WO2021109144A1 - 模块化智能护壁灌注桩及其施工工艺 - Google Patents

模块化智能护壁灌注桩及其施工工艺 Download PDF

Info

Publication number
WO2021109144A1
WO2021109144A1 PCT/CN2019/123763 CN2019123763W WO2021109144A1 WO 2021109144 A1 WO2021109144 A1 WO 2021109144A1 CN 2019123763 W CN2019123763 W CN 2019123763W WO 2021109144 A1 WO2021109144 A1 WO 2021109144A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
intelligent
smart
dado
cast
Prior art date
Application number
PCT/CN2019/123763
Other languages
English (en)
French (fr)
Inventor
邹胜斌
李莉
杨俊�
张奇
陈仪清
Original Assignee
邹胜斌
李莉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邹胜斌, 李莉 filed Critical 邹胜斌
Priority to CN201980102779.9A priority Critical patent/CN114929969B/zh
Priority to PCT/CN2019/123763 priority patent/WO2021109144A1/zh
Publication of WO2021109144A1 publication Critical patent/WO2021109144A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/66Mould-pipes or other moulds
    • E02D5/68Mould-pipes or other moulds for making bulkheads or elements thereof

Definitions

  • the invention belongs to the field of building construction, and particularly relates to a rotary drilling bored pile and a construction technology thereof.
  • large-diameter piles (with a diameter of 800 or more) are generally divided into artificial bored piles and rotary bored piles according to the hole forming method of construction.
  • Manually excavated cast-in-place pile -------Manually excavated cast-in-place pile refers to a pile made by artificially excavating the pile hole, then placing a steel cage and pouring concrete. In engineering, it is referred to as manual digging pile.
  • the concrete wall must be installed during the construction process of the artificially hollowed and cast-in-place pile. While digging and pouring a circle of protective wall, it is a permanent protective wall cast-in-place. The role of pile wall protection: to prevent the well pile from collapsing during the excavation process. 2)
  • the protective wall is manually dug about 1m, the formwork, the steel bars are cast, the concrete is poured to form a circle of the protective wall, and then 1m, and then the formwork, the steel bars are poured into the protective wall, and the holes are dug repeatedly.
  • the construction progress is slow, supporting formwork, tying steel bars, and pouring concrete are troublesome, and it is extremely inconvenient to operate in a limited space.
  • the construction efficiency of the pile foundation is low and the construction period is long. Taking a 10m long pile as an example, it takes 10 days to excavate a pile. 3)
  • special air supply pipes and equipment are required to provide oxygen for construction personnel. Some special underground formations often contain CO, SO2, H2S, CO2 or other toxic gases, which are prone to acute poisoning accidents.
  • Separate lead wires are required to go down well for lighting. If the wires are not well managed, there is a risk of electric shock during construction. 5) It is impossible to accurately understand the water level in the foundation pit. Excessive groundwater in the foundation pit will affect the strength and quality of the poured concrete.
  • the pile length design should not be greater than 12 meters during manual hole digging operation.
  • the unidirectional pile diameter of the hole digging pile should not be less than 1.2 meters.
  • the bottom can increase the bearing capacity of the pile foundation by expanding the bottom.
  • the filling factor is generally used for pouring concrete of cast-in-place piles in pile foundation projects.
  • the concrete filling factor of a cast-in-pile refers to the ratio of the actual volume of concrete poured in a pile to the theoretical volume calculated according to the outer diameter of the pile.
  • Filling factor actual amount of poured concrete/(calculate the amount of concrete according to the design drawing)
  • the protective wall is large in size and inconvenient to transport.
  • the complete protective wall occupies a large space and the transportation efficiency is low.
  • the invention modularizes the traditional integral protective wall, and improves the efficiency of manufacturing, transportation and construction of the protective wall.
  • the traditional protective wall generally only plays the role of preventing collapse holes and improving the bearing capacity of the foundation.
  • the present invention innovatively incorporates an intelligent detection system into the modular protective wall, so that the protective wall not only plays a role in the force, but also at the same time.
  • Various safety inspections are carried out at any time during construction to make the construction more standardized, safe, simple and reliable.
  • the traditional wall protection only plays a role in the construction process, and the function of the wall protection monitoring system in the present invention can continue to play a monitoring role in the process of building use after completion, provide real-time monitoring for the safety of the structure, and provide structural personnel for structural problems.
  • the modular intelligent wall protection of the present invention is industrialized production, with high production precision and fast production speed.
  • Modular intelligent protective wall is assembled mechanically, no need to support molds, and no need to pour concrete to protect the wall, saving time and effort.
  • the modularization of the protective wall makes the transportation waste less space, convenient transportation, and high transportation efficiency. Regardless of whether manual hole digging or mechanical drilling is used, the modular intelligent wall protection not only prevents holes from collapsing and increases the bearing capacity of the foundation, but also better guarantees the construction safety through intelligent monitoring, and the construction efficiency is further improved; the traditional wall protection is completed after the construction is completed. It has lost its function and no longer has any function.
  • the intelligent monitoring function of the present invention can be extended to the service life of the entire structure, and the economic value of the wall protection can be maximized.
  • the present invention aims to solve the above-mentioned problems of the prior art.
  • a modular intelligent wall-protecting cast-in-place pile and its construction technology are proposed.
  • the technical scheme of the present invention is as follows:
  • a modular intelligent wall-protecting cast-in-place pile comprising wall protection, steel bars and pouring concrete.
  • the wall protection is a modularly assembled upper and lower hollow enclosure structure.
  • the steel bars are arranged around the inner wall of the protection wall. After the protection wall is installed, the steel bars are put in , And then pour concrete in the protective wall to form a cast-in-place pile.
  • the excavation of the foundation pit can be manually and mechanically drilled.
  • the protective wall is prefabricated by a number of smart wall modules. Each smart wall module is provided with a longitudinal clamping component and a horizontal card.
  • the first through hole and the second through hole are respectively provided on the side and the middle position of the front side of each smart wall module, and the first through hole in the protection wall is embedded in the protective wall.
  • Various intelligent monitoring equipment, the intelligent monitoring equipment in the protective wall is used to monitor various conditions of the pile or foundation at any time during the construction and use of the pile; the second through hole in the protective wall can be connected with the soil by protruding t
  • the prefabrication modes of the plurality of smart wall protection modules include aligned splicing, staggered splicing, and spiral splicing.
  • aligned splicing type the two ends of the upper and lower smart wall protection modules are aligned; when it is a staggered splicing
  • the upper and lower intelligent wall protection modules are aligned at intervals, and in the case of spiral splicing, the intelligent wall protection modules are spliced by spiral winding.
  • the transverse engagement component includes a convex rib and a groove.
  • the convex ribs and grooves are respectively arranged on both sides of the smart wall protection module, and the convex ribs of each smart wall protection module engage with the grooves of the other smart wall protection module.
  • the number of the protruding ribs is two, and the number of the grooves is also two.
  • the longitudinal engagement component includes a left upper buckle groove, a left lower buckle rib, a right upper buckle rib and a right lower buckle groove.
  • the left upper buckle groove is buckled on the left lower buckle rib of another smart wall protection module
  • the right upper buckle rib is buckled on
  • the bottom right buckle groove of the other smart wall protection module is used to fix the smart wall protection modules up and down.
  • the screw holes of the protective wall can extend out the adjusting rod to form a root pile, the thorns extend into the surrounding soil layer, and cement is poured outside the protective wall to form a root pile, which is used to strengthen the connection with the side wall soil.
  • conventional equipment is embedded in the first through hole, including: electric wires, air supply pipes, and water pumping pipes.
  • the electric wires are used for bottom lighting
  • the air supply pipes are used for ventilation in the well
  • the water pumping pipe can extract the bottom water.
  • the first through hole on the retaining wall can be used to detect the integrity of the pile by the acoustic transmission method.
  • intelligent equipment is embedded in the first through hole to perform intelligent detection of the pile.
  • the intelligent equipment includes: a poisonous gas early warning system for monitoring harmful gases in the well for 24 hours; and a water level observation system for setting water level observation System to monitor the changes of groundwater level at any time;
  • the first through hole is also provided with structural strain gauges, seismic wave monitoring equipment, basic deformation observation equipment, electronic induction equipment and other monitoring equipment systems for buildings or foundations, which monitor the safety of underground structures and various foundations 24 hours a day. Variety.
  • the outer surface of the smart wall protection module in contact with the soil can be treated with special treatment including coating to make the outer surface smooth and reduce friction.
  • special treatment including coating to make the outer surface smooth and reduce friction.
  • each of the smart wall protection modules may adopt a solid structure or a hollow lattice structure.
  • the inner wall of the smart wall protection module can be extended with a steel bar positioning member, and the steel bar can be directly installed on the positioning member.
  • a construction process of the intelligent wall-protecting cast-in-place pile includes the following process steps:
  • the wall protection includes aligned splicing type, staggered splicing type, and spiral splicing type;
  • a series of pipelines and smart electronic equipment are buried in the through holes of the smart wall;
  • Artificial foundation pit excavation excavate a certain distance, put in the module, assemble it into a smart wall by semi-mechanical or full manual engagement, then continue to excavate, repeat the cycle until it reaches the designed foundation bearing layer, the wall includes aligned splicing type , Staggered splicing type, spiral splicing type;
  • a series of pipelines and smart electronic equipment are buried in the first through hole of the smart wall;
  • the first major advantage when the artificial foundation pit excavation method is adopted, the construction of the pile protection wall does not require formwork and concrete pouring, making the wall protection construction simpler and more efficient, and the construction operation is more standardized, safe, simple and reliable.
