WO2021109009A1 - 发光二极管及其制造方法、发光二极管模组、显示设备 - Google Patents

发光二极管及其制造方法、发光二极管模组、显示设备 Download PDF

Info

Publication number
WO2021109009A1
WO2021109009A1 PCT/CN2019/122818 CN2019122818W WO2021109009A1 WO 2021109009 A1 WO2021109009 A1 WO 2021109009A1 CN 2019122818 W CN2019122818 W CN 2019122818W WO 2021109009 A1 WO2021109009 A1 WO 2021109009A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light
substrate
light emitting
micro
Prior art date
Application number
PCT/CN2019/122818
Other languages
English (en)
French (fr)
Inventor
洪温振
汪楷伦
许时渊
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2019/122818 priority Critical patent/WO2021109009A1/zh
Priority to CN201980004132.2A priority patent/CN113228317B/zh
Priority to US17/343,126 priority patent/US20210376202A1/en
Publication of WO2021109009A1 publication Critical patent/WO2021109009A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to the technical field of micro-LEDs, in particular to a light-emitting diode and a manufacturing method thereof, a light-emitting diode module, and a display device.
  • Miniature light-emitting diodes that is, light-emitting diode miniaturization and matrix technology, have good stability, longevity, and advantages in operating temperature. At the same time, miniature light-emitting diodes also inherit the advantages of light-emitting diodes such as low power consumption, high color saturation, fast response speed, and strong contrast, and have great application prospects, such as miniature light-emitting diode display screens.
  • the light-emitting diode on the growth substrate needs to be transferred and fixed to the backplane of the display screen.
  • the colors of the adjacent red, blue, and green light-emitting diodes may affect each other, thereby affecting the contrast of the micro-light-emitting diode display screen. Therefore, solving the contrast and display effect of the display is an urgent problem to be overcome in the manufacture of the miniature light-emitting diode display screen.
  • the invention provides a light-emitting diode and a manufacturing method thereof, which can increase the contrast of a miniature light-emitting diode display screen and improve the contrast effect of the display screen.
  • an embodiment of the present invention provides a method for manufacturing a light emitting diode, the method including:
  • the jig is removed.
  • an embodiment of the present invention provides a miniature light-emitting diode for mounting on a target substrate.
  • the miniature light-emitting diode includes a light-emitting portion and a light-blocking layer.
  • the light-blocking layer is wrapped around the side surface of the light-emitting portion to make
  • the micro light emitting diode forms a first empty area and a second empty area at two opposite ends of the light emitting part.
  • an embodiment of the present invention provides a miniature light emitting diode module, and the miniature light emitting diode module includes:
  • a light-blocking layer is wrapped around the side surface of each of the micro light emitting diodes, and the opposite ends of each of the micro light emitting diodes form a first vacant area and a second vacant area, the first The vacant area is attached to the substrate, and the second vacant area is away from the substrate.
  • an embodiment of the present invention provides a display device.
  • the display device includes a housing and a display assembly housed in the housing.
  • the display assembly includes a plurality of miniature light-emitting diodes.
  • the miniature light-emitting diodes are as described above. Miniature light-emitting diodes.
  • the above-mentioned light-emitting diode and its manufacturing method use a jig to inject glue on the miniature light-emitting diode unit, which greatly reduces the probability of uneven glue injection and improves the accuracy and stability of the light-blocking layer.
  • the micro-LED unit is injected with glue so that the side of the light-emitting part of the micro-LED unit is wrapped with a light-blocking layer, thereby reducing the mutual influence of the light-emitting colors between the adjacent red, green and blue light-emitting diodes, thereby improving the micro The contrast and display effect of the LED display.
  • FIG. 1 is a schematic diagram of a display device provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a display assembly provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a miniature light emitting diode module provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of the manufacturing method provided by the first embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of the manufacturing method provided by the second embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of the manufacturing method provided by the third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the manufacturing process provided by the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the manufacturing process provided by the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the manufacturing process provided by the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a sub-process of the first specific embodiment provided by the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a sub-flow of a second specific embodiment provided by the first embodiment of the present invention.
  • FIG. 12 is a process schematic diagram of a sub-process of a second specific embodiment provided by the first embodiment of the present invention.
  • FIG. 13a to 13b are schematic diagrams of light-emitting diodes provided by the first embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a light emitting diode provided by the second embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a light emitting diode provided by the third embodiment of the present invention.
  • FIG. 1 and FIG. 2 are a schematic diagram of the display device 1000 and a schematic diagram of the display component 666.
  • the display device 1000 may be a product with a display function, such as a notebook computer, a tablet computer, a monitor, a television, a mobile phone, and so on.
  • the display device 1000 includes a display assembly 666, a housing 777, and a panel 888. Wherein, the display component 666 is accommodated between the housing 777 and the display panel 888.
  • the display assembly 666 includes a backplane 6666 and a number of miniature light-emitting diodes mounted on the backplane 6666.
  • FIG. 3 is a schematic diagram of a miniature light emitting diode module provided by an embodiment of the present invention.
  • Miniature light emitting diode module 100 The micro LED module 100 includes a substrate 10, a number of micro LED units 20, and a light blocking layer 401. Wherein, a plurality of micro light emitting diode units 20 are disposed on the substrate 10, and the light blocking layer 401 is wrapped on the side surface of each micro light emitting diode unit 20, and the opposite ends of each micro light emitting diode unit 20 form a first empty area 20a. And the second vacant area 20b. Specifically, the first empty area 20 a is attached to the substrate 10, and the second empty area 20 b is away from the substrate 10.
  • the micro light emitting diode unit 20 is provided with electrodes 202.
  • the electrodes 202 are all located in the first empty area 20a, or the electrodes 202 are all located in the second empty area 20b, or the electrodes 202 are respectively located in the first empty area 20a and the second empty area 20b.
  • the positional relationship between the electrode 202 of the micro light emitting diode unit 20 and the first and second empty regions 20a and 20b is selected according to the structure of the micro light emitting diode unit 20, and the specific content will be described in detail below.
  • FIG. 4 and FIG. 7 are schematic diagrams of a method for manufacturing a light emitting diode according to the first embodiment of the present invention.
