency heating module is Within the cooking time Tm2 where the second radio frequency heating module is located, it is preferable to adjust the transmit power of the second radio frequency heating module to
  • the B is a preset correction coefficient.
  • the present invention uses frequency sweeping to emit electromagnetic waves of different frequencies to the food to be heated, and can automatically recognize the difference between the incident power and the reflected power of the electromagnetic waves.
  • the thickness of the food to be heated and then determine the appropriate cooking time and the adjustment method of the electromagnetic wave frequency during the cooking time.
  • the entire cooking process can be automatically completed without manual intervention.
  • the degree of automation is high, the user operation is simple and fast, and the food can be reached.
  • FIG. 1 is a structural diagram of an embodiment of the radio frequency heating device proposed by the present invention
  • FIG. 2 is a structural diagram of another embodiment of the radio frequency heating device proposed by the present invention.
  • FIG. 3 is a control flowchart of an embodiment of the radio frequency heating control method proposed by the present invention.
  • FIG. 4 is a structural diagram of another embodiment of the radio frequency heating device proposed by the present invention.
  • FIG. 5 is a structural diagram of still another embodiment of the radio frequency heating device proposed by the present invention.
  • Fig. 6 is a control flow chart of another embodiment of the radio frequency heating control method proposed by the present invention.
  • Embodiment 1 the radio frequency heating appliance is used as the hardware carrier, and the radio frequency heating control method applied on it is described in detail.
  • the radio frequency heating device of this embodiment mainly includes a heating cavity, a radiator AT installed on the inner wall of the heating cavity, and a main control board that controls the radiator AT to emit electromagnetic waves.
  • the main control board is provided with main components such as an AC-DC conversion module, a radio frequency heating module RM, a power detection module PM, and a control module.
  • the AC-DC conversion module is used to connect an external AC power supply AC, such as AC mains, and convert the AC power supply AC into a DC power supply DC to provide DC power supply for the radio frequency heating module RM, and further convert it to generate a low-voltage working power supply VCC, which is the control module , Power detection module PM and other weak current loads supply power.
  • the radio frequency heating module RM mainly includes electronic components such as an oscillator OS and a power amplifier AP.
  • the oscillator OS can generate square wave or sine wave electric signals of different frequencies, which are sent to the power amplifier AP for power amplification processing, and then radiated
  • the body AT emits electromagnetic waves and feeds them into the heating cavity. Electromagnetic waves vibrate in the heating cavity, so that the moisture in the food will also vibrate, using self-heating for cooking.
  • one way of implementation is to set multiple oscillators in the radio frequency heating module RM, such as the four oscillators OS1, OS2, OS3, and OS4 in Figure 1, each of which outputs a square wave. Or the frequency of the sine wave electrical signal is different.
  • electromagnetic waves of four frequencies can be emitted through the radiator AT, such as electromagnetic waves of 2450MHz, 5800MHz, 6780MHz, and 24150MHz.
  • Another implementation method is to set an oscillator OS with adjustable oscillation frequency in the radio frequency heating module RM. As shown in Fig. 2, the oscillation frequency of the oscillator OS is configured by the control module to generate different frequency formulas.
  • the wave or sine wave electric signal is further processed by the power amplifier AP for power amplification, and then the radiator AT emits electromagnetic waves of multiple frequencies.
  • is the heating penetration depth of the food
  • F is the frequency of the electromagnetic wave. It can be seen that the optimal frequency of electromagnetic waves in the cooking process is directly related to the thickness of the food, and has little correlation with the food type (meat or pasta). Therefore, the appropriate electromagnetic wave frequency and cooking time can be determined according to the thickness of the food. In order to realize the automatic identification of the thickness of the food, this embodiment adopts the frequency sweeping technology. Before cooking, electromagnetic waves of different frequencies are emitted to the food in the heating cavity, and the incident power Po and the reflected power Pb of the electromagnetic waves of each frequency are recorded.
  • the reflected electromagnetic waves are received by the radiator AT and sent to the power detection module PM to detect the power of the reflected electromagnetic waves, that is, the reflected power Pb, calculate the difference A between the incident power Po of the electromagnetic wave of each frequency and the reflected power Pb of the electromagnetic wave of that frequency.
  • the electromagnetic wave of the frequency corresponding to the maximum difference has the most energy absorbed by the food, so the maximum difference can be used.
  • the frequency of the electromagnetic wave reflects the thickness of the food.
  • the electromagnetic wave frequency Fm corresponding to the maximum difference Initial thickness of food Cooking time Tm 2450MHz Thickness ⁇ 3cm 30 minutes 5800MHz 2cm ⁇ thickness ⁇ 3cm 25 minutes 6780MHz 1cm ⁇ thickness ⁇ 2cm 20 minutes 24150MHz Thickness ⁇ 1cm 17 minutes
  • the electromagnetic wave frequency corresponding to the maximum difference is selected as the optimal frequency Fm, and then combined with the above comparison table, you can Find out the cooking time Tm corresponding to the optimal frequency Fm.
  • this embodiment preferably divides the cooking time Tm into two parts with different lengths, and uses the best frequency for a longer period of time.
  • the electromagnetic wave of Fm heats the food, and the electromagnetic wave of other frequencies is used to heat the food alternately in a short period of time to improve the taste of the food after cooking.
  • radio frequency heating control method of this embodiment in detail with reference to FIG. 3, which specifically includes the following processes:
  • S301 Transmit electromagnetic waves of N frequencies to the food to be heated, and perform frequency sweep detection
  • the period T0 is set to perform frequency sweep detection on the food to determine the optimal frequency of the electromagnetic wave required for cooking the food.
  • the period T0 is preferably a value between 0.01 second and 60 seconds. Avoid long waiting times.
  • the control module first controls the radio frequency heating module RM to cooperate with the radiator AT to sequentially emit electromagnetic waves of N frequencies to the food in the heating cavity. The total number of electromagnetic waves of all frequencies that the heating module RM can emit is determined.
  • the control module can control the radio frequency heating module RM to operate according to the predetermined incident power Po. In order to shorten the cooking time of food, it is preferable to configure the control module to control the radio frequency heating module RM to operate at its maximum transmission power.
  • the power detection module PM is activated at the same time to continuously or periodically detect the power of the reflected electromagnetic wave with the same frequency as the current emitted electromagnetic wave, that is, reflection Power, and select the minimum value among the multiple reflected powers of electromagnetic waves of the same frequency that are continuously or periodically detected as the reflected power that participates in the subsequent difference calculation, denoted as Pb. Since the transmission power of the radio frequency heating module RM is determined by the control module, the incident power Po of electromagnetic waves of each frequency is a known quantity for the control module.
  • the control module calculates the electromagnetic wave of each frequency according to the incident power Po of the electromagnetic wave of each frequency emitted by the radio frequency heating module RM and the reflected power Pb (the minimum reflected power) of the electromagnetic wave of the corresponding frequency detected by the power detection module PM.
  • N differences A can be obtained.
  • the incident power Po is preferably the maximum transmission power of the radio frequency heating module RM.
  • the maximum value is selected from the obtained N difference values A, and the electromagnetic wave frequency corresponding to the maximum difference value is taken as the optimal frequency Fm.
  • the larger the difference A the better the absorption rate of the electromagnetic wave corresponding to the frequency band for the food to be heated, and the electromagnetic wave frequency corresponding to the maximum difference can indirectly reflect the thickness of the food.
  • the cooking time Tm can be determined by looking up the comparison table. Specifically, before the radio frequency heating appliance leaves the factory, a large number of experiments can be used to generate a comparison table of the correspondence between the optimal frequency Fm and the cooking time Tm, as shown in Table 1 above, and save it in the control module for the The radio frequency heating appliance is called by the system during the actual application process after it leaves the factory.
  • control module preferably controls the radio frequency heating module RM to operate at its maximum transmission power, and cooperates with the radiator AT to first emit electromagnetic waves of the best frequency Fm, and continue heating for T1 time; control The module controls the radio frequency heating module RM and the radiator AT to emit electromagnetic waves of the remaining N-1 frequencies to the food, and during the T2 period of continuous heating, the electromagnetic waves of the remaining N-1 frequencies are equally distributed, that is, equal Alternately emit electromagnetic waves of the remaining N-1 frequencies to improve the cooking taste of food and improve the heating quality.
  • control module automatically controls the radio frequency heating module RM to stop running, and the cooking process ends.
  • this embodiment takes the use of two radio frequency heating modules to cook food to be heated together as an example, and specifically elaborates the hardware composition of the radio frequency heating appliance and the specific application of the radio frequency heating control method thereon.
  • the radio frequency heating device of this embodiment has two radiators AT1 and AT2 built in its heating cavity.
  • the two radiators AT1 and AT2 are preferably arranged on opposite sides of the inner wall of the heating cavity. , And jointly emit electromagnetic waves to heat the food in the heating cavity.
  • two radio frequency heating modules RM1 and RM2 are provided on the main control board of the radio frequency heating appliance, which are respectively connected to the two radiators AT1 and AT2 in a one-to-one correspondence.