  • the second major advantage when using mechanical drilling for excavation of foundation pits, the construction of the protective wall is simpler and more efficient. It plays a role in preventing collapse holes and improving the bearing capacity of the foundation, and at the same time reduces the filling coefficient during pouring. , Good economic benefits.
  • the third major advantage intelligent equipment can be embedded through the through holes of the module to intelligently monitor the piles.
  • the intelligent monitoring can better ensure the construction safety and further improve the construction efficiency; the intelligent monitoring effect of the present invention can be extended to the life of the entire structure. Among them, the function and economic value of the wall protection are maximized.
  • Modular wall protection can prevent the foundation pit from collapsing and shrinking.
  • the protective wall is modularized, the transportation is simple, the transportation waste space is less, and the transportation efficiency is high.
  • the wall protection module is assembled mechanically, which saves time, effort and high efficiency.
  • Example 1 The end-bearing pile with a diameter of 900, the bottom of which is expanded to 1500, the bearing capacity can be increased by 2.8 times, and the increase in concrete is less.
  • Example 2 Since the bottom of a mechanically drilled pile cannot be expanded, if the bottom diameter of the end bearing pile is calculated to be 1200, the diameter of the pile from top to bottom needs to be 1200; if the bottom can be expanded, the bottom diameter can be 1200 , The diameter of the middle and upper part can be made 900. For a pile length of 20m, the concrete can be saved by 35%.
  • thorns can be extended into the surrounding soil to increase friction, strengthen the connection with the side wall soil, and improve the bearing capacity of the pile.
  • the steel bars can be directly clamped and installed on the necessary positioning components, without the need to bind and weld the steel cage in advance.
  • the hoop restraint of the retaining wall can improve the shear bearing capacity and local compressive strength of the concrete, thereby reducing or even eliminating the stirrup of the pile.
  • the outer surface of the wall protection module in contact with the soil can be coated or other special treatments to make the outer surface smooth and reduce friction, thereby reducing the negative friction that is harmful to the foundation.
  • Wires can be laid in the through holes of the protective wall for bottom lighting, which greatly reduces the risk of leakage accidents.
  • Air supply ducts can be laid in the through holes of the protective wall for ventilation in the well to ensure the work safety of the construction personnel.
  • a poison gas early warning system can be set in the through hole of the protective wall to monitor the harmful gas in the well for 24 hours to improve the safety guarantee of the downhole operation.
  • a water level observation system can be installed in the through hole of the protective wall to monitor the changes of the ground water level at any time.
  • Modular wall protection is adopted. Because the module itself has holes, dozens of through holes can be formed along the circumference of the pile, and the number of through holes is large. The pile integrity detection does not need to be embedded in the acoustic measuring tube, and at the same time, multiple but dozens of acoustic measuring lines can be measured according to the needs, and the detection accuracy and reliability can be improved at will.
  • Structural strain gauges, seismic wave monitoring equipment, basic deformation observation equipment, electronic induction equipment and other monitoring equipment systems used in buildings or foundations are also set in the through holes of the modular intelligent wall protection, which can monitor the safety and safety of underground structures 24 hours a day. kind of changes in the foundation.
  • the traditional protective wall loses its function after the construction is completed, and no longer has any function.
  • the function of the wall protection monitoring system of the present invention can continue to play a monitoring role in the building use process after the construction is completed, provide real-time monitoring for the safety of the structure, and provide the most direct monitoring data for the structural personnel to solve the problem when a structural problem occurs.
  • the invention enables the wall protection to maximize the function and economic value of the wall protection during the whole process of construction and use of the building.
  • FIG. 1 is a schematic diagram of the structure of the transverse engaging component of the smart wall protection module according to the preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of the longitudinal engagement component structure of the smart wall protection module according to the preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an alignment splicing type smart wall assembly according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the staggered splicing type smart wall assembly according to the preferred embodiment of the present invention.
  • Figure 5 is a schematic diagram of the spiral splicing type smart wall assembly of the preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an adjusting rod provided in the screw hole of the wall guard according to the preferred embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a reinforcing bar positioning member according to a preferred embodiment of the present invention.
  • a modular intelligent wall-protecting cast-in-place pile comprising wall protection, steel bars and pouring concrete.
  • the wall protection is a modularly assembled upper and lower hollow enclosure structure.
  • the steel bars are arranged around the inner wall of the protection wall. After the protection wall is installed, the steel bars are put in , And then pour concrete in the protective wall to form a cast-in-place pile.
  • the excavation of the foundation pit can be manually and mechanically drilled.
  • the protective wall is prefabricated by a number of smart wall modules. Each smart wall module is provided with a longitudinal clamping component and a horizontal card.
  • the first through hole and the second through hole are respectively provided on the side and the middle position of the front side of each smart wall module, and the first through hole in the protection wall is embedded in the protective wall.
  • Various intelligent monitoring equipment, the intelligent monitoring equipment in the protective wall is used to monitor various conditions of the pile or foundation at any time during the construction and use of the pile; the second through hole in the protective wall can be connected with the soil by protruding t
  • the prefabricated modes of the plurality of smart wall protection modules include aligned splicing, staggered splicing, and spiral splicing.
  • aligned splicing type the two upper and lower smart wall protection modules End aligning; when it is a staggered splicing type, the upper and lower intelligent wall protection modules are aligned at intervals; in the case of spiral splicing type, the intelligent wall protection modules are spliced by spiral winding.
  • the transverse engagement component includes a rib 1 and a groove 2.
  • the rib 1 and the groove 2 are respectively arranged on both sides of the smart wall protection module 10, and the convexity of each smart wall protection module 10
  • the rib 1 is engaged with the groove 2 of another smart wall protection module.
  • the number of the ribs 1 is two, and the number of the grooves 2 is also two.
  • the longitudinal engaging member includes a left upper buckle groove 4, a left lower buckle rib 5, a right upper buckle rib 6 and a right lower buckle groove 7, and the left upper buckle groove 4 is buckled on the other intelligent wall protection module
  • the left lower buckle rib 5 and the right upper buckle rib 6 are buckled on the right lower buckle groove 7 of another smart wall protection module to fix the smart wall protection modules up and down.
  • the screw holes 9 of the protective wall can extend an adjusting rod to form a root pile
  • the adjusting rod extends into the surrounding soil
  • cement is poured outside the protective wall to form a root pile for strengthening and lateral Connection of wall soil.
  • the adjusting rod extends into the surrounding soil to increase friction, strengthen the connection with the side wall soil, and improve the bearing capacity of the pile.
  • the inner wall of the smart wall protection module can be extended with a steel bar positioning member 8, and the steel bar can be directly installed on the positioning member. It is arranged as a penetrating structure for accommodating steel bars to pass through, preferably a cylindrical structure welded integrally with the smart wall protection module or locked connected.
  • conventional equipment is embedded in the first through hole 3, including: electric wires, air supply ducts, the electric wires are used for bottom lighting, and the air supply ducts are used for ventilation in the well.
  • intelligent equipment is also embedded in the first through hole 3 to perform intelligent detection of the piles.
  • the intelligent equipment includes: a poisonous gas early warning system for monitoring harmful gases in the well for 24 hours; and a water level observation system for setting the water level Observation system, monitoring the changes of groundwater level at any time;
  • the first through hole 3 is also provided with a structural monitoring equipment system including structural strain gauges, seismic wave monitoring equipment, basic deformation observation equipment, and electronic induction equipment to monitor the safety of the structure 24 hours a day.
  • a structural monitoring equipment system including structural strain gauges, seismic wave monitoring equipment, basic deformation observation equipment, and electronic induction equipment to monitor the safety of the structure 24 hours a day.
  • the outer surface of the smart wall module in contact with the soil can be treated with special treatment including coating to make the outer surface smooth and reduce friction, thereby reducing the negative friction that is harmful to the foundation.
  • each of the smart wall protection modules may adopt a solid structure or a hollow lattice structure.
  • a construction process of the rotary drilling bored pile which includes the following process steps:
  • the wall protection includes aligned splicing type, staggered splicing type, and spiral splicing type;
  • a series of pipelines and smart electronic equipment are buried in the through holes of the smart wall;
  • Artificial foundation pit excavation excavate a certain distance, put in the module, assemble it into a smart wall by semi-mechanical or full manual engagement, then continue to excavate, repeat the cycle until it reaches the designed foundation bearing layer, the wall includes aligned splicing type , Staggered splicing type, spiral splicing type;
  • a series of pipelines and smart electronic equipment are buried in the first through hole of the smart wall;
  • pipelines are pre-buried in the first through hole 3, including: electric wires and air supply ducts, the electric wires are used for bottom lighting, and the air supply ducts are used for ventilation in the well.
  • the intelligent equipment includes: a poisonous gas early warning system for monitoring harmful gases in the well for 24 hours; a water level observation system for setting a water level observation system to monitor changes in the groundwater level at any time;
  • a structural monitoring equipment system including structural strain gauges, seismic wave monitoring equipment, basic deformation observation equipment, and electronic induction equipment are also arranged in the through holes to monitor the safety of the structure 24 hours a day.

