WO2021109127A1 - 光学系统、摄像模组及电子装置 - Google Patents

光学系统、摄像模组及电子装置 Download PDF

Info

Publication number
WO2021109127A1
WO2021109127A1 PCT/CN2019/123679 CN2019123679W WO2021109127A1 WO 2021109127 A1 WO2021109127 A1 WO 2021109127A1 CN 2019123679 W CN2019123679 W CN 2019123679W WO 2021109127 A1 WO2021109127 A1 WO 2021109127A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
optical axis
image side
Prior art date
Application number
PCT/CN2019/123679
Other languages
English (en)
French (fr)
Inventor
王妮妮
刘彬彬
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to PCT/CN2019/123679 priority Critical patent/WO2021109127A1/zh
Priority to EP19954966.8A priority patent/EP3904934A4/en
Priority to US17/610,693 priority patent/US20220206254A1/en
Publication of WO2021109127A1 publication Critical patent/WO2021109127A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images

Definitions

  • the invention relates to the field of optical imaging, in particular to an optical system, a camera module and an electronic device.
  • an optical system a camera module, and an electronic device are provided.
  • An optical system from the object side to the image side, includes:
  • the first lens with positive refractive power
  • a second lens with negative refractive power the object side of the second lens is convex at the paraxial position
  • the third lens with refractive power is the third lens with refractive power
  • the fourth lens with refractive power is the fourth lens with refractive power
  • the fifth lens with refractive power is the fifth lens with refractive power
  • a sixth lens with negative refractive power the image side of the sixth lens is concave at the paraxial position
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • BFL is the distance from the image side of the sixth lens to the imaging surface of the optical system parallel to the optical axis.
  • the shortest distance in the direction, f is the effective focal length of the optical system.
  • a camera module includes a photosensitive element and the above-mentioned optical system, and the photosensitive element is arranged on the image side of the sixth lens.
  • An electronic device includes a housing and the above-mentioned camera module, and the camera module is arranged on the housing.
  • FIG. 1 is a schematic diagram of the optical system provided by the first embodiment of the application.
  • Fig. 2 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the first embodiment
  • FIG. 3 is a schematic diagram of the optical system provided by the second embodiment of the application.
  • Fig. 4 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the second embodiment
  • FIG. 5 is a schematic diagram of the optical system provided by the third embodiment of the application.
  • Fig. 6 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the third embodiment
  • FIG. 7 is a schematic diagram of an optical system provided by a fourth embodiment of this application.
  • FIG. 9 is a schematic diagram of an optical system provided by a fifth embodiment of this application.
  • Fig. 10 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the fifth embodiment
  • FIG. 11 is a schematic diagram of an optical system provided by a sixth embodiment of this application.
  • Fig. 12 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the sixth embodiment
  • FIG. 13 is a schematic diagram of an optical system provided by a seventh embodiment of this application.
  • 15 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • the embodiments of the present application provide an optical system, a camera module, and an electronic device to solve the problem that the camera module is difficult to be miniaturized.
  • the optical system 10 in an embodiment of the present application includes a stop STO, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens L2 with refractive power in sequence from the object side to the image side.
  • the diaphragm STO is arranged coaxially with each lens. At this time, the optical axis of each lens is on the same straight line, which can be understood as the optical axis of the optical system 10.
  • the stop STO may also be arranged on the object side of the first lens L1.
  • the optical system 10 includes elements such as the stop STO, the first lens L1, and the second lens L2 in sequence from the object side to the image side
  • the stop STO can be arranged on the object side S1 of the first lens L1.
  • the stop STO The projection of the STO on the optical axis of the optical system 10 and the projection of the first lens L1 on the optical axis of the optical system 10 overlap; or the stop STO is arranged on the object side of the first lens L1 and the stop STO is on the optical axis.
  • the projection and the projection of the first lens L1 on the optical axis do not overlap.
  • the above-mentioned optical axis is the optical axis of the optical system 10.
  • the first lens L1 has an object side surface S1 and an image side surface S2.
  • the second lens L2 has an object side surface S3 and an image side surface S4, and the object side surface S3 is a convex surface at the paraxial (near optical axis).
  • the third lens L3 has an object side surface S5 and an image side surface S6.
  • the fourth lens L4 has an object side surface S7 and an image side surface S8.
  • the fifth lens L5 has an object side surface S9 and an image side surface S10.
  • the sixth lens L6 includes an object side surface S11 and an image side surface S12, and the image side surface S12 is a concave surface at the paraxial (near optical axis).
  • the optical system 10 further includes an image surface S15.
  • the image surface S15 is an imaging surface of the optical system 10.
  • the image surface S15 may be a photosensitive surface of a photosensitive element, and the photosensitive surface includes an effective pixel area.
  • the object side surface of at least one of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 is aspherical.
  • the image side surface of at least one of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 is aspherical.
  • the object side surface S11 of the sixth lens L6 is aspherical. Further, in some of these embodiments, there is at least one inflection point on the object side surface S11 of the sixth lens L6. In some embodiments, the image side surface S12 of the sixth lens L6 is aspherical. Further, in some of the embodiments, there is at least one inflection point on the image side surface S12 of the sixth lens L6. The number of inflection points can be one, two or more.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are aspherical.
  • the surface formula of aspherical surface is:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the apex of the aspheric surface
  • k is the conic constant
  • Ai is the aspheric surface
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the plastic lens can reduce The weight of the optical system 10 can reduce the production cost.
  • the optical system 10 can be designed to be thin and light by matching the parameter relationship of each lens.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all glass. In this case, the optical system 10 can withstand Higher temperature and better optical properties. In other embodiments, it is also possible that only the first lens L1 is made of glass, and the other lenses are made of plastic.
  • the first lens L1 closest to the object side can withstand the environment on the object side well. Due to the influence of temperature, and because other lenses are made of plastic materials, the optical system 10 can also maintain a low production cost. It should be noted that, according to actual requirements, the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 can be any of plastic or glass, respectively.
  • an infrared filter L7 is also provided on the image side of the sixth lens L6.
  • the infrared filter L7 is an infrared cut-off filter.
  • the infrared filter L7 can filter out infrared light, prevent infrared light from passing through and reach the photosensitive element, and prevent the infrared interference light from being received by the photosensitive element and affecting normal imaging, thereby improving the optical system Image quality of 10.
  • the infrared filter L7 may be assembled on the image side of the optical system 10 along with the photosensitive element when the lens and the photosensitive element in the optical system 10 are assembled.
  • the infrared filter L7 includes an object side surface S11 and an image side surface S12.
  • the infrared filter L7 can be assembled with each lens.
  • the infrared filter L7 belongs to an optical element of the optical system 10.
  • the infrared filter L7 can also be installed between the sixth lens L6 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a module.
  • the optical system 10 further includes a prism arranged on the object side of the first lens L1. By matching the effect of the prism to change the incident light path, the incident light is deflected and enters the lens group. At this time, the optical system 10 will have Periscope function. It should also be noted that, in some embodiments, the optical system 10 further includes a photosensitive element for receiving imaging light.
  • the optical system 10 satisfies the relationship: (TTL-BFL)/f ⁇ 0.92; where TTL is the distance between the object side surface S1 of the first lens L1 and the image surface S15 of the optical system 10 on the optical axis.
  • the distance, BFL is the shortest distance from the image side surface of the sixth lens L6 to the imaging surface of the optical system 10 in the direction parallel to the optical axis, and f is the effective focal length of the optical system 10.