  • An AC-DC conversion module is arranged on the main control board to convert the external AC power supply AC (such as AC mains) into two DC power supplies DC1 and DC2, which provide independent DC for the two radio frequency heating modules RM1 and RM2 respectively Power supply, and further transform to generate a low-voltage working power supply VCC, which supplies power to the control module, power detection module PM, PM2 and other weak current loads that are arranged on the main control board.
  • two power detection modules PM1 and PM2 are preferably arranged on the main control board, which are respectively connected between the first radio frequency heating module RM1 and the first radiator AT1, and the second radio frequency heating module RM2 and the first radiator AT2. In between, the power of the reflected electromagnetic waves received by the two radiators AT1 and AT2 is detected respectively, and the control module is sent.
  • one way to achieve this is to set up multiple oscillators in the two radio frequency heating modules RM1 and RM2, for example, in the first radio frequency heating module shown in Figure 4
  • the four oscillators OS21, OS22, OS23, OS24, etc. arranged in the second radio frequency heating module RM2.
  • each RF heating module RM1 or RM2 the four oscillators OS11/OS21, OS12/OS22, OS13/OS23, OS14/OS24 have different oscillation frequencies, but each of the two RF heating modules RM1 and RM2 oscillates
  • the oscillation frequency of the device can be the same in pairs. That is, the four oscillators OS11, OS12, OS13, OS14 in the first radio frequency heating module RM1 can output square wave or sine wave electrical signals of four frequencies, and the power is performed by the power amplifier AP1 in the first radio frequency heating module RM1.
  • electromagnetic waves of four frequencies such as electromagnetic waves of 2450MHz, 5800MHz, 6780MHz, 24150MHz, etc.
  • the four oscillators OS21, OS22, OS23, OS24 in the second radio frequency heating module RM2 can output four square wave or sine wave electrical signals with the same frequency as the four oscillators in the first radio frequency heating module RM1.
  • electromagnetic waves of four frequencies are emitted through the second radiator AT2, and the electromagnetic waves of the four frequencies are the same as the electromagnetic waves of the four frequencies emitted by the first radiator AT1 The frequency is the same.
  • Another implementation method is to set an oscillator OS5 and OS6 with adjustable oscillation frequency in the two radio frequency heating modules RM1 and RM2 respectively.
  • the control module is used to control the two radio frequency heating modules RM1 and RM2.
  • the oscillation frequencies of the oscillators OS5 and OS6 are respectively configured to generate square wave or sine wave electrical signals of different frequencies, and then through the power amplifiers AP1 and AP2 for power amplification, the radiators AT1 and AT2 emit electromagnetic waves of multiple frequencies. .
  • radio frequency heating control method of the radio frequency heating appliance with two built-in radio frequency heating modules RM1 and RM2 which specifically includes the following processes:
  • the period T0 is set to perform frequency sweep detection on the food to determine the optimal frequency of the electromagnetic wave required for cooking the food.
  • the period T0 is preferably a value between 0.01 second and 60 seconds. Avoid long waiting times.
  • the control module first controls the two radio frequency heating modules RM1 and RM2 to cooperate with the two radiators AT1 and AT2 to sequentially emit electromagnetic waves of N frequencies to the food in the heating cavity, so The N ⁇ 2 can be determined according to the total number of electromagnetic waves of all frequencies that can be emitted by the radio frequency heating modules RM1 and RM2.
  • the control module can control the two radio frequency heating modules RM1 and RM2 to start at the same time, and operate according to their respective predetermined incident powers Po1 and Po2 respectively.
  • the control module can be configured to control the two radio frequency heating modules RM1 and RM2 to operate at their maximum transmission powers respectively.
  • the first radio frequency heating module RM1 cooperates with the first radiator AT1 to emit electromagnetic waves of each frequency to the food in the heating cavity
  • the first power detection module PM1 is activated at the same time to continuously or periodically detect the electromagnetic waves currently emitted by the first radiator AT1
  • the power of reflected electromagnetic waves with the same frequency (ie, reflected power), and the minimum value among the multiple reflected powers of electromagnetic waves of the same frequency detected continuously or periodically is selected as the reflected power for the subsequent difference A1 calculation, and it is recorded as Pb1.
  • the second power detection module PM2 is activated at the same time to continuously or periodically detect the current current with the second radiator AT2.
  • the power of the reflected electromagnetic wave with the same frequency of the emitted electromagnetic wave ie, reflected power
  • the frequencies of the electromagnetic waves emitted by the two radio frequency heating modules RM1 and RM2 in cooperation with the two radiators AT1 and AT2 may be the same or different, and none of them will affect the detection result.
  • the two radio frequency heating modules RM1 and RM2 cooperate with the two radiators AT1 and AT2 to emit the incident power Po1 and Po2 of electromagnetic waves of each frequency.
  • the control module they are all known quantities.
  • S603 Calculate the difference A1 between the incident power Po1 and the reflected power Pb1 when the first radio frequency heating module RM1 emits electromagnetic waves of each frequency;
  • the control module calculates the incident power Po1 of the electromagnetic wave of each frequency emitted by the first radio frequency heating module RM1 and the reflected power Pb1 (the minimum value of the reflected power) of the electromagnetic wave of the corresponding frequency detected by the first power detection module PM1.
  • N differences A1 can be obtained.
  • the incident power Po1 is preferably the maximum transmission power of the first radio frequency heating module RM1.
  • S604 Calculate the difference A2 between the incident power Po2 and the reflected power Pb2 when the second radio frequency heating module RM2 emits electromagnetic waves of each frequency;
  • the control module calculates the incident power Po2 of the electromagnetic wave of each frequency emitted by the second radio frequency heating module RM2 and the reflected power Pb2 (the minimum value of the reflected power) of the electromagnetic wave of the corresponding frequency detected by the second power detection module PM2.
  • N differences A2 can be obtained.
  • the incident power Po2 is preferably the maximum transmission power of the second radio frequency heating module RM2.
  • S605 Use the electromagnetic wave frequency corresponding to the maximum value of the difference A1 as the optimal frequency Fm1 of the first radio frequency heating module RM1, and determine the cooking time Tm1 of the first radio frequency heating module RM1 according to the optimal frequency Fm1;
  • the first radio frequency heating module RM1 can be determined according to the optimal frequency Fm1.
  • the cooking time Tm1 corresponding to the optimal frequency Fm1 can also be determined by looking up the comparison table.
  • the creation method of the comparison table can be imitated the related description in the first embodiment.
  • S606 Use the electromagnetic wave frequency corresponding to the maximum value of the difference A2 as the optimal frequency Fm2 of the second radio frequency heating module RM2, and determine the cooking time Tm2 of the second radio frequency heating module RM2 according to the optimal frequency Fm2;
  • the maximum value is selected from the obtained N difference values A2, and the electromagnetic wave frequency corresponding to the maximum difference value is used as the optimal frequency Fm2 of the second radio frequency heating module RM2, and then the second radio frequency heating module RM2 can be determined according to the optimal frequency Fm2. 2. Cooking time Tm2 of the radio frequency heating module RM2.
  • the cooking time Tm2 corresponding to the optimal frequency Fm2 can also be determined by looking up the comparison table.
  • the method of creating the comparison table can also follow the related description in the first embodiment.
  • the comparison table may be combined with the correspondence between the optimal frequency Fm1 of the first radio frequency heating module RM1 and the cooking time Tm1, and the optimal frequency Fm2 of the second radio frequency heating module RM2 and the cooking time Tm2.
  • the corresponding relationship of time Tm2 creates another comparison table and saves it in the control module so that the radio frequency heating appliance can be called by itself in the actual application stage after leaving the factory.
  • S607 Use the first radio frequency heating module RM1 to heat the food to be heated with electromagnetic waves of a duration of Tm1, and emit electromagnetic waves of the optimal frequency Fm1 within the duration of T11, and emit electromagnetic waves of the remaining N-1 frequencies within the duration of T12;
  • the system After determining the optimal frequency Fm1, Fm2 and cooking time Tm1, Tm2, the system enters the normal cooking mode.
  • the normal cooking process it is preferable to divide the cooking time Tm1 corresponding to the first radio frequency heating module RM1 into two parts.
  • One part is to control the first radio frequency heating module RM1 to cooperate with the first radiator AT1 to emit electromagnetic waves of the best frequency Fm1, and this
  • the duration of one part is T11; the other part is to control the first radio frequency heating module RM1 to cooperate with the first radiator AT1 to emit electromagnetic waves of N-1 frequencies other than the optimal frequency Fm1.
  • the control module preferably controls the first radio frequency heating module RM1 to cooperate with the first radiator AT1 to first emit electromagnetic waves with the best frequency Fm1 and continue heating for T11; then, the control module controls the first radio frequency heating module RM1
  • a radio frequency heating module RM1 cooperates with the first radiator AT1 to emit electromagnetic waves of the remaining N-1 frequencies to the food, and during the T12 period of continuous heating, evenly allocates the emission time for the electromagnetic waves of the remaining N-1 frequencies, that is, control
  • the first radio frequency heating module RM1 cooperates with the first radiator AT1 to alternately emit electromagnetic waves of the remaining N-1 frequencies with equal duration to improve the cooking taste of the food and improve the heating quality.