Abstract

一种模块化智能护壁灌注桩,包括护壁、钢筋及浇筑砼,所述护壁为模块化拼装而成的上下镂空围护体结构,护壁内可埋设智能监测设备,护壁安装好后在其内壁周围放入钢筋,再浇筑砼形成灌注桩。所述护壁通过若干智能护壁模块(10)卡合成型,每个模块设置有纵向卡合部件和横向卡合部件,通过纵向和横向卡合部件卡合成护壁;所述智能护壁模块(10)卡合成型方式包括对齐拼接型、错开式拼接型、螺旋拼接型。该模块化智能护壁使得护壁的运输和制作更为简单,可防塌孔、增加基础承载力,同时通过智能监测使施工安全度,施工效率进一步提高,智能监测作用可延续至整个结构使用的寿命当中,最大限度的发挥护壁的经济价值。

Description

模块化智能护壁灌注桩及其施工工艺 技术领域
本发明属于建筑施工领域,尤其涉及旋挖钻孔灌注桩及其施工工艺。
背景技术
在建筑领域中,大直径桩灌注桩(直径800以上)按施工的成孔方式一般分为,人工挖空灌注桩、旋挖钻孔灌注桩。
人工挖空灌注桩---------人工挖孔灌注桩是指桩孔采用人工挖掘方法进行成孔,然后安放钢筋笼,浇注混凝土而成的桩。工程上简称人工挖孔桩。旋挖钻孔灌注桩----------由旋挖钻机施工的桩型,然后安放钢筋笼,浇注混凝土而成的桩,全称旋挖钻孔灌注桩,工程上简称旋挖桩。
以下是人工挖空灌注桩、旋挖钻孔灌注桩的各自的优劣。
1.人工挖空灌注桩
缺点:1)人工挖空灌注桩必须在施工过程中设置混凝土护壁。边挖边浇筑一圈护壁,为现浇的永久的护壁。桩护壁的作用:防止井桩在开挖过程中塌方。2)护壁人工挖1m左右,支模、扎钢筋,浇注砼形成一圈护壁,然后再挖1m,再支模、扎钢筋浇一圈护壁,如此反复开挖成孔。施工进度缓慢,支模和绑扎钢筋、浇筑砼麻烦,在有限的空间内操作极其不便。桩基础施工效率低、工期长。以10m长的桩为例,一根桩开挖需要10天。3)深井作业,为保障施工人员的安全,需要有专门的送风管和设备为施工人员拱氧气。一些地下特殊 地层中往往含有CO、SO2、H2S、CO2或其它有毒气体,易发生急性中毒事故。4)需要单独引电线下井用于照明,若电线管理不善施工中有触电风险。5)无法精确了解基坑中的水位情况,基坑内过多的地下水会影响浇筑的混凝土强度和质量。6)护壁无法了解基坑的变形,难以观测护壁是否有开裂,因而无法预测基坑有无垮塌的风险。7)由于以上的缺陷,所以人工挖孔操作时桩长设计不宜大于12米,操作空间的问题,工挖孔桩单向桩径不宜小于1.2米。
优点:
1)由于人可以下到底部,底部可以通过扩底提高桩基础的承载力。
2)由于人可以下到底部,便于人工观察桩基础底部是否进入了持力层,且便于观察判断持力层力学要求是否满足设计需求。
3)由于人可以下到底部,人工对施工过程中侧壁掉落在底部或底部自身的渣土进行很好的清底。清理底部沉渣有利于提高桩的承载力和减少桩的沉降变形。
2.旋挖钻孔灌注桩
当桩长范围内土质较好时,旋挖钻孔灌注桩无需护壁,
无护壁旋挖桩施工流程  机械定位-----钻孔-----下钢筋笼------浇筑砼
当桩长范围内土层力学性质差,如存在松散的回填土、流砂层、淤泥质土时,需要采用钢护筒。
有钢护壁旋挖桩施工流程  机械定位-----钻孔-----放钢套筒----下钢筋笼------浇筑砼——浇筑砼的通时拔出钢护壁
缺点:
1)沉渣厚度较大,由于无法下人作业,靠机械自身清底难以清除干净,达到要求。根据《建筑桩基技术规范》(JGJ94-2008)6.3.9条“钻孔达到设计深度,灌注混凝土之前,孔底沉渣厚度指标应符合下列规定:1对端承型桩,不应大于50mm;2对于摩擦型桩,不应大于100mm”
2)对于端承桩,无法通过扩底提高桩基础的承载力。
3)没有护壁的情况下,砼浇筑时充盈系数大,混凝土较为浪费。
充盈系数一般用于桩基工程的灌注桩浇灌混凝土,灌桩的混凝土充盈系数是指一根桩实际灌注的混凝土方量与按桩外径计算的理论方量之比。
充盈系数换算公式:
充盈系数=实际灌注混凝土量/(按设计图计算混凝土量)
在一般土质中为1.1,在软土中为1.2~1.3,有的高回填土中的桩,充盈系数甚至达到1.8。充盈系数大于1的主要原因有:1混凝土重度大于周边的土,浇筑时往四周向外挤压,自然的扩大了基坑;2基坑的侧壁存在孔洞,裂隙等使混凝土流失;3存在塌孔情况。
4)无护壁时,桩开挖时易塌孔、颈缩,影响桩基础的浇筑成型。
5)如采用钢护壁,护壁尺寸大,运输不便,完整的护壁占据空间大,运输效率低。
优点:
1)机械钻孔,施工速度快。以10m长的桩为例,一天能开挖8根桩。无需施工人员下基坑,施工安全。
本发明将传统的整体护壁进行模块化,提高了护壁制作、运输、施工的效率。传统护壁一般仅在受力上起到防塌孔、提高基础承载力的作用,本发明创新的在模块化的护壁当中融入了智能检测系统,使得护壁不仅仅在受力上发挥作用,同时在施工中随时进行各种安全检测,使施工更为规范安全、简单可靠。传统的护壁仅在施工过程中发挥作用,而本发明中的护壁监测系统的功能可在完工后建筑使用的过程中持续发挥监测作用,为结构的安全提供实时监测,为结构人员在结构问题发生时提供最直接监测资料以解决问题,同时为研究人员提供各种完全真实环境下结构研究数据用于理论研究等。本发明的模块化智能护壁为工业化生产,生产精度高,生产速度快。模块化智护壁通过机械组装,无需支模、无需浇筑护壁的砼,省时省力。护壁的模块化使得运输浪费空间少、运输简便,运输效率高。无论采用人工挖孔或机械钻孔的方式,模块化智能护壁不仅防塌孔、增加基础承载力,同时通过智能监测更好保证施工安全度,施工效率进一步提高;传统的护壁在施工完成后就失去了作用,不再具备任何功能。本发明的智能监测作用可延续至整个结构使用的寿命当中,最大限度的发挥了护壁的经济价值。
发明内容
本发明旨在解决以上现有技术的问题。提出了一种模块化智能护 壁灌注桩及其施工工艺。本发明的技术方案如下:
一种模块化智能护壁灌注桩,包括护壁、钢筋及浇筑砼,所述护壁为模块化拼装而成的上下镂空的围护体结构,钢筋设置于护壁内壁周围,护壁安装好后,放入钢筋,再在护壁内浇筑砼而形成灌注桩,基坑开挖可人工可机械钻孔,所述护壁通过若干智能护壁模块卡合预制成型,每个智能护壁模块设置有纵向卡合部件和横向卡合部件,通过纵向卡合部件和横向卡合部件卡合成护壁,每个智能护壁模块的侧面和正面中间位置分别设置有第一通孔和第二通孔,护壁内的第一通孔埋有各种智能监测设备,护壁内的智能监测设备用于在施工和桩使用过程中随时对桩或地基的各种情况进行监测;护壁内的第二通孔可伸出刺状物与土壤连接。
进一步的,所述若干智能护壁模块卡合预制成型的方式包括对齐拼接型、错开式拼接型、螺旋拼接型,当为对齐拼接型时,上下智能护壁模块的两端对齐;当为错开式拼接型时,上下智能护壁模块之间相间隔对齐,螺旋拼接型时,智能护壁模块之间通过螺旋缠绕拼接。
进一步的,所述横向卡合部件包括凸肋和凹槽,凸肋和凹槽分别设置于智能护壁模块的两侧,每个智能护壁模块的凸肋和另一智能护壁模块的凹槽相卡合。
进一步的,所述凸肋的数目为2个,凹槽的数目也为2个。
进一步的,所述纵向卡合部件包括左上扣槽、左下扣肋、右上扣肋及右下扣槽,左上扣槽扣合在另一智能护壁模块的左下扣肋上,右上扣肋扣合在另一智能护壁模块的右下扣槽上进行智能护壁模块之 间的上下固定。
进一步的,所述护壁的螺丝孔可伸出调节杆,形成树根桩,刺状物伸入周围土层中,护壁外浇筑水泥形成树根桩,用于加强与侧壁土的连接。
进一步的,所述第一通孔中预埋有常规设备:包括:电线、送风管道,抽水管道,电线用于底部照明,送风管道用于井内通风,抽水管可抽取底部积水。
进一步的,浇筑混凝土后,可利用护壁上的第一通孔采用声波透射法进行桩的完整性的检测。
进一步的,所述第一通孔中还预埋有智能设备,对桩进行智能检测,智能设备包括:毒气预警系统,用于24小时监控井中的有害气体;水位观察系统,用于设置水位观察系统,随时监控地下水位的变化;
所述第一通孔中还设置结构应变片、地震波监测设备、基础变形观测设备、电子感应设备等各种用于建筑或地基的监测设备系统,24小时监测地下结构的安全和各种地基的变化。
进一步的,在深回填的地基条件下,智能护壁模块与土接触的外表面可进行涂膜在内的特殊处理,使外表面光滑,减少摩擦力,对于新回填等负摩租较大的土层,可降低对基础有害的负摩阻.
进一步的,所述每个智能护壁模块可采用实心结构或者空心格构式结构。
进一步的,所述智能护壁模块的内壁上可伸出钢筋定位构件,钢 筋可直接安装在定位构件上。
一种所述智能护壁灌注桩的施工工艺,其包括以下工艺步骤:
1)当采用机械钻孔开挖基坑时:
首先若干智能护壁模块可根据施工条件通过全机械自动、半机械或全人工将其卡合组装成智能护壁,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
在智能护壁的通孔中埋设一系列管线及智能电子设备;
机械钻孔机定位;
基坑开挖;
放入智能护壁;
放入钢筋;
浇筑砼。
2)当采用人工开挖基坑时:
基坑定位;
人工基坑开挖,开挖一定距离,放入模块,通过半机械或全人工将其卡合组装成智能护壁,然后继续开挖,循环重复直至达到设计地基持力层,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
在智能护壁的第一通孔中埋设一系列管线及智能电子设备;
放入钢筋;
浇筑砼。
本发明的优点及有益效果如下:
第一大优点:采用人工的基坑开挖方式时,桩护壁的施工无需支模、 浇筑砼,使得护壁施工更简单高效,施工作业时更为规范安全、简单可靠。
第二大优点:采用机械钻孔的基坑开挖方式时,护壁的制作的运输更为简单高效,在受力上起到防塌孔、提高基础承载力的作用,同时浇筑时减少充盈系数,经济效益好。
第三大优点:可以通过模块的通孔预埋智能设备,对桩进行智能监测,智能监测更好保证施工安全度,施工效率进一步提高;本发明的智能监测作用可延续至整个结构使用的寿命当中,最大限度的发挥了护壁的功能和经济价值。
具体的创新点
1)模块化护壁,可防止基坑塌孔,紧缩等。
2)模块化护壁,便于工业化生产,生产精度高,生产速度快。
3)护壁模块化以后,运输简便,运输浪费空间少,运输效率高。护壁模块通过机械组装,省时省力,效率高。
4)减少桩的充盈系数,充盈系数基本可控制为1,节约混凝土量。
5)施工人员可下井作业,通过扩底提高承载力,减少土方开挖量、砼浇筑量、钢筋量,扩底对于较长的桩基础经济性有很大的提高。举例来说,例1:直径900的端承桩,底部扩大到1500,承载力可提高2.8倍,且混凝土增加较少。
例2:由于机械钻孔桩无法扩底,如端承桩根据计算底部需要直径1200,那么从上到下桩的直径均需做成直径1200;如可以扩底,则底部直径可做成1200,中部和上部直径可做成900,对于20m的桩 长,混凝土可节约35%。
6)施工人员可下井作业,清除沉渣,提高桩基础承载力,减少桩的沉降。
7)护壁上可伸出刺状物伸入周围土层中,增加摩擦力,加强与侧壁土的连接,提高桩承载力.
8)钢筋可以直接卡位安装在务必的定位构件上,无须事先绑扎焊接钢筋笼。
9)护壁的环箍约束作用可提高混凝土的抗剪承载力和局压强度,从而减少甚至取消桩的箍筋。
10)在深回填的地基条件下,护壁模块与土接触的外表面可进行涂膜或其他特殊处理,使外表面光滑,减少摩擦力,从而降低对基础有害的负摩阻.
11)可在护壁的通孔中铺设电线,用于底部照明,大大降低漏电事故的风险。
12)可在护壁的通孔中铺设送风管道,用于井内通风,保证施工人员的工作安全。
13)可在护壁的通孔中设置毒气预警系统,用于24小时监控井中的有害气体,提高下井作业的安全保障。
14)可在护壁的通孔中设置水位观察系统,随时监控地下水位的变化。