  • the manufacturing method of the light-emitting diode is used for manufacturing a number of micro-light-emitting diode units 20 formed on the substrate 10 into a kind of light-emitting diode 99.
  • the manufacturing method of the light emitting diode 99 includes the following steps.
  • step S101 a number of micro light emitting diode units 20 formed on the substrate 10 at intervals are provided. Specifically, the micro light emitting diode units 20 are arranged in a matrix, and there are gaps between the micro light emitting diode units 20.
  • step S103 the jig 30 is covered on the substrate 10 so that the light-emitting parts 201 of the micro light emitting diode units 20 are covered between the jig 30 and the substrate 10.
  • the fixture 30 is covered on the substrate 10
  • the side of each micro LED unit 20 away from the substrate 10 is closely attached to the fixture 30, or the side of each micro LED unit 20 close to the substrate 10 is closely attached to the substrate 10. 10 is tightly attached, and there is a gap between the side of the micro LED unit 20 and the fixture 30.
  • the positional relationship of the micro light emitting diode unit 20, the substrate 10, and the fixture 30 is selected according to the structure of the micro light emitting diode unit 20.
  • the micro light emitting diode unit 20 of different structures adopts different fixtures 30, and the micro light emitting diode units 20 of different structures adopt different fixtures 30.
  • the light emitting diode unit 20 adopts different methods when implementing specific steps. The specific content will be described in detail below.
  • step S105 the molten light-blocking material 40 is injected into the inner side of the jig 30, and the light-blocking material 40 is filled between the side surface of each micro LED unit 20 and the jig 30.
  • the light blocking material 40 is black glue, that is, black opaque epoxy resin.
  • Step S107 curing the light blocking material 40 to form a light blocking layer 401 on the side surface of the micro light emitting diode unit 20.
  • step S109 after the light blocking material 40 is cured, the jig 30 is removed.
  • the light-blocking material 40 fills the sides of the micro light emitting diode units 20 arranged in a matrix and the gaps between the micro light emitting diode units 20, that is, the micro light emitting diode units arranged in the matrix
  • a light-blocking layer 401 is formed between the sides of 20 and between the micro LED units 20.
  • each light emitting diode 99 is cut out so that the side surface of each micro light emitting diode unit 20 is wrapped with a light blocking layer 401.
  • the matrix arrangement of the micro light emitting diode units 20 wrapped with the light blocking layer 401 may be cut into appropriate sizes according to actual conditions.
  • step S111 can be omitted, and cutting is performed only when further processing is required.
  • a jig is used to inject glue on the micro light emitting diode unit, which greatly reduces the probability of uneven coating and improves the accuracy and stability of glue injection.
  • FIG. 10 is a schematic diagram of the sub-flow of step S103 in the first specific embodiment provided by the first embodiment of the present invention.
  • the micro light emitting diode unit 20 has a vertical structure, and each micro light emitting diode unit 20 has a light emitting surface 200 away from the substrate 10.
  • the jig 30 includes a top 302 and a side wall 303 extending along the edge of the top 302, and a plurality of electrode ports 301 are provided on the top of the jig 30.
  • the height H between the top 302 of the jig 30 facing the substrate 10 and the substrate 10 is equal to the height h from the light-emitting surface 200 of the micro LED unit 20 to the substrate 10.
  • FIG. 10 is a schematic diagram of the sub-flow of step S103 in the first specific embodiment provided by the first embodiment of the present invention.
  • the micro light emitting diode unit 20 has a vertical structure, and each micro light emitting diode unit 20 has a light emitting surface 200 away from the substrate
  • Step S103 specifically includes: firstly, the end of the side wall 303 of the jig 30 away from the top 302 faces the substrate 10, and the electrode openings 301 of the top 302 are aligned with the electrodes on the side of the micro LED unit 20 away from the substrate 10 202; Then move the fixture 30 until the side wall 303 is supported on the substrate 10, so that the top 302 faces the side of the substrate 10 and closely adheres to the light-emitting surface 200 of the micro LED unit 20. There is a gap between the side of the micro light emitting diode unit 20 arranged in a matrix and the side wall 303 of the jig 30.
  • a jig that matches the vertical structure of the micro light emitting diode unit is used to inject the micro light emitting diode unit, so that the light blocking layer is more suitable.
  • FIG. 11 is a schematic diagram of the sub-flow of step S103 in the second specific embodiment provided by the first embodiment of the present invention.
  • the method for manufacturing a light-emitting diode provided in this embodiment is used to manufacture a number of micro-light-emitting diode units 20 formed on the substrate 10 into a type of light-emitting diode 999.
  • the manufacturing method provided in the second specific embodiment differs from the manufacturing method provided in the first specific embodiment in that the micro light emitting diode unit 20 in the manufacturing method provided in the second specific embodiment is a flip-chip structure, and each micro light emitting diode unit 20 It has a light-emitting surface 200 facing the substrate 10.
  • step S103 specifically includes: aligning the end of the sidewall 303 of the jig 30 away from the top 302 toward the substrate 10, and aligning the electrode openings 301 of the top 302 with the electrodes on the side of the micro LED unit 20 away from the substrate 10. 202; Move the jig 30 until the side wall 303 is supported on the substrate 10, so that the light-emitting surface 200 of the micro LED unit 20 is closely attached to the substrate 10.
  • a jig that matches the micro-light-emitting diode unit of the flip-chip structure is used to inject glue on the micro-light-emitting diode unit, so that the light-blocking layer is more suitable.
  • the substrate 10 is a native substrate, and the light blocking layer 401 is made when the micro light emitting diode unit 20 is on the native substrate.
  • the substrate 10 since the electrodes 202 of the micro light emitting diode unit 20 are located on the same side of the light emitting portion 201, the substrate 10 may be a temporary substrate, that is, the light blocking layer 401 requires the micro light emitting diode unit 20 to be transferred from the original substrate to the temporary substrate. After production.
  • FIG. 5 and FIG. 8 are schematic diagrams of a method for manufacturing a light emitting diode according to the second embodiment.
  • the method for manufacturing a light-emitting diode provided in this embodiment is used to manufacture a number of micro-light-emitting diode units 20 formed on the substrate 10 into a light-emitting diode 9999.
  • the second embodiment shows a method in which the micro light emitting diode unit 20 has a flip-chip structure and the light blocking layer 401 is fabricated on the temporary substrate 50. That is, before providing several micro light emitting diode units 20 spaced apart on the temporary substrate 50, the micro light emitting diode units 20 need to be transferred to the temporary substrate 50.
  • the manufacturing method of the light emitting diode 9999 further includes the following steps.
  • step S101 a number of micro light emitting diodes 20 grown on the native substrate 60 at intervals are provided. Specifically, the micro light emitting diode units 20 are arranged in a matrix, and there are gaps between the micro light emitting diode units 20. The electrode 202 of the micro light emitting diode unit 20 is located on the side away from the native substrate 60.
