WO2021114993A1 - 一种永磁同步电机的无位置传感器控制方法及系统 - Google Patents

一种永磁同步电机的无位置传感器控制方法及系统 Download PDF

Info

Publication number
WO2021114993A1
WO2021114993A1 PCT/CN2020/127676 CN2020127676W WO2021114993A1 WO 2021114993 A1 WO2021114993 A1 WO 2021114993A1 CN 2020127676 W CN2020127676 W CN 2020127676W WO 2021114993 A1 WO2021114993 A1 WO 2021114993A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
current
module
given
voltage
Prior art date
Application number
PCT/CN2020/127676
Other languages
English (en)
French (fr)
Inventor
尹泉
罗慧
柳鹏
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021114993A1 publication Critical patent/WO2021114993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/11Determination or estimation of the rotor position or other motor parameters based on the analysis of high frequency signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention belongs to the field of variable frequency drives, and more specifically, relates to a position sensorless control method and system of a permanent magnet synchronous motor.
  • the current AC motor speed control methods are basically based on the two motor control theories of vector control and direct torque control. Although the methods and ideas of the two control theories are different, in order to achieve high-performance control of the motor, two kinds of control
  • the theoretical system design requires accurate rotor position angle and speed.
  • a position sensor such as a photoelectric encoder, resolver, etc., is installed on the motor side.
  • the mechanical position sensor can provide accurate rotor position and speed information, it will also bring some problems to the control system: (1) Installing a mechanical sensor will increase the cost of the system, increase the size of the motor, and require additional motor Adding an interface circuit between the control circuit and the control circuit, cost has become a key factor restricting some products from being able to install mechanical position sensors; (2) Mechanical sensors are greatly affected by operating conditions, and their detection accuracy is susceptible to temperature, electromagnetic noise and mechanical Vibration, corrosive gas and other interference will reduce the reliability of the system; (3) When the mechanical sensor fails, the performance of the motor control system will be severely affected, and may even cause serious consequences of damage to the equipment.
  • the purpose of the present invention is to provide a position sensorless control method and system of a permanent magnet synchronous machine, which aims to solve the position observation accuracy caused by the existence of a filter in the rotor position observation link in the traditional position sensorless control algorithm
  • the problem is not high.
  • a position sensorless control method of a permanent magnet synchronous machine which is characterized in that it includes the following steps:
  • S6 Collect the bus voltage, pulse-width modulate the inverter according to the given voltage of the ⁇ -axis, the given voltage of the ⁇ -axis and the bus voltage, and control the operation of the motor through the inverter.
  • the position tracker in S2 is a PI controller
  • the error adjustment in S4 is PI adjustment.
  • the method for obtaining the preset q-axis given current and d-axis given current in S3 is specifically as follows:
  • the given d-axis given current is zero.
  • a position sensorless control system of a permanent magnet synchronous machine which includes a motor current acquisition module, a bus voltage acquisition module, a rotational speed error module, a rotational speed PI module, a dq axis current given module, and Axis current error module, q-axis current error module, d-axis current PI module, q-axis current PI module, Clark transformation module, Park transformation module, Park inverse transformation module, LPF module, pulse width modulation module;
  • the motor current collection module is used to collect the real-time current of any two phases of the three-phase power supply of the motor and send it to the Clark conversion module;
  • the bus voltage acquisition module is used to collect the bus voltage and send it to the pulse width modulation module;
  • the speed error module is used to compare the estimated speed with the given speed to obtain the error speed, and send it to the speed PI module;
  • the speed PI module performs PI adjustment on the error speed, obtains the given current vector amplitude, and sends it to the dq current given module;
  • the dq-axis current given module is used to calculate the d-axis given current and the q-axis given current according to the given power supply voltage, current vector amplitude, d-axis given voltage and q-axis given voltage, and send them to d-axis current error module and q-axis current error module;
  • the d-axis current error module is used to compare the given current of the d-axis with the fundamental frequency current of the d-axis to obtain the d-axis error current and send it to the d-axis current PI module;
  • the q-axis current error module is used to compare the q-axis given current and the q-axis fundamental frequency current to obtain the q-axis error current and send it to the q-axis current PI module;
  • the d-axis current PI module is used to perform PI adjustment on the d-axis error current, and add high-frequency voltage signals to obtain the d-axis given voltage, and send it to the Park inverse transformation module and the dq-axis current given module;