15)传统的大直径灌注桩基础无论人工挖孔桩或旋挖桩均要进行桩身的完整性的检测,目前最为广泛的检测方法为预埋声测管,采用声波透射法进行检测。直径越大的桩埋设的声测管越多,需要检测出来的 声测线就越多。双管只能有1条声测线,3根声测管3条声测线,4根声测管可以有6条声测线。声测线越多,检测越精确,检测结果越真实可靠。采用模块化的护壁,由于模块自身带孔,可沿着桩四周形成数十个通孔,通孔数量多。桩完整性的检测无需再预埋声测管,同时可根据需要测出多条乃是数十条声测线,检测精度和可靠度可随意提高。
16)模块化智能护壁的通孔中还设置结构应变片、地震波监测设备、基础变形观测设备、电子感应设备等各种用于建筑或地基的监测设备系统,24小时监测地下结构的安全和各种地基的变化。
17)传统的护壁在施工完成后就失去了作用,不再具备任何功能。本发明中的护壁监测系统的功能可在施工完工后的建筑使用过程中持续发挥监测作用,为结构的安全提供实时监测,为结构人员在结构问题发生时提供最直接监测资料以解决问题,同时为研究人员提供各种完全真实环境下结构研究数据用于理论研究等。本发明使得护壁在整个建筑建造和使用的过程中,最大限度的发挥了护壁的功能和经济价值。
附图说明
图1是本发明提供优选实施例智能护壁模块的横向卡合部件结构示意图;
图2是本发明提供优选实施例智能护壁模块的纵向卡合部件结构示意图;
图3是本发明提供优选实施例对齐拼接型智能护壁组装示意图;
图4是本发明提供优选实施例错开式拼接型智能护壁组装示意图;
图5是本发明提供优选实施例螺旋拼接型智能护壁组装示意图;
图6是本发明提供优选实施例护壁螺丝孔中设置有调节杆示意图;
图7是本发明提供优选实施例钢筋定位构件示意图;
1-凸肋;2-凹槽;3-第一通孔;4-左上扣槽;5-左下扣肋;6-右上扣肋;7-右下扣槽;8-钢筋定位构件;9-螺丝孔;10-智能护壁模块
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述。所描述的实施例仅仅是本发明的一部分实施例。
本发明解决上述技术问题的技术方案是:
一种模块化智能护壁灌注桩,包括护壁、钢筋及浇筑砼,所述护壁为模块化拼装而成的上下镂空的围护体结构,钢筋设置于护壁内壁周围,护壁安装好后,放入钢筋,再在护壁内浇筑砼而形成灌注桩,基坑开挖可人工可机械钻孔,所述护壁通过若干智能护壁模块卡合预制成型,每个智能护壁模块设置有纵向卡合部件和横向卡合部件,通过纵向卡合部件和横向卡合部件卡合成护壁,每个智能护壁模块的侧面和正面中间位置分别设置有第一通孔和第二通孔,护壁内的第一通孔埋有各种智能监测设备,护壁内的智能监测设备用于在施工和桩使用过程中随时对桩或地基的各种情况进行监测;护壁内的第二通孔可伸出刺状物与土壤连接。。
优选的,如图3-5所示,所述若干智能护壁模块卡合预制成型的方式包括对齐拼接型、错开式拼接型、螺旋拼接型,当为对齐拼接型时,上下智能护壁模块的两端对齐;当为错开式拼接型时,上下智能护壁模块之间相间隔对齐,螺旋拼接型时,智能护壁模块之间通过螺旋缠绕拼接。
优选的,如图1所示,所述横向卡合部件包括凸肋1和凹槽2,凸肋1和凹槽2分别设置于智能护壁模块10的两侧,每个智能护壁模块10的凸肋1和另一智能护壁模块的凹槽2相卡合。
优选的,所述凸肋1的数目为2个,凹槽2的数目也为2个。
优选的,如图2所示,所述纵向卡合部件包括左上扣槽4、左下扣肋5、右上扣肋6及右下扣槽7,左上扣槽4扣合在另一智能护壁模块的左下扣肋5上,右上扣肋6扣合在另一智能护壁模块的右下扣槽7上进行智能护壁模块之间的上下固定。
优选的,如图6所示,所述护壁的螺丝孔9可伸出调节杆,形成树根桩,调节杆伸入周围土层中,护壁外浇筑水泥形成树根桩,用于加强与侧壁土的连接。,调节杆伸入周围土层中,增加摩擦力,加强与侧壁土的连接,提高桩承载力。
如图7所示,所述智能护壁模块的内壁上可伸出钢筋定位构件8,钢筋可直接安装在定位构件上。其设置成用于容纳钢筋穿过的贯穿式结构,优选为与智能护壁模块焊接成一体或者锁紧连接的圆柱体结构。
优选的,所述第一通孔3中预埋有常规设备:包括:电线、送风 管道,电线用于底部照明,送风管道用于井内通风。
优选的,所述第一通孔3中还预埋有智能设备,对桩进行智能检测,智能设备包括:毒气预警系统,用于24小时监控井中的有害气体;水位观察系统,用于设置水位观察系统,随时监控地下水位的变化;
所述第一通孔3中还设置结构应变片、地震波监测设备、基础变形观测设备、电子感应设备在内的结构监测设备系统,24小时监测结构的安全。
优选的,在深回填的地基条件下,智能护壁模块与土接触的外表面可进行涂膜在内的特殊处理,使外表面光滑,减少摩擦力,从而降低对基础有害的负摩阻.
优选的,所述每个智能护壁模块可采用实心结构或者空心格构式结构。
一种所述旋挖钻孔灌注桩的施工工艺,其包括以下工艺步骤:
1)当采用机械钻孔开挖基坑时:
首先若干智能护壁模块可根据施工条件通过全机械自动、半机械或全人工将其卡合组装成智能护壁,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
在智能护壁的通孔中埋设一系列管线及智能电子设备;
机械钻孔机定位;
基坑开挖;
放入智能护壁;
放入钢筋;
浇筑砼。
2)当采用人工开挖基坑时:
基坑定位;
人工基坑开挖,开挖一定距离,放入模块,通过半机械或全人工将其卡合组装成智能护壁,然后继续开挖,循环重复直至达到设计地基持力层,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
在智能护壁的第一通孔中埋设一系列管线及智能电子设备;
放入钢筋;
浇筑砼。
优选的,所述第一通孔3中预埋有管线:包括:电线、送风管道,电线用于底部照明,送风管道用于井内通风。
优选的,所述智能设备包括:毒气预警系统,用于24小时监控井中的有害气体;水位观察系统,用于设置水位观察系统,随时监控地下水位的变化;
所述通孔中还设置结构应变片、地震波监测设备、基础变形观测设备、电子感应设备在内的结构监测设备系统,24小时监测结构的安全。
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。

