WO2023066013A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2023066013A1
WO2023066013A1 PCT/CN2022/123086 CN2022123086W WO2023066013A1 WO 2023066013 A1 WO2023066013 A1 WO 2023066013A1 CN 2022123086 W CN2022123086 W CN 2022123086W WO 2023066013 A1 WO2023066013 A1 WO 2023066013A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
display device
chip
substrate
Prior art date
Application number
PCT/CN2022/123086
Other languages
English (en)
French (fr)
Inventor
潘光翔
石磊
杨广卿
崔立明
孙明晓
刘晓伟
张廷斌
刘永锋
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122521676.3U external-priority patent/CN216119393U/zh
Priority claimed from CN202111573242.6A external-priority patent/CN116314477A/zh
Priority claimed from CN202111572161.4A external-priority patent/CN116314476A/zh
Priority claimed from CN202111575777.7A external-priority patent/CN116344702A/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2023066013A1 publication Critical patent/WO2023066013A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present application relates to the field of display technology, in particular to a display device.
  • the use of plastic frame design will inevitably require the development of corresponding molds, which will increase production costs and reduce product quality. Price competitive advantage.
  • the present application provides a display device, including: a display panel; a diffusion plate, which is arranged at intervals on the back side of the display panel; a back plate, which includes a back plate main body and a Front bent and protruding support ribs; the back plate main body is arranged on the back side of the diffuser plate, and the support ribs extend below the diffuser plate and the display panel, and are supported on the display panel the bottom end of the first support block, which is sandwiched between the top surface of the support rib and the bottom edge of the diffusion plate; the front end of the first support block is against the back of the display panel, so The rear end of the first support block abuts against the front side of the backboard main body.
  • FIG. 1 is a partial cross-sectional view of an embodiment of a display device of the present application
  • FIG. 2 is a second partial cross-sectional view of an embodiment of a display device of the present application.
  • FIG. 3 is a third partial cross-sectional view of an embodiment of the display device of the present application.
  • Fig. 4 is a partial sectional view 4 of an embodiment of the display device of the present application.
  • Fig. 5 is a partial perspective view 1 of an embodiment of a display device of the present application.
  • Fig. 6 is a partial perspective view II of the embodiment of the display device of the present application.
  • FIG. 7 is a schematic structural diagram of the driving substrate provided by the present application.
  • FIG. 8 is a schematic structural diagram of a drive substrate prepared with an ink layer provided by the present application.
  • FIG. 9 is a schematic structural diagram of a driving substrate prepared with a bonding layer provided by the present application.
  • FIG. 10 is a schematic diagram of the bonding of the chip and the driving substrate provided by the present application.
  • FIG. 11 is a schematic structural diagram of a display device provided by the present application.
  • FIG. 12 is a schematic structural diagram of a display device provided by the present application.
  • FIG. 13 is a flow chart of a manufacturing method of a display device provided by an embodiment of the present application.
  • FIG. 14 is a flow chart of the mass transfer method for light-emitting chips provided by the present application.
  • FIG. 15 is a flow chart of picking up light-emitting chips to be transferred provided by the present application.
  • Figure 16 is a schematic diagram of the temporary substrate provided by the present application.
  • Figure 17 is a schematic diagram of the foaming state of the transfer adhesive in the hole structure of the temporary substrate provided by the present application.
  • Figure 18 is a schematic diagram of the state of cooling and contraction of the transfer glue in the hole structure of the temporary substrate provided by the present application.
  • Figure 19 is a schematic diagram of the mass transfer light-emitting chip process provided by the present application.
  • FIG. 20 is a schematic diagram of the process of picking up a light-emitting chip from a temporary substrate provided by the present application.
  • Fig. 21 is a schematic diagram of the lamination of the temporary substrate carrying the LED chip and the transfer substrate provided by the present application;
  • Fig. 22 is a schematic diagram of the cooling and contraction state of the transfer glue in the hole structure of the temporary substrate carrying the LED chip provided by the present application;
  • Fig. 23 is a schematic diagram of peeling off the temporary substrate carrying the LED chip and the LED chip provided by the present application.
  • Figure 24 is a schematic diagram of the process of transferring an LED chip to a TFT substrate with a transfer substrate provided by the present application;
  • Fig. 25 is another schematic diagram of peeling off the temporary substrate carrying the LED chip and the LED chip provided by the present application.
  • Figure 26 is a schematic diagram of the shape design of other temporary substrates provided by the present application.
  • Fig. 27 is a schematic diagram of the preparation process of a light-emitting chip provided by the present application.
  • FIG. 28 is a schematic structural diagram of a MicroLED chip provided by the present application.
  • Fig. 29 is a schematic structural diagram of another Micro LED chip provided by the present application.
  • FIG. 30 is a schematic structural diagram of a display device provided by the present application.
  • FIG. 31 is a schematic circuit diagram of a display device provided by the present application.