  • (TTL-BFL)/f may be 0.900, 0.902, 0.905, 0.910, 0.912, 0.914, or 0.916.
  • the optical system 10 when the first lens L1 has a positive refractive power, it will help shorten the total optical length of the optical system 10, and when the above relationship is satisfied, the spatial distribution of the lenses in the optical system 10 can be reasonable The distribution can realize the ultra-thin design of the optical system 10 while realizing high pixels. Further, in some embodiments, the optical system 10 satisfies the relationship: (TTL-BFL)/f ⁇ 0.918.
  • the optical system 10 satisfies the relationship: 1mm ⁇ (SAG11+SAG21)*f/EPD ⁇ 2mm; where SAG11 is the vector height of the object side S1 of the first lens L1, that is, SAG11 is the object of the first lens L1.
  • SAG21 is the vector height of the object side surface S3 of the second lens L2, that is, SAG21 is the object side surface S3 of the second lens L2
  • EPD is the entrance pupil diameter of the optical system 10.
  • (SAG11+SAG21)*f/EPD may be 1.160mm, 1.200mm, 1.250mm, 1.300mm, 1.400mm, 1.500mm, 1.600mm, 1.700mm, 1.750mm, 1.800mm, or 1.850mm.
  • the optical system 10 satisfies the relationship: 1.15 ⁇ (SAG11+SAG21)*f/EPD ⁇ 1.86.
  • the optical system 10 satisfies the relationship: SAG21/CT2 ⁇ 0.5; where SAG21 is the sagittal height of the object side surface S3 of the second lens L2, CT2 is the center thickness of the second lens L2, and the center thickness of the lens is The thickness on its own optical axis.
  • SAG21/CT2 may be 0.140, 0.145, 0.150, 0.160, 0.170, 0.180, 0.190, 0.250, 0.280, 0.300, 0.310, or 0.320.
  • the optical system 10 satisfies the relationship: 0.137 ⁇ SAG21/CT2 ⁇ 0.329.
  • the optical system 10 satisfies the relationship: ⁇ CT/T214 ⁇ 1; where ⁇ CT is the sum of the center thicknesses of all lenses in the optical system 10, that is, ⁇ CT is the first lens L1, the second lens L2, and The sum of the central thickness of the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6, T214 is the distance on the optical axis from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 .
  • ⁇ CT/T214 may be 0.620, 0.630, 0.650, 0.670, 0.675, 0.678, or 0.680.
  • the thickness of each lens in the optical system 10 can be reasonably arranged to make the structure of the optical system 10 more compact, and to improve the assembly process of the lens group. Further, in some embodiments, the optical system 10 satisfies the relationship: 0.617 ⁇ CT/T214 ⁇ 0.682.
  • the optical system 10 satisfies the relationship: 1 ⁇ ET2/CT2 ⁇ 2; where ET2 is the edge thickness of the second lens L2, that is, ET2 is the thickness of the second lens L2 at the maximum effective half-aperture, and CT2 is The center thickness of the second lens L2.
  • ET2/CT2 may be 1.320, 1.340, 1.350, 1.380, 1.400, 1.420, 1.450, 1.470, or 1.485. When the above relationship is satisfied, it is beneficial to reduce the stray light in the optical system 10 and improve the imaging quality. Further, in some embodiments, the optical system 10 satisfies the relationship: 1.317 ⁇ ET2/CT2 ⁇ 1.490.
  • the optical system 10 satisfies the relationship: (CT3+CT4+CT5)/f ⁇ 0.5; where CT3 is the center thickness of the third lens L3, CT4 is the center thickness of the fourth lens L4, and CT5 is the fifth lens.
  • (CT3+CT4+CT5)/f may be 0.205, 0.210, 0.220, 0.230, 0.235, or 0.240.
  • the thickness of the lens can be reasonably distributed under the premise of meeting the processing requirements, so that the imaging quality of the optical system 10 can be improved, and at the same time, the optical system 10 can achieve an ultra-thin design.
  • the optical system 10 satisfies the relationship: 0.201 ⁇ (CT3+CT4+CT5)/f ⁇ 0.240.
  • the optical system 10 satisfies the relationship: 1.0 ⁇ f12/f ⁇ 1.5; where f12 is the combined focal length of the first lens L1 and the second lens L2.
  • f12/f may be 1.070, 1.090, 1.100, 1.120, 1.130 or 1.150 or 1.160.
  • the effective focal length of the optical system 10 can be reasonably matched with the combined focal length of the first lens L1 and the second lens L2, thereby facilitating correction of the spherical aberration of off-axis rays at different aperture positions.
  • the optical system 10 satisfies the relationship: 1.067 ⁇ f12/f ⁇ 1.164.
  • the optical system 10 satisfies the relationship: -3 ⁇ f6/f ⁇ 0; where f6 is the focal length of the sixth lens L6.
  • f6/f may be -2.500, -2.400, -2.200, -2.00, -1.500, -1.300, -1.200, -1.100, -1.000, -0.980.
  • the optical system 10 satisfies the relationship: -2.514 ⁇ f6/f ⁇ -0.969.
  • the optical system 10 satisfies the relationship: 0.5 ⁇ R12/f ⁇ 1.5; where R12 is the radius of curvature of the image side surface of the first lens L1 on the optical axis.
  • R12/f may be 0.950, 0.970, 1.000, 1.100, 1.200, 1.250, 1.300, 1.330, 1.350, or 1.360.
  • the optical system 10 satisfies the relationship: 0.941 ⁇ R12/f ⁇ 1.364.
  • the optical system 10 satisfies the relationship: 4.95 ⁇ f ⁇ 5.89; f is the effective focal length of the optical system 10, and the unit of f is mm.
  • the optical system 10 satisfies the relationship: 1.79 ⁇ FNO ⁇ 2.2; FNO is the aperture number of the optical system 10.
  • the optical system 10 satisfies the relationship: 75.66 ⁇ FOV ⁇ 85.40; FOV is the maximum angle of view (diagonal viewing angle) of the optical system 10, and the unit of FOV is degree (deg.).
  • the optical system 10 can be regarded as a lens group or lens system composed of various lenses.
  • the camera module can satisfy the relationship: 1.0 ⁇ TTL/IMGH ⁇ 1.4; where IMGH is half of the diagonal length of the effective pixel area on the photosensitive element.
  • TTL/IMGH may be 1.240, 1.250, 1.300, 1.320, 1.350, 1.370, 1.380, or 1.390.
  • the camera module satisfies the relationship: 1.237 ⁇ TTL/IMGH ⁇ 1.392.
  • the optical system 10 satisfies the relationship: 5.74 ⁇ TTL ⁇ 6.46, TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 10 on the optical axis, and the unit of TTL is mm.
  • the optical system 10 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a second lens L2 from the object side to the image side.
  • 2 includes the spherical chromatic aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 10 in the first embodiment.
  • the astigmatism diagram and distortion diagram of this embodiment and the following embodiments are all Graph at 555nm wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is a convex surface at the optical axis and a concave surface at the circumference; the image side surface S10 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • a side surface of the lens is convex at the optical axis (the central area of the side) (the central area of the side), it can be understood that the area near the optical axis of the side of the lens is convex, so it can also be The side surface is considered to be convex at the paraxial position; when describing a side surface of the lens as a concave surface at the circumference, it can be understood that the side surface near the maximum effective radius is a concave surface.
  • the shape of the side surface from the center (optical axis) to the edge direction can be a pure convex surface, that is, there is no inflection point on the side surface ; Or it first transitions from the convex shape in the center to the concave shape, and then becomes convex when approaching the maximum effective radius.
  • the various shapes and structures (concave-convex relationship) on the side surface are not fully represented, but other situations can be derived from the above examples.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10, and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a light and thin design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • an infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • the optical system 10 satisfies the following relationships:
  • the shortest distance in the direction parallel to the optical axis, f is the effective focal length of the optical system 10.
  • SAG21 is the vector height of the object side S3 of the second lens L2, that is, SAG21 is the intersection of the object side S3 of the second lens L2 on the optical axis to the maximum effective half-aperture of the surface
  • EPD is the entrance pupil diameter of the optical system 10.
  • SAG21/CT2 0.182; where SAG21 is the vector height of the object side S3 of the second lens L2, CT2 is the center thickness of the second lens L2, and the center thickness of the lens is the thickness of the lens on its own optical axis.
  • ⁇ CT/T214 0.617; where ⁇ CT is the sum of the center thicknesses of all lenses in the optical system 10, and T214 is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis.
  • the thickness of each lens in the optical system 10 can be reasonably arranged to make the structure of the optical system 10 more compact, and to improve the assembly process of the lens group.
  • ET2/CT2 1.347; where ET2 is the edge thickness of the second lens L2, that is, ET2 is the thickness of the second lens L2 at the maximum effective semi-aperture, and CT2 is the center thickness of the second lens L2.
  • CT3+CT4+CT5)/f 0.219; where CT3 is the central thickness of the third lens L3, CT4 is the central thickness of the fourth lens L4, and CT5 is the central thickness of the fifth lens L5.
  • CT3 is the central thickness of the third lens L3
  • CT4 is the central thickness of the fourth lens L4
  • CT5 is the central thickness of the fifth lens L5.
  • the effective focal length of the optical system 10 can be reasonably matched with the combined focal length of the first lens L1 and the second lens L2, thereby facilitating correction of the spherical aberration of off-axis rays at different aperture positions.
