WO2021112019A1 - 蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法 - Google Patents

蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法 Download PDF

Info

Publication number
WO2021112019A1
WO2021112019A1 PCT/JP2020/044341 JP2020044341W WO2021112019A1 WO 2021112019 A1 WO2021112019 A1 WO 2021112019A1 JP 2020044341 W JP2020044341 W JP 2020044341W WO 2021112019 A1 WO2021112019 A1 WO 2021112019A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
circuit
vapor deposition
primary
deposition apparatus
Prior art date
Application number
PCT/JP2020/044341
Other languages
English (en)
French (fr)
Inventor
慎一郎 小林
謙吾 武田
宮崎 浩
Original Assignee
公益財団法人福岡県産業・科学技術振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人福岡県産業・科学技術振興財団 filed Critical 公益財団法人福岡県産業・科学技術振興財団
Priority to US17/781,618 priority Critical patent/US20230027336A1/en
Priority to KR1020227020944A priority patent/KR20220109416A/ko
Priority to JP2021562626A priority patent/JPWO2021112019A1/ja
Priority to CN202080092437.6A priority patent/CN114945702A/zh
Publication of WO2021112019A1 publication Critical patent/WO2021112019A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • H05B6/26Crucible furnaces using vacuum or particular gas atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a vapor deposition apparatus, a sublimation purification apparatus, a production method of an organic electronic device, and a sublimation purification method, and more particularly to a vapor deposition apparatus for forming a film of an organic material on a substrate.
  • the inventors of the present application are a thin-film deposition apparatus for forming a film of an organic material on a substrate, and in forming a film of an organic material, a practical vapor deposition method that suppresses noise while adopting an induction heating method having excellent thermal responsiveness is adopted.
  • Patent Document 1 The induction heating method is superior in thermal responsiveness to the resistance heating method. Therefore, the temperature can be raised and cooled quickly, and precise temperature control can be performed.
  • an object of the present invention is to provide a practical thin-film deposition apparatus or the like that suppresses the load on the circuit while passing a large current by adopting an induction heating method.
  • a first aspect of the present invention is a vapor deposition apparatus for forming a film of an organic material on a substrate, which is arranged in a container for accommodating the organic material, which is at least partially composed of a conductor, and around the container.
  • the secondary coil is a vapor deposition apparatus that forms a matching transformer.
  • the second aspect of the present invention is the vapor deposition apparatus according to the first aspect, wherein the inverter is included in the power supply unit, and the primary coil is a vacuum chamber included in the vapor deposition apparatus rather than the power supply unit.
  • the power supply unit and the primary coil are connected by a coaxial cable.
  • the third aspect of the present invention is the vapor deposition apparatus of the first or second aspect, in which the winding density of the primary coil is larger than the winding density of the secondary coil.
  • the fourth aspect of the present invention is the vapor deposition apparatus according to any one of the first to third aspects, and the secondary circuit which is a closed circuit having the secondary coil is a resonance circuit.
  • a fifth aspect of the present invention is the vapor deposition apparatus according to any one of the first to fourth aspects, and in the primary circuit which is a closed circuit having the primary coil, both ends of the primary coil are connected to an inverter. It is a full bridge type circuit.
  • a sixth aspect of the present invention is the vapor deposition apparatus according to any one of the first to fourth aspects, wherein the primary circuit, which is a closed circuit having the primary coil, is connected to the inverter of the primary coil.
  • the end opposite to the end is a half-bridge type circuit that is grounded via a capacitor connected in series.
  • the seventh aspect of the present invention is the vapor deposition apparatus of the sixth aspect, and the capacitance of the capacitor is a value that makes the resonance frequency of the primary circuit different from the resonance frequency of the secondary circuit.
  • the eighth aspect of the present invention is the vapor deposition apparatus according to the sixth or seventh aspect, wherein the resistance component of the primary circuit is R 1 , and the resistance component of the secondary circuit which is a closed circuit having the secondary coil is defined.
  • R 1 the resistance component of the primary circuit
  • the resistance component of the secondary circuit which is a closed circuit having the secondary coil is defined.
  • the resonance angle frequency of the secondary circuit is ⁇ res
  • the number of turns of the primary coil is n 1
  • the number of turns of the secondary coil is n 2
  • the capacitance C 1 of the capacitor is given by Eq. (1). It is larger than the value represented by.
  • a ninth aspect of the present invention is a vapor deposition apparatus according to a sixth or seventh aspect, in which the capacitance of the capacitor is C 1 , the resistance component of the primary circuit is R 1 , and a closed circuit having the secondary coil. Assuming that the resistance component of a secondary circuit is R 2 , the number of turns of the primary coil is n 1 , and the number of turns of the secondary coil is n 2 , the resonance angle frequency ⁇ res of the secondary circuit is given by Eq. (2). It is greater than or equal to the value represented.
  • the tenth aspect of the present invention is a thin-film deposition apparatus according to any one of the first to ninth aspects, wherein the alternating current supplied to the matching transformer is a high frequency of 200 kHz or more.
  • the eleventh aspect of the present invention is the vapor deposition apparatus of the tenth aspect, in which the end of the primary coil, which is a closed circuit having the primary coil, is opposite to the end of the primary coil connected to the inverter.
  • the capacitance of the capacitor connected in series with is 0.1 ⁇ F or more.
  • the twelfth aspect of the present invention is the vapor deposition apparatus of the tenth or eleventh aspect, and the value of the resistance component on the secondary side is 20 ⁇ or less.
  • the thirteenth aspect of the present invention is the vapor deposition apparatus according to any one of the tenth to twelfth aspects, and the value of the resistance component on the secondary side is 0.01 ⁇ or more.
  • a fourteenth aspect of the present invention is a vapor deposition apparatus according to any one of the first to thirteenth aspects, further comprising a vacuum chamber, the primary coil provided outside the vacuum chamber, and the secondary coil. Is provided inside the vacuum chamber.
  • a fifteenth aspect of the present invention is a sublimation purification apparatus for purifying an organic material, which comprises a container for accommodating the organic material, which is at least partially composed of a conductor, and heating arranged around the container.
  • a coil, a DC power supply, an inverter connected to the DC power supply, a primary coil connected to the inverter, and a secondary coil connected to the heating coil are provided, and the primary coil and the secondary coil are provided.
  • the next coil is a sublimation purification device that forms a matching transformer.
  • a sixteenth aspect of the present invention is a method for producing an organic electronic device using a vapor deposition apparatus for forming a film of an organic material on a substrate, wherein the vapor deposition apparatus is the organic material in which at least a part thereof is composed of a conductor.
  • the primary coil and the secondary coil form a matching transformer, and the inverter converts a direct current from the direct current power supply into an alternating current, and the matching transformer.
  • a method for producing an organic electronic device which comprises a step of stepping down a voltage from the side of the primary coil to the side of the secondary coil and a heating step of heating the container by flowing the direct current through the coil. Is.
  • a seventeenth aspect of the present invention is a sublimation purification method using a sublimation purification apparatus for purifying an organic material
  • the sublimation purification apparatus is a container for accommodating the organic material, which is at least partially composed of a conductor.
  • a heating coil arranged around the container, a DC power supply, an inverter connected to the DC power supply, a primary coil connected to the inverter, and two connected to the heating coil.
  • a secondary coil is provided, and the primary coil and the secondary coil form a matching transformer, and the matching transformer steps down the voltage from the primary coil side to the secondary coil side.
  • a sublimation purification method including a heating step in which the container is heated by flowing the AC through the coil.
  • each viewpoint of the present invention by using a matching transformer, different voltages and currents can be used on the primary side and the secondary side, and it is possible to select the voltage and current suitable for each application. Become. Therefore, it is possible to provide a practical thin-film deposition apparatus or the like that suppresses the load on the circuit while passing a large current by adopting the induction heating method.
  • organic substances are easier to vaporize than inorganic substances, so it was not expected to pass a large current through the coil to the extent that a matching transformer is used in the production of organic electronic devices.
  • the present invention while the inventors are working on the development of organic electronic devices, came up with the original technical idea of using a matching transformer in the production method of organic electronic devices from the viewpoint of reducing the load on the circuit. ..
  • the primary side and the secondary side are also thermally cut off. Therefore, it becomes easy to protect the inverter from the heat of the heating coil which has become hot by passing a large current.
  • the secondary side in the present invention has a simple structure of a matching transformer, a heating coil, and a capacitor, the cooling mechanism can be easily attached. Therefore, high-speed heating and high-speed cooling become easy, and temperature control and rate control of the container for storing the organic material become easy.
  • the resistance value component increases the impedance of the circuit due to the lengthening of the cable on the primary side, which seems to be disadvantageous in passing a large current.
  • the impedance of the circuit is not easily affected even if the wiring on the primary side is lengthened.
  • the transformer and the power supply unit via a cable, it is only necessary to connect the transformer to the limited space adjacent to the vapor deposition chamber. Therefore, even if the space adjacent to the vapor deposition chamber is limited, it becomes easier to apply the configuration of the present vapor deposition apparatus.
  • the third aspect of the present invention it is possible to step down the voltage from the primary side to the secondary side of the matching transformer. Therefore, it is possible to use a high voltage but a low current on the primary side, and it becomes easier to work by suppressing heat generation of wiring and circuits. Further, since a large current is not used in the circuit on the primary side, it is possible to suppress a failure or runaway due to heat of the inverter or the like. In addition, there are many high-voltage type power MOSEFT products, which are easy to apply in circuit construction. Further, on the secondary side, the current value becomes large, so that the coil can be efficiently heated.
  • the switching loss of the FET which is the power loss in the FET, is proportional to the drain current flowing through the FET. Therefore, by not passing a large current through the circuit on the primary side, it is possible to obtain the effect of suppressing the switching loss of the FET and suppressing the heat generation in the FET.
  • the fourth aspect of the present invention ideally, by making the secondary side of the matching transformer a resonant circuit, it is possible to pass a large current depending only on the resistance of the coil.
  • the average value of the current flowing through the primary circuit becomes 0, and the maximum load on the circuit such as heat generation on the primary circuit becomes zero. It is possible to prevent the generation of direct current, which is a factor. Therefore, it is possible to suppress the load on the primary circuit while adopting the induction heating method. Moreover, it is possible to apply the full voltage to the primary coil that directly contributes to energy transfer, not to an element such as a capacitor that does not directly contribute to energy transfer.
  • the capacitor cuts the DC component which causes the load on the circuit such as heat generation, while the AC component cuts the DC component. It becomes possible to transfer energy to the next circuit. Therefore, it is possible to suppress the load on the primary circuit while adopting the induction heating method.
  • the impedance of the primary circuit can be adjusted by changing the capacitance of the capacitor, and the energy input to the primary side can be easily adjusted.
  • the seventh aspect of the present invention by shifting the resonance frequencies of the primary circuit and the secondary circuit, it is possible to pass a large current only in the secondary circuit. Therefore, it becomes easy to efficiently heat the induction coil while suppressing the burden on the circuit such as heat generation in the primary circuit.
  • the resistance component and the winding density among the elements on the secondary side particularly affect the impedance component on the primary side in the induction type vapor deposition apparatus and the like.
  • the ninth aspect of the present invention it becomes easier to effectively suppress the impedance component derived from the primary capacitor.
  • the tenth aspect of the present invention it is possible to efficiently heat the induction coil by setting the alternating current supplied to the matching transformer to 200 kHz or more. Conventionally, since the inductance of the coil becomes large for high frequencies, it has been used only up to about 10-50kHz. On the other hand, in the present invention, by matching the resonance frequency of the secondary circuit, it is possible to pass a current with a low impedance even in a high frequency range which has not been used so far.
  • the number of turns of the induction coil should be increased in order to increase the magnetic flux density.
  • the resistance value on the secondary side particularly affects the impedance. Therefore, even if the number of turns is reduced, it becomes easy to suppress the value of the resistance component on the secondary side. In particular, by setting the resistance value on the secondary side to 20 ⁇ or less, it becomes easy to operate smoothly and safely even if a large current is passed through the device.
  • the impedance on the primary side when the resistance value on the secondary side is increased, the impedance on the primary side also increases, but in order to make the induction heating method function effectively, the number of coil turns is increased. It is necessary to make one or more rolls. According to the calculations and experiments in the vapor deposition apparatus using the guidance method by the present inventors, it is considered necessary to set the resistance value on the secondary side to 0.01 ⁇ or more.