  • step S103 a temporary substrate 50 is provided.
  • step S105 the several micro light emitting diode units 20 grown on the original substrate 60 are transferred to the temporary substrate 50, and the electrodes 202 of the micro light emitting diode unit 20 are arranged on the temporary substrate 50.
  • the temporary substrate 50 is placed on the side of the micro light emitting diode unit 20 away from the growth substrate 60 so that the electrode 202 of the micro light emitting diode unit 20 faces the temporary substrate 50.
  • the original substrate 60 is peeled off.
  • the growth substrate 60 is peeled off using the peeling device 70.
  • the peeling device 70 may be, but not limited to, a heating device, an ultraviolet device, or a laser device.
  • the growth substrate 60 is heated, and a heating device is used to heat and peel the micro light emitting diode unit 20 on the side of the growth substrate 60 away from the micro light emitting diode unit 20; the micro light emitting diode unit 20 is irradiated with ultraviolet light, and the ultraviolet device is used to heat the micro light emitting diode unit 20.
  • the side of the growth substrate 60 away from the micro LED unit 20 is irradiated and stripped with ultraviolet light; the micro LED unit 20 is irradiated with laser light, and a laser device is used on the side of the growth substrate 60 away from the micro LED unit 20
  • the micro light emitting diode unit 20 is irradiated with laser light and peeled off.
  • the micro light emitting diode unit before injecting glue on the micro light emitting diode unit of the flip-chip structure, the micro light emitting diode unit is transferred to the temporary substrate, so that the side of the micro light emitting diode unit without electrodes is attached to the jig. Electrode ports are set on the jig to facilitate the alignment of the jig and the miniature light-emitting diode unit and simplify the production process.
  • FIGS. 6 and 9 are schematic diagrams of a method for manufacturing a light emitting diode according to a third embodiment of the present invention.
  • the manufacturing method of the light-emitting diode is used for manufacturing a number of miniature light-emitting diode units 20 formed on the substrate 10 into a light-emitting diode 99999.
  • the manufacturing method provided by the third embodiment differs from the manufacturing method provided by the second embodiment in that the micro light emitting diode unit 20 includes a plurality of micro light emitting diodes 21, and each micro light emitting diode 21 emits light of the same color.
  • a plurality of micro light emitting diodes 21 are separately and spaced apart on the temporary substrate 50, and the plurality of micro light emitting diodes 21 are fixed together by an adhesive 90, that is, the side surfaces of the plurality of micro light emitting diodes 21 are glued and fixed by the adhesive 90.
  • the adhesive 90 is a cold glue.
  • the other processes of the manufacturing method of the light-emitting diode 99999 are basically the same as those of the light-emitting diode 9999, and will not be repeated here.
  • the adhesive 90 is used to fix the several micro light emitting diodes 21 together.
  • the micro light emitting diode includes a light emitting part 201 and a light blocking layer 401.
  • the light blocking layer 401 is wrapped on the side surface of the light emitting part 201, so that the micro light emitting diodes form a first empty area 20a and a second empty area 20b at opposite ends of the light emitting part 201.
  • the light emitting part 201 includes a first conductive semiconductor layer 2011, an active layer 2012, and a second conductive semiconductor layer 2013.
  • the active layer 2012 is formed on the first conductive semiconductor layer 2011, and the second conductive semiconductor layer 2013 is formed on the active layer 2012.
  • the electrode 202 includes a first electrode 2021 and a second electrode 2022.
  • FIG. 13a is a schematic diagram of a light-emitting diode 99 provided in the first specific embodiment provided by the first embodiment of the present invention.
  • the micro light emitting diode has a vertical structure, and the micro light emitting diode is provided with a first electrode 2021 and a second electrode 2022, and the first electrode 2021 and the second electrode 2022 are located in the first vacant area 20a and the second vacant area 20b, respectively.
  • the first electrode 2021 is formed on the side of the first conductive semiconductor layer 2011 away from the active layer 2012
  • the second electrode 2022 is formed on the side of the second conductive semiconductor layer 2013 away from the active layer 2012.
  • FIG. 13b is a schematic diagram of a light emitting diode 999 provided in a second specific embodiment provided by the first embodiment of the present invention.
  • the micro light emitting diode has a flip-chip structure, and the micro light emitting diode is provided with a first electrode 2021 and a second electrode 2022, and the first electrode 2021 and the second electrode 2022 are both located in the second vacant area 20b.
  • the first electrode 2021 is formed on the side of the first conductive semiconductor layer 2011 away from the active layer 2012
  • the second electrode 2022 is formed on the side of the second conductive semiconductor layer 2013 facing the first electrode 2021
  • the second electrode 2022 The end exposes the first conductive semiconductor layer 2011.
  • FIG. 14 is a schematic diagram of a light emitting diode 9999 provided by the second embodiment of the present invention.
  • the micro light emitting diode has a flip-chip structure, and the micro light emitting diode is provided with a first electrode 2021 and a second electrode 2022, and the first electrode 2021 and the second electrode 2022 are both located in the first vacant area 20a.
  • the first electrode 2021 is formed on the side of the first conductive semiconductor layer 2011 away from the active layer 2012
  • the second electrode 2022 is formed on the side of the second conductive semiconductor layer 2013 facing the first electrode 2021
  • the second electrode 2022 The end exposes the first conductive semiconductor layer 2011.
  • FIG. 15 is a schematic diagram of a light emitting diode 99999 provided by the third embodiment of the present invention.
  • the micro light emitting diode 21 may be a vertical structure or a flip-chip structure.
  • the jig 30 is used to fill the light-blocking material 40, the light-blocking material 40 is evenly distributed on the side of the micro LED unit 20, which improves the accuracy and stability of the manual coating of the light-blocking material 40. Since the side surface of the micro light emitting diode unit 20 is wrapped with a light blocking layer 401, the mutual influence of the light emitting colors between the light emitting diodes on the backplane is reduced, thereby increasing the contrast of the display screen.
  • the light-emitting diode in the process of mounting the light-emitting diode to the target substrate, whether it is to transfer a single light-emitting diode or transfer multiple light-emitting diodes as a whole, it can reduce the displacement or displacement of the light-emitting diode due to vibration or movement during the transfer process. The probability of falling, thereby increasing the transfer speed and improving the transfer yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供了一种发光二极管的制造方法,所述方法包括:提供间隔形成于基板的若干微型发光二极管单元;将治具罩在所述基板上使所述若干微型发光二极管单元的发光部罩在所述治具和所述基板之间;向所述治具内侧注入熔融状阻光材料,且所述阻光材料填充于每一微型发光二极管单元的侧面与所述治具之间;将所述阻光材料固化以在所述微型发光二极管单元的侧面形成阻光层;以及在所述阻光材料固化后,取下所述治具。此外,本发明还提供一种发光二极管的制作方法、发光二极管模组、以及显示设备。微型发光二极管单元发光部的侧面包裹一层阻光层,可以减小相邻的红绿蓝三色发光二极管之间发光的颜色的相互影响,从而提升微型发光二极管显示屏的对比度以及显示效果。

