WO2021112295A1 - 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치 - Google Patents

나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치 Download PDF

Info

Publication number
WO2021112295A1
WO2021112295A1 PCT/KR2019/017119 KR2019017119W WO2021112295A1 WO 2021112295 A1 WO2021112295 A1 WO 2021112295A1 KR 2019017119 W KR2019017119 W KR 2019017119W WO 2021112295 A1 WO2021112295 A1 WO 2021112295A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanopowder
raw material
reaction chamber
track
crucible
Prior art date
Application number
PCT/KR2019/017119
Other languages
English (en)
French (fr)
Inventor
김태윤
Original Assignee
김태윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태윤 filed Critical 김태윤
Priority to PCT/KR2019/017119 priority Critical patent/WO2021112295A1/ko
Publication of WO2021112295A1 publication Critical patent/WO2021112295A1/ko
Priority to US17/805,350 priority patent/US20220307158A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Definitions

  • the present invention relates to a nanopowder manufacturing apparatus, and more particularly, to a nanopowder that not only continuously produces nanopowders having a uniform particle size, but also smoothly collects the continuously produced nanopowders to increase the productivity of the nanopowder. It relates to an apparatus for continuous production of nanopowder for improving collection efficiency.
  • nanopowder refers to a material with a size of 1 dimension less than 100 nm.
  • Nanopowder technology enables control and manipulation at the atomic and molecular level of materials, bringing about innovative changes not only in materials, but also in electrical, electronic, bio, chemical, environmental, and energy industries.
  • the manufacturing method of nanopowder using thermal plasma can be divided into a transfer type and a non-transferred type according to the structure of the torch.
  • all electrodes are mounted inside the torch to generate an arc from the electrodes inside the torch, and the arc is ejected by the carrier gas from the rear.
  • the cathode and the anode are spaced apart and spaced apart. to adjust the arc length.
  • Korean Patent Registration No. 10-0788412 discloses an apparatus for manufacturing nanopowder using thermal plasma.
  • the registered patent includes a power supply unit, a plasma torch unit, a reaction chamber, a vacuum pump, a cooling tube, a collecting unit, and a scrubber.
  • the sample evaporated by plasma in the reaction chamber is crystallized into nanopowder while passing through the cooling tube, and the collecting unit is collected from
  • Patent Document 0001 Republic of Korea Patent Publication No. 10-0788412 (2007. 12. 24. Announcement)
  • the present invention has been proposed in order to solve the problems of the prior art as described above, so that nanopowders having a uniform particle size are continuously produced as well as continuously produced nanopowders are smoothly collected to increase the productivity of nanopowders.
  • An object of the present invention is to provide an apparatus for continuous production of nanopowder.
  • a reaction chamber for vaporizing raw materials using a plasma electrode and a crucible; a raw material supply unit connected to one side of the reaction chamber and supplying the raw material to the reaction chamber; a transport film that collects and transports the raw material or crystallized nanopowder vaporized in the upper inner portion of the reaction chamber and moves along a closed loop; and a collecting unit connected to the other side of the reaction chamber and collecting the nanopowder transferred through the transfer film, wherein the collecting unit comprises: a scraper disposed at one end of the transfer film in the width direction; and a tensioner configured to elastically support one end and the other end in the longitudinal direction of the scraper, wherein one side of the scraper is in close contact along the width direction of the transfer film by the elastic support of the tensioner.
  • Nanopowder continuous manufacturing apparatus for improving the collection efficiency of nanopowder according to the present invention the raw material is vaporized by the thermal plasma generated between the crucible electrode and the plasma electrode, it is possible to continuously produce nanopowders having a uniform particle size. This can increase the productivity of the nanopowder.
  • the first collecting unit of the collecting unit includes a scraper and a tensioner, and the scraper adjusts the width direction of the transfer film by the elastic support of the tensioner. Since the nanopowder is easily separated from the surface of the transfer film by the scraper, the nanopowder can be collected smoothly and the productivity of the nanopowder can be further increased.
  • FIG. 1 is a schematic diagram for explaining the structure of a nanopowder continuous manufacturing apparatus for improving the collection efficiency of nanopowder according to the present invention.
  • FIG. 2 is a one-way perspective view showing the outer appearance of the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • Figure 3 is a perspective view in another direction showing the outer appearance of the nano-powder continuous manufacturing apparatus for improving the collection efficiency of the nano-powder according to the present invention.
  • Figure 4 is a cross-sectional view for explaining the structure of the nano-powder continuous manufacturing apparatus for improving the collection efficiency of the nano-powder according to the present invention.
  • Figure 5 is a side view of the automatic feeding device in the nano-powder continuous manufacturing apparatus for improving the collection efficiency of the nano-powder according to the present invention.
  • FIG. 6 is a detailed view of the crucible in the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • FIG. 7 is a detailed view of a crucible and a crucible electrode in the nanopowder continuous manufacturing apparatus for improving the collection efficiency of the nanopowder according to the present invention.
  • FIG. 8 is a detailed view of the plasma electrode in the nanopowder continuous manufacturing apparatus for improving the collection efficiency of the nanopowder according to the present invention.
  • FIG 9 is an exemplary view showing the modularization of the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • FIG 10 is an internal perspective view for explaining the structure of the first collecting unit of the collecting unit in the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • FIG. 11 is a partial cross-sectional view for explaining the structure of the first collecting unit of the collecting unit in the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • FIG. 12 is an exemplary view for explaining the operation of the scraper provided in the first collecting unit of the collecting unit in the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • FIG 13 is an exemplary view for explaining the adhesion of the scraper provided in the first collecting unit of the collecting unit in the nanopowder continuous manufacturing apparatus for improving the collecting efficiency of the nanopowder according to the present invention.
  • the nanopowder continuous manufacturing apparatus (A) for improving the collection efficiency of the nanopowder according to the present invention includes a reaction chamber 100; Raw material supply unit 200; transfer film 180; and a collection unit 300 .
  • the reaction chamber 100 of the present invention vaporizes the raw material using the plasma electrode 160 and the crucible 110 .
  • the reaction chamber 100 is provided with a plasma electrode 160, a crucible 110 and a transfer film 180 therein, a raw material supply unit 200 to which a raw material is supplied is connected to one side, and a nano material is provided to the other side.
  • a collection unit 300 to be collected is connected.
  • reaction chamber 100 is provided with a support frame 400 in the lower portion is located at a set height as the lower portion is supported by the support frame (400).
  • the support frame 400 supports not only the reaction chamber 100 but also the collecting unit 300 and the raw material supply unit 200 at a set height, respectively.
  • reaction chamber 100 is provided with a material supply port 101 connected to the raw material supply unit 200 on at least one surface, and a vacuum port 102 connected to the vacuum pump P and the like.
  • reaction chamber 100 and the collecting unit 300 and the raw material supply unit 200 connected thereto preferably maintain a vacuum state.