  • the fourteenth aspect of the present invention it becomes easier to thermally cut off between the primary circuit and the secondary circuit.
  • By reducing the influence of heat from the secondary circuit in the primary circuit to be controlled it becomes easy to stabilize the control of the primary circuit and stabilize the vapor deposition rate when a large current is passed. Therefore, it becomes easier to efficiently heat the induction coil while suppressing the burden on the circuit such as heat generation in the primary circuit.
  • the fourteenth aspect of the present invention has come up with the idea of providing a thin-film deposition apparatus that efficiently heats the induction coil while suppressing the burden on the circuit such as heat generation by intentionally separating the core of the transformer. ..
  • FIG. 1 shows an example of an induction heating type electronic circuit using an AC power supply and a matching transformer in the vapor deposition apparatus, and a circuit using a full bridge method as a primary circuit.
  • both ends of the primary coil are connected to the inverter as described below.
  • the electronic circuit 100, the DC power supply 21 (an example of "the DC power supply” in the present claims), silicon power MOSFET 23 1 and the silicon power MOSFET 25 1 is connected in series in this order.
  • the FET drive circuit unit 27 1 is connected to the silicon power MOSFET 23 1 and the silicon power MOSFET 25 1.
  • Silicon Power MOSFET 25 1 is opposite as viewed from the silicon power MOSFET 23 1 is grounded.
  • the silicon power MOSFET 25 1 is also silicon power MOSFET 23 1 is also a reverse direction as the direction transistor is grounded from the DC power source 21, no current flows in the absence channel.
  • Silicon Power MOSFET 23 1 and the connection point 35 1 between the silicon power MOSFET 25 1 is connected to one end of the primary coil 11. Further, the DC power source 21, the silicon power MOSFET 23 2 and the silicon power MOSFET 25 2 are connected in series in this order. Silicon power MOSFET 23 2 and the silicon power MOSFET 25 2, it is connected FET drive circuit 27 2. Silicon Power MOSFET 25 2 are opposite as viewed from the silicon power MOSFET 23 2 is grounded. The silicon power MOSFET 25 2 is also silicon power MOSFET 23 2 is also a reverse direction as the direction transistor is grounded from the DC power source 21, no current flows in the absence channel.
  • Connection point 35 2 between the silicon power MOSFET 23 2 and the silicon power MOSFET 25 2 is connected to a resistor 17 connected to the opposite end to the one end of the primary side coil 11 of the connection point 35 1 is connected .
  • the heating coil 5 (an example of the "heating coil” of the present claim) installed so as to wind around the container 3 (an example of the "container” of the present claim) is a matching transformer unit 7 (an example of the “conversion” of the present claim). It is electrically connected to both ends of the secondary coil 9 (an example of the “secondary coil” of the present claim) of the "transformer").
  • the secondary side coil 9 and the primary side coil 11 are magnetically coupled.
  • the primary side is a circuit that is not a resonant circuit so that a large voltage can be applied without passing much current.
  • the resistance 17 includes the internal resistance of the MOSFET, the wiring, and the resistance value of the primary coil 11.
  • the matching transformer unit 7 also thermally cuts off the primary circuit and the secondary circuit. Therefore, even if the temperature of the induction coil 5 becomes high, the load due to heat on the primary circuit is cut off. Further, even if the primary circuit becomes hot, it is possible to prevent the influence on the secondary circuit.
  • FET driver circuit 27 1 is electrically connected to the silicon power MOSFET 23 1 and the silicon power MOSFET 25 1 of the gate electrode.
  • FET driver circuit 27 1 inputs respectively input signals 29 1 or the input signal 31 1 signal receiving and from transducer 33 to the gate electrode of the silicon power MOSFET 23 1 or the silicon power MOSFET 25 1.
  • FET drive circuit 27 2 is electrically connected to the silicon power MOSFET 23 2 and silicon power MOSFET 25 2 of the gate electrode.
  • FET driver circuit 27 2 inputs each input signal 29 2 or the input signal 31 2 signal receiving and from transducer 33 to the gate electrode of the silicon power MOSFET 23 2 or silicon power MOSFET 25 2.
  • a dead time imparting unit 34 is connected between the oscillator 33 and the FET drive circuit unit 27 1 and the drive circuit unit 27 2.
  • the FET driving circuit 27 1 and the FET driving circuit 27 2 silicon power MOSFET 25 1 and the silicon power MOSFET 23 2 respectively input signal 31 from 1 and the input signal 29 2 is inputted, the silicon power MOSFET 25 1 and the silicon power MOSFET 23 2 is turned on, the silicon power MOSFET 23 2, resistor 17, the primary coil 11, contacts 35 1, current flows in a direction of the silicon power MOSFET 25 1.
  • Input signal 29 1 and the input signal 31 2 and, by inputting an input signal 31 1 and the input signal 29 2 alternately be supplied to the primary coil 11 is converted into alternating direct current from the DC power source 21 Can be done.
  • the alternating current supplied to the primary side coil 11 in the matching transformer unit 7 is transformed according to the turns ratio with the magnetically coupled secondary side coil 9, and is supplied to the induction coil 5.
  • the dead time imparting unit 34 inserts a dead time in order to prevent conduction between the silicon power MOSFET 23 1 and the silicon power MOSFET 25 1 , and the silicon power MOSFET 23 2 and the silicon power MOSFET 23 2. And then switch.
  • FIG. 2 shows (a) the impedance characteristics of the primary side circuit and (b) the impedance characteristics of the secondary side circuit.
  • the impedance Z 1 of the primary circuit which is an LR circuit
  • Z 1 RL 1 + i ⁇ L 1.
  • the impedance of the primary circuit the inductance L 1 of the primary coil 11
  • the impedance Z 2 of the secondary circuit which is an LCR circuit
  • Z 2 R coil + i ⁇ L coil. Therefore, the impedance of the secondary circuit depends on the inductance L 2 of the secondary coil 9 and the frequency f switch of the current AC.
  • FIG. 3 shows an example of an electronic circuit in which the secondary side is a resonant circuit in the electronic circuit 100.
  • the secondary side of the matching transformer unit 7 is a resonant circuit, the characteristics of the resonant circuit are utilized to solve the problem that the current does not easily flow through the heating coil 5 when the frequency is increased. ..
  • the primary side of the matching transformer unit 7 is the same as that of the electronic circuit 100.
  • a capacitor 39 is added to the secondary side of the matching transformer unit 7.
  • the secondary coil 9, the induction coil 5, the resistor 41, and the capacitor 39 form an RLC resonant circuit portion 37 (an example of the "closed circuit having a secondary coil” according to the claim of the present application).
  • the resistor 41 is the sum of the resistors of the secondary coil 9 and the heating coil 5.
  • the winding density of the primary side coil 11 of the matching transformer unit 7 is higher than that of the coil 9.
  • the heating coil 5 is heated by induction heating, the high frequency is preferable because the resistance of the crucible increases due to the skin effect, so that the heating coil 5 can be heated efficiently. Specifically, it may be heated at a high frequency of about 200 KHz or more and 1 MHz or less.
  • the impedance is significantly lowered at a specific frequency (resonance frequency f res) due to the characteristics of the resonance circuit. From this, by matching the switching frequency of the AC signal or FET on the primary side of the matching transformer unit 7 with the resonance frequency f res on the secondary side, the matching transformer can be used even at high frequencies such as 200 kHz or higher, which has not been used so far. It can be seen that a large current can be passed through the secondary side of the unit 7. Therefore, the vapor deposition apparatus of this embodiment may include a variable capacitance capacitor.
  • the full-bridge type circuit for the primary circuit, the average value of the current flowing through the primary circuit becomes 0, and it is possible to prevent the primary circuit from generating direct current, which is the largest cause of load on the circuit, such as heat generation. .. Therefore, it is possible to suppress the load on the primary circuit while adopting the induction heating method.
  • the full voltage can be applied to the primary coil that directly contributes to energy transfer, instead of an element that does not directly contribute to energy transfer such as a capacitor.
  • FIG. 5 is a diagram illustrating an electronic circuit of an induction heating system using an AC power supply and a matching transformer, and a circuit 200 using a half-bridge system for the primary circuit.
  • the difference between the circuit 200 and the circuit 100 of FIG. 1 is that the end opposite to the end connected to the connection point 35 of the primary coil 11 in the matching transformer unit 7 is a resistor. It is connected to 117.
  • the resistor 117 is connected to the capacitor 115 on the opposite side of the primary coil 11.
  • the opposite side of the capacitor 115 as viewed from the resistor 117 is grounded.
  • the capacitor 115 cuts the DC component that is the largest factor of the load on the circuit such as heat generation.
  • the AC component makes it possible to transfer energy to the secondary circuit. Therefore, it is possible to suppress the load on the primary circuit while adopting the induction heating method.
  • the impedance of the primary circuit can be adjusted by changing the capacitance of the capacitor 115, and the energy input to the primary side can be easily adjusted.
  • FIG. 6 shows (a) an outline of a half-bridge circuit when a current is passed directly through an induction coil without using a transformer, (b) an outline of a circuit when a current is passed through an induction coil using a transformer, and (c). It is a figure which shows the example of heat generation when the same large current is passed through both induction coils.
  • the capacitor for DC cut on the primary side is 40.7 at room temperature of about 24 ° C.
  • the temperature rose to 55.5 ° C for the FET driver, 30.3 ° C for the high-side FET, and 43.8 ° C for the low-side FET.
  • the capacitor for DC cut on the primary side is used at a room temperature of about 24 ° C.
  • the temperature was 23.8 ° C
  • the FET driver was 43.4 ° C
  • the high-side FET was 25.4 ° C
  • the low-side FET was 26.1 ° C.
  • Figure 6 (c) shows a graph summarizing the temperatures of each element in the two circuits. Although different types of input noise cut (electrolytic) capacitors and FETs were used, the output currents were about the same and the same types of FET drivers were used. It was shown that the transformer method can suppress the temperature rise.
  • FIG. 7 is a diagram showing a schematic view of a vapor deposition apparatus 300 in which a matching transformer 207 is installed inside and outside the vacuum chamber.
  • the primary circuit having the primary coil 211 is arranged under atmospheric pressure, and the secondary circuit having the secondary coil 209 is arranged under vacuum inside the vacuum chamber 240 included in the vapor deposition apparatus 300. Has been done.
  • the primary coil 211 and the secondary coil 209 form a matching transformer 207.
  • the primary coil 211 has a transcore 241 which is a ferromagnet.
  • the secondary coil 209 has a transcore 243 which is a ferromagnet.
  • the configuration of this embodiment makes it even easier to thermally cut off between the primary circuit and the secondary circuit. By reducing the influence of heat from the secondary circuit in the primary circuit to be controlled, it becomes easy to stabilize the vapor deposition rate when a large current is passed.
  • the voltage applied to the matching transformer 207 is frequency-controlled using a function generator.
  • the temperature at which the container 3 can reach the maximum changes according to the frequency. This means that heating control becomes possible by frequency control. Further, the temperature at which the container 3 can reach the maximum changes by changing the duty ratio while the frequency is constant. This means that heating control is possible by controlling the duty ratio of the input square wave.
  • the heating temperature can be kept substantially constant even with frequency fluctuations due to slight changes in the circuit. Therefore, the temperature can be precisely controlled in the vicinity of the resonance frequency, and stable film formation becomes easy.
  • the configuration of the frequency control unit included in the vapor deposition apparatus will be described in detail below.
  • a function generator having good frequency stability may be used as described above.
  • the method for producing an organic electronic device using the vapor deposition apparatus of the present invention also has an over-specification aspect.
  • the function generator is a relatively large device, and the generation of parasitic capacitance and noise can be a problem.
  • a small oscillator element is used for miniaturization.
  • a VCO Voltage Control Oscillator
  • the switching frequency can be adjusted by the voltage, it is possible to reduce the number of cables and devices as compared with the case of using a function generator.
  • DDS Direct Digital Synthesizer
  • PID control a PID control system
  • microcomputer a microcomputer
  • the small oscillator element such as VCO or DDS, it is possible to reduce the size so that not only AC generation but also the control unit for frequency / duty ratio (PWM control) control can be stored in the lower part of the chamber.
  • the small oscillator element is installed at a location where the distance between the coil and the small oscillator element is at least shorter than the distance between the small oscillator element and the DC power supply, and is preferably installed at the bottom of the chamber. By doing so, the amount of cable can be reduced. Therefore, it becomes easy to suppress the generation of parasitic capacitance and noise and the adverse effect on the circuit.
  • the vapor deposition apparatus 300 includes a cooling apparatus 245 for cooling the transformer core 241.
  • a cooling apparatus 245 for cooling the transformer core 241.
  • the transcore 241 which is a ferromagnet
  • the magnetic permeability is increased and the energy transfer efficiency can be improved.
  • FIG. 8 is a diagram showing a schematic view of the vapor deposition apparatus 400 of the present invention in which a power transmission method using an electric field is used in addition to the matching transformer.
  • the thin-film deposition apparatus 400 further includes transmission capacitors 353 and 355 that perform energy transmission by an electric field, in addition to the matching transformer 307 installed via the vacuum chamber 240 as in the third embodiment. Further, the thin-film deposition apparatus 400 includes a resonance capacitor 351 under atmospheric pressure. In the transmission capacitors 353 and 355, two flat plates each forming each of the transmission capacitors 353 and 355 face each other via the vacuum chamber 240.