  • FIG. 32 is a schematic structural diagram of an AM-driven full-color MicroLED display device provided by the present application.
  • FIG. 33 is a schematic structural diagram of another display device provided by the present application.
  • a supporting plastic frame is usually used on the ground side of the display device to support the panel, diffuser plate and diaphragm.
  • the design of the plastic frame will inevitably require the development of corresponding molds, which will increase the production cost and reduce the price competitiveness of the product. .
  • FIG. 1 is a first partial cross-sectional view of an embodiment of a display device of the present application.
  • FIG. 2 is a second partial cross-sectional view of the embodiment of the display device of the present application.
  • FIG. 3 is a third partial cross-sectional view of an embodiment of a display device of the present application.
  • the state of the display device in vertical use is used as a reference in this article, the direction facing the user of the display panel 1 is the front, the direction facing away from the user is the rear, the direction facing the center of the display panel 1 is the inside, and the direction away from The direction of the center of the display panel 1 is outward.
  • this embodiment provides a display device, which adopts a direct light input method.
  • the display device includes a display panel 1 , a diffusion plate 2 , a back plate 3 , and a first support block 4 .
  • the display panel 1 is a liquid crystal display panel, and the display device is a liquid crystal display device.
  • the diffusion plates 2 are disposed on the back side of the display panel 1 at intervals.
  • the backboard 3 includes a backboard main body 30 and support ribs 31 bent forward from the bottom edge of the backboard main body 30 .
  • the backboard main body 30 is a concave cavity formed in the middle, and the top of the cavity wall extends horizontally outwards to form a structure with an annular flange.
  • the backboard main body 30 can also be designed as a flat composite board structure.
  • the supporting ribs 31 extend below the diffuser plate 2 and the display panel 1, and the supporting ribs 31 are supported on the bottom of the display panel 1 to limit the up and down movement of the display panel 1, and avoid the display panel 1 being caused by the up and down movement. caused by the rupture.
  • a plurality of supporting ribs 31 are evenly spaced along the bottom side of the backboard main body 30 , and the plurality of supporting ribs 31 can support the display panel 1 more stably without cracking.
  • the back plate main body 30 is arranged on the back side of the diffuser plate 2, and the diffuser plate 2 is fixedly connected to the front side of the back plate main body 30, for example, the diffuser plate 2 and the back plate main body 30 are fixed by bonding.
  • the back of the diffusion plate 2 is pasted to the front side of the back plate main body 30 by double-sided adhesive tape. Multiple sections of double-sided adhesive tape are evenly arranged between the diffuser plate 2 and the back plate main body 30, so that the diffuser plate 2 and the back plate main body 30 are firmly bonded, and the problem of the diffuser plate 2 jumping toward the display panel 1 is solved.
  • the first support block 4 is sandwiched between the top surface of the support rib 31 and the bottom edge of the diffusion plate 2 to limit the movement of the diffusion plate 2 up and down.
  • the front end of the first supporting block 4 abuts against the back of the display panel 1 , and the rear end of the first supporting block 4 abuts against the front side of the backplane main body 30 .
  • the first support block 4 is arranged between the display panel 1 and the backplane main body 30 , and the first support block 4 supports the display panel 1 , avoiding the bending and cracking caused by the bottom side of the display panel 1 lying backward.
  • the first support block 4 is made of plastic materials, such as polycarbonate (abbreviated as PC in English), polyvinyl chloride (PVC in English) and polyethylene (PE in English), so that the first support block 4 elastic.
  • the plastic material of the first supporting block 4 can have a certain buffering effect on the display panel 1 , effectively packaging the safety of the display panel 1 .
  • first support blocks 4 are arranged at a plurality of uniform intervals along the bottom side of the backplane main body 30, and the plurality of first support blocks 4 can make the force on the display panel 1 more uniform, so as to provide a stable support for the display panel 1. .
  • first support blocks 4 are sandwiched between the top surface of the support ribs 31 and the bottom edge of the diffuser plate 2 to prevent the diffuser plate 2 from moving up and down while making the bottom end of the diffuser plate 2 more stressed. uniform.
  • the bottom edge of the backboard main body 30 is bent forward and protruded with supporting ribs 31, and the supporting ribs 31 can be supported on the bottom of the display panel 1; Between the bottom edge of the diffuser plate 2 , the front end of the first support block 4 abuts against the back of the display panel 1 , and the rear end of the first support block 4 abuts against the front side of the backplane main body 30 . In this way, the structure of the display device in the related art is optimized, the supporting plastic frame on the ground side is removed, and the production cost is reduced.
  • the support rib 31 includes a first support portion 310 protruding forward from the bottom edge of the backplane main body 30 and placed under the diffuser plate 2 , and an end away from the backplane main body 30 from the first support portion 310
  • the second support portion 311 protruding downward
  • the third support portion 312 protruding forward from the end of the second support portion 311 away from the first support portion 310 to abut against the bottom end of the display panel 1, wherein the first support portion
  • the top surface of 310 is against the first supporting block 4
  • the third supporting part 312 is supported on the bottom of the display panel 1 .