  • the crucible 110 and the plasma electrode 160 are disposed to be spaced apart from each other by a predetermined distance, and the plasma generated from the plasma electrode 160 generates an arc in the direction of the crucible 110 .
  • the crucible 110 of the reaction chamber 100 is connected to the crucible electrode 120 as shown in FIGS. 6 and 7, can withstand a high-temperature atmosphere, and can be made of graphite to allow current to pass through. have.
  • the crucible electrode 120 is connected to the lower center of the crucible 110 , and cooling water may be separately introduced and discharged to the crucible electrode 120 .
  • the crucible central axis 130 is connected to the lower part of the crucible electrode 120 .
  • the crucible 110 may have a double structure.
  • the crucible 110 a first track 111 of a shape that is settling in the downward direction; a second track 112 having an inner circumference larger than the outer circumference of the first track 111 and having a shape that is recessed in the downward direction; and a barrier 113 provided between the first track 111 and the second track 112 to block the first track 111 and the second track 112 .
  • the raw material supplied from the automatic feeding device 210 described below may be accommodated in the first track 111 and the second track 112 , respectively, and the first track 111 and the second track 112 , respectively.
  • a plurality of plasma electrodes 160 may be disposed, for example, two plasma electrodes 160 on the first track 111 and four on the second track 112 .
  • the number and position of the plasma electrodes 160 may be determined in consideration of the circumference of the first track 111 or the second track 112 .
  • first track 111 and the second track 112 may each be supplied with a raw material of the same material or a raw material of a different material.
  • a plurality of automatic feeding devices 210 described below are applied to supply raw materials to the first track 111 and the second track 112 , respectively.
  • the automatic feeding device 210 supplies raw materials of the same material or different materials to the first track 111 and the second track 112 through each of the feeding nozzles 214 .
  • the crucible 110 having the double structure as described above can effectively control the evaporation amount and the evaporation rate due to the difference in the position and temperature of the first track 111 and the second track 112 when the raw material of the same material is supplied. Also, when raw materials of different materials are supplied, different raw materials can be synthesized in the gas phase, so that the composite nanopowder can be manufactured.
  • the plasma electrodes 160 of the reaction chamber 100 are provided to be spaced apart from the crucible 110 by a predetermined distance to form a hot cathode.
  • a tip 161 made of tungsten or graphite may be fastened to an end of the plasma electrode 160 as shown in FIG. 8 , and cooling water may be separately introduced and discharged at a lower portion thereof.
  • the plasma electrode 160 may include an electrode central axis 162 extending in a vertical direction and a connection terminal 163 connected to a power source at one side of the electrode central axis 162 .
  • the cooling water may be introduced into the electrode central shaft 162 .
  • the reaction chamber 100 the crucible height adjustment means 140 for adjusting the height of the crucible (110);
  • Crucible rotating means 150 for rotating the crucible 110;
  • an electrode height adjusting means 170 for adjusting the height of the plasma electrode 160 .
  • the crucible height adjustment means 140 the first screw shaft 143 (not shown) extending in the vertical direction;
  • a nut 145; (not shown) is included, by connecting the crucible central shaft 130 leading to the lower part of the crucible 110 to the first ball nut 145 that is raised and lowered by the rotation of the first screw shaft 143.
  • the crucible central shaft 130 is elevated by the elevation of the first ball nut 145, and the crucible 110 connected thereto is elevated by the crucible central shaft 130 elevation.
  • the evaporation amount and evaporation rate of the raw material in the process of vaporizing the raw material is controlled. .
  • the crucible rotating means 150 the first gear 151 fixedly coupled to the lower end of the crucible central shaft 130 formed to extend to the lower portion of the crucible 110; and a second gear 152 engaged with the first gear 151 while rotating by a motor drive; as the second gear 152 rotates by the motor drive, the crucible central shaft 130 is As it rotates, the crucible 110 is rotated clockwise or counterclockwise thereby.
  • the evaporation amount and evaporation rate of the raw material in the process of vaporizing the raw material is controlled. .
  • the electrode height adjusting means 170 is coupled to the support frame 400 , a second screw shaft 171 that extends in a vertical direction and rotates according to the driving of the second screw motor 172 ; and a second ball nut 173 fastened to the second screw shaft 171 , which is raised and lowered according to the rotation of the second screw shaft 171 , and the electrode center shaft 162 to the second ball nut 173 . ) is connected, the plasma electrode 160 connected to the electrode central axis 162 is raised and lowered according to the elevation of the second ball nut 173 .
  • the evaporation amount and evaporation rate of the raw material in the process of vaporizing the raw material is controlled. do.
  • the structures of the second screw shaft 171 , the second screw motor 172 , and the second ball nut 173 are the above-described first screw shaft 143 , the first screw motor 172 , and the second ball nut.
  • the structure of (145) may be the same.
  • the raw material supply unit 200 of the present invention is connected to one side of the reaction chamber 100 to supply the raw material to the reaction chamber 100 .
  • the raw material is vaporized and condensed inside the reaction chamber 100 to be changed into nanopowder, and the changed nanopowder is collected by the collecting unit 300 .
  • the raw material supply unit 200 may include an automatic feeding device 210 for supplying the raw material into the reaction chamber 100 .
  • the automatic feeding device 210 includes a feeding housing 211 as shown in FIG. 5; a feeding screw 212 provided in a spiral shape inside the feeding housing 211; a feeding motor 215 for driving the feeding screw 212; and a feeding nozzle 214 connected to the feeding housing 211 and supplying a raw material into the reaction chamber 100, so that the inside of the feeding housing 211 is in a vacuum state by rotation of the feeding screw 212 The raw material can be moved by the extrusion method.
  • the feeding housing 211 has a sealed structure in a cylindrical shape and maintains a vacuum state inside, and a feeding nozzle 214 is connected to one side of the feeding housing 211 and a feeding motor 215 is connected to the other side. .
  • the feeding housing 211 may be connected to one side of the reaction chamber 100 so that the feeding nozzle 214 smoothly supplies the raw material to the crucible 110 provided in the reaction chamber 100 .
  • the feeding housing 211 is provided with an opening 213 through which the raw material is supplied.
  • the opening/closing opening 213 preferably uses a load-lock type valve to minimize the influence on the internal vacuum environment of the feeding housing 211 .
  • the raw material introduced through the opening 213 is moved in the direction of the feeding nozzle 214 by the rotation of the feeding screw 212 , the crucible provided inside the reaction chamber 100 through the feeding nozzle 214 .
  • the raw material may be continuously supplied to (110).
  • a feeding heater 216 that heats the raw material accommodated in the feeding housing 211 to reach a set temperature may be connected to the outside of the feeding housing 211, and there may be a plurality of feeding heaters 216 .
  • one side of the feeding housing 211 is coupled to the material supply port 101 , and in this case, the feeding nozzle 214 connected to the feeding housing 211 is located inside the reaction chamber 100 .
  • the shape and structure of the feeding nozzle 214 may vary, and the feeding nozzle 214 may be plural.
  • the transport film 180 of the present invention collects and transports the raw material or crystallized nanopowder vaporized in the upper inner portion of the reaction chamber 100 and transports it along a closed loop.