  • the resonance capacitor 351 under atmospheric pressure, it becomes easy to prepare a capacitor corresponding to a high frequency and a large current. Further, not only the transformer core but also the transmission capacitors 353 and 355 can be cooled from the atmospheric pressure side to improve the cooling efficiency.
  • FIG. 9 is a diagram showing an outline of the configuration of the vapor deposition apparatus according to the fifth embodiment.
  • the vapor deposition apparatus 500 includes a power supply unit 419, a vapor deposition source unit 420, and a PID control unit 410.
  • the thin-film deposition source unit 420 includes a thin-film deposition source 403, an induction coil 405, a vacuum chamber (not shown), and a matching transformer 407.
  • the primary coil 411 of the matching transformer 407 is connected to the power supply unit 419 via the coaxial cable 402.
  • the power supply unit 419 has a high-voltage high-frequency power supply 421 and a capacitor 422 for cutting DC.
  • the power supply unit 419 and the vapor deposition source unit 420 are connected by a coaxial cable 402. More specifically, the capacitor 422 of the power supply unit 419 and the primary coil 411 of the vapor deposition source unit 420 are connected by a coaxial cable 402.
  • the coaxial cable 402 may have a length that matches the size of the vapor deposition apparatus. Specifically, it is expected to be about 3 to 10 m.
  • FIG. 10 is a diagram for comparing the sizes of parts stored in the lower part of the chamber, and is a diagram for comparing (a) the case where the transformer is not used and (b) the case where the transformer is used.
  • FIG. 10 when a transformer is used, parts other than the transformer can be installed in a different place, and there is a large difference in the usage space under the flange.
  • the present inventors can set the impedance Z 1 of the circuit to the resistance value R 1 of the DC resistance on the primary side and the secondary. It was found that it is expressed by the equation (6) by using the resistance value R 2 for the DC resistance on the side, the number of turns n 1 of the primary side coil, and the number of turns n 2 of the secondary side coil.
  • n 1 / n 2 10.
  • Z 1 101 ⁇ .
  • 100 V is applied to the primary side of the transformer, a current of about 1 A can flow.
  • an AC power source converts 100V or 200V to a DC power supply, it is realistic to apply 100V for use.
  • FIG. 11 is a graph in which the effect of inserting the coaxial cable is actually measured, and (a) a graph showing the relationship between the switching frequency and the supply current from the DC power supply, and (b) the switching frequency and the current induced on the secondary side. It is a graph which shows the relationship with the amplitude of. As shown in FIG. 11, the current near the resonance frequency of 262 kHz decreased by only a few percent between the case of direct connection and the case of connecting the power supply unit and the primary coil with a 3 m coaxial cable. In other words, it is shown that the effect of inserting the coaxial cable and extending the cable is small, and the result supports the above consideration.
  • FIG. 12 is a graph obtained by actually measuring the effect of inserting the coaxial cable, and is a graph showing the relationship between the switching frequency and the amplitude of the current induced on the primary side.
  • the amplitude appears to be larger when a 3 m coaxial cable is inserted. This is thought to be due in part to the large amount of noise mixed in.
  • induction heating is usually performed near the resonance frequency, it can be said that the influence of this noise is meaningless.
  • the current value drops slightly when the coaxial cable is inserted, but it is not a drop that affects induction heating.
  • the resistance value on the secondary side is advantageous to suppress the value of the resistance component on the secondary side even if the number of turns is reduced.
  • the resistance value on the secondary side is set to 20 ⁇ or less, preferably 15 ⁇ or less, and more preferably 10 ⁇ or less, it becomes easy to operate smoothly and safely even if a large current is passed through the device.
  • the range of the number of turns on the secondary side of the transformer will be examined.
  • the number of coil turns needs to be one or more in order for the induction heating method to function effectively.
  • the induction coil uses a copper conducting wire (outer diameter ⁇ is 3 mm, number of turns N10, coil length is 15 cm) and an alternating current having a frequency of 300 kHz is passed.
  • the resistance value considering the skin effect also increases 5-10 times, which is close to the upper limit of R 2 described above.
  • the number of turns N of the induction coil on the secondary side is appropriately in the range of 1 ⁇ N ⁇ 30. If the number of turns is easily increased in order to increase the magnetic flux density, the performance of the transformer may not be exhibited.
  • the numerical range of the capacitance C 1 of the capacitor on the primary side will be examined. If the capacitance is about 10 times larger than the capacitance represented by Eq. (1), it is considered that a sufficiently large current can be obtained on the secondary side. Theoretically, there is no limit to the upper limit, but increasing the capacitance of the capacitor results in an increase in size, which deviates from a realistic configuration. Therefore, a realistic configuration is possible by actually setting it to 20 ⁇ F or less, preferably 15 ⁇ F or less, and more preferably 10 ⁇ F.
  • C 1 the lower limit of the capacitance C 1 of the capacitor on the primary side
  • C 1 the transformer used this time when the frequency is set to 300kHz corresponding to the resonance frequency of the IH vapor deposition source
  • the transformer used this time when the frequency is set to 300kHz corresponding to the resonance frequency of the IH vapor deposition source is a spec that can flow 30-50A on the secondary side.
  • C 1 0.1 ⁇ F or more, preferably 0.2 ⁇ F or more, which seems to be a reasonable transformer, is considered to be a realistic threshold value.
  • FIG. 13 is a graph showing (a) a change in the current value near the resonance frequency and (b) a change in the current value with respect to the frequency on the secondary side when the circuit according to the present invention having a transformer is used. .. With reference to FIG. 13, it was confirmed that a large current of 10 A or more could actually be passed to the secondary side by using a circuit having a transformer.
  • a DC20V DC power supply was used to pass a current of about 0.25A supplied from a DC power supply having a resonance point near 520kHz on the primary side. where it was possible to flow an AC current of about 13A pp there is resonance point in the vicinity likewise 520kHz to the secondary side.
  • a DC 60V DC power supply when a current of about 0.60A with a resonance point near 520kHz is passed on the primary side, an alternating current of about 33A pp with a resonance point near 520kHz can be passed on the secondary side. did it.
  • FIG. 14 shows (a) the vapor deposition rate during film formation and (b) the electric power applied when the temperature rises to 500 ° C. when the circuit is provided with or without a transformer in the induction heating type vapor deposition apparatus. It is a graph which shows the time-dependent change of.
  • the vapor deposition can be carried out with almost no difference regardless of whether the circuit with the transformer or the circuit without the transformer is used.
  • the degree of vacuum during vapor deposition was about 10-4 Pa
  • the film was made of Alq 3
  • the crucible was made of titanium.
  • Different numerical values were used for the PID control parameters for the circuit with and without the transformer.
  • the resonance frequency was 507kHz in the circuit with a transformer and 350kHz in the circuit without a transformer.
  • the method of applying electric power at the time of temperature rise was different.
  • the electric power applied when the temperature was raised until about 1000 seconds had passed gradually decreased.
  • the electric power applied when the temperature was raised until about 1000 seconds had passed until the temperature reached 500 ° C. was almost constant. It is considered that this is because even if a large current flows to the secondary side and the heating is performed, the influence on the impedance seen from the primary side is smaller than that of the direct method. That is, it has been shown that the induction heating method having a transformer is capable of more efficient heating even at high temperatures.
  • the output applied to both was almost constant at the stage where the entire apparatus was warmed up and stably maintained at 500 ° C.
  • the vapor deposition apparatus equipped with a transformer required more power to maintain the temperature.
  • the electric power does not exceed 50 W as a condition that an application based on the Radio Law is not required when using the vapor deposition apparatus according to this embodiment.
  • the temperature did not exceed 50 W even during the operation of raising the temperature to 500 ° C. and maintaining the temperature.
  • An output of about 40 W was sufficient, and the power for driving the circuit was about 1 W. Since there is a margin of up to 50 W, the transformer type vapor deposition apparatus also satisfies the above conditions.
  • the transformer method has some power loss in the matching transformer, it is possible to reduce the number of parts in the space adjacent to the vacuum chamber and configure it compactly. In addition, since the AC power supply unit can be easily incorporated into the system of the entire device, safety and monitoring can be facilitated. Furthermore, not only is the primary side less susceptible to the heat from the induction coil, but it is also less susceptible to the heat from the secondary side circuit to the primary circuit, making it possible to supply power stably for a long period of time. is there. Moreover, from the viewpoint of safety, it can be said that the transformer method is suitable for supplying a large current to the induction coil. The inventors have confirmed that 150 W can be provided for 40 minutes by at least an induction heating method using a transformer. At this time, although there was heat generated by the drive, power could be stably supplied to the vapor deposition source.
  • FIG. 15 is a circuit diagram that serves as a model of an induction heating method using a transformer according to the present invention.
  • the circuit 600 includes a resistor (resistance value R 1 ), a capacitor (capacitance C 1 ), and a primary circuit unit 551 in which a primary coil 511 (inductance L 1) is connected in series.
  • a secondary coil 509 inductance L2
  • a resistor resistor (resistance value R 2)
  • the induction coil 505 inductance L ind
  • capacitors capacitors (capacitance C res) and is connected in series with the secondary circuit portion which forms a closed circuit 552 and.
  • the resistance of the resistance value R 1 is a resistance component obtained by adding the resistance of the wiring on the primary side and the resistance component of the transformer coil on the primary side. Capacitance C 1 capacitor, for DC cut, used for the purpose of adjusting the primary current.
  • the primary coil 511 of the inductance L 1 forms a matching transformer 507 with the secondary coil 509 of the inductance L 2.
  • the resistance of the resistance value R 2 is a resistance component obtained by adding the resistance of the wiring on the secondary side, the resistance component of the induction coil 505, and the resistance component of the secondary coil 509.
  • the capacitor with capacitance C res is a capacitor for secondary resonance. Let Z 2 be the sum of the impedances of the induction coil L ind and the secondary resonance capacitor C res.
  • the impedance Z 1 of the primary coil is expressed by the equation (7) using the mutual inductance M from the combination of the basic equation of the transformer and the equation of Ohm's law. Therefore, the total impedance Z t1 on the primary side is expressed by the equation (8).
  • the resonance frequency is assumed to be 200kHz-500kHz, and it is assumed that the resonance frequency can be sufficiently approximated to ⁇ L 2 >> R 2. Further, at this time, the influence of the second term of the equation (9) is also reduced. As a result, the equation (6) is obtained by the equations (9) and (10).
  • the full bridge circuit may be adopted.
  • the capacitance for DC cutting becomes unnecessary. Therefore, considering the value of the capacitance C 1 becomes unnecessary.
  • the FET and driver circuits are doubled, but the applied DC voltage is halved, so the load on the circuit when a large voltage is applied is halved. As a result, in principle, it is possible to input twice as much power.
  • FIG. 16 is a diagram showing the results of the initial characteristics of a phosphorescent organic EL device comparing the case where the circuit is equipped with a transformer and the case where the circuit is not provided in the induction heating type vapor deposition apparatus.
  • the device structure produced by the vapor deposition apparatus according to the present invention is ITO / ⁇ -NPD (40 nm) / Ir (ppy) 3 (6 wt%): mCBP (30 nm) / TPBi (50 nm) / LiF (0.8 nm) / Al. did.
  • ITO indium tin oxide
  • ⁇ -NPD N, N'-Di (1-naphthyl) -N, N'-diphenylbenzidine
  • Ir (ppy) 3 (6wt).
  • mCBP (3,3'-di (9H-carbazol-9-yl) -1,1'-biphenyl) doped with 6 wt% of iridium complex tris (2-phenylpyridinato) iridium (III) is the light emitting layer
  • TPBi (1,3,5-tris (1-phenyl1H-benzimidazole-2-yl) benzene) is the electron transport layer
  • LiF / Al is the anode.
  • Ir (ppy) 3 which is the doping material of the light emitting layer, was vapor-deposited in a circuit without a transformer, and mCBP was vapor-deposited separately with and without a transformer.
  • a device having a transformer has the same characteristics as an element using a circuit without a transformer, both in (a) voltage-current density graph and (b) emission spectrum. did it.
  • the maximum value was about 21% when the transformer was not used, and the maximum value was about 18% when the transformer was used.
  • a silicon power MOSFET is used, but other transistors may be used as long as a high voltage can be applied.
  • a SiC-MOSFET, an IGBT, or a GaN transistor other than the silicon power MOSFET may be used.
  • the technical idea of providing matching transformers inside and outside the vacuum chamber as shown in the third and subsequent examples is not applicable only to the vapor deposition apparatus. It can also be applied to sublimation purification equipment, heat balances, mass spectrometers, and other equipment that transfers energy between the vacuum side and the atmosphere side. It is also applicable when it is necessary to work under reduced pressure, such as extravehicular activity in space.
  • a cooling method in the vacuum chamber for example, a heat bath such as copper as a cooling mechanism is brought into contact with an induction coil or a flat plate in the vacuum chamber, and a stainless bellows pipe is directly connected to the heat bath to supply cooling water. It may be shed.
  • a heat bath such as copper as a cooling mechanism is brought into contact with an induction coil or a flat plate in the vacuum chamber, and a stainless bellows pipe is directly connected to the heat bath to supply cooling water. It may be shed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Induction Heating (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、誘導加熱方法を採用しつつ大電流による回路の負荷を抑える実用的な蒸着装置等を提供することを目的とする。 有機材料を基板に製膜する蒸着装置であって、少なくとも一部が導体で構成されている前記有機材料を収納する容器と、前記容器の周囲に配置されている加熱コイルと、直流電源と、前記直流電源に接続されているインバータと、前記インバータに接続されている一次コイルと、前記加熱コイルに接続されている二次コイルとを備え、前記一次コイル及び前記二次コイルは、マッチングトランスを形成する、蒸着装置である。