  • the q-axis current PI module is used to adjust the q-axis error current to obtain the q-axis given voltage, and send it to the Park inverse transformation module and the dq-axis current given module;
  • the Park inverse transformation module performs Park inverse transformation on the given voltage of the d-axis and the given voltage of the q-axis to obtain the given voltage of the ⁇ -axis and the given voltage of the ⁇ -axis, and send them to the pulse width modulation module;
  • the pulse width modulation module sends voltage pulses to the inverter according to the bus voltage, the given voltage of the ⁇ -axis and the given voltage of the ⁇ -axis;
  • the inverter controls the motor according to the voltage pulse sent by the pulse width modulation module
  • the Clark transformation module is used to perform Clark transformation on the received real-time current to obtain the ⁇ -axis current and the ⁇ -axis current, and send them to the Park transformation module;
  • the Park transformation module is used to perform Park transformation on the ⁇ -axis current and the ⁇ -axis current to obtain the d-axis real-time current and the q-axis real-time current, and send them to the d-axis current error module and the q-axis current error module respectively;
  • the LPF module is used to filter out the high frequency components in the current signal and retain the fundamental frequency signal
  • the pulse width modulation module is a space vector pulse width modulation module.
  • a motor control system including a power supply circuit, a rectifier, a bus capacitor, a motor, an inverter, and a position sensorless motor control system according to claim 5;
  • the power circuit is used to provide single-phase alternating current for the rectifier
  • the rectifier is used to rectify single-phase alternating current into direct current and supply power to the inverter;
  • the two ends of the bus capacitor are respectively connected to the two ends of the output end of the rectifier to provide the required electric energy for the motor;
  • the inverter is used to receive the voltage pulse sent by the sensorless motor control system, and control the motor according to the voltage pulse.
  • the above-mentioned position sensorless motor control system is used to collect the real-time current of the motor, and is also used to collect the bus voltage in the power circuit, calculate the voltage pulse according to the above variables, and send the voltage pulse to the inverter.
  • the motor is a permanent magnet synchronous motor
  • the rectifier is a single-phase uncontrolled rectifier
  • the inverter is a three-phase voltage type inverter.
  • the rotor position information can be completely decoupled by observing the high-frequency current signal of the motor to reduce the estimation error, and the rotor position is improved by direct extraction by calculation.
  • the use of filters in the observation link will bring phase offset and time lag, which will affect the observation accuracy and system stability.
  • the invention adopts the fast Fourier analysis method to decouple the rotor position error information, reduces the phase offset and the time lag, improves the observation accuracy and the system reliability, and the control algorithm is simple and effective.
  • the present invention can reduce the position error angle of the rotor in the stable state of the system in the traditional method from 6 degrees to less than 2 degrees, which proves the advanced nature of the present invention.
  • Figure 1 The relationship between the estimated dq-axis coordinate system and the real dq-axis coordinate system of the present invention
  • Figure 2 is a position estimation scheme of the traditional high frequency pulse voltage injection algorithm of the present invention
  • Fig. 3 is a position estimation scheme of the improved high-frequency pulse voltage injection algorithm of the present invention.
  • Figure 4 is a structural diagram of the position tracking observer of the present invention.
  • Figure 5 is a connection structure diagram of a position sensorless motor control system of the present invention.
  • Fig. 6 is a connection structure diagram of a position sensorless single-phase input motor control system of the present invention.
  • the present invention provides a position sensorless control method of a permanent magnet synchronous machine, which is characterized in that it comprises the following steps:
  • S6 Collect the bus voltage, pulse-width modulate the inverter according to the given voltage of the ⁇ -axis, the given voltage of the ⁇ -axis and the bus voltage, and control the operation of the motor through the inverter.
  • ⁇ e is the electrical angular velocity of the motor
  • R s is the stator resistance of the motor
  • L d and L q are the d-axis and q-axis inductances of the motor
  • i d and i q are the d-axis and q-axis currents of the motor
  • ⁇ f is the motor Permanent magnet link
  • Z dh and Z qh are the high-frequency impedances of the direct axis d and the quadrature axis q respectively,
  • Quadrature axis current in the estimated dq axis coordinate system Contains torque current i q , high frequency current And high-order harmonic current i qc , namely:
  • the present invention adopts an improved high-frequency pulse voltage injection method, as shown in Fig. 3, for the quadrature axis current Perform fast Fourier transform processing, and directly extract the information containing the rotor position error.
  • the calculation method of the rotor position and speed estimation of the position tracking observer in the step S4 is as follows:
  • the position tracking observer adopts the PI adjustment method, so that the estimated angle continuously converges to the actual angle.
  • the estimated dq axis coordinates are basically consistent with the actual dq axis coordinates.
  • the error signal can be approximately equivalent to:
  • the present invention also provides a position sensorless control system of a permanent magnet synchronous machine, as shown in Figure 5, including a motor current acquisition module, a bus voltage acquisition module, a rotational speed error module, a rotational speed PI module, a dq axis current given module, d-axis current error module, q-axis current error module, d-axis current PI module, q-axis current PI module, Clark transformation module, Park transformation module, Park inverse transformation module, LPF module, pulse width modulation module;
  • the motor current collection module is used to collect the real-time current of any two phases of the three-phase power supply of the motor and send it to the Clark conversion module;
  • the bus voltage acquisition module is used to collect the bus voltage and send it to the pulse width modulation module;
  • the speed error module is used to compare the estimated speed with the given speed to obtain the error speed, and send it to the speed PI module;
  • the speed PI module performs PI adjustment on the error speed, obtains the given current vector amplitude, and sends it to the dq current given module;
  • the dq-axis current given module is used to calculate the d-axis given current and the q-axis given current according to the given power supply voltage, current vector amplitude, d-axis given voltage and q-axis given voltage, and send them to d-axis current error module and q-axis current error module;
  • the d-axis current error module is used to compare the given current of the d-axis with the fundamental frequency current of the d-axis to obtain the d-axis error current and send it to the d-axis current PI module;
  • the q-axis current error module is used to compare the q-axis given current and the q-axis fundamental frequency current to obtain the q-axis error current and send it to the q-axis current PI module;
  • the d-axis current PI module is used to perform PI adjustment on the d-axis error current, and add a high-frequency voltage signal to obtain the d-axis given voltage, and send it to the Park inverse transformation module and the dq-axis current given module;
  • the q-axis current PI module is used to adjust the q-axis error current to obtain the q-axis given voltage, and send it to the Park inverse transformation module and the dq-axis current given module;
  • the Park inverse transformation module performs Park inverse transformation on the given voltage of the d-axis and the given voltage of the q-axis to obtain the given voltage of the ⁇ -axis and the given voltage of the ⁇ -axis, and send them to the pulse width modulation module;
  • the pulse width modulation module sends voltage pulses to the inverter according to the bus voltage, the given voltage of the ⁇ -axis and the given voltage of the ⁇ -axis;
  • the inverter controls the motor according to the voltage pulse sent by the pulse width modulation module
  • the Clark transformation module is used to perform Clark transformation on the received real-time current to obtain the ⁇ -axis current and the ⁇ -axis current, and send them to the Park transformation module;
  • the Park transformation module is used to perform Park transformation on the ⁇ -axis current and the ⁇ -axis current to obtain the d-axis real-time current and the q-axis real-time current, and send them to the d-axis current error module and the q-axis current error module respectively;
  • the LPF module is used to filter out the high frequency components in the current signal and retain the fundamental frequency signal
  • the pulse width modulation module is a space vector pulse width modulation module.
  • the present invention also provides a motor control system, as shown in FIG. 6, including a power supply circuit, a rectifier, a bus capacitor, a motor, an inverter, and the above-mentioned position sensorless motor control system;
  • the power circuit is used to provide single-phase alternating current for the rectifier
  • the rectifier is used to rectify single-phase alternating current into direct current and supply power to the inverter;
  • the two ends of the bus capacitor are respectively connected to the two ends of the output end of the rectifier to provide the required electric energy for the motor;
  • the inverter is used to receive the voltage pulse sent by the sensorless motor control system, and control the motor according to the voltage pulse.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种永磁同步电机的无位置传感器控制方法及系统,采集电机三相电源中任两相的实时电流,对所述实时电流分别进行Clark变化和Park变化,对电流进行快速傅里叶变换,提取转子位置误差信息,输入到位置跟踪观测器,分析误差电流并对误差电流进行误差调节,从而对逆变器进行脉宽调制,并通过所述逆变器控制电机的运行。上述技术方案通过对电机高频电流信号的观测可以将转子位置信息完全解耦从而减小估算误差,通过计算直接提取的方式改善了转子位置和速度估算方案的估算性能,避免观测环节使用滤波器会带来相位偏移和时间滞后,影响观测精度和系统稳定性。