Claims (13)

  1. 一种模块化智能护壁灌注桩,包括护壁、钢筋及浇筑砼,所述护壁为模块化拼装而成的上下镂空的围护体结构,钢筋设置于护壁内壁周围,护壁安装好后,放入钢筋,再在护壁内浇筑砼而形成灌注桩,其特征在于,基坑开挖可人工可机械钻孔,所述护壁通过若干智能护壁模块卡合预制成型,每个智能护壁模块设置有纵向卡合部件和横向卡合部件,通过纵向卡合部件和横向卡合部件卡合成护壁,每个智能护壁模块的侧面和正面中间位置分别设置有第一通孔和第二通孔,护壁内的第一通孔埋有各种智能监测设备,护壁内的智能监测设备用于在施工和桩使用过程中随时对桩或地基的各种情况进行监测;护壁内的第二通孔可伸出刺状物与土壤连接。
  2. 根据权利要求1所述的一种模块化智能护壁灌注桩,其特征在于,所述若干智能护壁模块卡合预制成型的方式包括对齐拼接型、错开式拼接型、螺旋拼接型,当为对齐拼接型时,上下智能护壁模块的两端对齐;当为错开式拼接型时,上下智能护壁模块之间相间隔对齐,螺旋拼接型时,智能护壁模块之间通过螺旋缠绕拼接。
  3. 根据权利要求2所述的一种模块化智能护壁灌注桩,其特征在于,所述横向卡合部件包括凸肋和凹槽,凸肋和凹槽分别设置于智能护壁模块的两侧,每个智能护壁模块的凸肋和另一智能护壁模块的凹槽相卡合。
  4. 根据权利要求3所述的一种模块化智能护壁灌注桩,其特征在于,所述凸肋的数目为2个,凹槽的数目也为2个。
  5. 根据权利要求2-4之一所述的一种模块化智能护壁灌注桩,其特征在于,所述纵向卡合部件包括左上扣槽、左下扣肋、右上扣肋及右下扣槽,左上扣槽扣合在另一智能护壁模块的左下扣肋上,右上扣肋扣合在另一智能护壁模块的右下扣槽上进行智能护壁模块之间的上下固定。
  6. 根据权利要求5所述的一种模块化智能护壁灌注桩,其特征在于,所述护壁的螺丝孔可伸出调节杆,形成树根桩,调节杆伸入周围土层中,护壁外浇筑水泥形成树根桩,用于加强与侧壁土的连接。
  7. 根据权利要求5所述的一种模块化智能护壁灌注桩,其特征在于,所述第一通孔中预埋有常规设备:包括:电线、送风管道,抽水管道,电线用于底部照明,送风管道用于井内通风,抽水管可抽取底部积水。
  8. 根据权利要求7所述的一种模块化智能护壁灌注桩,其特征在于,浇筑混凝土后,可利用护壁上的第一通孔采用声波透射法进行桩的完整性的检测。
  9. 根据权利要求8所述的一种模块化智能护壁灌注桩,其特征在于,所述第一通孔中还预埋有智能设备,对桩进行智能检测,智能设备包括:毒气预警系统,用于24小时监控井中的有害气体;水位观察系统,用于设置水位观察系统,随时监控地下水位的变化;
    所述第一通孔中还设置结构应变片、地震波监测设备、基础变形观测设备、电子感应设备等各种用于建筑或地基的监测设备系统,24小时监测地下结构的安全和各种地基的变化。
  10. 根据权利要求8所述的一种模块化智能护壁灌注桩,其特征在于,在深回填的地基条件下,智能护壁模块与土接触的外表面可进行涂膜在内的特殊处理,使外表面光滑,减少摩擦力,对于新回填等负摩租较大的土层,可降低对基础有害的负摩阻.
  11. 根据权利要求8所述的一种模块化智能护壁灌注桩,其特征在于,所述每个智能护壁模块可采用实心结构或者空心格构式结构。
  12. 根据权利要求11所述的一种模块化智能护壁灌注桩,其特征在于,所述智能护壁模块的内壁上可伸出钢筋定位构件,钢筋可直接安装在定位构件上。
  13. 一种权利要求1-12所述智能护壁灌注桩的施工工艺,其包括以下工艺步骤:
    1)当采用机械钻孔开挖基坑时:
    首先若干智能护壁模块可根据施工条件通过全机械自动、半机械或全人工将其卡合组装成智能护壁,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
    在智能护壁的通孔中埋设一系列管线及智能电子设备;
    机械钻孔机定位;
    基坑开挖;
    放入智能护壁;
    放入钢筋;
    浇筑砼。
    2)当采用人工开挖基坑时:
    基坑定位;
    人工基坑开挖,开挖一定距离,放入模块,通过半机械或全人工将其卡合组装成智能护壁,然后继续开挖,循环重复直至达到设计地基持力层,护壁包括对齐拼接型、错开式拼接型、螺旋拼接型;
    在智能护壁的第一通孔中埋设一系列管线及智能电子设备;
    放入钢筋;
    浇筑砼。
PCT/CN2019/123763 2019-12-06 2019-12-06 模块化智能护壁灌注桩及其施工工艺 WO2021109144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102779.9A CN114929969B (zh) 2019-12-06 2019-12-06 模块化智能护壁灌注桩及其施工工艺
PCT/CN2019/123763 WO2021109144A1 (zh) 2019-12-06 2019-12-06 模块化智能护壁灌注桩及其施工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123763 WO2021109144A1 (zh) 2019-12-06 2019-12-06 模块化智能护壁灌注桩及其施工工艺