Description

发光二极管及其制造方法、发光二极管模组、显示设备 技术领域
本发明涉及微型发光二极管(Micro-LED)技术领域,尤其一种发光二极管及其制造方法、发光二极管模组、显示设备。
背景技术
微型发光二极管,即发光二极管微缩化和矩阵化技术,具有良好的稳定性、寿命,以及运行温度上的优势。同时,微型发光二极管也继承了发光二极管低功耗、色彩饱和度高、反应速度快、对比度强等优点,具有极大的应用前景,例如微型发光二极管显示屏。
微型发光二极管显示屏在制造过程中需要将生长基板上的发光二极管转移固定到显示屏背板上。转移固定到显示屏背板上后,相邻的红蓝绿三色发光二极管之间发光的颜色可能相互影响,从而影响微型发光二极管显示屏的对比度。因此,解决显示的对比度和显示效果在微型发光二极管显示屏的制造中是亟需克服的问题。
技术问题
本发明提供了一种发光二极管及其制造方法,可以提高微型发光二极管显示屏的对比度,改善显示屏的对比效果。
技术解决方案
第一方面,本发明实施例提供一种发光二极管的制造方法,所述方法包括:
提供间隔形成于基板的若干微型发光二极管单元;
将治具罩在所述基板上使所述若干微型发光二极管单元的发光部罩在所述治具和所述基板之间;
向所述治具内侧注入熔融状阻光材料,且所述阻光材料填充于每一微型发光二极管单元的侧面与所述治具之间;
将所述阻光材料固化以在所述微型发光二极管的侧面形成阻光层;以及
在所述阻光材料固化后,取下所述治具。
第二方面,本发明实施例提供一种微型发光二极管,用于安装在目标基板,所述微型发光二极管包括发光部,阻光层,所述阻光层包裹于所述发光部的侧面,使微型发光二极管在所述发光部相背的两端形成第一空置区和第二空置区。
第三方面,本发明实施例提供一种微型发光二极管模组,所述微型发光二极管模组包括:
基板;
设置于所述基板的若干微型发光二极管;以及
阻光层,所述阻光层包裹于每一所述微型发光二极管的侧面,且使每一所述微型发光二极管相背的两端形成第一空置区和第二空置区,所述第一空置区朝向所述基板贴合,所述第二空置区远离所述基板。
第四方面,本发明实施例提供一种显示设备,显示设备包括外壳、容置于所述外壳内的显示组件,所述显示组件包括若干微型发光二极管,所述微型发光二极管为如上所述的微型发光二极管。
有益效果
上述发光二极管及其制造方法,采用了治具对微型发光二极管单元进行注胶,极大地降低了注胶不均匀的概率,改善了阻光层的精度和稳定性。对微型发光二极管单元进行注胶,使得微型发光二极管单元发光部的侧面包裹一层阻光层,从而减小相邻的红绿蓝三色发光二极管之间发光的颜色的相互影响,从而提升微型发光二极管显示屏的对比度以及显示效果。
附图说明
图1为本发明实施例提供的显示设备的示意图。
图2为本发明实施例提供的显示组件的示意图。
图3为本发明实施例提供的微型发光二极管模组的示意图。
图4为本发明第一实施例提供的制造方法的流程示意图。
图5为本发明第二实施例提供的制造方法的流程示意图。
图6为本发明第三实施例提供的制造方法的流程示意图。
图7为本发明第一实施例提供的制造过程的示意图。
图8为本发明第二实施例提供的制造过程的示意图。
图9为本发明第三实施例提供的制造过程的示意图。
图10为本发明第一实施例提供的第一具体实施例的子流程示意图。
图11为本发明第一实施例提供的第二具体实施例的子流程示意图。
图12为本发明第一实施例提供的第二具体实施例的子流程的过程示意图。
图13a~图13b为本发明第一实施例提供的发光二极管的示意图。
图14为本发明第二实施例提供的发光二极管的示意图。
图15为本发明第三实施例提供的发光二极管的示意图。
本发明的最佳实施方式
为使得对本发明的内容有更清楚及更准确的理解,现将贴合附图详细说明。说明书附图示出本发明的实施例的示例,其中,相同的标号表示相同的元件。可以理解的是,说明书附图示出的比例并非本发明实际实施的比例,其仅为示意说明为目的,并非依照原尺寸作图。
请参看图1和图2,其为显示设备1000的示意图和显示组件666的示意图。显示设备1000可以为具有显示功能的产品,例如笔记本电脑、平板电脑、显示器、电视机、手机等。显示设备1000包括显示组件666、外壳777以及面板888。其中,显示组件666容置于外壳777和显示面板888之间。显示组件666包括背板6666和安装于背板6666的若干微型发光二极管。
请参看图3,其为本发明实施例提供的微型发光二极管模组的示意图。微型发光二极管模组100。微型发光二极管模组100包括基板10、若干微型发光二极管单元20、及阻光层401。其中,若干微型发光二极管单元20设置于基板10上,阻光层401包裹于每一微型发光二极管单元20的侧面,且使每一微型发光二极管单元20相背的两端形成第一空置区20a和第二空置区20b。具体地,第一空置区20a朝向基板10贴合,第二空置区20b远离基板10。微型发光二极管单元20设置有电极202,电极202皆位于第一空置区20a,或者电极202皆位于第二空置区20b,或者电极202分别位于第一空置区20a和第二空置区20b。其中,微型发光二极管单元20的电极202与第一空置区20a和第二空置区20b的位置关系是根据微型发光二极管单元20的结构来选择,具体内容将在下文详细描述。
请结合参看图4和图7,其为本发明第一实施例提供的一种发光二极管的制造方法的示意图。发光二极管的制造方法用于将形成于基板10的若干微型发光二极管单元20制造成一种发光二极管99。发光二极管99的制造方法包括下面步骤。