Description

一种永磁同步电机的无位置传感器控制方法及系统 【技术领域】
本发明属于变频驱动领域,更具体地,涉及一种永磁同步电机的无位置传感器控制方法及系统。
【背景技术】
现如今的交流电机调速方法基本都是基于矢量控制和直接转矩控制两大电机控制理论创建的,两种控制理论的方法和思想虽然不同,但是为了实现电机的高性能控制,两种控制理论的系统设计中需要精确的转子位置角和速度。在一般的电机控制系统中,为了获取电机的转子位置角和速度,会在电机侧安装位置传感器,如光电编码器、旋转变压器等。机械位置传感器虽然可以提供精确的转子位置和速度信息,但是同时也会给控制系统带来一些问题:(1)安装机械传感器会增加系统的成本,增大了电机的体积,还需要额外给电机和控制电路之间增加接口电路,成本成为了制约一些产品无法安装机械位置传感器的关键因素;(2)机械式传感器受运行工况的影响较大,其检测精度易受温度、电磁噪声和机械振动、腐蚀性气体等干扰的影响,从而使系统的可靠性降低;(3)机械式传感器发生故障时,电机控制系统的性能会受到严重的影响,甚至可能导致损坏设备的严重后果。
随着电机控制系统的应用场合越来越复杂以及控制性能要求越来越高,在一些系统运行环境较为恶劣或者高性能要求应用场合中,无位置传感器估算算法的估算性能如果较差,会对电机控制系统的调速性能造成影响,特别是系统的动态调节性能,进而无法满足电机的控制性能要求。因此为了满足永磁同步电机无位置传感器高性能控制要求,有必要对无位置传感器控制技术的相应问题做深入的研究。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种永磁同步机的无位置传感器控制方法及系统,旨在解决传统无位置传感器控制算法中转子位置观测环节存在滤波器而导致位置观测精度不高的问题。
为实现上述目的,按照本发明的一方面,提供了一种永磁同步机的无位置传感器控制方法,其特征在于,包括以下步骤:
S1、采集电机三相电源中任两相的实时电流,对实时电流分别进行Clark变化和Park变化,得到d轴电流和q轴电流,预设初始转子角度为零;
S2、对q轴电流进行快速傅里叶变换,提取转子位置误差信息,输入到位置跟踪观测器,更新转子角度;
S3、将d轴电流和q轴电流经过低通滤波器得到d轴和q轴的基频电流,计算d轴和q轴的基频电流和预设的d轴和q轴的给定电流的差值,得到d轴和q轴的误差电流;
S4、对d轴误差电流进行误差调节,并加入高频电压信号,得到d轴给定电压,对q轴误差电流进行误差调节得到q轴给定电压;
S5、根据S2更新的转子角度对d轴给定电压和q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压;
S6、采集母线电压,根据α轴给定电压、β轴给定电压和母线电压对逆变器进行脉宽调制,并通过逆变器控制电机的运行。
优选地,S2中的位置跟踪器为PI控制器,S4中的误差调节为PI调节。
优选地,S3中得到预设的q轴给定电流和d轴给定电流的方法具体为:
对比电机估算转速和给定转速,得到转速误差,对转速误差进行PI调节得到q轴给定电流;
给定d轴给定电流为零。
按照本发明的另一方面,提供了一种永磁同步机的无位置传感器控制系统,包括电机电流采集模块、母线电压采集模块、转速误差模块、转速 PI模块、dq轴电流给定模块、d轴电流误差模块、q轴电流误差模块、d轴电流PI模块、q轴电流PI模块,Clark变换模块、Park变换模块、Park逆变换模块、LPF模块、脉宽调制模块;
电机电流采集模块用于采集电机三相电源中任两相的实时电流,并将其发送至Clark变换模块;
母线电压采集模块用于采集母线电压,并将其发送至脉宽调制模块;
转速误差模块用于将估算转速与给定转速对比,得到误差转速,并将其发送至转速PI模块;
转速PI模块对误差转速进行PI调节,得到电流矢量幅值的给定,并将其发送至dq电流给定模块;
dq轴电流给定模块用于根据电源电压、电流矢量幅值的给定、d轴给定电压和q轴给定电压计算d轴给定电流和q轴给定电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
d轴电流误差模块用于比较d轴给定电流和d轴基频电流,得到d轴误差电流,并将其发送至d轴电流PI模块;
q轴电流误差模块用于比较q轴给定电流和q轴基频电流,得到q轴误差电流,并将其发送至q轴电流PI模块;
d轴电流PI模块用于对d轴误差电流进行PI调节,并加上高频电压信号,得到d轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
q轴电流PI模块用于对q轴误差电流进行PI调节,得到q轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
Park逆变换模块将d轴给定电压和q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压,并将其发送至脉宽调制模块;
脉宽调制模块根据母线电压、α轴给定电压和β轴给定电压向逆变器发送电压脉冲;
逆变器根据脉宽调制模块发送的电压脉冲控制电机;
Clark变换模块用于对接收到的实时电流进行Clark变换,得到α轴电流和β轴电流,并将其发送至Park变换模块;