  • f6/f -1.109; where f6 is the focal length of the sixth lens L6.
  • R12/f 1.281; where R12 is the radius of curvature of the image side surface of the first lens L1 on the optical axis.
  • the optical system 10 can be regarded as a lens group or lens system composed of various lenses.
  • TTL/IMGH 1.293; among them, IMGH It is half of the diagonal length of the effective pixel area on the photosensitive element.
  • the lens parameters of the optical system 10 are given in Tables 1 and 2.
  • K in Table 2 is a conic constant
  • Ai is a coefficient corresponding to the i-th higher order term in the aspherical surface type formula.
  • the elements from the object plane to the image plane S15 are arranged in the order of the elements in Table 1 from top to bottom.
  • the surface numbers 2 and 3 respectively represent the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the radius of curvature of the object side or image side of the corresponding surface number at the paraxial (or understood as on the optical axis).
  • the first value in the "thickness” parameter column of the lens is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the latter lens on the optical axis.
  • the "thickness" parameter in the surface number 1 is the distance from the stop STO to the object side surface of the first lens L1 on the optical axis.
  • the value of the aperture STO in the "thickness" parameter column is the distance from the aperture STO to the apex of the object side of the latter lens (the first lens L1 in this embodiment) (the apex refers to the intersection of the lens and the optical axis) on the optical axis Distance, we default the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop STO is set on the right side of the vertex of the object side of the lens (or understand It is located on the image side of the vertex), when the "thickness" parameter of the aperture STO is a positive value, the aperture STO is on the left side of the vertex of the object side of the lens (or understood as located on the object side of the vertex).
  • the optical axes of the lenses in the embodiments of the present application are on the same straight line, and the straight line serves as the optical axis of the optical system 10.
  • the “thickness” parameter value in the surface number 13 is the distance on the optical axis from the image side surface S12 of the sixth lens L6 to the object side surface S13 of the infrared filter L7.
  • the “thickness” parameter value corresponding to the surface number 15 of the infrared filter L7 is the distance from the image side surface S14 of the infrared filter L7 to the image surface S15 of the optical system 10 on the optical axis.
  • the image surface S15 is the imaging surface of the optical system 10, and can also be understood as the photosensitive surface on the photosensitive element.
  • the refractive index of each lens is all values at a wavelength of 587nm.
  • the calculation of the relational expression and the lens surface shape of each embodiment are based on the lens parameters (such as Table 1, Table 2, Table 3, Table 4, etc.).
  • the optical system 10 includes an aperture stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a second lens L2 with a negative refractive power in sequence from the object side to the image side.
  • FIG. 4 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the second embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is concave at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side surface S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • an infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 3 and Table 4, and the definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a second lens L2 with a negative refractive power, from the object side to the image side.
  • FIG. 6 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the third embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is convex at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is convex at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • the infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 5 and Table 6, wherein the definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a stop STO, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, and a second lens L2 having a negative refractive power in sequence from the object side to the image side.
  • FIG. 8 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the fourth embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is concave at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • the infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 7 and Table 8. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a stop STO, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, and a second lens L2 having a negative refractive power in sequence from the object side to the image side.
  • FIG. 10 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the fifth embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is concave at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • the infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 9 and Table 10. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a stop STO, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, and a second lens L2 having a negative refractive power in turn from the object side to the image side.
  • FIG. 12 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the sixth embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is concave at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • the infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 11 and Table 12. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a stop STO, a first lens L1 having a positive refractive power, a second lens L2 having a negative refractive power, and a second lens L2 having a negative refractive power in sequence from the object side to the image side.
  • FIG. 14 includes a spherical chromatic aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the seventh embodiment.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the optical axis and concave at the circumference; the image side S10 is convex at the optical axis and concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference; the image side S12 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the use of the plastic lens can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10, which is beneficial to the realization of a thinner and lighter design of the optical system 10.
  • the image side of the sixth lens L6 is also provided with an infrared filter L7 for filtering infrared light, that is, an infrared cut filter.
  • the infrared cut filter is a part of the optical system 10, for example, the infrared cut filter is assembled on the lens barrel together with each lens.
  • the infrared cut filter is installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 13 and Table 14. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 and the photosensitive element 210 are assembled to form the camera module 20.
  • an infrared lens is arranged between the sixth lens L6 and the photosensitive element 210 in this embodiment.
  • Filter L7 to filter out infrared light.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the camera module 20 can shorten the length while having high-pixel imaging performance, and realize an ultra-thin design, that is, a miniaturized design.
  • the distance between the photosensitive element 210 and each lens in the optical system 10 is relatively fixed.
  • the camera module 20 is a fixed focus module.
  • a driving mechanism such as a voice coil motor can be provided to enable the photosensitive element 210 to move relative to each lens in the optical system 10, thereby achieving a focusing effect.
  • a driving mechanism can also be provided to drive part of the lenses in the optical system 10 to move, so as to achieve an optical zoom effect.
  • the electronic device 30 includes a housing 310, and the camera module 20 is installed in the housing 310.
  • the electronic device 30 includes, but is not limited to, smart phones, smart watches, e-book readers, in-vehicle camera equipment, monitoring equipment, medical equipment (such as endoscopes), tablet computers, biometric devices (such as fingerprint recognition equipment or pupil recognition equipment, etc.) ), PDA (Personal Digital Assistant), game consoles, PCs, drones and other terminal equipment, as well as home appliances with additional camera functions.
  • the installation space of the camera module 20 in the electronic device will be effectively reduced, thereby facilitating the ultra-thin design of the electronic device.
  • the camera module 20 is applied to a smart phone.
  • the smart phone includes a middle frame and a circuit board.
  • the circuit board is arranged in the middle frame.
  • the component is electrically connected to the circuit board.
  • the camera module 20 can be used as a front camera module or a rear camera module of a smart phone.
  • the "electronic device” used in the embodiment of the present invention may include, but is not limited to, it is set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, wireless local area networks (WLAN), such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital television network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals installation.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • handheld digital video broadcasting digital video Broadcasting handheld, DVB-H
  • AM-FM amplitude modulation-frequency modulation
  • An electronic device set to communicate via a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Abstract