Description

蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法
 本発明は、蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法に関し、特に、有機材料を基板に製膜する蒸着装置等に関する。
 本願発明者らは、有機材料を基板に製膜する蒸着装置であって、有機材料を製膜する上で、熱応答性に優れた誘導加熱方式を採用しつつノイズを抑えて実用的な蒸着装置を提案してきた(特許文献1)。誘導加熱方式は、抵抗加熱方式に比べて熱応答性に優れている。そのため、昇温及び冷却を速やかに行い、精密な温度制御を行うことができる。
特願2018-063368号 特願2018-225361号 特願2018-225362号 特願2018-225363号 特願2018-225364号
 しかしながら、誘導加熱に用いられる誘導コイルを加熱するためには、大きな電流を流す必要があるため、回路に負荷がかかり、高温になる懸念がある。回路が高温になると、チャンバー内にも熱の影響が及んで誘導加熱方式の優れた熱応答性を損なうことになりかねない。
 そこで、本発明は、誘導加熱方法を採用して大電流を流しつつ回路の負荷を抑える実用的な蒸着装置等を提供することを目的とする。
 本発明の第1の観点は、有機材料を基板に製膜する蒸着装置であって、少なくとも一部が導体で構成されている前記有機材料を収納する容器と、前記容器の周囲に配置されている加熱コイルと、直流電源と、前記直流電源に接続されているインバータと、前記インバータに接続されている一次コイルと、前記加熱コイルに接続されている二次コイルとを備え、前記一次コイル及び前記二次コイルは、マッチングトランスを形成する蒸着装置である。
 本発明の第2の観点は、第1の観点の蒸着装置であって、前記インバータは、電源ユニットに含まれるものであり、前記一次コイルは、前記電源ユニットよりも当該蒸着装置が備える真空チャンバーに近くにあり、前記電源ユニットと前記一次コイルとは同軸ケーブルで接続されている。
 本発明の第3の観点は、第1又は第2の観点の蒸着装置であって、前記一次コイルの巻き密度が前記二次コイルの巻き密度より大きい。
 本発明の第4の観点は、第1から第3のいずれかの観点の蒸着装置であって、前記二次コイルを有する閉回路である二次回路は、共振回路である。
 本発明の第5の観点は、第1から第4のいずれかの観点の蒸着装置であって、前記一次コイルを有する閉回路である一次回路は、前記一次コイルの両端がインバータに接続されているフルブリッジ方式の回路である。
 本発明の第6の観点は、第1から第4のいずれかの観点の蒸着装置であって、前記一次コイルを有する閉回路である一次回路は、前記一次コイルの前記インバータに接続されている端とは逆の端が、直列に接続されたキャパシタを介して接地されているハーフブリッジ方式の回路である。
 本発明の第7の観点は、第6の観点の蒸着装置であって、前記キャパシタのキャパシタンスは、前記一次回路の共振周波数が前記二次回路の共振周波数とは異なるようにする値である。
 本発明の第8の観点は、第6又は第7の観点の蒸着装置であって、前記一次回路の抵抗成分をR1、前記二次コイルを有する閉回路である二次回路の抵抗成分をR2、前記二次回路の共振角周波数をωres、前記一次コイルの巻き数をn1、前記二次コイルの巻き数をn2とすると、前記キャパシタのキャパシタンスC1は、(1)式で表される値よりも大きいものである。
Figure JPOXMLDOC01-appb-M000003
 本発明の第9の観点は、第6又は第7の観点の蒸着装置であって、前記キャパシタのキャパシタンスをC1、前記一次回路の抵抗成分をR1、前記二次コイルを有する閉回路である二次回路の抵抗成分をR2、前記一次コイルの巻き数をn1、前記二次コイルの巻き数をn2として、前記二次回路の共振角周波数ωresは、(2)式で表される値以上である。
Figure JPOXMLDOC01-appb-M000004
 本発明の第10の観点は、第1から第9のいずれかの観点の蒸着装置であって、前記マッチングトランスに供給される交流電流が200kHz以上の高周波である、蒸着装置である。
 本発明の第11の観点は、第10の観点の蒸着装置であって、前記一次コイルを有する閉回路である一次回路において、前記一次コイルの前記インバータに接続されている端とは逆の端と直列に接続されたキャパシタのキャパシタンスは、0.1μF以上である。
 本発明の第12の観点は、第10又は第11の観点の蒸着装置であって、二次側の抵抗成分の値は、20Ω以下である。
 本発明の第13の観点は、第10から第12のいずれかの観点の蒸着装置であって、二次側の抵抗成分の値は、0.01Ω以上である。
 本発明の第14の観点は、第1から第13のいずれかの観点の蒸着装置であって、真空チャンバーをさらに備え、前記一次コイルを前記真空チャンバーの外部に備えており、前記二次コイルを前記真空チャンバーの内部に備えている。
 本発明の第15の観点は、有機材料を精製する昇華精製装置であって、少なくとも一部が導体で構成されている前記有機材料を収納する容器と、前記容器の周囲に配置されている加熱コイルと、直流電源と、前記直流電源に接続されているインバータと、前記インバータに接続されている一次コイルと、前記加熱コイルに接続されている二次コイルとを備え、前記一次コイル及び前記二次コイルは、マッチングトランスを形成する、昇華精製装置である。
 本発明の第16の観点は、有機材料を基板に製膜する蒸着装置を用いた有機電子デバイスの生産方法であって、前記蒸着装置は、少なくとも一部が導体で構成されている前記有機材料を収納する容器と、前記容器の周囲に配置されている加熱コイルと、直流電源と、前記直流電源に接続されているインバータと、前記インバータに接続されている一次コイルと、前記加熱コイルに接続されている二次コイルとを備え、前記一次コイル及び前記二次コイルは、マッチングトランスを形成しており、前記インバータが、前記直流電源からの直流を交流に変換する変換ステップと、前記マッチングトランスが、前記一次コイルの側から前記二次コイルの側へ電圧を降圧する降圧ステップと、前記コイルに前記交流が流れることで前記容器が加熱される加熱ステップとを含む、有機電子デバイスの生産方法である。
 本発明の第17の観点は、有機材料を精製する昇華精製装置を用いた昇華精製方法であって、前記昇華精製装置は、少なくとも一部が導体で構成されている前記有機材料を収納する容器と、前記容器の周囲に配置されている加熱コイルと、直流電源と、前記直流電源に接続されているインバータと、前記インバータに接続されている一次コイルと、前記加熱コイルに接続されている二次コイルとを備え、前記一次コイル及び前記二次コイルは、マッチングトランスを形成するものであり、前記マッチングトランスが、前記一次コイルの側から前記二次コイルの側へ電圧を降圧する降圧ステップと、前記コイルに前記交流が流れることで前記容器が加熱される加熱ステップとを含む、昇華精製方法である。
 本発明の各観点によれば、マッチングトランスを用いることにより、一次側と二次側とで異なる電圧及び電流を用いることができ、それぞれの用途にあった電圧・電流を選択することが可能となる。そのため、誘導加熱方法を採用して大電流を流しつつ回路の負荷を抑える実用的な蒸着装置等を提供することが可能となる。
 従来、有機物は無機物に比べて気化しやすいため、有機電子デバイスの生産においてマッチングトランスを使用するほどの大電流をコイルに流すことが想定されていなかった。本発明は、発明者らが有機電子デバイスの開発に取り組む中で、回路の負荷軽減という観点から有機電子デバイスの生産方法にもマッチングトランスを使用するという独自の技術的思想に想到したものである。
 さらに、マッチングトランスを使用することにより、一次側と二次側が熱的にも遮断される。そのため、大電流を流して高温となった加熱コイルの熱からインバータを保護することが容易となる。
 また、蒸着レートの制御には、高速加熱だけでなく高速冷却が必要となる。本発明における二次側は、マッチングトランス、加熱コイル、コンデンサというシンプルな構成であるため、冷却機構の取り付けが容易となる。このため、高速加熱及び高速冷却が容易となり、有機材料を収納する容器の温度制御やレート制御が容易となる。
 さらに、後述するように、マッチングトランスを使用する場合の方が、昇温時により効率的な電力印加が可能であった。
 さらに、本発明の第2の観点によれば、一見、一次側のケーブルが長くなることで抵抗値成分が回路のインピーダンスを増加させるため、大電流を流す上で不利なように思われる。しかし、本発明者らによる誘導方式を用いた蒸着装置における計算及び実験によると、一次側の配線を長くしても回路のインピーダンスは影響を受けにくいことが分かった。しかも、トランスと電源ユニットとをケーブルを介して分離することにより、蒸着チャンバーに隣接した限られたスペースにはトランスのみを接続すればよいことになる。そのため、蒸着チャンバーに隣接したスペースが限られていても、本蒸着装置の構成を適用することがさらに容易となる。
 さらに、本発明の第3の観点によれば、マッチングトランスの一次側から二次側へ電圧を降圧することが可能となる。よって、一次側には高電圧ではあるが低電流を使用することが可能となり、配線や回路の発熱を抑制して作業がしやすくなる。さらに、一次側の回路に大きな電流を使用しないので、インバータ等の熱による故障や暴走を抑制することができる。また、高電圧タイプのパワーMOSEFTの製品は多数存在しており、回路構築において応用が容易である。さらに、二次側においては、電流値が大きくなるため、コイルを効率よく加熱させることができる。
 しかも、FETにおける電力ロスであるFETのスイッチング損失は、FETに流れるドレイン電流に比例する。したがって、一次側の回路に大電流を流さないことにより、FETのスイッチング損失を抑制し、FETにおける発熱を抑制する効果も得られる。
 さらに、本発明の第4の観点によれば、理想的にはマッチングトランスの二次側を共振回路にすることによりコイルの抵抗のみに依存して大電流を流すことが可能となる。
 さらに、本発明の第5の観点によれば、一次回路にフルブリッジ方式の回路を採用することにより、一次回路に流れる電流の平均値が0となり、一次回路に発熱など回路への負荷の最大要因となる直流電流を発生させないことが可能となる。そのため、誘導加熱方式を採用しつつ一次回路への負荷を抑制することが可能となる。しかも、キャパシタなどのエネルギー伝達に直接寄与しない素子ではなく、エネルギー伝達に直接寄与する一次コイルに対して全電圧を印加することが可能となる。
 また、本発明の第6の観点によれば、一次回路にハーフブリッジ方式の回路を採用することにより、キャパシタが発熱など回路への負荷の要因となる直流成分をカットする一方、交流成分により二次回路にエネルギーを伝達することが可能となる。そのため、誘導加熱方式を採用しつつ一次回路への負荷を抑制することが可能となる。しかも、キャパシタの容量を変えることにより一次回路のインピーダンスを調節し、一次側に投入されるエネルギーを容易に調整することが可能となる。
 さらに、本発明の第7の観点によれば、一次回路と二次回路の共振周波数をずらすことにより、二次回路のみ大電流を流すことが可能となる。このため、一次回路における発熱など回路への負担を抑制しつつ効率よく誘導コイルを加熱することが容易となる。
 さらに、本発明の第8及び第11の観点によれば、二次側の抵抗値と巻き密度を調整して一次側のインピーダンスを有効に抑制することが可能となる。誘導方式の蒸着装置等において、二次側の要素の中でも抵抗成分及び巻き密度が一次側のインピーダンス成分に特に影響を与える点は、本発明者らによる新たな知見である。
 さらに、本発明の第9の観点によれば、一次側キャパシタ由来のインピーダンス成分を有効に抑制することがさらに容易となる。
 さらに、本発明の第10の観点によれば、マッチングトランスに供給される交流電流を200kHz以上にすることで、効率よく誘導コイルを加熱することが可能となる。従来、高周波に対してはコイルのインダクタンスが大きくなるため、10-50kHzくらいまでしか使用されていなかった。これに対して、本発明においては、二次回路の共振周波数に合わせることにより、これまで使用されてこなかった高周波域においてもインピーダンスが低い状態で電流を流すことが可能となる。
 さらに、本発明の第12の観点に関して、一見、トランス方式の誘導加熱の効率向上の観点からは、磁束密度を上げるために誘導コイルの巻き数を増やせばよいように思われる。しかし、本発明者らによる誘導方式を用いた蒸着装置における計算及び実験によると、二次側の抵抗値がインピーダンスに特に影響するとの知見が得られた。そのため、巻き数を減らしてでも二次側の抵抗成分の値を抑制することが容易となる。特に、二次側の抵抗値を20Ω以下とすることで装置に大電流を流しても円滑かつ安全に運用することが容易となる。