Park变换模块用于对α轴电流和β轴电流进行Park变换,得到d轴实时电流和q轴实时电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
LPF模块就用于滤除电流信号中的高频成分,保留基频信号;
脉宽调制模块为空间矢量脉宽调制模块。
按照本发明的又一方面,提供了一种电机控制系统,包括电源电路、整流器、母线电容、电机、逆变器和如权利要求5的一种无位置传感器电机控制系统;
电源电路用于为整流器提供单相交流电;
整流器用于将单相交流电整流成直流电,并为逆变器供电;
母线电容的两端分别连接整流器的输出端的两端,用于为电机提供所需电能;
逆变器用于接收的无位置传感器电机控制系统发送的电压脉冲,并根据电压脉冲控制电机。
优选地,上述无位置传感器电机控制系统用于采集电机的实时电流,还用于采集电源电路中的母线电压,根据上述变量计算得到电压脉冲,并将电压脉冲发送至逆变器。
优选地,所述电机为永磁同步电机,所述整流器为单相不控整流器,所述逆变器为三相电压型逆变器。
通过本发明所构思的以上技术方案,与现有技术相比,通过对电机高频电流信号的观测可以将转子位置信息完全解耦从而减小估算误差,通过计算直接提取的方式改善了转子位置和速度估算方案的估算性能,现有技术中,观测环节使用滤波器会带来相位偏移和时间滞后,影响观测精度和 系统稳定性。本发明采用快速傅里叶分析方法进行转子位置误差信息解耦,减小了相位偏移和时间滞后,提高了观测精度和系统可靠性,控制算法简单有效。实验表明,本发明能够将传统方法中系统稳定状态下转子位置误差角度从6度降低到2度以内,证明了本发明的先进性。
【附图说明】
图1本发明估算dq轴坐标系和真实dq轴坐标系的关系图;
图2是本发明传统高频脉振电压注入算法的位置估算方案;
图3是本发明改进高频脉振电压注入算法的位置估算方案;
图4是本发明位置跟踪观测器的结构图;
图5是本发明一种无位置传感器电机控制系统的连接结构图;
图6是本发明一种无位置传感器单相输入电机控制系统的连接结构图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间不构成冲突就可以相互组合。
本发明提供了一种永磁同步机的无位置传感器控制方法,其特征在于,包括以下步骤:
S1、采集电机三相电源中任两相的实时电流,对实时电流分别进行Clark变化和Park变化,得到d轴电流和q轴电流,预设初始转子角度为零;
S2、对q轴电流进行快速傅里叶变换,提取转子位置误差信息,输入到位置跟踪观测器,更新转子角度;
S3、将d轴电流和q轴电流经过低通滤波器得到d轴和q轴的基频电流,计算d轴和q轴的基频电流和预设的d轴和q轴的给定电流的差值,得到d轴和q轴的误差电流;
S4、对d轴误差电流进行误差调节,并加入高频电压信号,得到d轴给定电压,对q轴误差电流进行误差调节得到q轴给定电压;
S5、根据S2更新的转子角度对d轴给定电压和q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压;
S6、采集母线电压,根据α轴给定电压、β轴给定电压和母线电压对逆变器进行脉宽调制,并通过逆变器控制电机的运行。
步骤S2中转子位置误差信息
Figure PCTCN2020127676-appb-000001
的计算方法如下:
永磁同步电机在同步旋转dq坐标系下的电压方程为:
Figure PCTCN2020127676-appb-000002
Figure PCTCN2020127676-appb-000003
其中,ω e为电机电角速度,R s为电机定子电阻,L d、L q为电机d轴电感和q轴电感,i d、i q为电机d轴电流和q轴电流,ψ f为电机永磁磁链;
在低速情况下,可忽略电机的转速,上式改写为:
Figure PCTCN2020127676-appb-000004
Figure PCTCN2020127676-appb-000005
估算的dq轴坐标和真实的dq轴坐标如图1所示,其中,
Figure PCTCN2020127676-appb-000006
为估算坐标系,dq为真实坐标系,
Figure PCTCN2020127676-appb-000007
为估算转子角度,θ为真实转子角度,定义
Figure PCTCN2020127676-appb-000008
为转子角度误差。
向估算的d轴注入高频电压信号U hcos(ω ht),其中U h为高频信号的幅值,ω h为高频信号的角频率,得到估算dq坐标系下高频电流信号为:
Figure PCTCN2020127676-appb-000009
Figure PCTCN2020127676-appb-000010
上式中Z dh、Z qh分别为直轴d、交轴q的高频阻抗,
Figure PCTCN2020127676-appb-000011
Figure PCTCN2020127676-appb-000012
在估算的dq轴坐标系下交轴电流
Figure PCTCN2020127676-appb-000013
包含了转矩电流i q、高频电流
Figure PCTCN2020127676-appb-000014
和高次谐波电流i qc,即:
Figure PCTCN2020127676-appb-000015
在上式中,只有高频电流分量