  • B is a preset correction coefficient, and its value range is between 0.1 and 10. The specific value can be determined through experiments in combination with the value distribution range of A1 and A2.
  • the first radio frequency heating module RM1 and the second radio frequency heating module RM2 are controlled to start operation at the same time, and divide the cooking time Tm2 corresponding to the second radio frequency heating module RM2 into two parts, one is to control the second radio frequency
  • the heating module RM2 cooperates with the second radiator AT2 to emit electromagnetic waves of the best frequency Fm2, and the operating time of this part is T21; the other part is to control the second radio frequency heating module RM2 to cooperate with the second radiator AT2 to emit electromagnetic waves other than the best frequency Fm2
  • the control module can control the second radio frequency heating module RM2 to cooperate with the second radiator AT2 to first emit electromagnetic waves of the best frequency Fm2, and continue heating for T21 time, and then emit electromagnetic waves of the remaining N-1 frequencies. And in the T22 time period of continuous heating, the remaining N-1 frequency electromagnetic waves are equally allocated the emission time, that is, the second radio frequency heating module RM2 is controlled to cooperate with the second radiator AT2 to alternately emit the remaining N-1 types of electromagnetic waves with equal duration. Frequency electromagnetic waves.
  • the second radio frequency heating module RM2 it is also possible to control the second radio frequency heating module RM2 to cooperate with the second radiator AT2 to first alternately emit electromagnetic waves of the remaining N-1 frequencies except for the optimal frequency Fm2 with the same duration, and the duration of the alternating heating is T22; then, In the remaining T21 time, the electromagnetic wave of the optimal frequency Fm2 is emitted to the food in the heating cavity. There is little difference between the two methods in improving the taste of food.
  • the control module preferably adjusts the transmission power of the second radio frequency heating module RM2 during its cooking time Tm2 as To match the transmission power P1 of the first radio frequency heating module RM1, an ideal cooking quality can be obtained.
  • control module After the maximum value of the cooking time Tm1 and Tm2 is reached, the control module automatically controls the two radio frequency heating modules RM1 and RM2 to stop running, and the cooking process ends.
  • the invention adopts electromagnetic waves of multiple frequencies to heat the food, can achieve the cooking effect that the food is ripe inside and outside at the same time, and can achieve better cooking quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

本发明公开了一种射频加热控制方法及射频加热器具,包括:向待加热的食物发射多种频率的电磁波;获取每一种频率的电磁波的入射功率和反射功率;计算每一种频率的电磁波的入射功率与反射功率的差值;将最大差值所对应的电磁波频率作为最佳频率,并根据最佳频率确定烹饪时间Tm;对待加热的食物进行时长为Tm的电磁波加热,且在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余各种频率的电磁波;T1+T2=Tm,且T1>T2。本发明采用扫频方式向待加热食物发射不同频率的电磁波,并根据电磁波的入射功率与反射功率的差值便可自动识别出待加热食物的厚度,进而自行确定出合适的烹饪时间以及在该烹饪时间内电磁波频率的调整方式。

Description

一种射频加热控制方法及射频加热器具
相关申请的交叉引用
本申请要求于2019年9月29日提交中国专利局、申请号为201910933974.8、发明名称为“一种射频加热控制方法及射频加热器具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于加热装置技术领域,具体地说,是涉及一种应用于食品加热器具的射频加热控制技术。
背景技术
目前的电烤箱等食品加热装置,多采用加热管作为发热源,产生热量并传递给炉腔内的食物,进行烹饪。以电烤箱为例进行说明,在现有的电烤箱中至少配置有两根顶部加热管、一根底部加热管和一根背部加热管,利用至少四根配置在炉腔内不同位置的加热管才能实现对流、辐射、传导加热,进而满足食物的烹饪要求。但由于加热管自身的局限,采用加热管对食物进行加热时,食物表面容易烤熟,而食物内部成熟较慢,且加热时间通常较长,例如烤一只鸡大约需要1小时以上,因而易出现食物表面烧焦或发黑现象,影响加热装置的使用满意度。
随着射频技术的快速发展和日臻成熟,射频加热装置应运而生并渐受关注。射频加热技术是一种利用固态半导体源发射的电磁波来加热食物的技术。这种固态半导体源可以对其发射的电磁波的功率、频率、相位实现有效地调节和控制,从而更有利于提升食物的加热品质。
但是,目前的射频加热装置,其射频加热模块(应用所述射频加热技术设计的模块)在工作期间,只能按照用户选定的频率和烹饪时间对食物进行加热。但是,不同的食物由于其自身厚度的不同,其所对应的最佳电磁波频率和最佳烹饪时间也会相应不同,若仅靠用户自行判断,显然会给用户带来极大的困扰, 易出现食物烹饪不熟或过熟等情况。
为了解决上述问题,某些射频加热装置要求用户手动输入食物的厚度,以协助用户选择合适的电磁波频率和烹饪时间。但是,测量并输入食物厚度的过程对于用户而言显然是繁琐、麻烦的,在一定程度上影响了用户的使用体验。
发明内容
本发明的目的在于提供一种用于射频加热器具的射频加热控制方法,无需用户输入食物厚度,即可自动确定出合适的电磁波频率和烹饪时间,有助于提升食物的加热品质。
为解决上述技术问题,本发明采用以下技术方案予以实现:
在一个方面,本发明提出了一种射频加热控制方法,应用在利用电磁波对食物进行加热的过程中,包括:向待加热的食物发射N种频率的电磁波,N≥2;获取每一种频率的电磁波的入射功率Po和反射功率Pb;计算每一种频率的电磁波的入射功率Po与反射功率Pb的差值A;将最大差值所对应的电磁波频率作为最佳频率Fm,并根据所述最佳频率Fm确定烹饪时间Tm;对待加热的食物进行时长为Tm的电磁波加热,且在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余N-1种频率的电磁波;所述T1+T2=Tm,且T1>T2。
优选的,确定所述最佳频率的过程在烹饪开始前的T0时间内完成;在所述T0时间内,每一种频率的电磁波的入射功率Po保持不变,连续或定时检测每一种频率的电磁波的反射功率Pb,选择反射功率Pb的最小值参与所述差值A的运算,即,差值A为每一种频率的电磁波的入射功率Po与反射功率Pb的最小值的差值。
作为所述烹饪时间Tm的一种优选确认方式,优选采用试验方法预先确定出最佳频率Fm与烹饪时间Tm的对应关系,并生成对照表;在针对待加热的食物确定出最佳频率Fm后,采用查找所述对照表的方式确定出所述最佳频率Fm所对应的烹饪时间Tm。
优选的,所述N≥3,在所述T2时长内优选交替发射剩余N-1种频率的电 磁波,且所述剩余N-1种频率的电磁波的发射时长相等。
优选的,所述N种频率的电磁波优选由一个射频加热模块配合辐射体发射输出,所述电磁波的入射功率Po优选为所述射频加热模块的最大发射功率。
基于上述射频加热控制方法,本发明还提出了一种射频加热器具,包括加热腔、射频加热模块、功率检测模块和控制模块;其中,在所述加热腔的内壁上设置有辐射体;所述射频加热模块通过所述辐射体向所述加热腔内发射电磁波;所述功率检测模块用于检测电磁波的功率;所述控制模块在烹饪开始前,控制所述射频加热模块通过所述辐射体以入射功率Po向加热腔内的食物发射N种频率的电磁波,N≥2,并通过所述功率检测模块检测每一种频率的电磁波的反射功率Pb,进而计算每一种频率的电磁波的入射功率Po与反射功率Pb的差值A;所述控制模块将最大差值所对应的电磁波频率作为最佳频率Fm,并根据所述最佳频率Fm确定出烹饪时间Tm,进而控制所述射频加热模块进入时长为Tm的烹饪过程,并在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余N-1种频率的电磁波;所述T1+T2=Tm,且T1>T2。
优选的,所述控制模块在烹饪开始前的T0时间内控制射频加热模块以最大发射功率发射N种频率的电磁波,并控制所述功率检测模块在所述T0时间内连续或定时检测每一种频率的电磁波的反射功率Pb,选择反射功率Pb的最小值参与所述差值A的运算,即,每一种频率的电磁波所对应的差值A为射频加热模块的最大发射功率与该频率的电磁波的反射功率Pb的最小值的差值。
优选的,在所述控制模块中存储有最佳频率Fm与烹饪时间Tm之间对应关系的对照表,所述控制模块在确定出最佳频率Fm后,采用查找所述对照表的方式确定出所述最佳频率Fm所对应的烹饪时间Tm。
为了进一步提高食物的加热品质,所述N≥3,所述控制模块在所述T2时长内优选控制所述射频加热模块以相等的时长交替发射剩余N-1种频率的电磁波,以适应食物在加热过程中厚度发生的变化。
在另一个方面,本发明还提出了另外一种射频加热控制方法,应用在利用 电磁波对食物进行加热的过程中,包括:利用两个射频加热模块配合两个辐射体分别向待加热的食物发射N种频率的电磁波,N≥2;配置第一射频加热模块以入射功率Po1发射每一种频率的电磁波,并检测每一种频率的电磁波的反射功率Pb1;配置第二射频加热模块以入射功率Po2发射每一种频率的电磁波,并检测每一种频率的电磁波的反射功率Pb2;计算第一射频加热模块在发射每一种频率的电磁波时的入射功率Po1与反射功率Pb1的差值A1;计算第二射频加热模块在发射每一种频率的电磁波时的入射功率Po2与反射功率Pb2的差值A2;将差值A1中的最大值所对应的电磁波频率作为第一射频加热模块的最佳频率Fm1,并根据所述最佳频率Fm1确定第一射频加热模块的烹饪时间Tm1;将差值A2中的最大值所对应的电磁波频率作为第二射频加热模块的最佳频率Fm2,并根据所述最佳频率Fm2确定第二射频加热模块的烹饪时间Tm2;利用第一射频加热模块对待加热的食物进行时长为Tm1的电磁波加热,且在T11时长内发射最佳频率Fm1的电磁波,在T12时长内发射剩余N-1种频率的电磁波;所述T11+T12=Tm1,且T11>T12;利用第二射频加热模块对待加热的食物进行时长为Tm2的电磁波加热,且在T21时长内发射最佳频率Fm2的电磁波,在T22时长内发射剩余N-1种频率的电磁波;所述T21+T22=Tm2,且T21>T22。
为了提高最佳频率获取的准确性,优选在烹饪开始前的T0时间内完成所述最佳频率Fm1、Fm2的确定过程;在所述T0时间内,连续或定时检测每一个射频加热模块在发射每一种频率的电磁波时的反射功率Pb1、Pb2,选择每一种频率的电磁波的反射功率Pb1、Pb2的最小值参与所述差值A1、A2的运算,即,第一射频加热模块所发射的每一种频率的电磁波所对应的差值A1为入射功率Po1与该频率电磁波的反射功率Pb1的最小值的差值;第二射频加热模块所发射的每一种频率的电磁波所对应的差值A2为入射功率Po2与该频率电磁波的反射功率Pb2的最小值的差值。
优选的,优选采用试验方法预先确定出最佳频率Fm1与烹饪时间Tm1的对应关系以及最佳频率Fm2与烹饪时间Tm2的对应关系,并生成对照表;在针对 待加热的食物确定出最佳频率Fm1、Fm2后,采用查找所述对照表的方式确定出所述最佳频率Fm1所对应的烹饪时间Tm1以及所述最佳频率Fm2所对应的烹饪时间Tm2。
为了改善食物的烹饪效果,所述N≥3,所述第一射频加热模块在所述T12时长内以相等的时长交替发射除Fm1以外的剩余N-1种频率的电磁波,所述第二射频加热模块在所述T22时长内以相等的时长交替发射除Fm2以外的剩余N-1种频率的电磁波。
优选的,所述入射功率Po1为第一射频加热模块的最大发射功率,所述入射功率Po2为第二射频加热模块的最大发射功率;在利用所述第一射频加热模块对待加热的食物进行时长为Tm1的电磁波加热期间,优选配置所述第一射频加热模块的发射功率为
Figure PCTCN2019122843-appb-000001
在利用所述第二射频加热模块对待加热的食物进行时长为Tm2的电磁波加热期间,优选配置所述第二射频加热模块的发射功率为
Figure PCTCN2019122843-appb-000002
其中,所述B为预设的修正系数。
优选的,利用所述第一射频加热模块和第二射频加热模块同时对待加热的食物进行烹饪,所述修正系数B优选在0.1~10之间取值。
基于上述射频加热控制方法,本发明还提出了另外一种射频加热器具,包括加热腔、第一射频加热模块、第二射频加热模块、第一功率检测模块、第二功率检测模块和控制模块;其中,在所述加热腔的内壁上设置有第一辐射体和第二辐射体;所述第一射频加热模块通过所述第一辐射体向所述加热腔内发射电磁波;所述第二射频加热模块通过所述第二辐射体向所述加热腔内发射电磁波;所述第一功率检测模块检测通过第一辐射体接收到的反射电磁波的功率;所述第二功率检测模块检测通过第二辐射体接收到的反射电磁波的功率;所述控制模块在烹饪开始前,控制所述第一射频加热模块通过所述第一辐射体以入射功率Po1向加热腔内的食物发射N种频率的电磁波,N≥2,并通过所述第一功率检测模块检测每一种频率的电磁波的反射功率Pb1,进而计算出每一种频 率的电磁波的入射功率Po1与反射功率Pb1的差值A1;控制所述第二射频加热模块通过所述第二辐射体以入射功率Po2向加热腔内的食物发射N种频率的电磁波,并通过所述第二功率检测模块检测每一种频率的电磁波的反射功率Pb2,进而计算出每一种频率的电磁波的入射功率Po2与反射功率Pb2的差值A2;所述控制模块将差值A1中的最大值所对应的电磁波频率作为第一射频加热模块的最佳频率Fm1,并根据所述最佳频率Fm1确定出第一射频加热模块的烹饪时间Tm1,进而控制第一射频加热模块进入时长为Tm1的烹饪过程,并在T11时长内发射最佳频率Fm1的电磁波,在T12时长内发射剩余N-1种频率的电磁波;所述T11+T12=Tm1,且T11>T12;所述控制模块将差值A2中的最大值所对应的电磁波频率作为第二射频加热模块的最佳频率Fm2,并根据所述最佳频率Fm2确定出第二射频加热模块的烹饪时间Tm2,进而控制第二射频加热模块进入时长为Tm2的烹饪过程,并在T21时长内发射最佳频率Fm2的电磁波,在T22时长内发射剩余N-1种频率的电磁波;所述T21+T22=Tm2,且T21>T22。
优选的,所述控制模块在烹饪开始前的T0时间内控制第一射频加热模块以其最大发射功率发射N种频率的电磁波,控制第二射频加热模块以其最大发射功率发射N种频率的电磁波;在烹饪开始后,所述控制模块控制所述第一射频加热模块和第二射频加热模块同时对加热腔中的食物进行烹饪,并在第一射频加热模块所在的烹饪时间Tm1内,优选调整所述第一射频加热模块的发射功率为
Figure PCTCN2019122843-appb-000003
在第二射频加热模块所在的烹饪时间Tm2内,优选调整所述第二射频加热模块的发射功率为
Figure PCTCN2019122843-appb-000004
所述B为预设的修正系数。
优选的,所述
Figure PCTCN2019122843-appb-000005
所述
Figure PCTCN2019122843-appb-000006
与现有技术相比,本发明的优点和积极效果是:本发明采用扫频的方式向待加热食物发射不同频率的电磁波,并根据电磁波的入射功率与反射功率的差值便可自动识别出待加热食物的厚度,进而自行确定出合适的烹饪时间以及在该烹饪时间内电磁波频率的调整方式,无需人工干预即可自动完成整个烹饪过 程,自动化程度高,用户操作简单快捷,并可达到食物内外同时成熟的烹饪效果,继而获得更好的烹饪品质,改善用户的使用体验。
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所提出的射频加热器具的一种实施例的架构图;
图2是本发明所提出的射频加热器具的另一种实施例的架构图;