一种光学系统(10)由物侧至像侧依次包括:光阑(STO);具有正屈折力的第一透镜(L1);具有负屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)于近轴处为凸面;具有屈折力的第三透镜(L3)、第四透镜(L4)及第五透镜(L5);具有负屈折力的第六透镜(L6),第六透镜(L6)的像侧面(S12)于近轴处为凹面;光学系统(10)满足关系:(TTL-BFL)/f<0.92;TTL为第一透镜(L1)的物侧面(L1)到光学系统(10)的成像面(S15)于光轴上的距离,BFL为第六透镜(L6)的像侧面(S12)至成像面(S15)于平行光轴的方向上的最短距离,f为光学系统(10)的有效焦距。

Description

光学系统、摄像模组及电子装置 技术领域
本发明涉及光学成像领域,特别是涉及一种光学系统、摄像模组及电子装置。
背景技术
随着技术变革,各种可摄像的便携式电子设备推陈出新,而随着消费者对拍摄高像质影像的需求逐渐提高,现有三片式、四片式和五片式摄像模组出现了技术瓶颈。基于相同的芯片,为了获取更高的图像清晰度,一般会采用更多的且面型复杂的透镜以消除像差,但这种结构无疑增加了摄像模组的总长,制约了摄像模组小型化设计。
发明内容
根据本申请的各种实施例,提供一种光学系统、摄像模组及电子装置。
一种光学系统,由物侧至像侧依次包括:
光阑;
具有正屈折力的第一透镜;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近轴处为凸面;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有负屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凹面;
且所述光学系统满足关系:
(TTL-BFL)/f<0.92;
其中,TTL为所述第一透镜的物侧面到所述光学系统的成像面于光轴上的距离,BFL为所述第六透镜的像侧面至所述光学系统的成像面于平行光轴的方向上的最短距离,f为所述光学系统的有效焦距。
一种摄像模组,包括感光元件及上述的光学系统,所述感光元件设置于所述第六透镜的像侧。
一种电子装置,包括壳体及上述的摄像模组,所述摄像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统示意图;
图2为第一实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图3为本申请第二实施例提供的光学系统的示意图;
图4为第二实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图5为本申请第三实施例提供的光学系统的示意图;
图6为第三实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图7为本申请第四实施例提供的光学系统的示意图;
图8为第四实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图9为本申请第五实施例提供的光学系统的示意图;
图10为第五实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图11为本申请第六实施例提供的光学系统的示意图;
图12为第六实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图13为本申请第七实施例提供的光学系统的示意图;
图14为第七实施例中光学系统的球色差图(mm)、像散图(mm)和畸变图(%);
图15为本申请一实施例提供的摄像模组的示意图;
图16为本申请一实施例提供的电子装置的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
随着技术变革,各种可摄像的便携式电子设备推陈出新,而随着消费者对拍摄高像质影像的需求逐渐提高,现有三片式、四片式和五片式摄像模组出现了技术瓶颈。基于相同的芯片,为了获取更高的图像清晰度,一般会采用更多的且面型复杂的透镜以消除像差,但这种结构无疑增加了摄像模组的总长,制约了摄像模组小型化设计。为此,本申请的实施例提供一种光学系统、摄像模组及电子装置以解决摄像模组难以实现小型化的问题。
参考图1,本申请一实施例中的光学系统10从物侧至像侧依序包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有屈折力的第三透镜L3、具有屈折力的第四透镜L4、具有屈折力的第五透镜L5和具有负屈折力的第六透镜L6。光阑STO与各透镜同轴设置,此时各透镜的光轴处于同一直线上,该直线可理解为光学系统10的光轴。
在一些实施例中,光阑STO也可设置于第一透镜L1的物侧。当描述光学系统10从物侧至像侧依序包括光阑STO、第一透镜L1、第二透镜L2等元件时,光阑STO可设置于第一透镜L1的物侧面S1上,此时光阑STO于光学系统10的光轴上的投影和第一透镜L1于光学系统10的光轴上的投影重叠;或者光阑STO设置于第一透镜L1的物侧且光阑STO于光轴上的投影和第一透镜L1于光轴上的投影不重叠。上述光轴为光学系统10的光轴。当第一透镜L1具有正屈折力时,将有助于缩短光学系统10的光学总长度。
第一透镜L1具有物侧面S1及像侧面S2。第二透镜L2具有物侧面S3及像侧面S4,物侧面S3于近轴处(近光轴处)为凸面。第三透镜L3具有物侧面S5及像侧面S6。第四透镜L4具有物侧面S7及像侧面S8。第五透镜L5具有物侧面S9及像侧面S10。第六透镜L6包括物侧面S11和像侧面S12,像侧面S12于近轴处(近光轴处)为凹面。另外,光学系统10还包括像面S15,像面S15为光学系统10的成像面,像面S15可以为感光元件的感光表面,而感光表面包括有效像素区域。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6中至少一个的物侧面为非球面。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6中至少一个的像侧面为非球面。
在一些实施例中,第六透镜L6的物侧面S11为非球面。进一步地,在其中的一些实 施例中,第六透镜L6的物侧面S11存在至少一个反曲点。在一些实施例中,第六透镜L6的像侧面S12为非球面。进一步地,在其中的一些实施例中,第六透镜L6的像侧面S12存在至少一个反曲点。反曲点的数量可以是一个、两个或多个。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。
非球面的面型公式为:
Figure PCTCN2019123679-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料,此时,塑料材质的透镜能够减少光学系统10的重量并降低生产成本,此时通过配合各透镜的参数关系可使光学系统10实现轻薄化设计。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为玻璃,此时,光学系统10能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,也可以仅是第一透镜L1的材质为玻璃,而其他透镜的材质为塑料,此时,最靠近物侧的第一透镜L1能够很好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,光学系统10也能够保持较低的生产成本。需要注意的是,根据实际需求,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质分别可以为塑料或玻璃中的任一种。
继续参考图1,第六透镜L6的像侧还设置有红外滤光片L7。红外滤光片L7为红外截止滤光片,红外滤光片L7能够滤除红外光,防止红外光通过并到达感光元件,避免红外干扰光被感光元件接收而影响正常的成像,从而提升光学系统10的成像品质。在一些实施例中,红外滤光片L7可在光学系统10中的透镜与感光元件组装时随感光元件装配于光学系统10的像侧。红外滤光片L7包括物侧面S11和像侧面S12。在一些实施例中,在光学系统10的装配过程中,红外滤光片L7可与各透镜一同组装,此时的红外滤光片L7属于光学系统10的一个光学元件。而在另一些实施例中,红外滤光片L7也可在在光学系统10与感光元件装配成模组时,一并安装至第六透镜L6与感光元件之间。
在一些实施例中,光学系统10还包括设置于第一透镜L1物侧的棱镜,通过配合棱镜所具有的改变入射光路的效果,使入射光线偏转后进入透镜组,此时光学系统10将具有潜望功能。另外需要注意的是,在一些实施例中,光学系统10还包括用于接收成像光线的感光元件。
进一步地,在一些实施例中,光学系统10满足关系:(TTL-BFL)/f<0.92;其中,TTL为第一透镜L1的物侧面S1到光学系统10的像面S15于光轴上的距离,BFL为第六透镜L6的像侧面至光学系统10的成像面于平行光轴的方向上的最短距离,f为光学系统10的有效焦距。在一些实施例中,(TTL-BFL)/f可以为0.900、0.902、0.905、0.910、0.912、0.914或0.916。在上述光学系统10中,第一透镜L1具有正屈折力时将有助于缩短光学系统10的光学总长度,且当满足上述关系时,光学系统10中的透镜于空间中的分布能够被合理分配,在实现高像素的同时还能使光学系统10实现超薄化设计。进一步地,在一些实施例中,光学系统10满足关系:(TTL-BFL)/f≤0.918。