  • the transfer film 180 is spaced apart from the crucible 110 by a certain distance, and some or all of it is located above the reaction chamber 100 .
  • the transfer film 180 may be formed of a metal to collect the raw material vaporized by electrical or magnetic properties on the surface.
  • the transfer film 180 is supported by the transfer shaft 181, each of both sides extending in the horizontal direction.
  • cooling water may be introduced into each of the transfer shafts 181 .
  • the transfer shaft 181 may be provided to pass through the reaction chamber 100 or the collecting unit 300 in a horizontal direction to facilitate the inflow or discharge of the coolant.
  • the transfer film 180 extends from the reaction chamber 100 in the direction of the collecting unit 300 to transfer the raw material collected in the reaction chamber 100 to the collecting unit 300 .
  • the transfer film 180 moves from the inside of the reaction chamber 100 to the inside of the collection unit 300 while moving on the caterpillar along the closed loop.
  • the rotation of the transfer film 180 or the transfer shaft 181 may be performed by driving a motor provided outside the reaction chamber 100 or the collection unit 300 .
  • the transfer film 180 may further include a cooling plate 182 .
  • the cooling plate 182 cools the transfer film 180 to a set temperature, and may be in contact with the inner surface of the transfer film 180 .
  • the vaporized raw material collected on the outer surface of the transfer film 180 is cooled to a set temperature through the cooling plate 182 and is condensed while moving in the reaction chamber 100 in the direction of the collecting unit 300 and condensed. It may crystallize into a powder.
  • the cooling of the transfer film 180 through the cooling plate 182 may be performed using cooling water or an inert gas having a set temperature.
  • the collecting unit 300 of the present invention is connected to the other side of the reaction chamber 100 to recover the nanopowder transferred through the transfer film 180 .
  • the collecting unit 300 includes a scraper 183 disposed along the width direction at one end of the transfer film 180 as shown in FIGS. 10 and 11 ; and a tensioner 184 for elastically supporting one end and the other end in the longitudinal direction of the scraper 183; and a first collecting unit 310 having.
  • the tensioner 184 continuously pushes the scraper 183 toward the transfer film 180 , one side of the scraper 183 is in close contact along the width direction of the transfer film 180 .
  • the nanopowder is easily separated from the surface of the transfer film 180 by the scraper 183 to facilitate the collection of the nanopowder, thereby improving the collecting efficiency of the nanopowder and consequently improving the productivity of the nanopowder.
  • the tensioner 184 may be of any conventional structure and method as long as it can elastically support the scraper 183 , and a detailed description of the tensioner 184 will be omitted.
  • the first collecting unit 310 may further include magnetic fluid seals 185 provided at both ends of the transfer shaft 181 of the transfer film 180 .
  • the magnetic fluid seal 185 blocks the leakage of fluid through the coupling portions of both ends of the transfer shaft 181, more specifically, the leakage of vaporized raw material or nanopowder, so that the nanopowder is collected in the first collecting unit 310 Efficiency is further improved.
  • the first collection unit 310 is provided with a vacuum port 102 connected to a vacuum pump (P), etc., and moves the nanopowder downward in an environment in which the inside is vacuum.
  • P vacuum pump
  • the first collecting unit 310 may be provided with a load lock valve or a gate valve, and various configurations for collecting and moving the nanopowder while maintaining a vacuum state may be additionally provided.
  • the collecting unit 300 includes a second collecting unit 320 connected to the first collecting unit 310 to collect and transport the nanopowder collected through the first collecting unit 310 ; and a powder recovery unit 330 in which the nanopowder moved through the second collection unit 320 is recovered.
  • the nanopowder that has passed through the first collecting unit 310 and the second collecting unit 320 is finally recovered by the powder collecting unit 330 .
  • the powder recovery unit 330 may be connected to the packaging container, and a load lock valve is provided so that a predetermined amount of nanopowder is moved into the packaging container in a vacuum state.
  • the powder recovery unit 330 may be provided with a screw conveyor, which moves the nano-powder to a predetermined position through the rotation of a screw wound in a spiral shape.
  • the first collecting unit 310 and the second collecting unit 320 is provided with a vacuum port 102 connected to the vacuum pump (P), etc., the inside is maintained in a vacuum state.
  • first collecting unit 310 and the second collecting unit 320 are each independently created in a vacuum environment, and internal pressures may be different from each other.
  • the collection unit 300 is provided with a viewport 301 formed of a transparent material on the upper portion, so that the internal condition of the collection unit 300 can be visually confirmed through the viewport 301 .
  • the nanopowder continuous manufacturing apparatus (A) for improving the collection efficiency of the nanopowder according to the present invention may be operated as one module by connecting a plurality of them in parallel as shown in FIG. 9 .
  • the nanopowder continuous manufacturing apparatus (A) for improving the collection efficiency of nanopowder according to the present invention is operated as a module, vacuum formation through the vacuum pump (P), raw material supply through the automatic feeding device 210, and cooling water through Since the efficiency of cooling and the like can be increased, the productivity of the nanopowder can be increased.
  • the nanopowder continuous manufacturing apparatus (A) for improving the collection efficiency of nanopowders according to the present invention includes an automatic feeding device 210 and a transfer film 180, supplying raw materials and nanopowder. Since the collection of powder is made continuously, nanopowder can be continuously produced.
  • the nanopowder continuous manufacturing apparatus (A) for improving the collection efficiency of nanopowder according to the present invention is provided with a vacuum port 102 in all of the raw material supply unit 200 , the reaction chamber 100 and the collection unit 300 .
  • the vacuum pump (P) As it is connected to the vacuum pump (P), the supply of raw materials and the generation and collection of nanopowders proceed in a vacuum environment, so that surface oxidation of the nanopowders due to exposure to air can be prevented.
  • the first collecting unit 310 of the collecting unit 300 has a width direction at one end of the transfer film 180 .
  • a scraper 183 disposed along;
  • a tensioner 184 for elastically supporting one end and the other end in the longitudinal direction of the scraper 183; including, one side of the scraper 183 by the elastic support of the tensioner 184 in the width direction of the transfer film 180
  • reaction chamber 101 material supply port
  • first track 112 second track
  • blocking jaw 120 crucible electrode
  • first screw shaft 144 first screw motor
  • first ball nut 150 crucible rotating means
  • first gear 152 second gear
  • electrode height adjustment means 171 second screw shaft
  • tensioner 185 magnetic fluid seal
  • raw material supply unit 210 automatic feeding device
  • feeding housing 212 feeding screw
  • opening 214 feeding nozzle
  • feeding motor 216 feeding heater
  • first collection unit 320 second collection unit
  • support frame A nano-powder continuous manufacturing device
  • the present invention not only increases the productivity of the nanopowder by continuously producing nanopowders having a uniform particle size, but also improves the quality of the nanopowder by optimizing the vaporization of the raw material. There is a possibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은, 플라즈마 전극 및 도가니를 이용하여 원료물질을 기화시키는 반응챔버; 상기 반응챔버의 일측에 연결되며 상기 원료물질을 상기 반응챔버로 공급시키는 원료공급부; 상기 반응챔버의 내측 상부에서 기화된 상기 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이동하는 이송필름; 및 상기 반응챔버의 타측에 연결되며 상기 이송필름을 통해 이송된 상기 나노분말을 회수하는 수거부;를 포함하되, 상기 수거부는, 상기 이송필름의 일측 단부에 폭 방향을 따라 배치되는 스크래퍼; 및 상기 스크래퍼의 길이 방향 일단 및 타단을 탄력적으로 지지하는 텐셔너;를 구비하는 제1포집부를 포함하고, 상기 스크래퍼는 상기 텐셔너의 탄력적 지지에 의해 일측이 상기 이송필름의 폭 방향을 따라 밀착되는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에 관한 것이다.