步骤S101,提供间隔形成于基板10的若干微型发光二极管单元20。具体地,微型发光二极管单元20呈矩阵状排列,各微型发光二极管单元20之间存在间隙。
步骤S103,将治具30罩在基板10上使若干微型发光二极管单元20的发光部201罩在治具30和基板10之间。具体地,当治具30罩在基板10时,每一微型发光二极管单元20远离基板10的一侧与治具30紧密贴合,或者每一微型发光二极管单元20靠近基板10的一侧与基板10紧密贴合,微型发光二极管单元20的侧部与治具30之间存在间隙。其中,微型发光二极管单元20、基板10、以及治具30的位置关系是根据微型发光二极管单元20的结构来选择,不同结构的微型发光二极管单元20采用的治具30不同,且不同结构的微型发光二极管单元20在实施具体步骤时采用的方法也不相同。具体内容将在下文详细描述。
步骤S105,向治具30内侧注入熔融状阻光材料40,且阻光材料40填充于每一微型发光二极管单元20的侧面与治具30之间。阻光材料40为黑胶,即黑色不透明环氧树脂。
步骤S107,将阻光材料40固化以在微型发光二极管单元20的侧面形成阻光层401。
步骤S109,在阻光材料40固化后,取下治具30。请参看图6,取下治具30后,阻光材料40填充于矩阵排列的微型发光二极管单元20的侧部以及各微型发光二极管单元20之间的间隙,即在矩阵排列的微型发光二极管单元20的侧部以及各微型发光二极管单元20之间形成一层阻光层401。
步骤S111,切割出每个发光二极管99,以使得每个微型发光二极管单元20的侧面包裹有阻光层401。在一些可行的实施例中,可以将包裹有阻光层401的矩阵排列的微型发光二极管单元20根据实际情况切割成适当的大小。
在一些可行的实施例中,可以省略步骤S111,待需要进一步加工时,才进行切割。
上述实施例中,采用了治具对微型发光二极管单元进行注胶,极大地降低了涂不均匀的概率,改善了注胶的精度和稳定性。
请参看图10,其为本发明第一实施例提供的第一具体实施例的步骤S103的子流程示意图。在本具体实施例中,微型发光二极管单元20为垂直结构,每一微型发光二极管单元20具有远离基板10的出光面200。具体地,治具30包括顶部302以及沿着顶部302的边缘延伸出的侧壁303,治具30的顶部设有若干电极口301。治具30的顶部302面向基板10的一侧与基板10之间的高度H等于微型发光二极管单元20的出光面200到基板10的高度h。请结合参看图7,步骤S103具体包括:首先,将治具30的侧壁303远离顶部302的一端朝向基板10,顶部302的电极口301对准微型发光二极管单元20远离基板10一侧的电极202;然后移动治具30直至侧壁303支撑于基板10上,以使顶部302朝向基板10的一侧与微型发光二极管单元20的出光面200紧密贴合。矩阵排列的微型发光二极管单元20的侧部与治具30的侧壁303之间存在间隙。
上述实施例中,采用了垂直结构的微型发光二极管单元相匹配的治具对微型发光二极管单元进行注胶,使得阻光层更加适配。
请参看图11,其为本发明第一实施例提供的第二具体实施例的步骤S103的子流程示意图。本具体实施例提供的发光二极管的制造方法用于将形成于基板10的若干微型发光二极管单元20制造成一种发光二极管999。第二具体实施例提供的制造方法与第一具体实施例提供的制造方法差异在于,第二具体实施例提供的制造方法中的微型发光二极管单元20为倒装结构,每一微型发光二极管单元20具有朝向基板10的出光面200。治具30的顶部302面向基板10的一侧与基板10之间的高度H等于微型发光二极管单元20的发光部201远离基板10的一侧到基板10的高度h。具体地,请参看图12,步骤S103具体包括:将治具30的侧壁303远离顶部302的一端朝向基板10,顶部302的电极口301对准微型发光二极管单元20远离基板10一侧的电极202;移动治具30直至侧壁303支撑于基板10上,以使微型发光二极管单元20的出光面200与基板10紧密贴合。矩阵排列的微型发光二极管单元20的侧部与治具30的侧壁303之间存在间隙。发光二极管999的制造方法的其他过程与发光二极管99的基本一致,在此不再赘述。
上述实施例中,采用了倒装结构的微型发光二极管单元相匹配的治具对微型发光二极管单元进行注胶,使得阻光层更加适配。
上述实施例中,基板10皆采用原生基板,阻光层401皆是微型发光二极管单元20在原生基板上时制作。在一些可行的实施例中,由于微型发光二极管单元20的电极202位于发光部201的同一侧,基板10可以为临时基板,即阻光层401需要微型发光二极管单元20从原生基板转移至临时基板后制作。
请结合参看图5和图8,其为第二实施例提供的一种发光二极管的制造方法的示意图。本实施例提供的发光二极管的制造方法用于将形成于基板10的若干微型发光二极管单元20制造成一种发光二极管9999。第二实施例展现了微型发光二极管单元20为倒装结构,且在临时基板50上制作阻光层401的方法。即在提供间隔形成于临时基板50的若干微型发光二极管单元20之前,需将微型发光二极管单元20转移到临时基板50上。具体地,发光二极管9999的制造方法还包括下面步骤。
步骤S101,提供间隔生长于原生基板60的若干微型发光二极管20。具体地,微型发光二极管单元20呈矩阵状排列,各微型发光二极管单元20之间存在间隙。微型发光二极管单元20的电极202位于远离原生基板60的一侧。
步骤S103,提供临时基板50。