Figure PCTCN2020127676-appb-000016
包含转子的位置误差信息,传统的高频脉振电压注入法如图2所示,是将
Figure PCTCN2020127676-appb-000017
经过带通滤波器(BPF)来提取高频电流分量
Figure PCTCN2020127676-appb-000018
并通过低通滤波器(LPF)来获得转子角度误差信息,但是带通滤波器的使用会使信号产生幅值的衰减和相位的移动,可能使控制系统不稳定。
本发明采用改进的高频脉振电压注入法,如图3所示,对交轴电流
Figure PCTCN2020127676-appb-000019
进行快速傅里叶变换处理,直接提取其中包含转子位置误差的信息。将
Figure PCTCN2020127676-appb-000020
展开为傅里叶级数:
Figure PCTCN2020127676-appb-000021
其中,
Figure PCTCN2020127676-appb-000022
Figure PCTCN2020127676-appb-000023
Figure PCTCN2020127676-appb-000024
计算上式中的b 1值,即为传统高频脉振电压注入法中的系数
Figure PCTCN2020127676-appb-000025
在公式(6)中,ω 0=ω h,系数b 1可以通过考虑注入频率和控制算法中采样频率之间的关系计算得到。
进一步,所述步骤S4中位置跟踪观测器的转子位置和速度估算的计算方法如下:
如图4所示,位置跟踪观测器采用PI调节的方法,使得估算角度不断地收敛于实际角度,在观测器设计合理的情况下,可以认为估算的dq轴坐标与实际dq轴坐标基本吻合,当角度差值
Figure PCTCN2020127676-appb-000026
较小时,误差信号可以近似等效为:
Figure PCTCN2020127676-appb-000027
本发明还提供了一种永磁同步机的无位置传感器控制系统,如图5所示,包括电机电流采集模块、母线电压采集模块、转速误差模块、转速PI模块、dq轴电流给定模块、d轴电流误差模块、q轴电流误差模块、d轴电流PI模块、q轴电流PI模块,Clark变换模块、Park变换模块、Park逆变换模块、LPF模块、脉宽调制模块;
电机电流采集模块用于采集电机三相电源中任两相的实时电流,并将其发送至Clark变换模块;
母线电压采集模块用于采集母线电压,并将其发送至脉宽调制模块;
转速误差模块用于将估算转速与给定转速对比,得到误差转速,并将其发送至转速PI模块;
转速PI模块对误差转速进行PI调节,得到电流矢量幅值的给定,并将其发送至dq电流给定模块;
dq轴电流给定模块用于根据电源电压、电流矢量幅值的给定、d轴给定电压和q轴给定电压计算d轴给定电流和q轴给定电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
d轴电流误差模块用于比较d轴给定电流和d轴基频电流,得到d轴误差电流,并将其发送至d轴电流PI模块;
q轴电流误差模块用于比较q轴给定电流和q轴基频电流,得到q轴误差电流,并将其发送至q轴电流PI模块;
d轴电流PI模块用于对d轴误差电流进行PI调节,并加上高频电压信号,得到d轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
q轴电流PI模块用于对q轴误差电流进行PI调节,得到q轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
Park逆变换模块将d轴给定电压和q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压,并将其发送至脉宽调制模块;
脉宽调制模块根据母线电压、α轴给定电压和β轴给定电压向逆变器发送电压脉冲;
逆变器根据脉宽调制模块发送的电压脉冲控制电机;
Clark变换模块用于对接收到的实时电流进行Clark变换,得到α轴电流和β轴电流,并将其发送至Park变换模块;
Park变换模块用于对α轴电流和β轴电流进行Park变换,得到d轴实时电流和q轴实时电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
LPF模块就用于滤除电流信号中的高频成分,保留基频信号;
脉宽调制模块为空间矢量脉宽调制模块。
本发明还提供了一种电机控制系统,如图6所示,包括电源电路、整流器、母线电容、电机、逆变器和上述无位置传感器电机控制系统;
电源电路用于为整流器提供单相交流电;
整流器用于将单相交流电整流成直流电,并为逆变器供电;
母线电容的两端分别连接整流器的输出端的两端,用于为电机提供所需电能;
逆变器用于接收的无位置传感器电机控制系统发送的电压脉冲,并根据电压脉冲控制电机。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种永磁同步机的无位置传感器控制方法,其特征在于,包括以下步骤:
    S1、采集电机三相电源中任两相的实时电流,对所述实时电流分别进行Clark变化和Park变化,得到d轴电流和q轴电流,预设初始转子角度为零;
    S2、对所述q轴电流进行快速傅里叶变换,提取转子位置误差信息,输入到位置跟踪观测器,更新转子角度;