Description

나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치
본 발명은 나노분말 제조장치에 관한 것으로, 더욱 상세하게는 균일한 입도를 갖는 나노분말이 연속적으로 생산될 뿐만 아니라 연속 생산되는 나노분말이 원활히 수거됨으로써 나노분말의 생산성을 높일 수 있도록 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에 관한 것이다.
일반적으로 나노분말은 1dimension의 크기가 100nm 미만의 소재를 지칭한다.
나노분말에 대한 기술은 물질의 원자 및 분자 수준에서 제어 및 조작을 가능케 함으로써 소재는 물론 전기, 전자, 바이오, 화학, 환경, 에너지 등 전 산업분야에서 혁신적인 변화를 몰고 오고 있다.
이러한 나노분말을 제조하는 방법으로 습식법, 기계적 분쇄법 등이 있으나 습식법의 경우 공정이 복잡하고 생산성이 낮으며 환경에 유해한 물질이 배출되는 문제가 있고, 기계적 분쇄법은 일정 크기 이하의 나노분말을 제조하는데 어려움이 있다.
상기의 문제로 인하여 최근 플라즈마를 이용하여 나노 분말을 제조하는 방법이 이용되고 있다.
열 플라즈마를 이용한 나노분말의 제조는 10000℃ 정도의 열원을 갖는 초고온의 열플라즈마에 원료 입자를 투입하면 높은 온도에 의해 완전히 원자 상태로 기화 되었다가 다시 냉각이 되면서 기화되었던 원자들이 나노입자로 핵생성되는 원리를 이용한다.
열 플라즈마를 이용한 나노분말의 제조공법은 토치의 구조에 따라 이송식(Transferred type)과 비이송식(Non-transferred type)으로 구분할 수 있다.
비이송식의 경우 모든 전극이 토치 내부에 장착되어 토치 내부의 전극에서 아크를 발생시키고 아크는 후방에서 나오는 캐리어가스에 의해 외부로 분출되며, 이송식의 경우 음극과 양극이 일정 간격 이격되며 이격 간격을 조절하여 아크 길이를 조절한다.
대한민국 등록특허 제 10-0788412호에서는 열 플라즈마를 이용하여 나노분말을 제조하는 장치가 개시되어 있다.
상기 등록특허는 전원공급부, 플라즈마 토치부, 반응 챔버, 진공 펌프, 냉각 튜브, 포집부, 스크러버을 포함하는 것으로, 반응 챔버에서 플라즈마에 의해 증발된 시료는 냉각 튜브를 통과하면서 나노 분말로 결정화되고 포집부에서 수거된다.
그러나 위와 같은 구조를 이용하는 경우 원료물질의 연속 공급이 어려울 뿐만 아니라 특히 나노분말의 수거 과정이 복잡하여 나노분말의 생산성이 저하되는 문제가 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 대한민국 등록특허공보 제10-0788412호(2007. 12. 24. 공고)
본 발명은, 상기와 같은 종래 기술의 문제점을 해소하기 위하여 제안된 것으로, 균일한 입도를 갖는 나노분말이 연속적으로 생산될 뿐만 아니라 연속 생산되는 나노분말이 원활히 수거됨으로써 나노분말의 생산성을 높일 수 있도록 하는 나노분말 연속제조장치를 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위하여 본 발명은,
플라즈마 전극 및 도가니를 이용하여 원료물질을 기화시키는 반응챔버; 상기 반응챔버의 일측에 연결되며 상기 원료물질을 상기 반응챔버로 공급시키는 원료공급부; 상기 반응챔버의 내측 상부에서 기화된 상기 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이동하는 이송필름; 및 상기 반응챔버의 타측에 연결되며 상기 이송필름을 통해 이송된 상기 나노분말을 회수하는 수거부;를 포함하되, 상기 수거부는, 상기 이송필름의 일측 단부에 폭 방향을 따라 배치되는 스크래퍼; 및 상기 스크래퍼의 길이 방향 일단 및 타단을 탄력적으로 지지하는 텐셔너;를 구비하는 제1포집부를 포함하고, 상기 스크래퍼는 상기 텐셔너의 탄력적 지지에 의해 일측이 상기 이송필름의 폭 방향을 따라 밀착되는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치를 제안한다.
본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치는, 도가니 전극과 플라즈마 전극 사이에서 발생하는 열 플라즈마에 의해 원료물질이 기화되는바, 균일한 입도를 갖는 나노분말을 연속적으로 생산할 수 있어 나노분말의 생산성을 높일 수 있다.
또한, 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치는, 수거부의 제1포집부가 스크래퍼 및 텐셔너를 포함하는바, 텐셔너의 탄력적 지지에 의해 스크래퍼가 이송필름의 폭 방향을 따라 긴밀히 밀착되므로 스크래퍼에 의해 이송필름 표면으로부터 나노분말이 쉽게 이탈되므로 나노분말의 수거가 원활할 수 있어 나노분말의 생산성을 더욱 높일 수 있다.
도 1은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치의 구조를 설명하기 위한 개략도이다.
도 2는 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치의 외형을 보인 일 방향 사시도이다.
도 3은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치의 외형을 보인 다른 방향 사시도이다.
도 4는 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치의 구조를 설명하기 위한 단면도이다.
도 5는 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 자동피딩장치의 측면도이다.
도 6은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 도가니의 상세도이다.
도 7은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 도가니 및 도가니전극의 상세도이다.
도 8은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 플라즈마 전극의 상세도이다.
도 9는 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치의 모듈화를 보인 예시도이다.
도 10은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 수거부의 제1포집부 구조를 설명하기 위한 내부 사시도이다.
도 11은 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 수거부의 제1포집부 구조를 설명하기 위한 부분 단면도이다.
도 12는 본 발명에 의한 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 수거부의 제1포집부에 구비되는 스크래퍼의 작동을 설명하기 위한 예시도이다.
도 13은 본 발명에 의한 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치에서 수거부의 제1포집부에 구비되는 스크래퍼의 밀착을 설명하기 위한 예시도이다.
이하, 첨부 도면에 의거 본 발명에 대하여 상세히 설명하면 다음과 같다.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)는, 반응챔버(100); 원료공급부(200); 이송필름(180); 및 수거부(300);를 포함한다.
본 발명의 반응챔버(100)는 플라즈마 전극(160) 및 도가니(110)를 이용하여 원료물질을 기화시킨다.
반응챔버(100)는, 내부에 플라즈마 전극(160), 도가니(110) 및 이송필름(180)이 구비되고, 일측에 원료물질이 공급되는 원료공급부(200)가 연결되며, 타측에 나노물질이 수거되는 수거부(300)가 연결된다.
그리고 반응챔버(100)는 하부에 지지프레임(400)이 구비되어 지지프레임(400)에 의해 하부가 지지됨에 따라 설정된 높이에 위치한다.
여기서, 지지프레임(400)은 반응챔버(100) 뿐만 아니라 수거부(300) 및 원료공급부(200)를 각각 설정된 높이로 지지한다.
그리고 반응챔버(100)는, 적어도 어느 하나의 일면에 원료공급부(200)와 연결되는 소재공급포트(101)와, 진공펌프(P) 등과 연결되는 진공포트(102)가 구비된다.
여기서, 반응챔버(100) 및 이에 연결되는 수거부(300)와 원료공급부(200)는 진공상태를 유지하는 것이 바람직하다.
그리고 반응챔버(100)에서 도가니(110)와 플라즈마 전극(160)은 서로 일정 거리 이격되도록 배치되며, 플라즈마 전극(160)에서 발생되는 플라즈마는 도가니(110)의 방향으로 아크를 발생시킨다.