图3是本发明所提出的射频加热控制方法的一种实施例的控制流程图;
图4是本发明所提出的射频加热器具的又一种实施例的架构图;
图5是本发明所提出的射频加热器具的再一种实施例的架构图;
图6是本发明所提出的射频加热控制方法的另一种实施例的控制流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细地说明。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
实施例一,本实施例以射频加热器具为硬件载体,具体阐述在其上应用的射频加热控制方法。
参见图1、图2所示,本实施例的射频加热器具主要包括加热腔、安装在加热腔的内壁上的辐射体AT以及控制所述辐射体AT发射电磁波的主控板。在所述主控板上设置有交流-直流转换模块、射频加热模块RM、功率检测模块PM、控制模块等主要部件。其中,交流-直流转换模块用于外接交流电源AC,例如 交流市电,并将交流电源AC转换成直流电源DC为射频加热模块RM提供直流供电,并进一步转换生成低压工作电源VCC,为控制模块、功率检测模块PM等弱电负载供电。所述射频加热模块RM主要包括振荡器OS、功率放大器AP等电子部件,其中,振荡器OS可以产生不同频率的方波或正弦波电信号,发送至功率放大器AP进行功率放大处理后,通过辐射体AT发射电磁波并馈入至加热腔。电磁波在加热腔内振动,使食物中的水分也随之振动,利用自体发热进行烹饪。
为了实现电磁波频率的可调节,一种实现方式是在射频加热模块RM中设置多个振荡器,例如图1中的四个振荡器OS1、OS2、OS3、OS4,每一个振荡器输出的方波或正弦波电信号的频率均不同,分别通过功率放大器AP进行功率放大处理后,可以通过辐射体AT发射四种频率的电磁波,例如2450MHz、5800MHz、6780MHz、24150MHz的电磁波等。另外一种实现方式是在射频加热模块RM中设置一个振荡频率可调的振荡器OS,如图2所示,利用控制模块对所述振荡器OS的振荡频率进行配置,以产生不同频率的方波或正弦波电信号,进而经由功率放大器AP进行功率放大处理后,通过辐射体AT发射多种频率的电磁波。
由于不同频率的电磁波对食物的加热穿透深度不同,其计算公式为:
Figure PCTCN2019122843-appb-000007
其中,λ为食物的加热穿透深度;C为波速,且C=3×10 8m/s;F为电磁波的频率。由此可见,烹饪过程中电磁波的最佳频率与食物的厚度直接相关,与食物种类(肉类还是面食)的关联性并不大。因此,可以根据食物的厚度确定出适宜的电磁波频率和烹饪时间。为了实现食物厚度的自动识别,本实施例采用扫频技术,在烹饪开始前,向加热腔内的食物发射不同频率的电磁波,并记录每一种频率的电磁波的入射功率Po和反射功率Pb。当电磁波射入到食物中时,一部分能量会被食物所吸收,剩余能量的电磁波会发生反射,利用辐射体AT接收反射电磁波,并发送至功率检测模块PM检测出反射电磁波的功率,即反射功率Pb,计算每一种频率的电磁波的入射功率Po与该频率电磁波的反射功率Pb的差值A,最大差值所对应的频率的电磁波被食物吸收的能量最多,因此可以利用最大差值所对应的电磁波频率反映出食物的厚度。通常来讲,最大差值 所对应的电磁波的频率越小,食物的厚度越大,所需的烹饪时间越长;反之,最大差值所对应的电磁波的频率越大,食物的厚度越小,所需的烹饪时间越短。以2450MHz、5800MHz、6780MHz、24150MHz四种频率的电磁波为例进行说明,可以建立最大差值所对应的电磁波频率(最佳频率Fm)与食物初始厚度以及烹饪时间三者之间对应关系的对照表,如下表所示:
最大差值所对应的电磁波频率Fm 食物初始厚度 烹饪时间Tm
2450MHz 厚度≥3cm 30分钟
5800MHz 2cm≤厚度<3cm 25分钟
6780MHz 1cm≤厚度<2cm 20分钟
24150MHz 厚度<1cm 17分钟
表1
在计算出每一种频率的电磁波的入射功率Po与该频率电磁波的反射功率Pb的差值A后,选择最大差值所对应的电磁波频率作为最佳频率Fm,然后结合上述对照表,即可查找出该最佳频率Fm所对应的烹饪时间Tm。考虑到食物在加热过程中,其厚度会发生变化,为了进一步提高烹饪效果,本实施例优选将所述烹饪时间Tm分成长短不一的两部分,并在较长的一段时间内采用最佳频率Fm的电磁波对食物进行加热,而在较短的一段时间内采用其他频率的电磁波交替对食物进行加热,以提高食物烹饪后的口感。
下面结合图3,对本实施例的射频加热控制方法进行详细阐述,具体包括以下过程:
S301、向待加热的食物发射N种频率的电磁波,执行扫频检测;
在烹饪开始前,设定周期T0用于对食物进行扫频检测,以确定出用于烹饪食物所需电磁波的最佳频率,所述周期T0优选在0.01秒~60秒之间取值,以避免出现较长的等待时间。具体而言,在用户启动射频加热器具进入烹饪模式时,控制模块首先控制射频加热模块RM配合辐射体AT向加热腔中的食物依次发射N种频率的电磁波,所述N≥2,可根据射频加热模块RM所能发射的所有 频率的电磁波的总数确定。
S302、获取每一种频率的电磁波的入射功率Po和反射功率Pb;
在扫频期间,控制模块可以控制射频加热模块RM按照预定的入射功率Po运行。为了缩短食物的烹饪时间,优选配置控制模块控制射频加热模块RM以其最大发射功率运行。
在射频加热模块RM配合辐射体AT向加热腔中的食物发射每一种频率的电磁波时,同时启动功率检测模块PM连续或定时检测与当前发射的电磁波频率相同的反射电磁波的功率,即,反射功率,并在连续或定时检测到的多个同一频率电磁波的反射功率中选择最小值作为后续参与差值运算的反射功率,记为Pb。由于射频加热模块RM的发射功率由控制模块确定,因此每一种频率的电磁波的入射功率Po对于控制模块而言是已知量。
S303、计算每一种频率的电磁波的入射功率Po与反射功率Pb的差值A;
控制模块根据射频加热模块RM发出的每一种频率的电磁波的入射功率Po以及通过功率检测模块PM检测到相应频率的电磁波的反射功率Pb(反射功率最小值),计算出每一种频率的电磁波的入射功率Po与其反射功率Pb的差值A=Po-Pb。对于可发射N种频率电磁波的射频加热模块RM而言,即可获得N个差值A。作为一种优选实施例,所述入射功率Po优选取射频加热模块RM的最大发射功率。
S304、将最大差值所对应的电磁波频率作为最佳频率Fm;
从获取到的N个差值A中选取最大值,将最大差值所对应的电磁波频率作为最佳频率Fm。差值A越大,说明其对应频段的电磁波对于待加热食物而言的吸收率越好,而最大差值所对应的电磁波频率即可间接地反映出食物的厚度。
S305、根据最佳频率Fm确定烹饪时间Tm;
在本实施例中,可以采用查找对照表的方式确定出烹饪时间Tm。具体而言,可以在射频加热器具出厂前,通过大量的试验生成最佳频率Fm与烹饪时间Tm之间对应关系的对照表,如上述的表1所示,并保存于控制模块中,以便在射 频加热器具出厂后的实际应用过程中由系统自行调用。
S306、对待加热的食物进行时长为Tm的电磁波加热,且在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余N-1种频率的电磁波;
在确定出电磁波的最佳频率Fm以及烹饪时间Tm后,系统进入正常的烹饪模式。在正常烹饪过程中,优选将总烹饪时间Tm划分成两部分,一部分是利用最佳频率Fm的电磁波对加热腔中的食物进行加热,此部分的时长为T1;另一部分是利用除最佳频率Fm以外的剩余N-1种频率的电磁波对加热腔中的食物进行加热,此部分的时长为T2;其中,T1+T2=Tm,且T1>T2。
作为一种优选实施例,优选设置
Figure PCTCN2019122843-appb-000008
在某一些实施例中,优选分配时长
Figure PCTCN2019122843-appb-000009
为了进一步提高烹饪效果,在整个烹饪时间Tm内,控制模块优选控制射频加热模块RM以其最大发射功率运行,并配合辐射体AT首先发射最佳频率Fm的电磁波,并持续加热T1时间后;控制模块控制射频加热模块RM配合辐射体AT向食物发射剩余N-1种频率的电磁波,并在持续加热的T2时间段内,为剩余N-1种频率的电磁波平均分配发射时间,即,以相等的时长交替发射剩余N-1种频率的电磁波,以提高食物的烹饪口感,改善加热品质。
S307、结束烹饪过程;
在烹饪时间Tm达到后,控制模块自动控制射频加热模块RM停止运行,结束烹饪过程。
实施例二,本实施例以采用两个射频加热模块共同为待加热食物进行烹饪为例,具体阐述射频加热器具的硬件组成以及射频加热控制方法在其上的具体应用。
参见图4、图5所示,本实施例的射频加热器具在其加热腔中内置两个辐射体AT1和AT2,所述两个辐射体AT1和AT2优选布设在加热腔的内壁的相对两侧,共同发射电磁波对加热腔中的食物进行加热。此外,在射频加热器具的 主控板上设置有两个射频加热模块RM1和RM2,分别与两个辐射体AT1和AT2一一对应连接。在主控板上布设交流-直流转换模块,用于将外接的交流电源AC(例如交流市电)转换成两路直流电源DC1、DC2,分别为两个射频加热模块RM1和RM2提供独立的直流供电,并进一步转换生成低压工作电源VCC,为布设在主控板上的控制模块、功率检测模块PM、PM2等弱电负载供电。本实施例在主控板上优选布设两个功率检测模块PM1和PM2,分别连接在第一射频加热模块RM1与第一辐射体AT1之间,以及第二射频加热模块RM2与第一辐射体AT2之间,以分别检测通过两个辐射体AT1、AT2接收到的反射电磁波的功率,并发送所述控制模块。