 さらに、本発明の第13の観点に関して、二次側の抵抗値を増加させた場合、一次側のインピーダンスも増加することとなるが、誘導加熱方式を有効に機能させるためにコイルの巻き数を1巻き以上とする必要がある。本発明者らによる誘導方式を用いた蒸着装置における計算及び実験によると、二次側の抵抗値を0.01Ω以上とすることが必要と考えられる。
 さらに、本発明の第14の観点によれば、一次回路と二次回路との間を熱的に遮断することがさらに容易となる。制御を行う一次回路における二次回路からの熱の影響を減らすことにより、一次回路の制御を安定させ、大電流を流す際に蒸着レートを安定させることが容易となる。このため、一次回路における発熱など回路への負担を抑制しつつ効率よく誘導コイルを加熱することがさらに容易となる。
 通常、トランスでの電力ロスを防ぐためには、トランスのコアを共通のものを用いることが多い。しかし、本発明の第14の観点は、あえてトランスのコアを分離することにより、発熱など回路への負担を抑制しつつ効率よく誘導コイルを加熱する蒸着装置を提供することに想到したものである。
 しかも、二次回路において、真空チャンバーの外部から内部に二次回路の導線を引き込むことが不要となるため、真空チャンバーのフランジ部における導線周りのシールが不要となり、真空チャンバーの真空度を高く保つことが容易となる。
 さらに、真空チャンバー外から接続されたケーブルによる空間的な制約がなくなることにより、真空チャンバー内でるつぼを移動させることが容易となる。したがって、蒸着源を移動させながら蒸着を実施することが容易となる。
交流電源及びマッチングトランスを用いた誘導加熱方式の電子回路であり、一次回路にフルブリッジ方式を用いた回路を例示する図である。 (a)一次側回路のインピーダンス特性、及び、(b)二次側回路のインピーダンス特性を示す図である。 電子回路1において、二次側を共振回路とした電子回路を例示する図である。 誘導コイルのインピーダンス特性と共振回路におけるインピーダンス特性を示す図である。 交流電源及びマッチングトランスを用いた誘導加熱方式の電子回路であり、一次回路にハーフブリッジ方式を用いた回路を例示する図である。 トランスが回路の発熱を抑制する効果について検証した結果を示す図であり、(a)トランスを使わずに直接に誘導コイルに電流を流す場合のハーフブリッジ回路の概要、(b)トランスを用いて誘導コイルに電流を流す場合の回路の概要、(c)両者の誘導コイルに同程度の大電流を流した場合の発熱例を示す図である。 真空チャンバーの内外にマッチングトランスを設置した本発明の蒸着装置の模式図を示す図である。 マッチングトランスに加えて電場による電力伝送方式も併用した本発明の蒸着装置の模式図を示す図である。 実施例5における蒸着装置の構成の概要を示す図である。 、チャンバー下部に収納する部品サイズを比較する図であり、(a)トランスを使わない場合と、(b)トランスを使う場合とを比較する図である。 同軸ケーブルを挿入する影響を実測したグラフであり、(a)スイッチング周波数と直流電源からの供給電流の関係を示すグラフと、(b)スイッチング周波数と二次側に誘起される電流の振幅との関係を示すグラフである。 同軸ケーブルを挿入する影響を実測したグラフであり、スイッチング周波数と一次側に誘起される電流の振幅との関係を示すグラフである。 トランスを有する本願発明に係る回路を用いた場合の、共振周波数近辺の(a)電流値の変化、及び、(b)二次側の周波数に対する電流値の変化を示すグラフである。 誘導加熱方式の蒸着装置において、回路がトランスを備える場合と備えない場合に、(a)成膜時の蒸着速度、及び、(b)温度上昇時に印加される電力の経時変化を示すグラフである。 本発明に係るトランスを用いた誘導加熱方式のモデルとなる回路図である。 誘導加熱方式の蒸着装置において、回路がトランスを備える場合と備えない場合に、発光層のホスト材料であるmCBPを蒸着した結果を示す図である。
 図1に、本件蒸着装置において、交流電源及びマッチングトランスを用いた誘導加熱方式の電子回路であり、一次回路にフルブリッジ方式を用いた回路を例示する図を示す。ここで、フルブリッジ方式を用いた回路においては、以下に記載するように、一次側コイルの両端がインバータに接続されている。
 図1を参照して、電子回路100において、直流電源21(本願請求項における「直流電源」の一例)には、シリコンパワーMOSFET23及びシリコンパワーMOSFET25が順に直列に接続されている。シリコンパワーMOSFET23及びシリコンパワーMOSFET25には、FET駆動回路部27が接続されている。シリコンパワーMOSFET25は、シリコンパワーMOSFET23からみて反対側が接地されている。なお、シリコンパワーMOSFET23もシリコンパワーMOSFET25も直流電源21から接地されている方向がトランジスタとしての逆方向であり、チャネルがない状態で電流は流れない。
 シリコンパワーMOSFET23及びシリコンパワーMOSFET25の間の接続点35は、一次側コイル11の一端に接続されている。また、直流電源21には、シリコンパワーMOSFET23及びシリコンパワーMOSFET25が順に直列に接続されている。シリコンパワーMOSFET23及びシリコンパワーMOSFET25には、FET駆動回路部27が接続されている。シリコンパワーMOSFET25は、シリコンパワーMOSFET23からみて反対側が接地されている。なお、シリコンパワーMOSFET23もシリコンパワーMOSFET25も直流電源21から接地されている方向がトランジスタとしての逆方向であり、チャネルがない状態で電流は流れない。
 シリコンパワーMOSFET23及びシリコンパワーMOSFET25の間の接続点35は、接続点35が接続されている一次側コイル11の一端とは逆の端に接続されている抵抗17に接続されている。
 容器3(本願請求項の「容器」の一例)の周囲を巻くように設置された加熱コイル5(本願請求項の「加熱コイル」の一例)は、マッチングトランス部7(本願請求項における「変換トランス」の一例)の二次側コイル9(本願請求項の「二次コイル」の一例)の両端に電気的に接続されている。マッチングトランス部7において、二次側コイル9と一次側コイル11(本願請求項の「一次コイル」の一例)は磁気的に結合している。一次側は、電流をあまり流さずに大電圧を印加できるように共振回路ではない回路となっている。なお、抵抗17には、MOSFETの内部抵抗や、配線及び一次側コイル11の抵抗値が含まれる。
 ここで、マッチングトランス部7は、一次回路と二次回路を熱的にも遮断する。そのため、誘導コイル5が高温になっても一次回路への熱による負荷を遮断する。また、仮に一次回路が高温になったとしても、二次回路への影響を防ぐことが可能である。
 また、マッチングトランス部7の二次側コイル9と一次側コイル11の巻き密度は異なっており、一次側と二次側で電圧や電流を変化させることができる。そのため、誘導加熱方法を採用しつつ一次回路への負担となる発熱を抑えた実用的な蒸着装置等を提供可能となる。二次側コイル9に印加される実効電圧V appと二次側コイル9に流れる実効電流I appは、それぞれ、一次側コイル11の巻き数n、二次側コイル9の巻き数n、一次側コイル11に印加される電圧VAC、誘導コイル5の抵抗成分Rcoil、及び、一次側コイル11に流れる電流IACを用いて、以下の式(3)~(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 FET駆動回路部27は、シリコンパワーMOSFET23及びシリコンパワーMOSFET25のゲート電極とはそれぞれ電気的に接続されている。FET駆動回路部27は、振動子33からの信号を受けて入力信号29又は入力信号31をシリコンパワーMOSFET23又はシリコンパワーMOSFET25のゲート電極にそれぞれ入力する。また、FET駆動回路部27は、シリコンパワーMOSFET23及びシリコンパワーMOSFET25のゲート電極とはそれぞれ電気的に接続されている。FET駆動回路部27は、振動子33からの信号を受けて入力信号29又は入力信号31をシリコンパワーMOSFET23又はシリコンパワーMOSFET25のゲート電極にそれぞれ入力する。なお、振動子33とFET駆動回路部27及び駆動回路部27との間には、デッドタイム付与部34が接続されている。
 FET駆動回路部27及びFET駆動回路部27からシリコンパワーMOSFET23及びシリコンパワーMOSFET25にそれぞれ入力信号29及び入力信号31が入力されると、シリコンパワーMOSFET23及びシリコンパワーMOSFET25がオン状態となり、直流電源21、シリコンパワーMOSFET23、接点35、一次側コイル11、抵抗17、シリコンパワーMOSFET25の方向に電流が流れる。他方、FET駆動回路部27及びFET駆動回路部27からシリコンパワーMOSFET25及びシリコンパワーMOSFET23にそれぞれ入力信号31及び入力信号29が入力されると、シリコンパワーMOSFET25及びシリコンパワーMOSFET23がオン状態となり、シリコンパワーMOSFET23、抵抗17、一次側コイル11、接点35、シリコンパワーMOSFET25の方向に電流が流れる。入力信号29と入力信号31、及び、入力信号31と入力信号29を交互に入力することにより、直流電源21からの直流電流を交流に変換して一次側コイル11に供給することができる。マッチングトランス部7内にある一次側コイル11に供給された交流電流は、磁気的に結合された二次側コイル9との巻き数比に応じて変圧され、誘導コイル5に供給される。
 なお、入力信号の切り替えの際には、シリコンパワーMOSFET23及びシリコンパワーMOSFET25、並びに、シリコンパワーMOSFET23及びシリコンパワーMOSFET23の導通を防止するために、デッドタイム付与部34がデッドタイムを挿入した上で切り替える。
 図2に(a)一次側回路のインピーダンス特性、及び、(b)二次側回路のインピーダンス特性を示す。図2(a)を参照して、LR回路である一次側回路のインピーダンスZは、Z=RL1+iωLで表される。したがって、一次側回路のインピーダンスは、一次側コイル11のインダクタンスL、電流IACの周波数fswitchに依存する。また、図2(b)を参照して、LCR回路である二次側回路のインピーダンスZは、Z=Rcoil+iωLcoilで表される。したがって、二次側回路のインピーダンスは、二次側コイル9のインダクタンスL2、電流IACの周波数fswitchに依存する。
 図3に、電子回路100において、二次側を共振回路とした電子回路を例示する図を示す。図3の電子回路では、マッチングトランス部7の二次側を共振回路としたことで、共振回路の特性を利用し、周波数を上げると加熱コイル5に電流が流れ難くなる問題を解決している。
 図3を参照して、図1の電子回路100ではLによるローパスフィルタ効果により、MOSFET4個でSin(2πfswitch・t)の交流電流を実現していたものを、交流電源51で表現しているが、マッチングトランス部7の一次側は電子回路100と同様である。マッチングトランス部7の二次側には、キャパシタ39が追加されている。二次側コイル9及び誘導コイル5と抵抗41とキャパシタ39でRLC共振回路部37(本願請求項の「二次コイルを有する閉回路」の一例)を形成している。なお、抵抗41は二次側コイル9及び加熱コイル5の抵抗の和である。
 また、マッチングトランス部7の二次側の電流を大きくするため、マッチングトランス部7の一次側コイル11はコイル9より巻き密度が大きくなっている。この構成により、マッチングトランスの一次側から二次側へ電圧を降圧することが可能となる。よって、一次側には高電圧ではあるが低電流を使用することが可能となり、作業する際の安全性が高くなる。さらに、一次側の回路に大きな電流を使用しないので、インバータ等の熱による故障や暴走を抑制することができる。また、高電圧タイプのパワーMOSEFTの製品は多数存在しており、回路構築において応用が容易である。さらに、二次側においては、電流値が大きくなるため、コイルを効率よく加熱させることができる。
 図4に共振回路における加熱コイルのインピーダンス特性の図を示す。インピーダンスは、Z=Rcoil+iωL1coil+1/(iωC)で表される。図4に示すように、周波数を上げると特定の周波数以上は、加熱コイル5に電流が急激に流れ難くなることが分かる。加熱コイル5を誘導加熱により加熱する場合、高周波の方が表皮効果によりるつぼの抵抗が増加するため、効率よく加熱することができる点で高周波の方が望ましい。具体的には、200KHz以上1MHz以下程度の高周波で加熱することとしてもよい。
 また、図4に示すように、共振回路の特性により特定の周波数(共振周波数fres)でインピーダンスが大幅に下がっていることが分かる。このことから、マッチングトランス部7の一次側の交流信号orFETのスイッチングの周波数を二次側の共振周波数fresと合わせることにより、これまでに使用されてこなかった200kHz以上のような高周波でもマッチングトランス部7の二次側に大電流を流すことが可能であることが分かる。そこで、本実施例の蒸着装置は、可変容量コンデンサを備えるものであってもよい。
 また、共振回路の特性により、コイルの抵抗成分のみに依存して電流を流すことが可能である。