步骤S105,将生长于原生基板60上的若干微型发光二极管单元20转移到临时基板50,并使微型发光二极管单元20的电极202设置于临时基板50。具体地,临时基板50放置于微型发光二极管单元20远离生长基板60的一侧,以使得微型发光二极管单元20的电极202朝向临时基板50。
步骤S107,剥离原生基板60。具体地,使用剥离装置70剥离生长基板60。其中,剥离装置70可以为但不限于加热装置、紫外线装置、镭射装置。具体地,对生长基板60进行加热,使用加热装置在生长基板60远离微型发光二极管单元20的一侧对微型发光二极管单元20进行加热剥离;对微型发光二极管单元20进行紫外线照射,使用紫外线装置在生长基板60远离微型发光二极管单元20的一侧对微型发光二极管单元20进行紫外线照射剥离;对微型发光二极管单元20进行镭射光照射,使用镭射装置在生长基板60远离微型发光二极管单元20的一侧对微型发光二极管单元20进行镭射光照射剥离。
发光二极管9999的制造方法的其他过程与发光二极管99的基本一致,在此不再赘述。
上述实施例中,对倒装结构的微型发光二极管单元注胶前,将微型发光二极管单元转移至临时基板上,让微型发光二极管单元未设置电极的一侧与治具相贴合,可以无需在治具上设置电极口,方便治具和微型发光二极管单元的对位,简化制作流程。
请结合参看图6和图9,其为本发明第三实施例提供的一种发光二极管的制造方法的示意图。发光二极管的制造方法用于将形成于基板10的若干微型发光二极管单元20制造成一种发光二极管99999。第三实施例提供的制造方法与第二实施例提供的制造方法差异在于,微型发光二极管单元20包含若干微型发光二极管21,每个微型发光二极管21发射同种颜色光。具体地,若干微型发光二极管21分离且间隔地设置于临时基板50,利用粘合剂90将若干微型发光二极管21固定于一起,即粘合剂90将若干微型发光二极管21的侧面粘合固定。其中,粘合剂90为冷解胶。发光二极管99999的制造方法的其他过程与发光二极管9999的基本一致,在此不再赘述。
在一些可行的实施例中,在将阻光材料40固化以在微型发光二极管单元20的侧面形成阻光层401之前,利用粘合剂90将若干微型发光二极管21固定于一起。
请结合参看图13和图14,其为本发明实施例提供的微型发光二极管的示意图。微型发光二极管包括发光部201和阻光层401。阻光层401包裹于发光部201的侧面,使微型发光二极管在发光部201相背的两端形成第一空置区20a和第二空置区20b。具体地,发光部201包括第一导电半导体层2011、活性层2012、第二导电半导体层2013。其中,活性层2012形成在第一导电半导体层2011上,第二导电半导体层2013形成在活性层2012上。电极202包括第一电极2021和第二电极2022。
请参看图13a,其为本发明第一实施例提供的第一具体实施例提供的发光二极管99的示意图。具体地,微型发光二极管为垂直结构,微型发光二极管设置有第一电极2021和第二电极2022,且第一电极2021和第二电极2022分别位于第一空置区20a和第二空置区20b。具体地,第一电极2021形成在第一导电半导体层2011远离活性层2012一侧,第二电极2022形成在第二导电半导体层2013远离活性层2012的一侧。
请参看图13b,其为本发明第一实施例提供的第二具体实施例提供的发光二极管999的示意图。具体地,微型发光二极管为倒装结构,微型发光二极管设置有第一电极2021和第二电极2022,且第一电极2021和第二电极2022皆位于第二空置区20b。具体地,第一电极2021形成在第一导电半导体层2011远离活性层2012的一侧,第二电极2022形成在第二导电半导体层2013朝向第一电极2021的一侧,且第二电极2022的端头露出第一导电半导体层2011。
请参看图14,其为本发明第二实施例提供的发光二极管9999的示意图。具体地,微型发光二极管为倒装结构,微型发光二极管设置有第一电极2021和第二电极2022,且第一电极2021和第二电极2022皆位于第一空置区20a。具体地,第一电极2021形成在第一导电半导体层2011远离活性层2012的一侧,第二电极2022形成在第二导电半导体层2013朝向第一电极2021的一侧,且第二电极2022的端头露出第一导电半导体层2011。
请参看图15,其为本发明第三实施例提供的发光二极管99999的示意图。其中,微型发光二极管21可以为垂直结构或倒装结构。
在上述实施例中,由于采用了治具30来填充阻光材料40,使得阻光材料40均匀分布在微型发光二极管单元20的侧面,改善了人工涂布阻光材料40的精度和稳定性。由于微型发光二极管单元20的侧面包裹有阻光层401,减小了背板上发光二极管之间发光颜色的相互影响,从而增加显示屏的对比度。同时,在将发光二极管安装到目标基板的过程中,不论是对单个发光二极管进行转移,还是将多个发光二极管作为整体进行转移,都能减小转移过程中因震动或移动造成发光二极管位移或掉落的几率,从而提升转移速度,提高转移良率。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘且本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
以上所列举的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权力范围,因此依本发明权利要求所作的等同变化,仍属于本发明所涵盖的范围。