그리고 반응챔버(100)의 도가니(110)는, 도 6 및 도 7에 도시된 바와 같이 도가니전극(120)과 연결되되, 고온의 분위기에 견딜 수 있으며 전류가 통하도록 그래파이트(Graphite)로 이루어질 수 있다.
도가니전극(120)은 도가니(110)의 하부 중심에 연결되고, 도가니전극(120)에는 냉각수가 별도로 유입 및 배출될 수 있다.
이때, 도가니전극(120) 하부로는 도가니중심축(130)이 이어진다.
또한, 도가니(110)는 이중구조를 가질 수 있다.
더욱 구체적으로 도가니(110)는, 아랫방향으로 침강된 형상의 제1트랙(111); 제1트랙(111)의 외측 둘레보다 큰 내측 둘레를 가지며 아랫방향으로 침강된 형상의 제2트랙(112); 및 제1트랙(111)과 제2트랙(112)의 사이에 구비되어 제1트랙(111)과 제2트랙(112)을 차단시키는 차단턱(113);을 포함할 수 있다.
여기서 제1트랙(111)과 제2트랙(112)에는 각각 아래에서 설명하는 자동피딩장치(210)로부터 공급된 원료물질이 수용될 수 있고, 제1트랙(111)과 제2트랙(112)에 맞추어 플라즈마 전극(160)은 복수, 예컨대 플라즈마 전극(160)은 제1트랙(111)에 2개 및 제2트랙(112)에 4개 배치될 수 있다.
이때, 플라즈마 전극(160)은 제1트랙(111) 또는 제2트랙(112)의 둘레를 고려하여 그 개수와 위치가 결정될 수 있다.
또한, 제1트랙(111) 및 제2트랙(112) 각각에는 같은 소재의 원료물질이 공급되거나 서로 다른 소재의 원료물질이 공급될 수 있다.
이 경우 아래에서 설명하는 자동피딩장치(210)는 복수로 적용되어 제1트랙(111) 및 제2트랙(112)에 각각 원료물질을 공급한다.
즉, 아래에서 설명하는 자동피딩장치(210)는 피딩노즐(214) 각각을 통해 제1트랙(111) 및 제2트랙(112)에 같은 소재이거나 다른 소재의 원료물질을 공급한다.
상기와 같이 이중구조를 갖는 도가니(110)는, 같은 소재의 원료물질이 공급된 경우 제1트랙(111)과 제2트랙(112)의 위치와 온도의 차이로 인하여 증발량 및 증발속도를 효과적으로 조절할 수 있고, 서로 다른 소재의 원료물질이 공급된 경우 서로 다른 원료물질을 기상에서 합성할 수 있으므로 복합나노분말의 제조가 이루어질 수 있다.
그리고 반응챔버(100)의 플라즈마 전극(160)은 도가니(110)에서 일정 거리 이격 구비되며 열음극을 형성한다.
이때, 플라즈마 전극(160)의 단부에는 도 8에 도시된 바와 같이 텅스텐 또는 그래파이트로 이루어지는 팁(161)이 체결될 수 있으며, 하부에는 냉각수가 별도로 유입 및 배출될 수 있다.
또한, 상기 플라즈마 전극(160)은, 수직방향으로 연장 형성된 전극중심축(162) 및 전극중심축(162)의 일측에 전원과 연결되는 연결단자(163)가 구비될 수 있다.
이 경우 냉각수는 전극중심축(162)의 내부로 유입될 수 있다.
한편, 반응챔버(100)는, 도가니(110)의 높이를 조절하는 도가니높이조절수단(140); 도가니(110)를 회전시키는 도가니회전수단(150); 및 플라즈마 전극(160)의 높이를 조절하는 전극높이조절수단(170);을 구비한다.
이때, 도가니높이조절수단(140)은, 수직 방향으로 연장 형성되는 제1스크류축(143)(미도시); 제1스크류축(143)을 회전시키는 제1스크류모터(144);(미도시) 및제1스크류축(143)에 체결되며 제1스크류축(143)의 회전에 따라 상하 왕복운동하는 제1볼너트(145);(미도시)를 포함하는바, 제1스크류축(143) 회전에 의해 승강하는 제1볼너트(145)에 도가니(110) 하부로 이어지는 도가니중심축(130)을 연결함으로써 제1볼너트(145)의 승강에 의해 도가니중심축(130)이 승강되고, 도가니중심축(130) 승강에 의해 이에 연결된 도가니(110)가 승강된다.
따라서, 도가니(110)를 승강시켜 도가니(110)의 내부에 수용된 원료물질과 플라즈마 전극(160) 사이의 간격을 멀거나 가깝게 조절함으로써 원료물질의 기화 과정에서 원료물질의 증발량 및 증발속도가 조절된다.
그리고 도가니회전수단(150)은, 도가니(110) 하부로 연장 형성된 도가니중심축(130)의 하단부에 고정 결합되는 제1기어(151); 및 모터 구동에 의해 회전하되, 제1기어(151)와 맞물리는 제2기어(152);를 포함하는바, 모터 구동에 의해 제2기어(152)가 회전함에 따라 도가니중심축(130)이 회전하므로 이에 의해 도가니(110)가 시계방향 또는 반시계방향으로 회전된다.
따라서, 도가니(110)를 회전시켜 도가니(110)의 내부에 수용된 원료물질과 플라즈마 전극(160) 사이의 간격을 멀거나 가깝게 조절함으로써 원료물질의 기화 과정에서 원료물질의 증발량 및 증발속도가 조절된다.
전극높이조절수단(170)은, 지지프레임(400)에 결합되되, 수직방향으로 이어져 제2스크류모터(172)의 구동에 따라 회전하는 제2스크류축(171); 및 제2스크류축(171)에 체결되되, 제2스크류축(171)의 회전에 따라 승강하는 제2볼너트(173)를 포함하는바, 제2볼너트(173)에 전극중심축(162)이 연결됨에 따라 제2볼너트(173)의 승강에 따라 전극중심축(162)과 연결된 플라즈마 전극(160)이 승강된다.
따라서, 플라즈마 전극(160)을 승강시켜 도가니(110)의 내부에 수용된 원료물질과 플라즈마 전극(160) 사이의 간격을 멀거나 가깝게 조절함으로써 원료물질의 기화 과정에서 원료물질의 증발량 및 증발속도가 조절된다.
여기서, 제2스크류축(171), 제2스크류모터(172) 및 제2볼너트(173)의 구조는 상술한 제1스크류축(143), 제1스크류모터(172), 제2볼너트(145)의 구조와 동일할 수 있다.
본 발명의 원료공급부(200)는, 반응챔버(100)의 일측에 연결되어 원료물질을 반응챔버(100)로 공급한다.
이때, 원료물질은 반응챔버(100)의 내부에서 기화 및 응축되어 나노분말로 변화되고, 변화된 나노분말은 수거부(300)에서 수거된다.
원료공급부(200)는 원료물질을 반응챔버(100) 내부로 공급하는 자동피딩장치(210)를 포함할 수 있다.
자동피딩장치(210)는, 도 5에 도시된 바와 같이 피딩하우징(211); 피딩하우징(211) 내부에 나선상으로 구비된 피딩스크류(212); 피딩스크류(212)를 구동시키는 피딩모터(215); 및 피딩하우징(211)에 연결되며 원료물질을 반응챔버(100) 내부로 공급하는 피딩노즐(214);을 구비함으로써 피딩하우징(211)의 내부가 진공상태에서 피딩스크류(212)의 회전에 의해 압출방식으로 원료물질을 이동시킬 수 있다.
여기서, 피딩하우징(211)은 원통형상으로 밀폐구조를 갖고 내부에서 진공 상태를 유지하며, 피딩하우징(211)의 일측에 피딩노즐(214)이 연결되고 타측에 피딩모터(215)가 연결될 수 있다.
또한, 피딩하우징(211)은 피딩노즐(214)이 반응챔버(100)의 내부에 구비된 도가니(110)로 원료물질을 원활히 공급하도록 반응챔버(100)의 일측과 연결될 수 있다.
그리고 피딩하우징(211)에는 원료 물질이 공급되는 개폐구(213)가 구비된다.
여기서, 개폐구(213)는 피딩하우징(211)의 내부 진공 환경에 영향을 최소화하도록 로드락 방식의 밸브를 이용하는 것이 바람직하다.
이때, 개폐구(213)를 통해 유입된 원료물질은 피딩스크류(212)의 회전에 의해 피딩노즐(214)의 방향으로 이동되므로 피딩노즐(214)을 통해 반응챔버(100)의 내부에 구비된 도가니(110)로 원료물질을 연속적으로 공급할 수 있다.
또한, 피딩하우징(211)의 외측에는 피딩하우징(211)의 내부에 수용되는 원료물질이 설정된 온도에 이르도록 가열하는 피딩히터(216)가 연결될 수 있으며, 피딩히터(216)는 복수일 수 있다.
그리고 피딩하우징(211)의 일측은 소재공급포트(101)와 결합되며, 이 경우 피딩하우징(211)에 연결된 피딩노즐(214)은 반응챔버(100)의 내부에 위치한다.
피딩노즐(214)의 형상과 구조는 다양할 수 있으며, 피딩노즐(214)은 복수일 수 있다.
본 발명의 이송필름(180)은 반응챔버(100)의 내측 상부에서 기화된 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이송시킨다.
이송필름(180)은, 도가니(110)로부터 일정 거리 이격되며, 일부 또는 전부가 반응챔버(100)의 상부에 위치한다.
이때, 이송필름(180)은 금속으로 형성되어 전기적 또는 자기적 성질에 의해 기화된 원료물질을 표면에 포집시킬 수 있다.