 一次回路にフルブリッジ方式の回路を採用したことにより、一次回路に流れる電流の平均値が0となり、一次回路に発熱など回路への負荷の最大要因となる直流電流を発生させないことが可能となる。そのため、誘導加熱方式を採用しつつ一次回路への負荷を抑制することが可能となる。しかも、コンデンサなどのエネルギー伝達に直接寄与しない素子ではなく、エネルギー伝達に直接寄与する一次コイルに対して全電圧を印加することが可能となる点も有用である。
 続いて、一次回路にハーフブリッジ方式を用いた実施例について述べる。ハーフブリッジ方式を用いた回路においては、一次側コイルの一方の端がインバータに接続され、他方の端が接地されている。図5は、交流電源及びマッチングトランスを用いた誘導加熱方式の電子回路であり、一次回路にハーフブリッジ方式用いた回路200を例示する図である。
 図5を参照して、回路200と図1の回路100との違いとして、マッチングトランス部7の中にある一次側コイル11の接続点35に接続されている端とは逆の端が、抵抗117に接続されている。抵抗117は、一次側コイル11からみて反対側がキャパシタ115に接続されている。キャパシタ115は、抵抗117からみて反対側が接地されている。一次側コイル11及び抵抗117に印加される電圧をVL1、キャパシタ115に印加される電圧をVC1で表すと、一次側コイル、抵抗117、キャパシタ115に印加される交流電圧VACは、VAC=VL1+VC1で表される。
 一次回路にハーフブリッジ方式の回路を採用することにより、キャパシタ115が、発熱など回路への負荷の最大要因となる直流成分をカットする。他方、交流成分により二次回路にエネルギーを伝達することが可能となる。そのため、誘導加熱方式を採用しつつ一次回路への負荷を抑制することが可能となる。しかも、キャパシタ115の容量を変えることにより一次回路のインピーダンスを調節し、一次側に投入されるエネルギーを容易に調整することが可能となる。
 ここで、トランスが回路の発熱を抑制する効果について検証した結果を示す。図6は、(a)トランスを使わずに直接に誘導コイルに電流を流す場合のハーフブリッジ回路の概要、(b)トランスを用いて誘導コイルに電流を流す場合の回路の概要、(c)両者の誘導コイルに同程度の大電流を流した場合の発熱例を示す図である。
 図6(a)に示す直接に誘導コイルに電流を流したハーフブリッジ回路において誘導コイルに電流約30Appを流した際、室温約24℃に対して、一次側の直流カット用のキャパシタは40.7℃、FETドライバは55.5℃、ハイサイド側のFETは30.3℃、ローサイド側のFETは43.8℃に上昇していた。
 これに対して、図6(b)に示すマッチングトランスを用いたハーフブリッジ回路において誘導コイルに電流約30Appを流した際、室温約24℃に対して、一次側の直流カット用のキャパシタは23.8℃、FETドライバは43.4℃、ハイサイド側のFETは25.4℃、ローサイド側のFETは26.1℃であった。キャパシタ、ハイサイド側のFET、ローサイド側のFETはほとんど室温からの温度上昇がなく、FETドライバは温度上昇が確認されたものの、直接に電流を流す場合と比較して温度上昇が10℃以上抑制された。
 図6(c)に2つの回路における各素子の温度をまとめたグラフを示す。入力ノイズカット(電解)コンデンサやFETは異なる種類のものを用いていたものの、出力電流は同程度であってFETドライバは同じ種類を用いた。トランス方式の方が温度上昇を抑制できることが示された。
 さらに、本実施例においては、真空チャンバーを介してマッチングトランスを形成する。図7は、真空チャンバーの内外にマッチングトランス207を設置した蒸着装置300の模式図を示す図である。
 図7を参照して、一次側コイル211を有する一次回路が大気圧下に配置され、二次側コイル209を有する二次回路は蒸着装置300が備える真空チャンバー240の内部である真空下に配置されている。一次側コイル211及び二次側コイル209は、マッチングトランス207を形成している。一次側コイル211は、強磁性体であるトランスコア241を有する。二次側コイル209は、強磁性体であるトランスコア243を有する。
 本実施例の構成により、一次回路と二次回路との間を熱的に遮断することがさらに容易となる。制御を行う一次回路における二次回路からの熱の影響を減らすことにより、大電流を流す際に蒸着レートを安定させることが容易となる。
 ここで、一次回路における制御について述べる。マッチングトランス207への印加電圧をファンクションジェネレータを用いて周波数制御する。周波数に応じて容器3が最大限到達できる温度が変化する。これは、周波数制御によって加熱制御が可能となることを意味する。また、周波数が一定でDuty比を変えることでも容器3が最大限到達できる温度が変化する。これは入力する矩形波のDuty比制御によって加熱制御が可能となることを意味する。
 さらに、従来の電圧や電流制御では線形制御しかできなかったが、周波数制御により非線形制御が可能となる。共振周波数付近の周波数領域では、周波数変化に対して最大到達温度が少ししか変化しない。このため、温度を精密に制御することが容易である。他方、共振周波数から離れた周波数領域では、周波数変化に対して最大到達温度が大きく変化する。このため、急速制御も可能である。周波数が一定でDuty比を変える制御ではDuty比と出力パワーの関係は電圧や電流制御同様、線形制御となる。電圧や電流制御では電源へ制御用の信号を配線しなければならないが、Duty比の制御ではインバータに接続の矩形波発振装置の設定を変えるだけ制御が可能であり、装置構成をコンパクトにできる。周波数とDuty比を同時に変えることにより、蒸着時に複雑な挙動(急激なレートの上昇や加熱時のるつぼ内の材料のバブリングなど)を示す有機材料の蒸着にも対応出来る可能性がある。
 例えば、製膜時には共振周波数付近で蒸着を行うことにより、多少の回路の変化に伴う周波数の変動に対しても加熱温度をほぼ一定に保つことができる。このため、共振周波数付近で温度を精密に制御でき、安定に製膜することが容易となる。
 さらに、以下では、蒸着装置が備える周波数制御部の構成について詳細に述べる。コイルに流す交流の周波数を制御するには、上記のように、周波数安定性のよいファンクションジェネレータを用いてもよい。しかし、本発明の蒸着装置を用いた有機電子デバイスの生産方法にはオーバースペックな面もある。その上、ファンクションジェネレータは比較的大型の装置であり、寄生容量及びノイズの発生が問題となりうる。
 そこで、本実施例では小型化のために小型発振器素子を用いる。小型発振器素子としてVCO(Voltage Control Oscillator)が考えられる。電圧でスイッチング周波数を調整できるため、ファンクションジェネレータを用いる場合に比べて、ケーブルの引き回しや装置を減らすことが可能となる。
 さらに、別の小型発振器素子として、DDS(Direct Digital Synthesizer)を用いてもよい。この場合、デジタル制御により、安定に制御することが容易となる。またDDSではDuty比の設定をマイコン等などのPID制御システムから容易に変えることが可能である。
 VCOやDDSといった小型発振器素子を用いることにより、交流発生だけでなく周波数・Duty比(PWM制御)制御のための制御部もチャンバー下部に収納できるほどに小型化が可能となる。特に、パワー半導体と同様に、コイルと小型発振器素子との間の距離が、少なくとも小型発振器素子と直流電源との間の距離よりも短い場所に小型発振器素子を設置し、好ましくはチャンバー下部に設置することにより、ケーブル量を低減できる。そのため、寄生容量及びノイズの発生及び回路への悪影響を抑制することが容易となる。
 さらに、蒸着装置300は、トランスコア241を冷却する冷却装置245を備える。これにより、マッチングトランス207のトランスコアが分離されていても、蒸着により加熱された二次側コイル209のトランスコア243からの輻射により、二次側コイルを効率よく冷却することが可能となる。
 また、強磁性体であるトランスコア241を冷却することにより、透磁率が高まり、エネルギー伝達効率を向上させることが可能となる。
 さらに、本実施例においては、実施例3の構成に電場による電力伝送方式も併用する。図8は、マッチングトランスに加えて電場による電力伝送方式も併用した本発明の蒸着装置400の模式図を示す図である。
 図8を参照して、蒸着装置400は、実施例3と同様に真空チャンバー240を介して設置されたマッチングトランス307に加えて、電場によるエネルギー伝送を行う伝送コンデンサ353及び355をさらに備える。また、蒸着装置400は、共振用コンデンサ351を大気圧下に備える。伝送コンデンサ353及び355は、それぞれを形成する各2つの平板が真空チャンバー240を介して向き合っている。
 本実施例の構成において、共振用コンデンサ351を大気圧下に備えることにより、高周波かつ大電流に対応するコンデンサを準備することが容易となる。また、トランスコアだけでなく、伝送コンデンサ353及び355を大気圧側から冷却し、冷却効率を向上させることが可能となる。
 図9は、実施例5における蒸着装置の構成の概要を示す図である。本実施例においては、図9に示すように、マッチングトランス407と電源ユニット419を分離して同軸ケーブル402で接続された構成とした。蒸着装置500は、電源ユニット419、蒸着源ユニット420、PID制御ユニット410を備える。蒸着源ユニット420は、蒸着源403、誘導コイル405、図示しない真空チャンバー、マッチングトランス407を有する。マッチングトランス407の一次側コイル411は、同軸ケーブル402を介して電源ユニット419に接続されている。電源ユニット419は、高電圧高周波電源421と、直流カット用のキャパシタ422とを有する。
 ここで、真空チャンバーに隣接したチャンバー下部の限られたスペースには、基本的に一次側コイル411を含む最低限の素子のみが収納されている。電源ユニット419と蒸着源ユニット420とは、同軸ケーブル402で接続されている。より具体的には、電源ユニット419が有するキャパシタ422と蒸着源ユニット420が有する一次側コイル411とは同軸ケーブル402で接続されている。なお、同軸ケーブル402は、蒸着装置のサイズに合わせた長さとすればよい。具体的には、3~10m程度となることが想定される。
 図10は、チャンバー下部に収納する部品サイズを比較する図であり、(a)トランスを使わない場合と、(b)トランスを使う場合とを比較する図である。図10を見て分かるように、トランスを使用した場合の方が、トランス以外の部品を別の場所に設置可能であり、フランジ下部の使用スペースに大きな差が生じた。
 ここで、一次側に同軸ケーブルを挿入することがインピーダンスに与える影響について述べる。本発明者らは、一次側の直流カット用のキャパシタのキャパシタンスCの値を適切な値とすることにより、回路のインピーダンスZは、一次側の直流抵抗分の抵抗値R、二次側の直流抵抗分の抵抗値R、一次側コイルの巻き数n、二次側コイルの巻き数nを用いて、式(6)で表されることを見出した。
Figure JPOXMLDOC01-appb-M000006
 現実的な値として、n/n=10とする。また、R=R=1Ωとすると、Z=101Ωとなる。これは、トランスの一次側に100Vを印加すれば約1Aの電流を流せることになる。このとき、n/n=10であるため、二次側には10V、10Aの交流信号が誘導されることを意味する。一般に、交流電源が100Vや200Vから直流電源に変換することを考えると、100Vを印加して使用することは現実的である。
 ここで、R=10Ω、R/R=0.1とすると、Z=110Ωとなる。これは、一次側の配線を5~10倍程度長くとったとしても、回路のインピーダンスZが5-10%程度しか大きくならないことを意味する。同様に、二次側で誘導される電流も同程度しか減少しない。これは、一次側の配線長によって二次側の誘起電流は影響を受けにくいことを意味する。
 図11は、同軸ケーブルを挿入する影響を実測したグラフであり、(a)スイッチング周波数と直流電源からの供給電流の関係を示すグラフと、(b)スイッチング周波数と二次側に誘起される電流の振幅との関係を示すグラフである。図11に示すように、直接接続した場合と、3mの同軸ケーブルで電源ユニット及び一次側コイルを接続した場合とで共振周波数262kHz付近の電流が数%のみ減少した。つまり、同軸ケーブルを挿入してケーブルを延長したことによる影響が小さいことを示しており、上記の考察を裏付ける結果となった。
 図12は、同じく同軸ケーブルを挿入する影響を実測したグラフであり、スイッチング周波数と一次側に誘起される電流の振幅との関係を示すグラフである。図12を参照して、220kHz付近では、3mの同軸ケーブルを挿入した場合の方が振幅が大きく見える。これはノイズの混入量が大きいことが一因と考えられる。しかし、通常共振周波数付近で誘導加熱を行うのでこのノイズの影響は意味がないといえる。さらに同軸ケーブルを挿入した方が多少電流値が下がるが誘導加熱に影響がある落ち込みではない。