Claims (1)

  1. 一种发光二极管的制造方法,其特征在于,所述方法包括:
    提供间隔形成于基板的若干微型发光二极管单元;
    将治具罩在所述基板上使所述若干微型发光二极管单元的发光部罩在所述治具和所述基板之间;
    向所述治具内侧注入熔融状阻光材料,且所述阻光材料填充于每一微型发光二极管单元的侧面与所述治具之间;
    将所述阻光材料固化以在所述微型发光二极管单元的侧面形成阻光层;以及
    在所述阻光材料固化后,取下所述治具。
     
    2.如权利要求1所述的制造方法,其特征在于,所述方法还包括:
    切割出每个所述发光二极管,以使得每个所述微型发光二极管单元的侧面包裹有所述阻光层。
     
    3.如权利要求1所述的制造方法,其特征在于,当所述治具罩在所述基板时,每一所述若干微型发光二极管单元远离所述基板的一侧与所述治具紧密贴合,所述微型发光二极管单元的侧部与所述治具之间存在间隙。
     
    4.如权利要求1所述的制造方法,其特征在于,当所述治具罩在所述基板时,每一所述若干微型发光二极管单元靠近所述基板的一侧与基板紧密贴合,所述微型发光二极管单元的侧部与所述治具之间存在间隙。
     
    5.如权利要求3所述的制造方法,其特征在于,微型发光二极管为垂直结构,每一所述若干微型发光二极管单元具有远离所述基板的出光面,所述治具包括顶部以及沿着所述顶部的边缘延伸出的侧壁,所述顶部设有若干电极口,所述顶部面向基板的一侧与基板之间的高度等于所述出光面到所述基板的高度,将治具罩在所述基板上使所述若干微型发光二极管单元的发光部罩在所述治具和所述基板之间具体包括:
    将所述侧壁远离所述顶部的一端朝向所述基板,所述顶部的电极口对准微型发光二极管单元远离所述基板一侧的电极;以及
    移动所述治具直至所述侧壁支撑于所述基板,以使所述顶部朝向所述基板的一侧与所述出光面紧密贴合。
     
    6.如权利要求4所述的制造方法,其特征在于,微型发光二极管为倒装结构,每一所述若干微型发光二极管单元具有朝向所述基板的出光面,所述治具包括顶部以及沿着所述顶部的边缘延伸出的侧壁,所述顶部设有若干电极口,所述顶部面向基板的一侧与基板之间的高度等于每一微型发光二极管单元远离所述基板的一侧到所述基板的高度,将治具罩在所述基板上使所述若干微型发光二极管单元的发光部罩在所述治具和所述基板之间具体包括:
    将所述侧壁远离所述顶部的一端朝向所述基板,所述顶部的电极口对准微型发光二极管单元远离所述基板一侧的电极;以及
    移动所述治具直至所述侧壁支撑于所述基板,以使所述出光面与所述基板紧密贴合。
     
    7.如权利要求1所述的制造方法,其特征在于,所述基板为临时基板,所述微型发光二极管为倒装结构,提供间隔形成于基板的若干微型发光二极管单元之前,所述制造方法还包括:
    提供间隔生长于原生基板的若干微型发光二极管单元,所述若干微型发光二极管单元的电极远离所述原生基板;
    提供临时基板;
    将生长于原生基板的若干微型发光二极管单元转移至所述临时基板,并使所述电极设置于所述临时基板;以及
    剥离所述原生基板。
     
    8.如权利要求1所述的制造方法,其特征在于,所述微型发光二极管单元包括若干微型发光二极管,所述微型发光二极管发射同种颜色光。
     
    9.如权利要求8所述的制造方法,其特征在于,所述若干微型发光二极管之间相互固定。
     
    10.如权利要求8所述的制造方法,其特征在于,所述若干微型发光二极管分离且间隔地设置于所述临时基板,在将所述阻光材料固化以在所述微型发光二极管单元的侧面形成阻光层之前,所述方法还包括:
    利用粘合剂将所述若干微型发光二极管固定于一起。
     
    11.一种微型发光二极管,所述微型发光二极管包括发光部,其特征在于,所述微型发光二极管还包括阻光层,所述阻光层包裹于所述发光部的侧面,使微型发光二极管在所述发光部相背的两端形成第一空置区和第二空置区。
     
    12.如权利要求11所述的微型发光二极管,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述第一电极和第二电极皆位于所述第一空置区。
     
    13.如权利要求11所述的微型发光二极管,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述第一电极和第二电极皆位于所述第二空置区。
     
    14.如权利要求11所述的微型发光二极管,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述第一电极和第二电极分别位于所述第一空置区和所述第二空置区。
     