在一些实施例中,光学系统10满足关系:1mm≤(SAG11+SAG21)*f/EPD≤2mm;其中,SAG11为第一透镜L1的物侧面S1的矢高,即SAG11为第一透镜L1的物侧面S1在光轴上的交点至该面最大有效半孔径位置于平行光轴方向的水平位移距离,SAG21为第二透镜L2 的物侧面S3的矢高,即SAG21为第二透镜L2的物侧面S3在光轴上的交点至该面最大有效半孔径位置于平行光轴方向的水平位移距离,EPD为光学系统10的入瞳直径。在一些实施例中,(SAG11+SAG21)*f/EPD可以为1.160mm、1.200mm、1.250mm、1.300mm、1.400mm、1.500mm、1.600mm、1.700mm、1.750mm、1.800mm或1.850mm。满足上述关系时,有利增加光学系统10的通光量,从而能够突出摄像主体,在保证高分辨率的同时还有利于光学系统10的成型制造。进一步地,在一些实施例中,光学系统10满足关系:1.15≤(SAG11+SAG21)*f/EPD≤1.86。
在一些实施例中,光学系统10满足关系:SAG21/CT2≤0.5;其中,SAG21为第二透镜L2的物侧面S3的矢高,CT2为第二透镜L2的中心厚度,透镜的中心厚度为透镜于自身光轴上的厚度。在一些实施例中,SAG21/CT2可以为0.140、0.145、0.150、0.160、0.170、0.180、0.190、0.250、0.280、0.300、0.310或0.320。满足上述关系时,有利于降低第二透镜L2的加工的敏感度,并平衡光学系统10的场曲。进一步地,在一些实施例中,光学系统10满足关系:0.137≤SAG21/CT2≤0.329。
在一些实施例中,光学系统10满足关系:∑CT/T214≤1;其中,∑CT为光学系统10中所有透镜的中心厚度之和,即∑CT为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的中心厚度之和,T214为第一透镜L1的物侧面S1到第六透镜L6的像侧面S12于光轴上的距离。在一些实施例中,∑CT/T214可以为0.620、0.630、0.650、0.670、0.675、0.678或0.680。满足上述关系式,可通过合理布局光学系统10中各透镜的厚度以使光学系统10的结构更为紧凑,并改善透镜组的组立工艺。进一步地,在一些实施例中,光学系统10满足关系:0.617≤∑CT/T214≤0.682。
在一些实施例中,光学系统10满足关系:1≤ET2/CT2≤2;其中,ET2为第二透镜L2的边缘厚度,即ET2为第二透镜L2于最大有效半孔径处的厚度,CT2为第二透镜L2的中心厚度。在一些实施例中,ET2/CT2可以为1.320、1.340、1.350、1.380、1.400、1.420、1.450、1.470或1.485。满足上述关系时,有利于减少光学系统10中的杂散光,提高成像品质。进一步地,在一些实施例中,光学系统10满足关系:1.317≤ET2/CT2≤1.490。
在一些实施例中,光学系统10满足关系:(CT3+CT4+CT5)/f≤0.5;其中,CT3为第三透镜L3的中心厚度,CT4为第四透镜L4的中心厚度,CT5为第五透镜L5的中心厚度。在一些实施例中,(CT3+CT4+CT5)/f可以为0.205、0.210、0.220、0.230、0.235或0.240。满足上述关系时,在满足加工要求的前提下,透镜的厚度能够被合理分配,从而可提高光学系统10的成像质量,同时还能使光学系统10实现超薄化设计。进一步地,在一些实施例中,光学系统10满足关系:0.201≤(CT3+CT4+CT5)/f≤0.240。
在一些实施例中,光学系统10满足关系:1.0≤f12/f≤1.5;其中,f12为第一透镜L1和第二透镜L2的组合焦距。在一些实施例中,f12/f可以为1.070、1.090、1.100、1.120、1.130或1.150或1.160。满足上述关系时,光学系统10的有效焦距能够与第一透镜L1和第二透镜L2的组合焦距形成合理匹配,从而有利于校正在不同孔径位置的轴外光线的球差。进一步地,在一些实施例中,光学系统10满足关系:1.067≤f12/f≤1.164。
在一些实施例中,光学系统10满足关系:-3≤f6/f≤0;其中,f6为第六透镜L6的焦距。在一些实施例中,f6/f可以为-2.500、-2.400、-2.200、-2.000、-1.500、-1.300、-1.200、-1.100、-1.000、-0.980。满足上述关系时,有利于平衡光学系统10的像散和场曲,从而提高成像品质。进一步地,在一些实施例中,光学系统10满足关系:-2.514≤f6/f≤-0.969。
在一些实施例中,光学系统10满足关系:0.5≤R12/f≤1.5;其中,R12为第一透镜L1的像侧面于光轴上的曲率半径。在一些实施例中,R12/f可以为0.950、0.970、1.000、1.100、1.200、1.250、1.300、1.330、1.350或1.360。满足上述关系时,在保证高分辨率的同时,还有利于压缩光学系统10的长度。进一步地,在一些实施例中,光学系统10 满足关系:0.941≤R12/f≤1.364。
在一些实施例中,光学系统10满足关系:4.95≤f≤5.89;f为光学系统10的有效焦距,f的单位为mm。
在一些实施例中,光学系统10满足关系:1.79≤FNO≤2.2;FNO为光学系统10的光圈数。
在一些实施例中,光学系统10满足关系:75.66≤FOV≤85.40;FOV为光学系统10的最大视场角(对角线视角),FOV的单位为度(deg.)。
在一些实施例中,光学系统10可视为由各透镜组成的透镜组或透镜系统,此时当光学系统10与感光元件一同组装以形成摄像模组时,摄像模组可满足关系:1.0≤TTL/IMGH≤1.4;其中,IMGH为感光元件上有效像素区域的对角线长度的一半。具体地,TTL/IMGH可以为1.240、1.250、1.300、1.320、1.350、1.370、1.380或1.390。满足上述关系时,有利于缩短光学系统10的长度,利于整个摄像模组实现微型化设计。进一步地,在一些实施例中,摄像模组满足关系:1.237≤TTL/IMGH≤1.392。
在一些实施例中,光学系统10满足关系:ImgH=4.64;ImgH为感光元件上有效像素区域的对角线长度的一半,ImgH的单位为mm。
在一些实施例中,光学系统10满足关系:5.74≤TTL≤6.46,TTL为第一透镜L1的物侧面S1到光学系统10的成像面于光轴上的距离,TTL的单位为mm。
接下来以更为具体详细的实施例来对本申请的光学系统10进行说明。
第一实施例
参考图1和图2,在第一实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图2包括第一实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%),其中该实施例及以下各实施例的像散图和畸变图均为555nm波长下的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凹面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
需要注意的是,当在本申请中描述透镜的一个侧面于光轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该侧面于光轴附近的区域为凸面,因此也可认为该侧面于近轴处为凸面;当描述透镜的一个侧面于圆周处为凹面时,可理解为该侧面在靠近最大有效半径处的区域为凹面。举例而言,当该侧面于光轴处为凸面,且于圆周处也为凸面时,该侧面由中心(光轴)至边缘方向的形状可以为纯粹的凸面,即该侧面不存在反曲点;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,侧面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6 的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图1,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第一实施例中,光学系统10满足以下各关系:
(TTL-BFL)/f=0.917;其中,TTL为第一透镜L1的物侧面到光学系统10的成像面于光轴上的距离,BFL为第六透镜L6的像侧面至光学系统10的成像面于平行光轴的方向上的最短距离,f为光学系统10的有效焦距。在上述光学系统10中,第一透镜L1具有正屈折力时将有助于缩短光学系统10的光学总长度,且当满足上述关系时,光学系统10中的透镜于空间中的分布能够被合理分配,在实现高像素的同时还能使光学系统10实现超薄化设计。
(SAG11+SAG21)*f/EPD=1.341mm;其中,SAG11为第一透镜L1的物侧面S1的矢高,即SAG11为第一透镜L1的物侧面S1在光轴上的交点至该面最大有效半孔径位置于平行光轴方向的水平位移距离,SAG21为第二透镜L2的物侧面S3的矢高,即SAG21为第二透镜L2的物侧面S3在光轴上的交点至该面最大有效半孔径位置于平行光轴方向的水平位移距离,EPD为光学系统10的入瞳直径。满足上述关系时,有利增加光学系统10的通光量,从而能够突出摄像主体,在保证高分辨率的同时还有利于光学系统10的成型制造。
SAG21/CT2=0.182;其中,SAG21为第二透镜L2的物侧面S3的矢高,CT2为第二透镜L2的中心厚度,透镜的中心厚度为透镜于自身光轴上的厚度。满足上述关系时,有利于降低第二透镜L2的加工的敏感度,并平衡光学系统10的场曲。
∑CT/T214=0.617;其中,∑CT为光学系统10中所有透镜的中心厚度之和,T214为第一透镜L1的物侧面S1到第六透镜L6的像侧面S12于光轴上的距离。满足上述关系式,可通过合理布局光学系统10中各透镜的厚度以使光学系统10的结构更为紧凑,并改善透镜组的组立工艺。
ET2/CT2=1.347;其中,ET2为第二透镜L2的边缘厚度,即ET2为第二透镜L2于最大有效半孔径处的厚度,CT2为第二透镜L2的中心厚度。满足上述关系时,有利于减少光学系统10中的杂散光,提高成像品质。
(CT3+CT4+CT5)/f=0.219;其中,CT3为第三透镜L3的中心厚度,CT4为第四透镜L4的中心厚度,CT5为第五透镜L5的中心厚度。满足上述关系时,在满足加工要求的前提下,透镜的厚度能够被合理分配,从而可提高光学系统10的成像质量,同时还能使光学系统10实现超薄化设计。