为了实现通过两个辐射体AT1、AT2发射的电磁波的频率可调,一种实现方式是在两个射频加热模块RM1、RM2中分别设置多个振荡器,例如图4中设置在第一射频加热模块RM1中的四个振荡器OS11、OS12、OS13、OS14,以及设置在第二射频加热模块RM2中的四个振荡器OS21、OS22、OS23、OS24等。在每一个射频加热模块RM1或RM2中,四个振荡器OS11/OS21、OS12/OS22、OS13/OS23、OS14/OS24的振荡频率各不相同,但两个射频加热模块RM1、RM2中的各个振荡器的振荡频率可两两对应相同。即,通过第一射频加热模块RM1中的四个振荡器OS11、OS12、OS13、OS14可输出四种频率的方波或正弦波电信号,通过第一射频加热模块RM1中的功率放大器AP1进行功率放大处理后,可以通过第一辐射体AT1发射四种频率的电磁波,例如2450MHz、5800MHz、6780MHz、24150MHz的电磁波等。而通过第二射频加热模块RM2中的四个振荡器OS21、OS22、OS23、OS24可输出四种与第一射频加热模块RM1中的四个振荡器相同频率的方波或正弦波电信号,通过第二射频加热模块RM2中的功率放大器AP2进行功率放大处理后,通过第二辐射体AT2发射四种频率的电磁波,所述四种频率的电磁波与第一辐射体AT1发射的四种频率的电磁波的频率相同。另外一种实现方式是在两个射频加热模块RM1、RM2中分别设置一个振荡频率可调的振荡器OS5、OS6,如图5所示,利用控制模块对两个射频加热模块RM1、RM2中的振荡器OS5、OS6 的振荡频率分别进行配置,以产生不同频率的方波或正弦波电信号,进而经由功率放大器AP1、AP2进行功率放大处理后,通过辐射体AT1、AT2发射多种频率的电磁波。
下面结合图6,对内置有两个射频加热模块RM1、RM2的射频加热器具的射频加热控制方法进行详细阐述,具体包括以下过程:
S601、利用两个射频加热模块RM1、RM2配合两个辐射体AT1、AT2分别向待加热的食物发射N种频率的电磁波,执行扫频检测;
在烹饪开始前,设定周期T0用于对食物进行扫频检测,以确定出用于烹饪食物所需电磁波的最佳频率,所述周期T0优选在0.01秒~60秒之间取值,以避免出现较长的等待时间。具体而言,在用户启动射频加热器具进入烹饪模式时,控制模块首先控制两个射频加热模块RM1、RM2配合两个辐射体AT1、AT2向加热腔中的食物依次发射N种频率的电磁波,所述N≥2,可根据射频加热模块RM1、RM2所能发射的所有频率的电磁波的总数确定。
S602、获取两个射频加热模块RM1、RM2配合两个辐射体AT1、AT2发射的每一种频率的电磁波的入射功率Po1、Po2和反射功率Pb1、Pb2;
在扫频期间,控制模块可以控制两个射频加热模块RM1、RM2同时启动,并分别按照其各自预定的入射功率Po1、Po2运行。作为一种优选实施例,可以配置控制模块控制两个射频加热模块RM1、RM2分别以其最大发射功率运行。
在第一射频加热模块RM1配合第一辐射体AT1向加热腔中的食物发射每一种频率的电磁波时,同时启动第一功率检测模块PM1连续或定时检测与第一辐射体AT1当前发射的电磁波频率相同的反射电磁波的功率(即,反射功率),并在连续或定时检测到的多个同一频率电磁波的反射功率中选择最小值作为后续参与差值A1运算的反射功率,且记为Pb1。
同理,在第二射频加热模块RM2配合第二辐射体AT2向加热腔中的食物发射每一种频率的电磁波时,同时启动第二功率检测模块PM2连续或定时检测与第二辐射体AT2当前发射的电磁波频率相同的反射电磁波的功率(即,反射功 率),并在连续或定时检测到的多个同一频率电磁波的反射功率中选择最小值作为后续参与差值A2运算的反射功率,且记为Pb2。
本实施例中,在同一时刻,两个射频加热模块RM1、RM2配合两个辐射体AT1、AT2发射的电磁波的频率可以相同,也可以不同,均不影响检测结果。
由于两个射频加热模块RM1、RM2的发射功率均由控制模块确定,因此,两个射频加热模块RM1、RM2配合两个辐射体AT1、AT2发射的每一种频率的电磁波的入射功率Po1、Po2对于控制模块而言均是已知量。
S603、计算第一射频加热模块RM1在发射每一种频率的电磁波时的入射功率Po1与反射功率Pb1的差值A1;
控制模块根据第一射频加热模块RM1发出的每一种频率的电磁波的入射功率Po1以及通过第一功率检测模块PM1检测到相应频率的电磁波的反射功率Pb1(反射功率最小值),计算出每一种频率的电磁波的入射功率Po1与其反射功率Pb1的差值A1=Po1-Pb1。对于可发射N种频率电磁波的第一射频加热模块RM1而言,即可获得N个差值A1。作为一种优选实施例,所述入射功率Po1优选取第一射频加热模块RM1的最大发射功率。
S604、计算第二射频加热模块RM2在发射每一种频率的电磁波时的入射功率Po2与反射功率Pb2的差值A2;
控制模块根据第二射频加热模块RM2发出的每一种频率的电磁波的入射功率Po2以及通过第二功率检测模块PM2检测到相应频率的电磁波的反射功率Pb2(反射功率最小值),计算出每一种频率的电磁波的入射功率Po2与其反射功率Pb2的差值A2=Po2-Pb2。对于可发射N种频率电磁波的第二射频加热模块RM2而言,即可获得N个差值A2。作为一种优选实施例,所述入射功率Po2优选取第二射频加热模块RM2的最大发射功率。
S605、将差值A1中的最大值所对应的电磁波频率作为第一射频加热模块RM1的最佳频率Fm1,并根据所述最佳频率Fm1确定第一射频加热模块RM1的烹饪时间Tm1;
从获取到的N个差值A1中选取最大值,将最大差值所对应的电磁波频率作为第一射频加热模块RM1的最佳频率Fm1,然后,便可根据所述最佳频率Fm1确定出第一射频加热模块RM1的烹饪时间Tm1。
在本实施例中,同样可以采用查找对照表的方式确定出与最佳频率Fm1相对应的烹饪时间Tm1。所述对照表的创建方式可以仿照实施例一中的相关描述。
S606、将差值A2中的最大值所对应的电磁波频率作为第二射频加热模块RM2的最佳频率Fm2,并根据所述最佳频率Fm2确定第二射频加热模块RM2的烹饪时间Tm2;
从获取到的N个差值A2中选取最大值,将最大差值所对应的电磁波频率作为第二射频加热模块RM2的最佳频率Fm2,然后,便可根据所述最佳频率Fm2确定出第二射频加热模块RM2的烹饪时间Tm2。
由于食物多数情况下是非均匀分布的,因此,两组差值A1、A2中的最大值一般并不相同。
在本实施例中,同样可以采用查找对照表的方式确定出与最佳频率Fm2相对应的烹饪时间Tm2。所述对照表的创建方式同样可以仿照实施例一中的相关描述。
在本实施例中,所述对照表可以结合第一射频加热模块RM1的最佳频率Fm1与烹饪时间Tm1之间的对应关系以及第二射频加热模块RM2的最佳频率Fm2与烹饪时间Tm2之间的对应关系创建一张表;也可以针对第一射频加热模块RM1的最佳频率Fm1与烹饪时间Tm1的对应关系创建一张对照表,再针对第二射频加热模块RM2的最佳频率Fm2与烹饪时间Tm2的对应关系创建另外一张对照表,保存在控制模块中,以便射频加热器具在出厂后的实际应用阶段自行调用。
S607、利用第一射频加热模块RM1对待加热的食物进行时长为Tm1的电磁波加热,且在T11时长内发射最佳频率Fm1的电磁波,在T12时长内发射剩余N-1种频率的电磁波;
在确定出最佳频率Fm1、Fm2以及烹饪时间Tm1、Tm2后,系统进入正常的 烹饪模式。在正常烹饪过程中,优选将第一射频加热模块RM1所对应的烹饪时间Tm1划分成两部分,一部分是控制第一射频加热模块RM1配合第一辐射体AT1发射最佳频率Fm1的电磁波,且此部分的时长为T11;另一部分是控制第一射频加热模块RM1配合第一辐射体AT1发射除最佳频率Fm1以外的剩余N-1种频率的电磁波,此部分的时长为T12;其中,T11+T12=Tm1,且T11>T12。
作为一种优选实施例,优选设置
Figure PCTCN2019122843-appb-000010
在某一些实施例中,优选分配时长
Figure PCTCN2019122843-appb-000011
为了进一步提高烹饪效果,在整个烹饪时间Tm1内,控制模块优选控制第一射频加热模块RM1配合第一辐射体AT1首先发射最佳频率Fm1的电磁波,并持续加热T11时间;然后,控制模块控制第一射频加热模块RM1配合第一辐射体AT1向食物发射剩余N-1种频率的电磁波,并在持续加热的T12时间段内,为剩余N-1种频率的电磁波平均分配发射时间,即,控制第一射频加热模块RM1配合第一辐射体AT1以相等的时长交替发射剩余N-1种频率的电磁波,以提高食物的烹饪口感,改善加热品质。
在本实施例中,优选通过控制模块调整所述第一射频加热模块RM1在其烹饪时长Tm1内的发射功率为
Figure PCTCN2019122843-appb-000012
其中,B为预设的修正系数,其取值范围在0.1~10之间,可结合A1、A2的数值分布范围通过试验确定具体数值。
S608、利用第二射频加热模块RM2对待加热的食物进行时长为Tm2的电磁波加热,且在T21时长内发射最佳频率Fm2的电磁波,在T22时长内发射剩余N-1种频率的电磁波;
在正常烹饪过程中,优选控制第一射频加热模块RM1与第二射频加热模块RM2同时启动运行,且将第二射频加热模块RM2所对应的烹饪时间Tm2划分成两部分,一部分是控制第二射频加热模块RM2配合第二辐射体AT2发射最佳频率Fm2的电磁波,且此部分的运行时长为T21;另一部分是控制第二射频加热模块RM2配合第二辐射体AT2发射除最佳频率Fm2以外的剩余N-1种频率的电 磁波,此部分的运行时长为T22;其中,T21+T22=Tm2,且T21>T22。
作为一种优选实施例,优选设置
Figure PCTCN2019122843-appb-000013
在某一些实施例中,优选分配时长
Figure PCTCN2019122843-appb-000014
在整个烹饪时间Tm2内,控制模块可以控制第二射频加热模块RM2配合第二辐射体AT2首先发射最佳频率Fm2的电磁波,并持续加热T21时间后,再发射剩余N-1种频率的电磁波,并在持续加热的T22时间段内,为剩余N-1种频率的电磁波平均分配发射时间,即,控制第二射频加热模块RM2配合第二辐射体AT2以相等的时长交替发射剩余N-1种频率的电磁波。当然,也可以控制第二射频加热模块RM2配合第二辐射体AT2首先以相等的时长交替发射除最佳频率Fm2以外的剩余N-1种频率的电磁波,且交替加热的时长为T22;然后,在剩余的T21时间内向加热腔中的食物发射最佳频率Fm2的电磁波。两种方式在提高食物烹饪口感上效果差别不大。