Publications (1)

Publication Number Publication Date
WO2021109144A1 true WO2021109144A1 (zh) 2021-06-10

Family

ID=76221053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123763 WO2021109144A1 (zh) 2019-12-06 2019-12-06 模块化智能护壁灌注桩及其施工工艺

Country Status (2)

Country Link
CN (1) CN114929969B (zh)
WO (1) WO2021109144A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351746A (zh) * 2021-11-25 2022-04-15 中国葛洲坝集团路桥工程有限公司 一种山区临河陡倾岸坡桩基平台及施工方法
CN114411823A (zh) * 2021-12-23 2022-04-29 湖北省交通规划设计院股份有限公司 一种灌注桩完整性检测用多功能声测管及施工方法
CN114517476A (zh) * 2022-02-25 2022-05-20 广东省源天工程有限公司 一种灌注桩物联网精确开挖成桩施工工法
CN114635441A (zh) * 2022-01-26 2022-06-17 中铁十五局集团有限公司 一种应用于竖向沉井式深埋结构的双层管片施工方法
CN114705106A (zh) * 2022-03-30 2022-07-05 中国十九冶集团有限公司 钻孔灌注桩沉渣检测方法
CN114809091A (zh) * 2022-04-20 2022-07-29 浙江三泰新材料科技有限公司 一种拼接检查井及其安装方法
CN114809053A (zh) * 2022-04-15 2022-07-29 中建新疆建工(集团)有限公司 新型预制装配式沉井快捷处理地下障碍物施工方法
CN114991172A (zh) * 2022-06-20 2022-09-02 中国矿业大学 一种模板、钢筋一体化水下浇筑结构及其施工方法
CN115341533A (zh) * 2022-08-30 2022-11-15 中铁九桥工程有限公司 一种易塌地层灌注桩钻孔施工方法
CN115419069A (zh) * 2022-09-30 2022-12-02 中国一冶集团有限公司 一种人工挖孔桩护壁施工方法
CN115478534A (zh) * 2022-09-27 2022-12-16 无锡市锦诚建筑工程有限公司 地基混凝土灌注桩钻孔用钢护筒装置及施工方法
CN115506338A (zh) * 2022-09-07 2022-12-23 苏州交通工程集团有限公司 一种桥梁水中钻孔灌注桩的施工工艺
CN116732970A (zh) * 2023-08-14 2023-09-12 上海建工集团股份有限公司 一种预制薄钢桩拼装层叠式地下围护结构及方法
CN117388440A (zh) * 2023-10-23 2024-01-12 中国矿业大学 用于双层井壁壁间注浆工艺试验和效果检测的装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280400A (ja) * 1997-04-07 1998-10-20 Taiyo:Kk パイル内セメント抜取用具
JP2000120080A (ja) * 1998-10-14 2000-04-25 Nippon Kokan Light Steel Kk 中空筒状体およびその構築方法
KR100810912B1 (ko) * 2006-12-21 2008-03-10 주식회사 태성 옹벽축조용 블록 및 이를 이용한 옹벽시공방법
CN103758123A (zh) * 2014-01-24 2014-04-30 江苏建筑职业技术学院 人工挖孔灌注桩护壁衬的施工方法
CN205742173U (zh) * 2016-06-23 2016-11-30 海南大学 一种用于混凝土灌注桩的预制护壁
CN106320322A (zh) * 2016-10-18 2017-01-11 上海强劲地基工程股份有限公司 一种预应力装配式异形桩墙的基坑与边坡围护结构
CN206991518U (zh) * 2017-07-31 2018-02-09 中国水利水电第七工程局成都水电建设工程有限公司 用于监测地铁深基坑地质灾害的预警装置及系统
CN108385670A (zh) * 2018-02-09 2018-08-10 温州嘉成工程项目管理有限公司 一种人工挖孔灌注桩及其施工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2323017Y (zh) * 1998-01-26 1999-06-09 张盛昌 新法人工挖孔桩用预制护壁
CN2469046Y (zh) * 2001-04-04 2002-01-02 陈扬德 挖孔桩预制钢筋砼护壁
JP4326908B2 (ja) * 2003-10-23 2009-09-09 Jfe建材株式会社 沈設用土留壁及び沈設用土留壁の施工方法
CN101634146B (zh) * 2008-07-24 2011-01-26 邢利奥 建筑桩基础人工挖孔全钢护筒护壁施工装置及其施工方法
CN204959735U (zh) * 2015-07-15 2016-01-13 杭州江润科技有限公司 深水区钻孔灌注桩无损装拆双层钢护筒群结构
CN207395790U (zh) * 2017-09-25 2018-05-22 重庆大业电气有限责任公司 在线监测的预制工作井
CN107675704A (zh) * 2017-11-16 2018-02-09 贵州建工集团有限公司 一种人工挖孔桩装配式护壁及其施工工艺
CN209339130U (zh) * 2018-12-27 2019-09-03 秭归县交通运输局 深水基础基坑成孔施工与水下混凝土施工同步监控仪器
CN110258550B (zh) * 2019-06-25 2021-06-04 湘潭大学 一种人工挖孔桩混凝土预制护壁及施工方法
CN212248219U (zh) * 2019-12-06 2020-12-29 邹胜斌 模块化智能护壁灌注桩