f12/f=1.164;其中,f12为第一透镜L1和第二透镜L2的组合焦距。满足上述关系时,光学系统10的有效焦距能够与第一透镜L1和第二透镜L2的组合焦距形成合理匹配,从而有利于校正在不同孔径位置的轴外光线的球差。
f6/f=-1.109;其中,f6为第六透镜L6的焦距。满足上述关系时,有利于平衡光学系统10的像散和场曲,从而提高成像品质。
R12/f=1.281;其中,R12为第一透镜L1的像侧面于光轴上的曲率半径。满足上述关系时,在保证高分辨率的同时,还有利于压缩光学系统10的长度。
光学系统10可视为由各透镜组成的透镜组或透镜系统,此时当光学系统10与感光元 件一同组装以形成摄像模组时,摄像模组满足关系:TTL/IMGH=1.293;其中,IMGH为感光元件上有效像素区域的对角线长度的一半。满足上述关系时,有利于缩短光学系统10的长度,利于整个摄像模组实现微型化设计。
另外,光学系统10的各透镜参数由表1和表2给出,表2中的K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。由物面至像面S15的各元件依次按照表1从上至下的各元件的顺序排列。面序号2和3分别表示第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于近轴处(或理解为于光轴上)的曲率半径。透镜于“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。面序号1中的“厚度”参数为光阑STO至第一透镜L1的物侧面于光轴上的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一透镜(该实施例中为第一透镜L1)的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑STO设置于透镜的物侧面顶点的右侧(或理解为位于该顶点的像侧),当光阑STO的“厚度”参数为正值时,光阑STO在透镜物侧面顶点的左侧(或理解为位于该顶点的物侧)。本申请实施例中的各透镜的光轴处于同一直线上,该直线作为光学系统10的光轴。面序号13中的“厚度”参数值为第六透镜L6的像侧面S12至红外滤光片L7的物侧面S13于光轴上的距离。红外滤光片L7于面序号15所对应的“厚度”参数数值为红外滤光片L7的像侧面S14至光学系统10的像面S15于光轴上的距离。像面S15为光学系统10的成像面,也可理解为感光元件上的感光表面。
在第一实施例中,光学系统10的有效焦距f=5.43mm,光圈数FNO=1.93,最大视场角(对角线视角)FOV=80.2°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,在以下各实施例(第一实施例、第二实施例、第三实施例、第四实施例、第五实施例、第六实施例及第七实施例)中,各透镜的折射率、阿贝数和焦距均为587nm波长下的数值。另外,各实施例的关系式计算和透镜面型以透镜参数(如表1、表2、表3、表4等)为准。
表1
Figure PCTCN2019123679-appb-000002
Figure PCTCN2019123679-appb-000003
表2
Figure PCTCN2019123679-appb-000004
第二实施例
参考图3和图4,在第二实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图4包括第二实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凹面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处 为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图3,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第二实施例中,光学系统10的有效焦距f=5.42mm,光圈数FNO=1.89,最大视场角(对角线视角)FOV=80.33°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表3和表4给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2019123679-appb-000005
表4
Figure PCTCN2019123679-appb-000006
Figure PCTCN2019123679-appb-000007
由以上各数据可推得:
Figure PCTCN2019123679-appb-000008
第三实施例
参考图5和图6,在第三实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图6包括第三实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凸面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凸面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6 的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图5,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第三实施例中,光学系统10的有效焦距f=5.67mm,光圈数FNO=1.83,最大视场角(对角线视角)FOV=77.79°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表5和表6给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2019123679-appb-000009
表6
Figure PCTCN2019123679-appb-000010
Figure PCTCN2019123679-appb-000011
由以上各数据可推得:
Figure PCTCN2019123679-appb-000012
第四实施例
参考图7和图8,在第四实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图8包括第四实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凹面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的 光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图7,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第四实施例中,光学系统10的有效焦距f=4.95mm,光圈数FNO=2.04,最大视场角(对角线视角)FOV=85.4°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表7和表8给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2019123679-appb-000013
表8
Figure PCTCN2019123679-appb-000014
Figure PCTCN2019123679-appb-000015
由以上各数据可推得:
Figure PCTCN2019123679-appb-000016
第五实施例
参考图9和图10,在第五实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图10包括第五实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凹面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6 的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图9,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第五实施例中,光学系统10的有效焦距f=5.89mm,光圈数FNO=2.2,最大视场角(对角线视角)FOV=76.66°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表9和表10给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2019123679-appb-000017
表10
Figure PCTCN2019123679-appb-000018
Figure PCTCN2019123679-appb-000019
由以上各数据可推得:
Figure PCTCN2019123679-appb-000020
第六实施例
参考图11和图12,在第六实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图12包括第六实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凹面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图11,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第六实施例中,光学系统10的有效焦距f=5.29mm,光圈数FNO=1.86,最大视场角(对角线视角)FOV=81.62°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表11和表12给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2019123679-appb-000021