그리고 이송필름(180)은 양 측 각각이 수평방향으로 이어지는 이송축(181)에 의해 지지된다.
이때, 이송축(181)의 내부로는 각각 냉각수가 유입될 수 있다.
이송축(181)은 냉각수의 유입 또는 배출이 용이하도록 반응챔버(100) 또는 수거부(300)를 수평방향으로 관통하도록 구비될 수 있다.
한편, 이송필름(180)은 반응챔버(100)에서 수거부(300)의 방향으로 연장되어 반응챔버(100)에서 포집된 원료물질을 수거부(300)로 이송시킨다.
즉, 이송필름(180)은 폐 루프를 따라 무한궤도 상에서 이동하면서 반응챔버(100)의 내부에서 수거부(300)의 내부로 이동한다.
여기서, 이송필름(180) 또는 이송축(181)의 회전은 반응챔버(100) 또는 수거부(300)의 외측에 구비되는 모터 구동에 의해 이루어질 수 있다.
또한, 이송필름(180)은 냉각판(182)을 더 포함할 수 있다.
냉각판(182)은 이송필름(180)을 설정된 온도로 냉각시키며, 이송필름(180)의 내측 면에 접촉될 수 있다.
이 경우 이송필름(180)의 외측면에 포집되는 기화된 원료물질은 냉각판(182)을 통해 설정된 온도로 냉각되어 반응챔버(100)에서 상기 수거부(300)의 방향으로 이동되면서 응축되어 나노분말로 결정화될 수 있다.
냉각판(182)을 통한 이송필름(180)의 냉각은 냉각수를 이용하거나 설정된 온도의 불활성기체를 이용한 것일 수 있다.
본 발명의 수거부(300)는 반응챔버(100)의 타측에 연결되어 이송필름(180)을 통해 이송된 나노분말을 회수한다.
이때, 수거부(300)는, 도 10 및 도 11에 도시된 바와 같이 이송필름(180)의 일측 단부에 폭 방향을 따라 배치되는 스크래퍼(183); 및 스크래퍼(183)의 길이 방향 일단 및 타단을 탄력적으로 지지하는 텐셔너(184);를 구비하는 제1포집부(310)를 포함한다.
따라서, 텐셔너(184)의 탄력적 지지에 의해 도 12에 도시된 바와 같이 스크래퍼(183) 일측이 이송필름(180)의 폭 방향을 따라 밀착되므로 스크래퍼(183)에 의해 이송필름(180) 표면으로부터 나노분말이 쉽게 이탈되므로 나노분말의 수거가 원활하다.
즉, 도 13에 도시된 바와 같이 텐셔너(184)가 스크래퍼(183)를 이송필름(180) 측으로 지속적으로 밀어주거나 함에 따라 스크래퍼(183)의 일측이 이송필름(180)의 폭 방향을 따라 밀착되는바, 스크래퍼(183)에 의해 이송필름(180) 표면으로부터 나노분말이 쉽게 이탈되어 나노분말의 수거가 원활하므로 이에 의해 나노분말의 수거 효율이 개선되어 결과적으로 나노분말의 생산성이 향상된다.
여기서, 텐셔너(184)는 스크래퍼(183)를 탄력적으로 지지할 수 있는 것이라면 통상의 어떠한 구조 및 방식의 것이어도 무방한바, 텐셔너(184)에 관한 상세한 설명은 생략한다.
또한, 제1포집부(310)는 이송필름(180)의 이송축(181) 양측 단부 각각에 마련되는 자성유체씰(185)을 더 구비할 수 있다.
자성유체씰은(185)은 이송축(181) 양측 단부 결합 부위를 통한 유체의 누설, 더욱 구체적으로 기화된 원료물질 또는 나노분말의 누설을 차단하므로 제1포집부(310)에서의 나노분말 수거 효율이 더욱 향상된다.
제1포집부(310)에는 진공펌프(P) 등과 연결된 진공포트(102)가 구비되고, 내부가 진공인 환경에서 나노분말을 하부 방향으로 이동시킨다.
그리고 제1포집부(310)에는 로드락(Load lock)밸브나 게이트밸브가 구비될 수 있으며 진공 상태를 유지하면서 나노분말을 포집 및 이동시키기 위한 다양한 구성이 추가로 구비될 수 있다.
그리고 수거부(300)는, 제1포집부(310)와 연결되어 제1포집부(310)를 통해 포집된 나노분말을 포집 및 이송시키는 제2포집부(320); 및 제2포집부(320)를 통해 이동된 나노분말이 회수되는 분말회수부(330);를 포함한다.
따라서, 제1포집부(310)와 제2포집부(320)를 통과한 나노분말은 분말회수부(330)에서 최종적으로 회수된다.
이때, 분말회수부(330)는 포장용기와 연결될 수 있으며, 로드락밸브가 구비되어 진공상태에서 정해진 양만큼의 나노분말이 포장용기의 내부로 이동된다.
또한, 분말회수부(330)에는 스크류컨베어가 구비될 수 있으며, 스크류컨베어는 나선상으로 감긴 스크류의 회전을 통해 나노분말을 정해진 위치로 이동시킨다.
한편, 제1포집부(310) 및 제2포집부(320)는 진공펌프(P) 등과 연결되는 진공포트(102)를 구비함으로써 내부가 진공 상태로 유지된다.
제1포집부(310)와 제2포집부(320)는 각각 독립적으로 진공 환경이 조성되는 것이 바람직하며, 내부 압력은 서로 다를 수 있다.
그리고 수거부(300)는 상부에 투명 소재로 형성된 뷰포트(301)가 구비되어 뷰포트(301)를 통해 수거부(300)의 내부 상황을 시각적으로 확인할 수 있다.
한편, 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)는 도 9에 도시된 바와 같이 복수 개를 병렬로 연결하여 하나의 모듈로 운용될 수 있다.
본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)가 모듈로 운용되면 진공펌프(P)를 통한 진공형성, 자동피딩장치(210)를 통한 원료물질공급 및 냉각수를 통한 냉각 등의 효율을 높일 수 있으므로 나노분말의 생산성을 높일 수 있다.
상기에서 설명한 바와 같이 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)는, 자동피딩장치(210) 및 이송필름(180)을 포함하는바, 원료물질의 공급 및 나노분말의 포집이 연속적으로 이루어지므로 나노분말을 연속하여 생산할 수 있다.
또한, 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)는, 원료공급부(200), 반응챔버(100) 및 수거부(300) 모두에 진공포트(102)가 구비되어 진공펌프(P)와 연결되는바, 진공 환경에서 원료물질의 공급, 나노분말의 생성 및 수거가 진행되므로 대기 노출로 인한 나노분말의 표면 산화를 방지할 수 있다.
또한, 본 발명에 의한 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치(A)에서 수거부(300)의 제1포집부(310)는, 이송필름(180)의 일측 단부에 폭 방향을 따라 배치되는 스크래퍼(183); 및 스크래퍼(183)의 길이 방향 일단 및 타단을 탄력적으로 지지하는 텐셔너(184);를 포함하는바, 텐셔너(184)의 탄력적 지지에 의해 스크래퍼(183)의 일측이 이송필름(180)의 폭 방향을 따라 밀착됨에 따라 스크래퍼(183)와 접촉하는 나노분말이 이송필름(180) 표면으로부터 쉽게 이탈되므로 나노분말의 수거가 원활할 수 있어 나노분말의 수거 효율을 높일 수 있다.
이상에서 설명한 바와 같은 본 발명은 상기한 실시예에 한정되지 아니하므로 청구범위에서 청구하는 본 발명의 요지를 벗어나지 않는 범위 내에서 변경 가능하며, 그와 같은 변경은 이하 청구범위 기재에 의하여 정의되는 본 발명의 보호범위 내에 있게 된다.
[부호의 설명]
100 : 반응챔버 101 : 소재공급포트
102 : 진공포트 110 : 도가니
111 : 제1트랙 112 : 제2트랙
113 : 차단턱 120 : 도가니전극
130 : 도가니중심축 140 : 도가니높이조절수단
143 : 제1스크류축 144 : 제1스크류모터
145 : 제1볼너트 150 : 도가니회전수단
151 : 제1기어 152 : 제2기어
160 : 플라즈마 전극 161 : 팁
162 : 전극중심축 163 : 연결단자
170 : 전극높이조절수단 171 : 제2스크류축
172 : 제2스크류모터 173 : 제2너트
180 : 이송필름 181 : 이송축
182 : 냉각판 183 : 스크래퍼
184 : 텐셔너 185 : 자성유체씰
200 : 원료공급부 210 : 자동피딩장치
211 : 피딩하우징 212 : 피딩스크류
213 : 개폐구 214 : 피딩노즐
215 : 피딩모터 216 : 피딩히터
300 : 수거부 301 : 뷰포트
310 : 제1포집부 320 : 제2포집부
330 : 분말회수부 340 : 포장용기
400 : 지지프레임 A : 나노분말 연속제조장치
D : 회전 및 승강장치 P : 진공펌프
본 발명은, 균일한 입도를 갖는 나노분말이 연속적으로 생산됨으로써 나노분말의 생산성을 높일 수 있도록 할 뿐만 아니라 원료물질의 기화가 최적화됨으로써 나노분말의 품질을 높일 수 있도록 하므로 나노분말 생산 관련 산업상 이용가능성이 있다.