 ここで、トランスの二次側の抵抗値の数値範囲について検討する。、一見、トランス方式の誘導加熱の効率向上の観点からは、磁束密度を上げるために誘導コイルの巻き数を増やせばよいように思われる。しかし、本発明者らによる誘導方式を用いた蒸着装置における計算及び実験によると、二次側の抵抗値がインピーダンスに特に影響するとの知見が得られた。
 例えば、R=1Ω、R/R=10(R=10Ω)とすると、Z=1001Ωとなる。これは、二次側のコイル長を長くする(=巻き数を増やす)ことを意味する。具体的には、二次側のコイル長を5-10倍程度長くすることに相当する。二次側の巻き数(R)を増やすと、Zが多大な影響を受けて増加し、一次側に電流を流しにくくなる。結果として、二次側にも電流を流しにくくなる。このとき、二次側に10Aの電流を流すためには、一次側に1000V、1Aを印加することが必要となる。しかし、1000V、1Aの電源はかなり大きくなり、危険でもある。
 そこで、巻き数を減らしてでも二次側の抵抗成分の値を抑制することが有利となる。特に、二次側の抵抗値を20Ω以下、好ましくは15Ω以下、さらに好ましくは10Ω以下とすることで装置に大電流を流しても円滑かつ安全に運用することが容易となる。
 原理的に、二次側の抵抗値の下限値に制限はない。二次側の抵抗値を増加させた場合、一次側のインピーダンスも増加することとなる。しかし、誘導加熱方式を有効に機能させるためにコイルの巻き数を1巻き以上とする必要がある。本発明者らによる誘導方式を用いた蒸着装置における計算及び実験によると、二次側の抵抗値を0.01Ω以上とすることが必要と考えられる。
 続いて、トランスの二次側の巻き数の範囲について検討する。上記のように、誘導加熱方式を有効に機能させるためにコイルの巻き数を1巻き以上とする必要がある。また、誘導コイルが銅製の導線(外径Φが3mm、巻き数N10、コイル長15cm)を用いて周波数300kHzの交流を流す場合を考える。このとき、巻き数を10-20増やすと、表皮効果を考慮した抵抗値も5-10倍増加し、上記のRの上限に近くなる。
 したがって、二次側の誘導コイルの巻き数Nは、1≦N≦30の範囲が適切である。磁束密度を上げるために安易に巻き数を増加させると、トランスの性能が発揮できなくおそれがある。
 続いて、一次側のキャパシタのキャパシタンスCの数値範囲について検討する。(1)式で示されるキャパシタンスよりも10倍程度大きなキャパシタンスとすれば、二次側で十分に大きな電流を得られると考えられる。理論上は、上限値に制限はないが、キャパシタの容量を大きくすることは、サイズが大きくなることとなり、現実的な構成から乖離する。そのため、実際には20μF以下、好ましくは15μF以下、さらに好ましくは10μFとすることで現実的な構成が可能である。
 一次側のキャパシタのキャパシタンスCの下限値については、単純にはCは大きい方が良いが大きくするとキャパシタのサイズも大きくなるため現実的な値にするのが良い。例えば、n/n=10、R=R=1Ωの場合、周波数はIH蒸着源の共振周波数に対応する300kHzとしたときの今回用いたトランスは二次側で30-50A流せるスペックである。誘導加熱方式の蒸着源として使うことを考えると、妥当なトランスであると思われるC=0.1μF以上、好ましくは、0.2μF以上が現実的な閾値であると考えられる。
 図13は、トランスを有する本願発明に係る回路を用いた場合の、共振周波数近辺の(a)電流値の変化、及び、(b)二次側の周波数に対する電流値の変化を示すグラフである。図13を参照して、実際に、トランスを有する回路を用いて10A以上の大電流を二次側に流せたことが確認できた。
 具体的には、図13(a)及び(b)に示すように、DC20Vの直流電源を用いて、一次側に520kHz付近に共振点がある直流電源から供給される電流約0.25Aを流したところ、二次側に同じく520kHz付近に共振点がある交流電流約13Appを流すことができた。また、DC60Vの直流電源を用いて、一次側に520kHz付近に共振点がある電流約0.60Aを流したところ、二次側に同じく520kHz付近に共振点がある交流電流約33Appを流すことができた。
 図14は、誘導加熱方式の蒸着装置において、回路がトランスを備える場合と備えない場合に、(a)成膜時の蒸着速度、及び、(b)500℃までの昇温時に印加される電力の経時変化を示すグラフである。
 図14(a)を参照して、トランスを備えた回路と備えない回路のいずれを用いても、ほぼ差のない蒸着が可能であることが示された。なお、蒸着時の真空度は10-4Pa程度、成膜した物質はAlq3、るつぼはチタン製のものを用いた。トランスを備えた回路と備えない回路に対して、PID制御パラメータは異なる数値を用いた。共振周波数は、トランスを備えた回路では507kHz、トランスを備えない回路では350kHzであった。
 図14(b)を参照して、トランス有/無の蒸着装置において、まず昇温時の電力の印加され方が異なる結果となった。トランスがない蒸着装置では、約1000秒が経過するまでの昇温時に印加される電力が徐々に減少した。他方、トランスを備える蒸着装置では、500℃に到達する約1000秒が経過するまでの昇温時に印加される電力がほぼ一定であった。これは2次側に大電流が流れて加熱されても、一次側からみたインピーダンスへの影響が直接方式よりも小さいためと考えられる。すなわち、トランスを有する誘導加熱方式の方が高温時にも効率的な加熱が可能であることが示されている。トランスを誘導加熱方式の蒸着装置に採用した場合もトランスがない場合と同様の成膜速度を実現できること、昇温時に直接方式と比較して長時間安定に電力供給が可能であることは、本発明者らが見出した技術的特徴である。
 また、トランス有/無の蒸着装置において、装置全体が温まって500℃を安定に保持する段階では、両者とも印加される出力がほぼ一定であった。ただし、トランスを備える蒸着装置の方が温度を保持するために必要な電力が大きかった。
 ここで、本実施例に係る蒸着装置の使用に際して電波法に基づく申請を要しない条件として、電力が50Wを超えないことが望ましい。上記のトランスを用いた実施例において、図14に示すように、500℃まで昇温して維持する操作時でも50Wを超えなかった。出力は約40W程度で十分であり、回路駆動用のパワーが1W程度であった。50Wまで余裕があるため、トランス方式の蒸着装置も上記の条件を満たしている。
 トランス方式は、マッチングトランスにおいて多少のパワーロスがあるものの、真空チャンバーに隣接するスペースにおける部品数を抑えてコンパクトに構成することが可能である。また、交流電源部を装置全体のシステムに組み込みやすいため安全性や監視などをしやすくなる。さらに、1次側が誘導コイルからの熱の影響を受けにくくなるばかりでなく、2次側発熱による1次側回路への熱による影響を受けにくいため、長時間安定にパワー供給することが可能である。その上、安全面からもトランス方式は、大きな電流を誘導コイルに供給することに適しているといえる。発明者らは、少なくともトランスを用いた誘導加熱方式により、150Wを40分間提供できることを確認した。このとき、駆動による発熱はあったものの、安定して蒸着源にパワーを供給できていた。
 以下、本発明者らが(6)式を導出した過程について述べる。図15は、本発明に係るトランスを用いた誘導加熱方式のモデルとなる回路図である。図15を参照して、回路600は、抵抗(抵抗値R)と、キャパシタ(キャパシタンスC)と、一次側コイル511(インダクタンスL)とが直列に接続された一次回路部551と、二次側コイル509(インダクタンスL2)と抵抗(抵抗値R)と、誘導コイル505(インダクタンスLind)、キャパシタ(キャパシタンスCres)とが直列に接続されて閉回路を形成する二次回路部552とを備える。
 抵抗値Rの抵抗は、一次側の配線の抵抗及び一次側のトランスコイルの抵抗成分を足した抵抗成分である。キャパシタンスCのキャパシタ、直流カット用であり、一次電流を調整する目的で用いられる。インダクタンスLの一次側コイル511は、インダクタンスLの二次側コイル509とマッチングトランス507を形成する。抵抗値Rの抵抗は、二次側の配線の抵抗、誘導コイル505の抵抗成分、二次側コイル509の抵抗成分を足した抵抗成分である。キャパシタンスCresのキャパシタは、二次共振用コンデンサである。誘導コイルLindと二次共振用コンデンサCresとのインピーダンスの和をZとする。
 一次側コイルのインピーダンスZは、トランスの基本式とオームの法則の式との組合せから、相互インダクタンスMを用いて(7)式で表される。したがって、一次側の全インピーダンスZt1は、(8)式で表される。
Figure JPOXMLDOC01-appb-M000007
 さらに、周波数が二次側の共振周波数であれば、二次側の負荷はRのみとなる。このとき、一次側の全インピーダンスZt1は、(9)式で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、磁束の漏れがない理想的なトランス(k=1)であれば、M2=k212である。このとき、(9)式の右辺第3項及び第4項は、テイラー展開を用いて以下のように近似できる。ただし、2次以降の効果は小さいと仮定して1次の効果のみで議論する。
Figure JPOXMLDOC01-appb-M000009
 なお、本発明に係る誘導加熱方式の蒸着装置においては、共振周波数が200kHz-500kHzを想定しており、十分にωL>>Rと近似できるものとした。また、このとき、(9)式の第2項の影響も小さくなる。結果として、(9)式と(10)式により、(6)式が得られる。
 以上、実施例5において、ハーフブリッジを採用した記載をしたが、フルブリッジ回路を採用してもよい。この場合、直流カット用のキャパシタンスが不要となる。そのため、キャパシタンスCの値の検討が不要となる。FETやドライバーの回路が倍増してしまうが、印加するDC電圧が半分で済むため大電圧を印加する際の回路への負荷が半減する。その結果、原理上、2倍のパワーを入力することが可能となる。
 図16は、誘導加熱方式の蒸着装置において、回路がトランスを備える場合と備えない場合を比較した燐光型有機ELデバイスの初期特性の結果を示す図である。本発明に係る蒸着装置で作成したデバイス構造は、ITO/α-NPD(40nm)/Ir(ppy)3(6wt%):mCBP(30nm)/TPBi(50nm)/LiF(0.8nm)/Alとした。ここで、ITO(酸化インジウムスズ)は透明な陽極、α-NPD(N,N'-Di(1-naphthyl)-N,N'-diphenylbenzidine)は正孔輸送層、Ir(ppy)3(6wt%):mCBP(イリジウム錯体tris(2-phenylpyridinato)iridium(III)を6wt%ドーピングした3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl)は発光層、TPBi(1,3,5-tris(1-phenyl1H-benzimidazole-2-yl)benzene)は電子輸送層、LiF/Alは陰極である。このうち、発光層のドープ材料であるIr(ppy)3はトランスを備えない回路で蒸着し、mCBPをトランスを備える場合と備えない場合に分けて蒸着した。
 図16を参照して、(a)電圧-電流密度グラフにおいても、(b)発光スペクトルにおいても、トランスを備える回路はトランスを備えていない回路を用いた素子と同様の特性を示すデバイスを製作できた。外部量子効率については、トランスを用いない場合に最高約21%に対して、トランスを用いた場合には最高約18%と迫る数値となった。
 上記の実施例では、シリコンパワーMOSFETを用いたが、高電圧を印加できるものであれば、他のトランジスタを用いてもよい。例えば、シリコンパワーMOSFET以外のSiC-MOSFET、IGBT、又は、GaNトランジスタを用いてもよい。
 また、実施例3以降に示したような真空チャンバーの内外にマッチングトランスを設ける技術的思想は、蒸着装置のみに適用可能というわけではない。昇華精製装置、熱天秤、質量分析計といった真空側と大気側でエネルギーの授受を行う各装置にも適用可能である。さらには、宇宙における船外活動のように、減圧下で作業する必要がある場合にも適用可能である。
 ここで、真空チャンバー内における冷却方法としては、例えば、真空チャンバー内の誘導コイル又は平板にクーリング機構としての銅などのヒートバスを接触させ、さらにヒートバスにステンレスの蛇腹パイプを直接接続して冷却水を流すものであってもよい。
3 容器、5 誘導コイル、7 マッチングトランス部、9 二次側コイル、11 一次側コイル、13 LCR共振回路部、15 キャパシタ、17 抵抗、19 交流電源部、21 直流電源、23 シリコンパワーMOSFET、25 シリコンパワーMOSFET、27 FET駆動回路、29 入力信号、31 入力信号、33 振動子、34 デッドタイム付与部、35 接点、37 RLC共振回路部、39 キャパシタ、41 抵抗、51 交流電源、100 電子回路 200 電子回路