表12
Figure PCTCN2019123679-appb-000022
Figure PCTCN2019123679-appb-000023
由以上各数据可推得:
Figure PCTCN2019123679-appb-000024
第七实施例
参考图13和图14,在第七实施例中,光学系统10由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图14包括第七实施例中光学系统10的球色差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5的物侧面S9于光轴处为凸面,于圆周处为凹面;像侧面S10于光轴处为凸面,于圆周处为凹面。
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量,有利于光学系统10实现轻薄化设计。
参考图13,第六透镜L6的像侧还设置有用于滤除红外光的红外滤光片L7,即红外截止滤光片。在一些实施例中,红外截止滤光片为光学系统10的一部分,例如红外截止滤 光片与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第七实施例中,光学系统10的有效焦距f=5.53mm,光圈数FNO=1.79,最大视场角(对角线视角)FOV=79.14°,于像面S15处有效像素区域的对角线长的一半ImgH=4.64mm。
另外,光学系统10的各透镜参数由表13和表14给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表13
Figure PCTCN2019123679-appb-000025
表14
Figure PCTCN2019123679-appb-000026
Figure PCTCN2019123679-appb-000027
由以上各数据可推得:
Figure PCTCN2019123679-appb-000028
参考图15,在本申请提供的一个实施例中,光学系统10与感光元件210组装以形成摄像模组20,此时,该实施例中的第六透镜L6与感光元件210之间设置有红外滤光片L7以滤除红外光。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用光学系统10,摄像模组20在具备高像素的成像性能的同时还能够缩短长度,实现超薄化设计,即实现小型化设计。
在一些实施例中,感光元件210与光学系统10中的各透镜的距离相对固定,此时,摄像模组20为定焦模组。在另一些实施例中,可通过设置音圈马达等驱动机构以使感光元件210能够相对光学系统10中的各透镜相对移动,从而实现对焦效果。在一些实施例中,也可通过设置驱动机构以驱动光学系统10中的部分透镜移动,从而实现光学变焦效果。
参考图16,本申请的一些实施例还提供了一种电子装置30,摄像模组20应用于电子装置30。具体地,电子装置30包括壳体310,摄像模组20安装于壳体310。电子装置30包括但不限于智能手机、智能手表、电子书阅读器、车载摄像设备、监控设备、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、游戏机、PC、无人机等终端设备,以及附加有摄像功能的家电产品。通过采用上述摄像模组20,摄像模组20于电子装置中的安装空间将得到有效减小,从而有利于电子装置的超薄化设计。
具体地,在一些实施例中,摄像模组20应用于智能手机,智能手机包括中框和电路板,电路板设置于中框,摄像模组20安装于智能手机的中框,且其中的感光元件与电路板电性连接。摄像模组20可作为智能手机的前置摄像模组或者后置摄像模组。
本发明实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移 动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种光学系统,由物侧至像侧依次包括:
    光阑;
    具有正屈折力的第一透镜;
    具有负屈折力的第二透镜,所述第二透镜的物侧面近轴处为凸面;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有屈折力的第五透镜;
    具有负屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凹面;
    且所述光学系统满足关系:
    (TTL-BFL)/f<0.92;
    其中,TTL为所述第一透镜的物侧面到所述光学系统的成像面于光轴上的距离,BFL为所述第六透镜的像侧面至所述光学系统的成像面于平行光轴的方向上的最短距离,f为所述光学系统的有效焦距。
  2. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    1mm≤(SAG11+SAG21)*f/EPD≤2mm;
    其中,SAG11为所述第一透镜的物侧面的矢高,SAG21为所述第二透镜的物侧面的矢高,EPD为所述光学系统的入瞳直径。
  3. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    SAG21/CT2≤0.5;
    其中,SAG21为所述第二透镜的物侧面的矢高,CT2为所述第二透镜的中心厚度。
  4. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    ∑CT/T214≤1;
    其中,∑CT为所述光学系统中所有透镜的中心厚度之和,T214为所述第一透镜的物侧面到所述第六透镜的像侧面于光轴上的距离。
  5. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    1≤ET2/CT2≤2;
    其中,ET2为所述第二透镜的边缘厚度,CT2为所述第二透镜的中心厚度。
  6. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    (CT3+CT4+CT5)/f≤0.5;
    其中,CT3为所述第三透镜的中心厚度,CT4为所述第四透镜的中心厚度,CT5为所述第五透镜的中心厚度。
  7. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    1≤f12/f≤1.5;
    其中,f12为所述第一透镜和所述第二透镜的组合焦距。
  8. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    -3≤f6/f≤0;
    其中,f6为所述第六透镜的焦距。
  9. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足关系:
    0.5≤R12/f≤1.5;
    其中,R12为所述第一透镜的像侧面于光轴上的曲率半径。
  10. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜的材质均为塑料。
  11. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜中至少一个的物侧面为非球 面。
  12. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜中至少一个的像侧面为非球面。
  13. 根据权利要求1所述的光学系统,其特征在于,所述第六透镜的物侧面存在反曲点。
  14. 根据权利要求1所述的光学系统,其特征在于,所述第六透镜的像侧面存在反曲点。
  15. 根据权利要求1所述的光学系统,其特征在于,所述光阑于所述光学系统的光轴上的投影与所述第一透镜于所述光学系统的光轴上的投影重叠。
  16. 根据权利要求1所述的光学系统,其特征在于,包括红外滤光片,所述红外滤光片设置于所述第六透镜的像侧。
  17. 一种摄像模组,包括感光元件及权利要求1至16任意一项所述的光学系统,所述感光元件设置于所述第六透镜的像侧。
  18. 根据权利要求17所述的摄像模组,其特征在于,所述摄像模组满足关系:
    1.0≤TTL/IMGH≤1.4;
    其中,IMGH为所述感光元件上有效像素区域的对角线长度的一半。
  19. 一种电子装置,包括壳体及权利要求17或18所述的摄像模组,所述摄像模组设置于所述壳体。
PCT/CN2019/123679 2019-12-06 2019-12-06 光学系统、摄像模组及电子装置 WO2021109127A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/123679 WO2021109127A1 (zh) 2019-12-06 2019-12-06 光学系统、摄像模组及电子装置
EP19954966.8A EP3904934A4 (en) 2019-12-06 2019-12-06 OPTICAL SYSTEM, CAMERA MODULE AND ELECTRONIC DEVICE
US17/610,693 US20220206254A1 (en) 2019-12-06 2019-12-06 Optical system, camera module, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123679 WO2021109127A1 (zh) 2019-12-06 2019-12-06 光学系统、摄像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021109127A1 true WO2021109127A1 (zh) 2021-06-10