Claims (8)

  1. 플라즈마 전극(160) 및 도가니(110)를 이용하여 원료물질을 기화시키는 반응챔버(100);
    상기 반응챔버(100)의 일측에 연결되며 상기 원료물질을 상기 반응챔버(100)로 공급시키는 원료공급부(200);
    상기 반응챔버(100)의 내측 상부에서 기화된 상기 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이동하는 이송필름(180); 및
    상기 반응챔버(100)의 타측에 연결되며 상기 이송필름(180)을 통해 이송된 상기 나노분말을 회수하는 수거부(300);를 포함하되,
    상기 수거부(300)는, 상기 이송필름(180)의 일측 단부에 폭 방향을 따라 배치되는 스크래퍼(183); 및 상기 스크래퍼(183)의 길이 방향 일단 및 타단을 탄력적으로 지지하는 텐셔너(184);를 구비하는 제1포집부(310)를 포함하고,
    상기 스크래퍼(183)는 상기 텐셔너(184)의 탄력적 지지에 의해 일측이 상기 이송필름(180)의 폭 방향을 따라 밀착되는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  2. 제1항에 있어서,
    상기 제1포집부(310)는, 상기 이송필름(180)의 양측 단부를 수평 방향으로 지지하는 이송축(181) 양측 단부 각각에 마련되어 상기 이송축(181) 양측 단부 결합 부위를 통한 상기 원료물질 또는 상기 나노분말의 누설을 차단하는 자성유체씰(185)을 더 구비하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  3. 제1항에 있어서,
    상기 수거부(300)는, 상기 제1포집부(310)와 연결되어 상기 제1포집부(310)를 통해 포집된 상기 나노분말을 포집 및 이송시키는 제2포집부(320); 및 상기 제2포집부(320)를 통해 이송된 상기 나노분말을 회수하는 분말회수부(330);를 더 포함하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  4. 제1항에 있어서,
    상기 플라즈마 전극(160)은, 상기 도가니(110)에 인접하는 길이 방향 선단에 체결되되, 텅스텐 또는 그래파이트로 이루어지는 팁(161); 길이 방향 말단으로부터 수직방향으로 연장 형성되는 전극중심축(162); 및 상기 전극중심축(162)의 일측에 배치되어 전원과 연결되는 연결단자(163);를 포함하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  5. 제1항에 있어서,
    상기 도가니(110)는, 아랫방향으로 침강된 형상의 제1트랙(111); 상기 제1트랙(111)의 외측 둘레보다 큰 내측 둘레를 가지며 아랫방향으로 침강된 형상의 제2트랙(112); 및 상기 제1트랙(111)과 상기 제2트랙(112)의 사이에 구비되며 상기 제1트랙(111)과 상기 제2트랙(112)을 차단시키는 차단턱(113);을 포함하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  6. 제1항에 있어서,
    상기 원료공급부(200)는, 피딩하우징(211); 상기 피딩하우징(211) 내부에 나선상으로 구비된 피딩스크류(212); 상기 피딩스크류(212)를 구동시키는 피딩모터(215); 및 상기 피딩하우징(211)에 연결되며 상기 원료물질을 상기 반응챔버(100) 내부로 공급하는 피딩노즐(214);을 구비하는 자동피딩장치(210)를 포함하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  7. 제6항에 있어서,
    상기 자동피딩장치(210)는 복수로 마련되어 상기 도가니(110)의 제1트랙(111) 및 제2트랙(112) 각각에 같은 소재의 상기 원료물질 또는 서로 다른 소재의 상기 원료물질을 공급하는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
  8. 제2항에 있어서,
    상기 이송축(181)은 내부로 냉각수가 유입되는 것을 특징으로 하는 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치.
PCT/KR2019/017119 2019-12-05 2019-12-05 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치 WO2021112295A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/017119 WO2021112295A1 (ko) 2019-12-05 2019-12-05 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치
US17/805,350 US20220307158A1 (en) 2019-12-05 2022-06-03 Nanopowder continuous production device for improving nanopowder collection efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/017119 WO2021112295A1 (ko) 2019-12-05 2019-12-05 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,350 Continuation US20220307158A1 (en) 2019-12-05 2022-06-03 Nanopowder continuous production device for improving nanopowder collection efficiency