Claims (17)

  1.  有機材料を基板に製膜する蒸着装置であって、
     少なくとも一部が導体で構成されている前記有機材料を収納する容器と、
     前記容器の周囲に配置されている加熱コイルと、
     直流電源と、
     前記直流電源に接続されているインバータと、
     前記インバータに接続されている一次コイルと、
     前記加熱コイルに接続されている二次コイルとを備え、
     前記一次コイル及び前記二次コイルは、マッチングトランスを形成する、蒸着装置。
  2.  前記インバータは、電源ユニットに含まれるものであり、
     前記一次コイルは、前記電源ユニットよりも当該蒸着装置が備える真空チャンバーに近くにあり、
     前記電源ユニットと前記一次コイルとは同軸ケーブルで接続されている、請求項1記載の蒸着装置。
  3.  前記一次コイルの巻き密度が前記二次コイルの巻き密度より大きい、請求項1又は2記載の蒸着装置。
  4.  前記二次コイルを有する閉回路である二次回路は、共振回路である、請求項1から3のいずれかに記載の蒸着装置。
  5.  前記一次コイルを有する閉回路である一次回路は、前記一次コイルの両端がインバータに接続されているフルブリッジ方式の回路である、請求項1から4のいずれかに記載の蒸着装置。
  6.  前記一次コイルを有する閉回路である一次回路は、前記一次コイルの前記インバータに接続されている端とは逆の端が、直列に接続されたキャパシタを介して接地されているハーフブリッジ方式の回路である、請求項1から4のいずれかに記載の蒸着装置。
  7.  前記キャパシタのキャパシタンスは、前記一次回路の共振周波数が前記二次回路の共振周波数とは異なるようにする値である、請求項6記載の蒸着装置。
  8.  前記一次回路の抵抗成分をR1、前記二次コイルを有する閉回路である二次回路の抵抗成分をR2、前記二次回路の共振角周波数をωres、前記一次コイルの巻き数をn1、前記二次コイルの巻き数をn2として、前記キャパシタのキャパシタンスC1は、(1)式で表される値以上である、請求項6又は7記載の蒸着装置。
    Figure JPOXMLDOC01-appb-M000001
  9.  前記キャパシタのキャパシタンスをC1、前記一次回路の抵抗成分をR1、前記二次コイルを有する閉回路である二次回路の抵抗成分をR2、前記一次コイルの巻き数をn1、前記二次コイルの巻き数をn2として、前記二次回路の共振角周波数ωresは、(2)式で表される値以上である、請求項6又は7記載の蒸着装置。
    Figure JPOXMLDOC01-appb-M000002
  10.  前記マッチングトランスに供給される交流電流が200kHz以上の高周波である、請求項1から9のいずれかに記載の蒸着装置。
  11.  前記一次コイルを有する閉回路である一次回路において、前記一次コイルの前記インバータに接続されている端とは逆の端と直列に接続されたキャパシタのキャパシタンスは、0.1μF以上である、請求項10記載の蒸着装置。
  12.  二次側の抵抗成分の値は、20Ω以下である、請求項10又は11記載の蒸着装置。
  13.  二次側の抵抗成分の値は、0.01Ω以上である、請求項10から12のいずれかに記載の蒸着装置。
  14.  真空チャンバーを備え、
     前記一次コイルを前記真空チャンバーの外部に備えており、
     前記二次コイルを前記真空チャンバーの内部に備えている、請求項1から13のいずれかに記載の蒸着装置。
  15.  有機材料を精製する昇華精製装置であって、
     少なくとも一部が導体で構成されている前記有機材料を収納する容器と、
     前記容器の周囲に配置されている加熱コイルと、
     直流電源と、
     前記直流電源に接続されているインバータと、
     前記インバータに接続されている一次コイルと、
     前記加熱コイルに接続されている二次コイルとを備え、
     前記一次コイル及び前記二次コイルは、マッチングトランスを形成する、昇華精製装置。
  16.  有機材料を基板に製膜する蒸着装置を用いた有機電子デバイスの生産方法であって、
     前記蒸着装置は、
      少なくとも一部が導体で構成されている前記有機材料を収納する容器と、
      前記容器の周囲に配置されている加熱コイルと、
      直流電源と、
      前記直流電源に接続されているインバータと、
      前記インバータに接続されている一次コイルと、
      前記加熱コイルに接続されている二次コイルとを備え、
     前記一次コイル及び前記二次コイルは、マッチングトランスを形成しており、
     前記インバータが、前記直流電源からの直流を交流に変換する変換ステップと、
     前記マッチングトランスが、前記一次コイルの側から前記二次コイルの側へ電圧を降圧する降圧ステップと、
     前記コイルに前記交流が流れることで前記容器が加熱される加熱ステップとを含む、有機電子デバイスの生産方法。
  17.  有機材料を精製する昇華精製装置を用いた昇華精製方法であって、
     前記昇華精製装置は、
      少なくとも一部が導体で構成されている前記有機材料を収納する容器と、
      前記容器の周囲に配置されている加熱コイルと、
      直流電源と、
      前記直流電源に接続されているインバータと、
      前記インバータに接続されている一次コイルと、
      前記加熱コイルに接続されている二次コイルとを備え、
     前記一次コイル及び前記二次コイルは、マッチングトランスを形成するものであり、
     前記マッチングトランスが、前記一次コイルの側から前記二次コイルの側へ電圧を降圧する降圧ステップと、
     前記コイルに前記交流が流れることで前記容器が加熱される加熱ステップとを含む、昇華精製方法。
PCT/JP2020/044341 2019-12-02 2020-11-27 蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法 WO2021112019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/781,618 US20230027336A1 (en) 2019-12-02 2020-11-27 Evaporation apparatus, sublimation purification apparatus, organic electronic device production method, and sublimation purification method
KR1020227020944A KR20220109416A (ko) 2019-12-02 2020-11-27 증착 장치, 승화 정제 장치, 유기 전자 디바이스의 생산 방법 및 승화 정제 방법
JP2021562626A JPWO2021112019A1 (ja) 2019-12-02 2020-11-27
CN202080092437.6A CN114945702A (zh) 2019-12-02 2020-11-27 蒸镀装置、升华纯化装置、有机电子器件的生产方法及升华纯化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019217931 2019-12-02
JP2019-217931 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021112019A1 true WO2021112019A1 (ja) 2021-06-10

Family

ID=76221605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044341 WO2021112019A1 (ja) 2019-12-02 2020-11-27 蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法

Country Status (6)

Country Link
US (1) US20230027336A1 (ja)
JP (1) JPWO2021112019A1 (ja)
KR (1) KR20220109416A (ja)
CN (1) CN114945702A (ja)
TW (1) TW202132595A (ja)
WO (1) WO2021112019A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228150A (ja) * 2011-04-22 2012-11-15 Yazaki Corp 共鳴式非接触給電システム、共鳴式非接触給電システムの送電側装置及び車載充電装置
JP2016015419A (ja) * 2014-07-02 2016-01-28 株式会社ユーテック 電子部品及びその製造方法
JP2018063368A (ja) 2016-10-13 2018-04-19 株式会社リコー 現像装置、プロセスカートリッジ、及び、画像形成装置
JP2019173154A (ja) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 蒸着装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10667538B2 (en) 2007-11-07 2020-06-02 Leprino Foods Company Non-fat dry milk production processes for cheesemaking
WO2010008685A2 (en) 2008-05-28 2010-01-21 Aptima, Inc. Systems and methods for analyzing entity profiles
JP4909968B2 (ja) * 2008-09-29 2012-04-04 日立アプライアンス株式会社 電磁誘導加熱装置
JP4886080B1 (ja) * 2011-03-23 2012-02-29 三井造船株式会社 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム
US9965547B2 (en) 2014-05-09 2018-05-08 Camelot Uk Bidco Limited System and methods for automating trademark and service mark searches
US10685046B2 (en) 2016-03-28 2020-06-16 Hitachi, Ltd. Data processing system and data processing method
WO2018037984A1 (en) * 2016-08-22 2018-03-01 Neturen Co., Ltd. Power semiconductor module, snubber circuit, and induction heating power supply apparatus
JP2018128925A (ja) 2017-02-09 2018-08-16 富士通株式会社 情報出力プログラム、情報出力方法及び情報出力装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228150A (ja) * 2011-04-22 2012-11-15 Yazaki Corp 共鳴式非接触給電システム、共鳴式非接触給電システムの送電側装置及び車載充電装置
JP2016015419A (ja) * 2014-07-02 2016-01-28 株式会社ユーテック 電子部品及びその製造方法
JP2018063368A (ja) 2016-10-13 2018-04-19 株式会社リコー 現像装置、プロセスカートリッジ、及び、画像形成装置
JP2019173154A (ja) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 蒸着装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LLC", TOSHIBA ELECTRIC DEVICES & STORAGE CORPORATION, 12 November 2019 (2019-11-12), XP055832243, Retrieved from the Internet <URL:https://toshiba.semicon-storage.com/info/docget.jsp?did=68572&usg=AOvVaw3EwTHY3vIAgH-1y6FEWdKa> *
MASAO OGOSHI: "Research on commercial induction heating high frequency inverters containing boost chopper circuits", MASTER'S THESIS, 1 January 2009 (2009-01-01), JP, pages 1 - 95, XP009537259 *

Also Published As

Publication number Publication date
CN114945702A (zh) 2022-08-26
JPWO2021112019A1 (ja) 2021-06-10
KR20220109416A (ko) 2022-08-04
TW202132595A (zh) 2021-09-01
US20230027336A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP4652983B2 (ja) 誘導加熱装置
KR101673374B1 (ko) 유도 가열 장치, 유도 가열 장치의 제어방법, 및 프로그램
KR20040023752A (ko) 유도 가열 또는 용해용 전원 장치
RU2363118C2 (ru) Источник питания для индукционного нагрева или плавления с использованием подстроечного конденсатора
CN105186705B (zh) 一种高效率的电能发射端、非接触电能传输装置和电能传输方法
CN112290802B (zh) 一种l-llc谐振变换器的超宽增益范围调节方法
WO2021112019A1 (ja) 蒸着装置、昇華精製装置、有機電子デバイスの生産方法及び昇華精製方法
Krizhanovski et al. Low-voltage electronic ballast based on class E oscillator
US10374439B2 (en) Circuit arrangement having charge storage units
JP6709272B2 (ja) 蒸着装置及び有機電子デバイスの生産方法
US20200049385A1 (en) Device and process for the production and transfer of heating and cooling power
Prudik et al. Advantages of using two-switch forward converter for high-voltage applications
JP6782474B2 (ja) 熱電変換素子出力制御装置
JP3998988B2 (ja) 誘導加熱装置用整合回路及び誘導加熱装置
Heo et al. Resonant Converter with Fully-Compensated Isolation Transformer
CN110429918A (zh) 一种变压器、电容和电感接合形成串联谐振的结构
KR102391901B1 (ko) 증착 장치 및 유기 전자 장치의 생산 방법
US7948191B2 (en) Parallel transformer with output side electrical decoupling
CN107769539A (zh) 滤波系统及其相关联的方法
WO2009139503A1 (ja) 電力変換装置
JP6832810B2 (ja) 電力変換装置
JP2007018841A (ja) マグネトロンフィラメント電源装置
TW202232872A (zh) 電力轉換裝置及電力轉換裝置的控制方法
Golubenko et al. High power transistor frequency converter for supply of industrial transformer-type electron accelerators
CN112106287A (zh) 谐振回路电路和用于配置谐振回路电路的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895819

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021562626

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020944

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020895819

Country of ref document: EP

Effective date: 20220704

122 Ep: pct application non-entry in european phase

Ref document number: 20895819

Country of ref document: EP

Kind code of ref document: A1