    S3、将所述d轴电流和所述q轴电流经过低通滤波器得到d轴基频电流和q轴基频电流,计算所述d轴基频电流和q轴基频电流分别与预设的d轴给定电流和q轴给定电流的差值,得到d轴误差电流和q轴误差电流;
    S4、对所述d轴误差电流进行误差调节,并加入高频电压信号,得到d轴给定电压,对所述q轴误差电流进行误差调节得到q轴给定电压;
    S5、根据S2更新的转子角度对所述d轴给定电压和所述q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压;
    S6、采集母线电压,根据所述α轴给定电压、β轴给定电压和母线电压对逆变器进行脉宽调制,并通过所述逆变器控制电机的运行。
  2. 根据权利要求1所述的控制方法,其特征在于,步骤S2中的位置跟踪器为PI控制器。
  3. 根据权利要求1所述的控制方法,其特征在于,步骤S4中的误差调节为PI调节。
  4. 根据权利要求1所述的控制方法,其特征在于,步骤S3中得到预设的q轴给定电流和d轴给定电流的方法具体为:
    对比电机估算转速和给定转速,得到转速误差,对所述转速误差进行PI调节得到q轴给定电流;
    给定d轴给定电流为零。
  5. 一种永磁同步机的无位置传感器控制系统,其特征在于,包括电机电流采集模块、母线电压采集模块、转速误差模块、转速PI模块、dq轴电流给定模块、d轴电流误差模块、q轴电流误差模块、d轴电流PI模块、q轴电流PI模块,Clark变换模块、Park变换模块、Park逆变换模块、LPF模块、脉宽调制模块;
    所述电机电流采集模块用于采集电机三相电源中任两相的实时电流,并将其发送至Clark变换模块;
    所述母线电压采集模块用于采集母线电压,并将其发送至脉宽调制模块;
    所述转速误差模块用于将所述估算转速与给定转速对比,得到误差转速,并将其发送至转速PI模块;
    所述转速PI模块对所述误差转速进行PI调节,得到电流矢量幅值的给定,并将其发送至dq电流给定模块;
    所述dq轴电流给定模块用于根据所述电源电压、电流矢量幅值的给定、d轴给定电压和q轴给定电压计算d轴给定电流和q轴给定电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
    所述d轴电流误差模块用于比较所述d轴给定电流和d轴基频电流,得到d轴误差电流,并将其发送至d轴电流PI模块;
    所述q轴电流误差模块用于比较所述q轴给定电流和q轴基频电流,得到q轴误差电流,并将其发送至q轴电流PI模块;
    所述d轴电流PI模块用于对所述d轴误差电流进行PI调节,并加上高频电压信号,得到d轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
    所述q轴电流PI模块用于对所述q轴误差电流进行PI调节,得到q轴给定电压,并将其发送至Park逆变换模块和dq轴电流给定模块;
    所述Park逆变换模块将所述d轴给定电压和q轴给定电压进行Park逆变换,得到α轴给定电压和β轴给定电压,并将其发送至脉宽调制模块;
    所述脉宽调制模块根据所述母线电压、α轴给定电压和β轴给定电压向逆变器发送电压脉冲;
    所述逆变器根据所述脉宽调制模块发送的电压脉冲控制电机;
    所述Clark变换模块用于对接收到的所述实时电流进行Clark变换,得到α轴电流和β轴电流,并将其发送至Park变换模块;
    所述Park变换模块用于对所述α轴电流和β轴电流进行Park变换,得到d轴实时电流和q轴实时电流,并将其分别发送至d轴电流误差模块和q轴电流误差模块;
    所述LPF模块就用于滤除电流信号中的高频成分,保留基频信号;
    所述脉宽调制模块为空间矢量脉宽调制模块。
  6. 一种无位置传感器单相输入电机控制系统,其特征在于,包括电源电路、整流器、母线电容、电机、逆变器和如权利要求5所述的一种无位置传感器电机控制系统;
    所述电源电路用于为所述整流器提供单相交流电;
    所述整流器用于将所述单相交流电整流成直流电,并为所述逆变器供电;
    所述母线电容的两端分别连接所述整流器的输出端的两端,用于为电机提供所需电能;
    所述逆变器用于接收所述的无位置传感器电机控制系统发送的电压脉冲,并根据所述电压脉冲控制电机。
  7. 根据权利要求6所述的一种无位置传感器电机控制系统,其特征在于,用于采集所述电机的实时电流,还用于采集电源电路中的母线电压,根据上述变量计算得到电压脉冲,并将所述电压脉冲发送至所述逆变器。
  8. 根据权利要求6所述的一种无位置传感器电机控制系统,其特征在 于,所述电机为永磁同步电机,所述整流器为单相不控整流器,所述逆变器为三相电压型逆变器。
PCT/CN2020/127676 2019-12-12 2020-11-10 一种永磁同步电机的无位置传感器控制方法及系统 WO2021114993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911276775.0 2019-12-12
CN201911276775.0A CN110995100A (zh) 2019-12-12 2019-12-12 一种永磁同步电机的无位置传感器控制方法及系统