Publications (1)

Publication Number Publication Date
WO2021112295A1 true WO2021112295A1 (ko) 2021-06-10

Family

ID=76221989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017119 WO2021112295A1 (ko) 2019-12-05 2019-12-05 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치

Country Status (2)

Country Link
US (1) US20220307158A1 (ko)
WO (1) WO2021112295A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177536A (en) * 1989-03-31 1993-01-05 Canon Kabushiki Kaisha Developing apparatus having a magnetic seal
US5992614A (en) * 1997-12-02 1999-11-30 Asgco Manufacturing, Inc. Tensioning device for a belt scraper
JP2008179509A (ja) * 2007-01-24 2008-08-07 Ulvac Japan Ltd シリコン精錬装置、シリコン精錬方法
KR20140106044A (ko) * 2013-02-25 2014-09-03 주식회사 선익시스템 증발원 및 증착장치
KR20160034740A (ko) * 2014-09-22 2016-03-30 주식회사 선익시스템 증발원용 도가니 및 이를 포함하는 증발원
KR20180135760A (ko) * 2017-06-13 2018-12-21 한국기계연구원 나노 분말의 제조 장치 및 이 제조 장치를 이용한 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177536A (en) * 1989-03-31 1993-01-05 Canon Kabushiki Kaisha Developing apparatus having a magnetic seal
US5992614A (en) * 1997-12-02 1999-11-30 Asgco Manufacturing, Inc. Tensioning device for a belt scraper
JP2008179509A (ja) * 2007-01-24 2008-08-07 Ulvac Japan Ltd シリコン精錬装置、シリコン精錬方法
KR20140106044A (ko) * 2013-02-25 2014-09-03 주식회사 선익시스템 증발원 및 증착장치
KR20160034740A (ko) * 2014-09-22 2016-03-30 주식회사 선익시스템 증발원용 도가니 및 이를 포함하는 증발원
KR20180135760A (ko) * 2017-06-13 2018-12-21 한국기계연구원 나노 분말의 제조 장치 및 이 제조 장치를 이용한 제조 방법

Also Published As

Publication number Publication date
US20220307158A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2014098458A1 (ko) 이온성 액체를 이용한 유기소재 정제방법 및 정제장치
JP2905855B2 (ja) プラズマ沈着法による薄層とくに電子−及び/又は光電子工学的装置用のものの製造用装置及びその運転法
EP0640247B1 (en) Process and apparatus for making photovoltaic devices and resultant product
JP2002266065A5 (ja) 成膜方法、発光装置の作製方法及び成膜装置
KR20030089501A (ko) 제조 장치
WO2015093649A1 (ko) 가열장치 및 이를 포함하는 코팅기구
WO2017057913A1 (ko) 페로브스카이트 결정 구조체의 제조 방법, 및 이를 위한 페로브스카이트 결정 구조체의 제조 장치
KR101600661B1 (ko) 유기 전계 발광 재료의 정제장치 및 유기 전계 발광 재료의 정제 방법
WO2021112295A1 (ko) 나노분말의 수거 효율 개선을 위한 나노분말 연속제조장치
WO2021112294A1 (ko) 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치
WO2017217816A1 (ko) 기판처리장치
WO2013058458A1 (ko) 저융점 나노 유리 분말의 제조방법 및 제조장치
WO2012063991A1 (ko) 습식공정을 이용한 알루미늄 전극의 제조방법 및 이에 의하여 제조되는 알루미늄 전극
WO2018186634A1 (ko) 면증발원을 이용한 고해상도 amoled 소자의 양산장비
WO2020059956A1 (ko) 이송식 열플라즈마를 이용한 나노분말 연속 제조장치 및 이송식 열플라즈마를 이용한 복합나노분말 연속 제조방법
WO2016186386A1 (ko) 유기막 증착 장치와, 방법 및 유기막 장치
WO2021141261A1 (ko) 조명용 유기 발광소자 제조 장치
WO2014163366A1 (en) Thermal treatment system and method of performing thermal treatment and method of manufacturing cigs solar cell using the same
JP2004146184A (ja) 有機el素子の製造装置
CN112442660B (zh) 挡板装置、成膜装置、成膜方法及电子设备的制造方法
WO2018048090A1 (ko) 광전소자에 적용 가능한 유무기 혼성 나노와이어 및 이의 제조방법
WO2019132116A1 (ko) 수직형 면증발원을 이용한 고해상도 amoled 소자의 클러스터형 양산장비
WO2021235590A1 (ko) 붕소 전구체의 열처리를 통한 질화붕소나노튜브의 제조방법 및 장치
WO2013019041A9 (ko) 고체전해질 박막 제조방법 및 제조장치
WO2017122842A1 (ko) Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955093

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19955093

Country of ref document: EP

Kind code of ref document: A1