作为一种优选实施例,在进入正常烹饪过程后,控制模块优选调整第二射频加热模块RM2在其烹饪时长Tm2内的发射功率为
Figure PCTCN2019122843-appb-000015
以配合第一射频加热模块RM1的发射功率P1,获取理想的烹饪品质。
S609、结束烹饪过程;
在烹饪时间Tm1、Tm2中的最大值达到后,控制模块自动控制两个射频加热模块RM1、RM2停止运行,结束烹饪过程。
本发明采用多种频率的电磁波对食物进行加热,可以实现食物内外同时成熟的烹饪效果,且可达到更好的烹饪品质。
应当指出的是,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种射频加热控制方法,应用在利用电磁波对食物进行加热的过程中,其特征在于,包括:
    向待加热的食物发射N种频率的电磁波,N≥2;
    获取每一种频率的电磁波的入射功率Po和反射功率Pb;
    计算每一种频率的电磁波的入射功率Po与反射功率Pb的差值A;
    将最大差值所对应的电磁波频率作为最佳频率Fm,并根据所述最佳频率Fm确定烹饪时间Tm;
    对待加热的食物进行时长为Tm的电磁波加热,且在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余N-1种频率的电磁波;所述T1+T2=Tm,且T1>T2。
  2. 根据权利要求1所述的射频加热控制方法,其特征在于,确定所述最佳频率的过程在烹饪开始前的T0时间内完成;在所述T0时间内,每一种频率的电磁波的入射功率Po保持不变,连续或定时检测每一种频率的电磁波的反射功率Pb,选择反射功率Pb的最小值参与所述差值A的运算。
  3. 根据权利要求1所述的射频加热控制方法,其特征在于,采用试验方法确定出最佳频率Fm与烹饪时间Tm的对应关系,并生成对照表;在针对待加热的食物确定出最佳频率Fm后,采用查找所述对照表的方式确定出所述最佳频率Fm所对应的烹饪时间Tm。
  4. 根据权利要求1所述的射频加热控制方法,其特征在于,所述N≥3,在所述T2时长内交替发射剩余N-1种频率的电磁波,且所述剩余N-1种频率的电磁波的发射时长相等。
  5. 根据权利要求1至4中任一项所述的射频加热控制方法,其特征在于,所述N种频率的电磁波由一个射频加热模块配合辐射体发射输出,所述电磁波的入射功率Po为射频加热模块的最大发射功率。
  6. 一种射频加热器具,其特征在于,包括:
    加热腔,其内壁上设置有辐射体;
    射频加热模块,其通过所述辐射体向所述加热腔内发射电磁波;
    功率检测模块,其用于检测电磁波的功率;
    控制模块,其在烹饪开始前,控制所述射频加热模块通过所述辐射体以入射功率Po向加热腔内的食物发射N种频率的电磁波,N≥2,并通过所述功率检测模块检测每一种频率的电磁波的反射功率Pb,进而计算每一种频率的电磁波的入射功率Po与反射功率Pb的差值A;所述控制模块将最大差值所对应的电磁波频率作为最佳频率Fm,并根据所述最佳频率Fm确定出烹饪时间Tm,进而控制所述射频加热模块进入时长为Tm的烹饪过程,并在T1时长内发射最佳频率的电磁波,在T2时长内发射剩余N-1种频率的电磁波;所述T1+T2=Tm,且T1>T2。
  7. 根据权利要求6所述的射频加热器具,其特征在于,所述控制模块在烹饪开始前的T0时间内控制射频加热模块以最大发射功率发射N种频率的电磁波,并控制所述功率检测模块在所述T0时间内连续或定时检测每一种频率的电磁波的反射功率Pb,选择反射功率Pb的最小值参与所述差值A的运算。
  8. 根据权利要求6所述的射频加热器具,其特征在于,在所述控制模块中存储有最佳频率Fm与烹饪时间Tm之间对应关系的对照表,所述控制模块在确定出最佳频率Fm后,采用查找所述对照表的方式确定出所述最佳频率Fm所对应的烹饪时间Tm。
  9. 根据权利要求6至8中任一项所述的射频加热器具,其特征在于,所述N≥3,所述控制模块在所述T2时长内控制所述射频加热模块以相等的时长交替发射剩余N-1种频率的电磁波。
  10. 一种射频加热控制方法,应用在利用电磁波对食物进行加热的过程中,其特征在于,包括:
    利用两个射频加热模块配合两个辐射体分别向待加热的食物发射N种频率的电磁波,N≥2;
    配置第一射频加热模块以入射功率Po1发射每一种频率的电磁波,并检测每一种频率的电磁波的反射功率Pb1;
    配置第二射频加热模块以入射功率Po2发射每一种频率的电磁波,并检测每一种频率的电磁波的反射功率Pb2;
    计算第一射频加热模块在发射每一种频率的电磁波时的入射功率Po1与反射功率Pb1的差值A1;
    计算第二射频加热模块在发射每一种频率的电磁波时的入射功率Po2与反射功率Pb2的差值A2;
    将差值A1中的最大值所对应的电磁波频率作为第一射频加热模块的最佳频率Fm1,并根据所述最佳频率Fm1确定第一射频加热模块的烹饪时间Tm1;
    将差值A2中的最大值所对应的电磁波频率作为第二射频加热模块的最佳频率Fm2,并根据所述最佳频率Fm2确定第二射频加热模块的烹饪时间Tm2;
    利用第一射频加热模块对待加热的食物进行时长为Tm1的电磁波加热,且在T11时长内发射最佳频率Fm1的电磁波,在T12时长内发射剩余N-1种频率的电磁波;所述T11+T12=Tm1,且T11>T12;
    利用第二射频加热模块对待加热的食物进行时长为Tm2的电磁波加热,且在T21时长内发射最佳频率Fm2的电磁波,在T22时长内发射剩余N-1种频率的电磁波;所述T21+T22=Tm2,且T21>T22。
  11. 根据权利要求10所述的射频加热控制方法,其特征在于,确定所述最佳频率Fm1、Fm2的过程在烹饪开始前的T0时间内完成;在所述T0时间内,连续或定时检测每一个射频加热模块在发射每一种频率的电磁波时的反射功率Pb1、Pb2,选择每一种频率的电磁波的反射功率Pb1、Pb2的最小值参与所述差值A1、A2的运算。
  12. 根据权利要求10所述的射频加热控制方法,其特征在于,采用试验方法确定出最佳频率Fm1与烹饪时间Tm1的对应关系以及最佳频率Fm2与烹饪时间Tm2的对应关系,并生成对照表;在针对待加热的食物确定出最佳频率Fm1、 Fm2后,采用查找所述对照表的方式确定出所述最佳频率Fm1所对应的烹饪时间Tm1以及所述最佳频率Fm2所对应的烹饪时间Tm2。
  13. 根据权利要求10所述的射频加热控制方法,其特征在于,所述N≥3,所述第一射频加热模块在所述T12时长内以相等的时长交替发射除Fm1以外的剩余N-1种频率的电磁波,所述第二射频加热模块在所述T22时长内以相等的时长交替发射除Fm2以外的剩余N-1种频率的电磁波。
  14. 根据权利要求10至13中任一项所述的射频加热控制方法,其特征在于,所述入射功率Po1为第一射频加热模块的最大发射功率,所述入射功率Po2为第二射频加热模块的最大发射功率;
    在利用所述第一射频加热模块对待加热的食物进行时长为Tm1的电磁波加热期间,所述第一射频加热模块的发射功率为
    Figure PCTCN2019122843-appb-100001
    在利用所述第二射频加热模块对待加热的食物进行时长为Tm2的电磁波加热期间,所述第二射频加热模块的发射功率为
    Figure PCTCN2019122843-appb-100002
    所述B为预设的修正系数。
  15. 根据权利要求14所述的射频加热控制方法,其特征在于,利用所述第一射频加热模块和第二射频加热模块同时对待加热的食物进行烹饪;所述修正系数B在0.1~10之间取值。
  16. 一种射频加热器具,其特征在于,包括:
    加热腔,其内壁上设置有第一辐射体和第二辐射体;
    第一射频加热模块,其通过所述第一辐射体向所述加热腔内发射电磁波;
    第二射频加热模块,其通过所述第二辐射体向所述加热腔内发射电磁波;
    第一功率检测模块,其检测通过第一辐射体接收到的反射电磁波的功率;
    第二功率检测模块,其检测通过第二辐射体接收到的反射电磁波的功率;
    控制模块,其在烹饪开始前,控制所述第一射频加热模块通过所述第一辐射体以入射功率Po1向加热腔内的食物发射N种频率的电磁波,N≥2,并通过 所述第一功率检测模块检测每一种频率的电磁波的反射功率Pb1,进而计算出每一种频率的电磁波的入射功率Po1与反射功率Pb1的差值A1;控制所述第二射频加热模块通过所述第二辐射体以入射功率Po2向加热腔内的食物发射N种频率的电磁波,并通过所述第二功率检测模块检测每一种频率的电磁波的反射功率Pb2,进而计算出每一种频率的电磁波的入射功率Po2与反射功率Pb2的差值A2;所述控制模块将差值A1中的最大值所对应的电磁波频率作为第一射频加热模块的最佳频率Fm1,并根据所述最佳频率Fm1确定出第一射频加热模块的烹饪时间Tm1,进而控制第一射频加热模块进入时长为Tm1的烹饪过程,并在T11时长内发射最佳频率Fm1的电磁波,在T12时长内发射剩余N-1种频率的电磁波;所述T11+T12=Tm1,且T11>T12;所述控制模块将差值A2中的最大值所对应的电磁波频率作为第二射频加热模块的最佳频率Fm2,并根据所述最佳频率Fm2确定出第二射频加热模块的烹饪时间Tm2,进而控制第二射频加热模块进入时长为Tm2的烹饪过程,并在T21时长内发射最佳频率Fm2的电磁波,在T22时长内发射剩余N-1种频率的电磁波;所述T21+T22=Tm2,且T21>T22。
  17. 根据权利要求16所述的射频加热器具,其特征在于,
    所述控制模块在烹饪开始前的T0时间内控制第一射频加热模块以入射功率Po1发射N种频率的电磁波,并控制所述第一功率检测模块在所述T0时间内连续或定时检测每一种频率的电磁波的反射功率Pb1,选择反射功率Pb1的最小值参与所述差值A1的运算;