    15.一种微型发光二极管模组,其特征在于,所述微型发光二极管模组包括:
    基板;
    设置于所述基板的若干微型发光二极管单元;以及
    阻光层,所述阻光层包裹于每一所述微型发光二极管单元的侧面,且使每一所述微型发光二极管单元相背的两端形成第一空置区和第二空置区,所述第一空置区朝向所述基板贴合,所述第二空置区远离所述基板。
     
    16.如权利要求15所述的微型发光二极管模组,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述电极皆位于所述第一空置区。
     
    17.如权利要求15所述的微型发光二极管模组,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述电极皆位于所述第二空置区。
     
    18.如权利要求15所述的微型发光二极管模组,其特征在于,所述微型发光二极管设置有第一电极和第二电极,所述电极分别位于所述第一空置区和所述第二空置区。
     
    19.一种显示设备,所述显示设备包括外壳、容置于所述外壳内的显示组件,所述显示组件包括若干微型发光二极管,其特征在于,所述微型发光二极管为如权利要求11~14任意一项所述的微型发光二极管。
PCT/CN2019/122818 2019-12-03 2019-12-03 发光二极管及其制造方法、发光二极管模组、显示设备 WO2021109009A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/122818 WO2021109009A1 (zh) 2019-12-03 2019-12-03 发光二极管及其制造方法、发光二极管模组、显示设备
CN201980004132.2A CN113228317B (zh) 2019-12-03 2019-12-03 发光二极管及其制造方法、发光二极管模组、显示设备
US17/343,126 US20210376202A1 (en) 2019-12-03 2021-06-09 Micro light emitting diode and method for manufacturing the same, and micro light emitting diode module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122818 WO2021109009A1 (zh) 2019-12-03 2019-12-03 发光二极管及其制造方法、发光二极管模组、显示设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/343,126 Continuation US20210376202A1 (en) 2019-12-03 2021-06-09 Micro light emitting diode and method for manufacturing the same, and micro light emitting diode module

Publications (1)

Publication Number Publication Date
WO2021109009A1 true WO2021109009A1 (zh) 2021-06-10

Family

ID=76221336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122818 WO2021109009A1 (zh) 2019-12-03 2019-12-03 发光二极管及其制造方法、发光二极管模组、显示设备

Country Status (3)

Country Link
US (1) US20210376202A1 (zh)
CN (1) CN113228317B (zh)
WO (1) WO2021109009A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916763A (zh) * 2015-05-29 2015-09-16 广州市鸿利光电股份有限公司 一种芯片级封装led的封装方法
CN105006511A (zh) * 2015-07-29 2015-10-28 广州市鸿利光电股份有限公司 一种led封装方法
CN107768397A (zh) * 2017-10-20 2018-03-06 深圳市华星光电技术有限公司 器件阵列基板及其制作方法
CN109830496A (zh) * 2018-11-16 2019-05-31 吴裕朝 发光模块封装制程
CN109844948A (zh) * 2017-10-12 2019-06-04 株式会社流明斯 显示器用发光二极管模块组件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258921A (zh) * 2012-02-21 2013-08-21 展晶科技(深圳)有限公司 发光二极管封装方法
CN107331680B (zh) * 2017-07-05 2020-04-24 上海天马微电子有限公司 一种显示面板及其制造方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916763A (zh) * 2015-05-29 2015-09-16 广州市鸿利光电股份有限公司 一种芯片级封装led的封装方法
CN105006511A (zh) * 2015-07-29 2015-10-28 广州市鸿利光电股份有限公司 一种led封装方法
CN109844948A (zh) * 2017-10-12 2019-06-04 株式会社流明斯 显示器用发光二极管模块组件
CN107768397A (zh) * 2017-10-20 2018-03-06 深圳市华星光电技术有限公司 器件阵列基板及其制作方法
CN109830496A (zh) * 2018-11-16 2019-05-31 吴裕朝 发光模块封装制程

Also Published As

Publication number Publication date
US20210376202A1 (en) 2021-12-02
CN113228317A (zh) 2021-08-06
CN113228317B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US10741608B2 (en) Manufacturing method of micro light-emitting diode display panel
JP4824487B2 (ja) Ledパッケージの製造方法
US20120256215A1 (en) Package having light-emitting element and fabrication method thereof
CN107240356B (zh) 全彩led显示单元及其制备方法
US8236126B2 (en) Encapsulation method of environmentally sensitive electronic element
US11362075B2 (en) Micro light emitting diode display substrate, device and fabrication method thereof
US9508695B2 (en) Method of manufacturing light emitting device
TWI740438B (zh) 微型發光二極體的轉移方法
KR20140140491A (ko) 표시장치 및 그 제조 방법
US20210343572A1 (en) Method for Transferring Massive Light Emitting Diodes and Display Back Plate Assembly
US20210327861A1 (en) Light emitting diode package structure and manufacturing method thereof
US11616107B2 (en) Display substrate and manufacturing method thereof, display device
TWI719823B (zh) 板上封裝顯示元件及其製造方法
WO2020233298A1 (zh) 封装结构及封装方法、显示装置
WO2020199527A1 (zh) 显示面板制备方法、显示面板和显示装置
KR20120108754A (ko) 발광소자에 형광체층을 형성하는 방법 및 장치
WO2021097734A1 (zh) 一种led晶粒转移方法
WO2021109009A1 (zh) 发光二极管及其制造方法、发光二极管模组、显示设备
JP2000200928A (ja) 表面実装型発光ダイオ―ド
WO2021134489A1 (zh) 一种巨量转移装置及其制造方法、以及显示设备
WO2021051535A1 (zh) 阵列基板及其制备方法
TWI801756B (zh) 發光模組與由發光模組拼接而成的發光裝置
TWI841239B (zh) 顯示裝置及顯示面板的製造方法
TWI796261B (zh) 顯示裝置及其製造方法
WO2023066013A1 (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954875

Country of ref document: EP

Kind code of ref document: A1