Publications (1)

Publication Number Publication Date
WO2021114993A1 true WO2021114993A1 (zh) 2021-06-17

Family

ID=70093012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127676 WO2021114993A1 (zh) 2019-12-12 2020-11-10 一种永磁同步电机的无位置传感器控制方法及系统

Country Status (2)

Country Link
CN (1) CN110995100A (zh)
WO (1) WO2021114993A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995100A (zh) * 2019-12-12 2020-04-10 华中科技大学 一种永磁同步电机的无位置传感器控制方法及系统
CN111817617B (zh) * 2020-06-03 2023-04-07 西安工业大学 一种车用永磁同步电机低速无位置传感器控制方法
CN114070142B (zh) * 2021-10-20 2022-12-27 西安理工大学 一种轨道交通永磁同步电机无位置传感器弱磁控制策略
CN114301357B (zh) * 2022-03-09 2022-06-03 四川奥库科技有限公司 单电阻电机初始位置检测方法及控制电机的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169782A1 (en) * 2007-01-12 2008-07-17 Abb Oy Method for sensorless estimation of rotor speed and position of a permanent magnet synchronous machine
CN104993763A (zh) * 2015-06-26 2015-10-21 华中科技大学 一种无电解电容变频驱动控制系统及控制方法
CN105932912A (zh) * 2016-05-17 2016-09-07 厦门理工学院 一种永磁同步电机转子初始位置检测方法
CN107241042A (zh) * 2017-06-12 2017-10-10 南京航空航天大学 基于并联epll的脉振高频信号注入法信号提取系统及策略
CN110995100A (zh) * 2019-12-12 2020-04-10 华中科技大学 一种永磁同步电机的无位置传感器控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169782A1 (en) * 2007-01-12 2008-07-17 Abb Oy Method for sensorless estimation of rotor speed and position of a permanent magnet synchronous machine
CN104993763A (zh) * 2015-06-26 2015-10-21 华中科技大学 一种无电解电容变频驱动控制系统及控制方法
CN105932912A (zh) * 2016-05-17 2016-09-07 厦门理工学院 一种永磁同步电机转子初始位置检测方法
CN107241042A (zh) * 2017-06-12 2017-10-10 南京航空航天大学 基于并联epll的脉振高频信号注入法信号提取系统及策略
CN110995100A (zh) * 2019-12-12 2020-04-10 华中科技大学 一种永磁同步电机的无位置传感器控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU PENG: "Design and Implementation of Sensorless Control System for PMSM Based on High Frequency Signal Injection", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 4 December 2019 (2019-12-04), pages 1 - 80, XP055820258, ISSN: 1674-0246, DOI: 10.27157/d.cnki.ghzku.2019.003411 *

Also Published As

Publication number Publication date
CN110995100A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021114993A1 (zh) 一种永磁同步电机的无位置传感器控制方法及系统
CN110429886B (zh) 一种永磁同步电机低速域转子位置辨识方法
CN109889117B (zh) 基于旋转高频注入法的ipmsm位置观测方法、系统及驱动系统
JP5396876B2 (ja) 交流電動機の制御装置
JP4665360B2 (ja) 電動機制御装置
JP6132948B1 (ja) モータ制御装置およびモータ制御方法
CN110492820B (zh) 一种永磁同步电机无传感器控制方法及系统
CN110198150A (zh) 一种永磁同步电机多参数在线辨识方法
WO2010109520A1 (ja) 回転電機の制御装置および制御方法
CN107994826B (zh) 一种基于误差加权的全阶观测器无速度传感器控制系统
CN111786606B (zh) 同步磁阻电机自适应调节无传感器控制方法
CN107508521B (zh) 一种永磁同步电机的无速度传感器控制方法和系统
CN110071674B (zh) 一种无位置传感器永磁同步电机最大转矩电流比控制方法
CN109039204B (zh) 车用永磁同步电机无位置传感器模型预测控制系统及方法
CN112332718A (zh) 永磁同步电机全速域无传感器复合控制系统及控制方法
CN105024615A (zh) 一种永磁同步电机低速无传感器控制方法及装置
CN108390608A (zh) 一种具有谐波抑制功能的无位置传感器永磁同步电机控制系统及其方法
CN111769779A (zh) 基于改进型Luenberger观测器的PMSM直接转矩控制方法
Gou et al. IPMSM sensorless control for zero-and low-speed regions under low switching frequency condition based on fundamental model
Zhou et al. An improved high frequency square wave injection permanent magnet synchronous motor sensorless control
JP5621103B2 (ja) 単相信号入力装置及び系統連系装置
CN112821813A (zh) 五桥臂逆变器双永磁电机无位置传感器控制装置和方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
CN113489410B (zh) 周期互补高频方波注入的无传感器控制方法
CN114928076A (zh) 无交流电压传感器的虚拟同步机双闭环控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898830

Country of ref document: EP

Kind code of ref document: A1