Family

ID=76221411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123679 WO2021109127A1 (zh) 2019-12-06 2019-12-06 光学系统、摄像模组及电子装置

Country Status (3)

Country Link
US (1) US20220206254A1 (zh)
EP (1) EP3904934A4 (zh)
WO (1) WO2021109127A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625433A (zh) * 2021-09-18 2021-11-09 浙江舜宇光学有限公司 光学成像镜头
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239981A (zh) * 2020-03-19 2020-06-05 浙江舜宇光学有限公司 光学成像镜头
JP2022022633A (ja) * 2020-06-30 2022-02-07 東京晨美光学電子株式会社 撮像レンズ
CN111736318B (zh) * 2020-08-25 2020-11-10 诚瑞光学(常州)股份有限公司 摄像光学镜头
JP2022114767A (ja) * 2021-01-27 2022-08-08 キヤノン株式会社 光学系、撮像装置、車載システムおよび移動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802469A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107024756A (zh) * 2016-01-29 2017-08-08 大立光电股份有限公司 摄像用光学透镜组、取像装置及电子装置
CN109870786A (zh) * 2018-12-31 2019-06-11 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110018556A (zh) * 2018-04-03 2019-07-16 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910411B1 (ko) * 2011-06-07 2018-10-22 엘지이노텍 주식회사 촬상 렌즈 및 카메라 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024756A (zh) * 2016-01-29 2017-08-08 大立光电股份有限公司 摄像用光学透镜组、取像装置及电子装置
CN106802469A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110018556A (zh) * 2018-04-03 2019-07-16 浙江舜宇光学有限公司 光学成像镜头
CN109870786A (zh) * 2018-12-31 2019-06-11 瑞声科技(新加坡)有限公司 摄像光学镜头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904934A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
CN113625433A (zh) * 2021-09-18 2021-11-09 浙江舜宇光学有限公司 光学成像镜头
CN113625433B (zh) * 2021-09-18 2023-10-31 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20220206254A1 (en) 2022-06-30
EP3904934A4 (en) 2022-08-24
EP3904934A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
WO2021179207A1 (zh) 光学系统、摄像模组及电子装置
WO2020073978A1 (zh) 光学透镜组、取像模组和电子装置
WO2021026869A1 (zh) 光学系统、取像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
EP4170407A1 (en) Seven-lens imaging objective
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
CN113946038B (zh) 光学镜头、摄像模组及电子设备
WO2022105926A1 (zh) 光学镜头及成像设备
WO2021102943A1 (zh) 光学系统、摄像模组及电子装置
CN211263926U (zh) 光学系统、摄像模组及电子装置
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
CN114675407B (zh) 光学系统、镜头模组及电子设备
WO2021138754A1 (zh) 光学系统、摄像模组及电子装置
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2022160119A1 (zh) 光学系统、摄像模组及电子设备
WO2022120515A1 (zh) 光学系统、摄像模组及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
CN114994880A (zh) 光学系统、镜头模组及电子设备
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
WO2021072745A1 (zh) 光学成像系统、取像装置及电子装置
WO2021134784A1 (zh) 光学系统、摄像模组及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019954966

Country of ref document: EP

Effective date: 20210726

NENP Non-entry into the national phase

Ref country code: DE