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280400A (ja) * 1997-04-07 1998-10-20 Taiyo:Kk パイル内セメント抜取用具
JP2000120080A (ja) * 1998-10-14 2000-04-25 Nippon Kokan Light Steel Kk 中空筒状体およびその構築方法
KR100810912B1 (ko) * 2006-12-21 2008-03-10 주식회사 태성 옹벽축조용 블록 및 이를 이용한 옹벽시공방법
CN103758123A (zh) * 2014-01-24 2014-04-30 江苏建筑职业技术学院 人工挖孔灌注桩护壁衬的施工方法
CN205742173U (zh) * 2016-06-23 2016-11-30 海南大学 一种用于混凝土灌注桩的预制护壁
CN106320322A (zh) * 2016-10-18 2017-01-11 上海强劲地基工程股份有限公司 一种预应力装配式异形桩墙的基坑与边坡围护结构
CN206991518U (zh) * 2017-07-31 2018-02-09 中国水利水电第七工程局成都水电建设工程有限公司 用于监测地铁深基坑地质灾害的预警装置及系统
CN108385670A (zh) * 2018-02-09 2018-08-10 温州嘉成工程项目管理有限公司 一种人工挖孔灌注桩及其施工方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351746A (zh) * 2021-11-25 2022-04-15 中国葛洲坝集团路桥工程有限公司 一种山区临河陡倾岸坡桩基平台及施工方法
CN114351746B (zh) * 2021-11-25 2024-04-19 中国葛洲坝集团路桥工程有限公司 一种山区临河陡倾岸坡桩基平台及施工方法
CN114411823A (zh) * 2021-12-23 2022-04-29 湖北省交通规划设计院股份有限公司 一种灌注桩完整性检测用多功能声测管及施工方法
CN114635441B (zh) * 2022-01-26 2023-11-28 中铁十五局集团有限公司 一种应用于竖向沉井式深埋结构的双层管片施工方法
CN114635441A (zh) * 2022-01-26 2022-06-17 中铁十五局集团有限公司 一种应用于竖向沉井式深埋结构的双层管片施工方法
CN114517476A (zh) * 2022-02-25 2022-05-20 广东省源天工程有限公司 一种灌注桩物联网精确开挖成桩施工工法
CN114705106A (zh) * 2022-03-30 2022-07-05 中国十九冶集团有限公司 钻孔灌注桩沉渣检测方法
CN114809053A (zh) * 2022-04-15 2022-07-29 中建新疆建工(集团)有限公司 新型预制装配式沉井快捷处理地下障碍物施工方法
CN114809091A (zh) * 2022-04-20 2022-07-29 浙江三泰新材料科技有限公司 一种拼接检查井及其安装方法
CN114991172A (zh) * 2022-06-20 2022-09-02 中国矿业大学 一种模板、钢筋一体化水下浇筑结构及其施工方法
CN115341533B (zh) * 2022-08-30 2023-08-11 中铁九桥工程有限公司 一种易塌地层灌注桩钻孔施工方法
CN115341533A (zh) * 2022-08-30 2022-11-15 中铁九桥工程有限公司 一种易塌地层灌注桩钻孔施工方法
CN115506338A (zh) * 2022-09-07 2022-12-23 苏州交通工程集团有限公司 一种桥梁水中钻孔灌注桩的施工工艺
CN115478534A (zh) * 2022-09-27 2022-12-16 无锡市锦诚建筑工程有限公司 地基混凝土灌注桩钻孔用钢护筒装置及施工方法
CN115478534B (zh) * 2022-09-27 2024-03-01 无锡市锦诚建筑工程有限公司 地基混凝土灌注桩钻孔用钢护筒装置及施工方法
CN115419069A (zh) * 2022-09-30 2022-12-02 中国一冶集团有限公司 一种人工挖孔桩护壁施工方法
CN115419069B (zh) * 2022-09-30 2024-01-12 中国一冶集团有限公司 一种人工挖孔桩护壁施工方法
CN116732970A (zh) * 2023-08-14 2023-09-12 上海建工集团股份有限公司 一种预制薄钢桩拼装层叠式地下围护结构及方法
CN116732970B (zh) * 2023-08-14 2023-11-07 上海建工集团股份有限公司 一种预制薄钢桩拼装层叠式地下围护结构及方法
CN117388440A (zh) * 2023-10-23 2024-01-12 中国矿业大学 用于双层井壁壁间注浆工艺试验和效果检测的装置和方法

Also Published As

Publication number Publication date
CN114929969A (zh) 2022-08-19
CN114929969B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2021109144A1 (zh) 模块化智能护壁灌注桩及其施工工艺
WO2017024916A1 (zh) 一种埋设于预制管桩桩内的传热管及其埋设方法
WO2016058275A1 (zh) 一种内壁带螺旋复合加强环的地下钢混结构管道及其制作方法
CN111778994A (zh) 一种用于市政管道工程顶管工作井支护装置及施工方法
CN113202173B (zh) 一种深基坑施工中钢管临时替换跨基坑混凝土管施工方法
CN111139852A (zh) 一种富水砂卵石地层高渗透超深基坑降水施工方法
CN113089659B (zh) 一种多年冻土地区的旋挖成孔灌注螺纹桩施工方法
CN209891202U (zh) 一种抗浮锚杆
CN111733853A (zh) 榫槽式预制地下连续墙结构
CN212248219U (zh) 模块化智能护壁灌注桩
CN111456021A (zh) 利用rjp桩逆做围护结构的施工方法
CN110792085A (zh) 一种顶管工作坑支护方法
CN110512594A (zh) 旋挖钻机遇空洞成孔成桩的简易方法
CN216973425U (zh) 一种先撑后挖的斜向预制钢桩基坑支护体系
CN115305917A (zh) 一种后注浆钢带波纹管
CN114855822A (zh) 一种公路上雨污水管道深基坑的施工方法
CN110552702B (zh) 一种拼装波纹钢板地下综合管廊的暗挖施工方法
CN210216391U (zh) 伸入基岩的封闭式地连墙围井结构
CN104652420A (zh) 一种沉管取土现浇矩形支护桩地连墙及其施工方法
CN210216392U (zh) 地连墙围井结构
CN109778873B (zh) 一种围护桩间注浆止水方法及装置
CN113585319A (zh) 一种桩基施工方法
CN112359819B (zh) 一种增加旧地连墙深度的墙体结构施工方法
CN110258521A (zh) 地连墙围井结构
CN212427155U (zh) 榫槽式预制地下连续墙结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955198

Country of ref document: EP

Kind code of ref document: A1