    所述控制模块在烹饪开始前的T0时间内控制第二射频加热模块以入射功率Po2发射N种频率的电磁波,并控制所述第二功率检测模块在所述T0时间内连续或定时检测每一种频率的电磁波的反射功率Pb2,选择反射功率Pb2的最小值参与所述差值A2的运算。
  18. 根据权利要求16所述的射频加热器具,其特征在于,在所述控制模块中存储有最佳频率Fm1与烹饪时间Tm1之间的对应关系以及最佳频率Fm2与烹饪时间Tm2之间的对应关系的对照表,所述控制模块在确定出最佳频率Fm1、 Fm2后,采用查找所述对照表的方式确定出所述最佳频率Fm1、Fm2所对应的烹饪时间Tm1、Tm2。
  19. 根据权利要求16所述的射频加热器具,其特征在于,所述N≥3;
    所述控制模块在所述T12时长内控制所述第一射频加热模块以相等的时长交替发射除Fm1以外的剩余N-1种频率的电磁波;
    所述控制模块在所述T22时长内控制所述第二射频加热模块以相等的时长交替发射除Fm2以外的剩余N-1种频率的电磁波。
  20. 根据权利要求16至19中任一项所述的射频加热器具,其特征在于,所述入射功率Po1为第一射频加热模块的最大发射功率,所述入射功率Po2为第二射频加热模块的最大发射功率;
    所述控制模块控制所述第一射频加热模块和第二射频加热模块同时对加热腔中的食物进行烹饪,并在第一射频加热模块所在的烹饪时间Tm1内,调整第一射频加热模块的发射功率为
    Figure PCTCN2019122843-appb-100003
    在第二射频加热模块所在的烹饪时间Tm2内,调整第二射频加热模块的发射功率为
    Figure PCTCN2019122843-appb-100004
    所述B为预设的修正系数。
PCT/CN2019/122843 2019-09-29 2019-12-04 一种射频加热控制方法及射频加热器具 WO2021056821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910933974.8 2019-09-29
CN201910933974.8A CN112584566B (zh) 2019-09-29 2019-09-29 一种射频加热控制方法及射频加热器具

Publications (1)

Publication Number Publication Date
WO2021056821A1 true WO2021056821A1 (zh) 2021-04-01

Family

ID=75110639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122843 WO2021056821A1 (zh) 2019-09-29 2019-12-04 一种射频加热控制方法及射频加热器具

Country Status (2)

Country Link
CN (1) CN112584566B (zh)
WO (1) WO2021056821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008118A1 (zh) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007777A2 (fr) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Dispositif de chauffage par induction à micro-ondes
CN104202860A (zh) * 2008-11-10 2014-12-10 高知有限公司 用于控制能量的设备和方法
CN105795952A (zh) * 2016-05-05 2016-07-27 广东美的厨房电器制造有限公司 一种微波烹饪方法、装置和烹饪家电
CN106415199A (zh) * 2014-12-17 2017-02-15 皇家飞利浦有限公司 用于确定食物原料的尺寸信息的方法和设备
US20170290104A1 (en) * 2016-04-01 2017-10-05 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
CN109587861A (zh) * 2018-12-29 2019-04-05 京信通信系统(中国)有限公司 一种多频固态微波炉及使用多频固态微波炉的加热方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108670049B (zh) * 2018-04-26 2022-03-04 青岛海尔智能技术研发有限公司 射频加热设备的加热食物方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007777A2 (fr) * 2006-07-14 2008-01-17 Sunny Engineering Co., Ltd Dispositif de chauffage par induction à micro-ondes
CN104202860A (zh) * 2008-11-10 2014-12-10 高知有限公司 用于控制能量的设备和方法
CN106415199A (zh) * 2014-12-17 2017-02-15 皇家飞利浦有限公司 用于确定食物原料的尺寸信息的方法和设备
US20170290104A1 (en) * 2016-04-01 2017-10-05 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
CN105795952A (zh) * 2016-05-05 2016-07-27 广东美的厨房电器制造有限公司 一种微波烹饪方法、装置和烹饪家电
CN109587861A (zh) * 2018-12-29 2019-04-05 京信通信系统(中国)有限公司 一种多频固态微波炉及使用多频固态微波炉的加热方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008118A1 (zh) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置

Also Published As

Publication number Publication date
CN112584566A (zh) 2021-03-30
CN112584566B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
KR20110129719A (ko) 마이크로웨이브를 이용한 조리기기 및 그 동작방법
JP5362836B2 (ja) Rfエネルギを使用して加熱する装置および方法
KR101709473B1 (ko) 마이크로웨이브를 이용한 조리기기
US10064247B2 (en) Methods of controlling cooling in a microwave heating apparatus and apparatus thereof
CN108337758A (zh) 微波烹饪设备、微波加热控制方法和存储介质
US20230254952A1 (en) Microwave cooking apparatus, control method and storage medium
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
WO2021056821A1 (zh) 一种射频加热控制方法及射频加热器具
CN111043632A (zh) 一种用于基于固态源的微波炉频率智能选择方法
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
CN106455180B (zh) 一种半导体微波加热方法、系统和烹饪装置
CN111649360A (zh) 控制方法、半导体微波烹饪电器和存储介质
CN105795952A (zh) 一种微波烹饪方法、装置和烹饪家电
KR20100136836A (ko) 마이크로웨이브를 이용한 조리기기
KR101759160B1 (ko) 조리기기 및 그 동작방법
CN112237368B (zh) 养生壶炖煮食材的方法及装置、养生壶
CN111669859B (zh) 一种半导体微波加热设备及其控制方法
CN106658804B (zh) 一种加热方法及装置
CN111669860A (zh) 一种半导体微波加热设备及其控制方法
WO2023138167A1 (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
EP4017218A1 (en) Method for dielectrically heating a comestible object, appliance, and computer-program product
EP4156860A1 (en) A heating appliance and method of operating a heating appliance
KR101762160B1 (ko) 마이크로웨이브를 이용한 조리기기 및 그 동작방법
KR101634526B1 (ko) 마이크로웨이브를 이용한 조리기기
CN113873703A (zh) 控制方法、微波烹饪电器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946657

Country of ref document: EP

Kind code of ref document: A1