  • the support rib 31 composed of the first support portion 310 , the second support portion 311 , and the third support portion 312 has a Z-shape bent from inside to outside as a whole.
  • the support rib 31 with such a structure has a simple and practical structure.
  • the supporting ribs 31 can also be designed as other structures including the L-shaped structure, as long as they can support the bottom of the display panel 1 .
  • the backboard 3 composed of the backboard main body 30 and the support ribs 31 is made of plastic and manufactured by integral molding.
  • a second support block 32 is provided between the second support portion 311 and the third support portion 312, the second support block 32 is against the second support portion 311, and the second support block 32 is interposed between Between the third supporting portion 312 and the bottom end of the display panel 1 .
  • the second support block 32 effectively plays the role of adjustment, so as to adjust the position of supporting the bottom end of the display panel 1 , so as to provide stable and reliable support for the bottom end of the display panel 1 .
  • the second supporting block 32 is also made of plastic materials, such as polycarbonate (abbreviated as PC in English), polyvinyl chloride (abbreviated as PVC in English) and polyethylene (abbreviated as PE in English), so that the second supporting block 32 has elasticity.
  • the second supporting block 32 made of plastic material can also have a certain buffering effect on the display panel 1 , effectively packaging the display panel 1 safely.
  • the display device further includes a diaphragm 5 and a diaphragm mounting ear 6 , wherein the diaphragm 5 is fixed on the side of the diffusion plate 2 facing away from the back plate main body 30 .
  • the membrane hanging lug 6 is fixed on the inner side of the backplane main body 30 , and the membrane hanging lug 6 penetrates between the diffuser plate 2 and the membrane 5 to lock the diffuser plate 2 and the membrane 5 to the backplane main body 30 .
  • the back of the diaphragm 5 is fixed to the side of the diffusion plate 2 facing away from the back plate main body 30 by bonding.
  • multiple sections of double-sided adhesive tape are evenly arranged between the diaphragm 5 and the diffuser plate 2, so that the diaphragm 5 and the diffuser plate 2 are firmly bonded, which solves the problem of the diaphragm 5 jumping away, and can also prevent the diaphragm 5 from Shrink when heated.
  • the diaphragm hanging lugs 6 are evenly spaced on the inner surface of the back plate main body 30 to hang the diaphragm 5 firmly, which solves the problem that the diaphragm 5 moves up and down and easily causes the display panel 1 to be scratched.
  • the diaphragm hanging lugs 6 may also be distributed at uneven intervals, as long as the function of hooking the diaphragm 5 can be realized, which is not limited in the present application.
  • the main body 30 of the backboard, the support ribs 31 on it, and the diaphragm lugs 6 are made of plastic, and are made by integral molding, so as to complete the manufacture of the backboard 3 .
  • FIG. 4 is a fourth partial cross-sectional view of an embodiment of a display device of the present application.
  • FIG. 5 is a first partial perspective view of an embodiment of a display device of the present application.
  • the display device further includes a front shell 7 extending along the bottom side of the backboard main body 30
  • the backboard 3 also includes a front shell 7 extending forward from the bottom edge of the backboard main body 30 and extending toward the The lower raised connecting rib 33.
  • the front shell 7 is fixedly connected to the connecting rib 33 and has a distance from the bottom side of the backboard main body 30 .
  • the connecting rib 33 replaces the connecting structure on the ground side plastic frame in the prior related art, the front case 7 is fixedly connected with the connecting rib 33, and the connecting rib 33 supports the front case 7 to prevent the front case 7 from pressing the display panel 1 after assembly .
  • a plurality of connecting ribs 33 are arranged at intervals along the bottom side of the backboard main body 30 , and each connecting rib 33 is adjacent to a supporting rib 31 .
  • a plurality of connecting ribs 33 ensures a stable connection between the front case 7 and the back panel 3 .
  • the connecting rib 33 is arched, and the front shell 7 is fixedly connected to the top of the connecting rib 33 .
  • the connecting ribs 33 of the arched structure have a certain degree of elasticity to cope with the expansion and contraction of the connection between the front shell 7 and the connecting ribs 33 .
  • the front shell 7 includes an engaging portion 70 and a covering portion 71 protruding inward from the front end of the engaging portion 70 .
  • the engaging portion 70 is fixedly connected to the top of the connecting rib 33 .
  • the covering portion 71 is in contact with the supporting rib 31 and extends inward beyond the supporting rib 31 and the bottom of the display panel 1 to protect the bottom of the display panel 1 .
  • the support rib 31 protrudes forward from the bottom edge of the backplane main body 30 and is placed on the first support part 310 below the diffuser plate 2 as mentioned above, it protrudes downward from the end of the first support part 310 away from the backplane main body 30
  • the second supporting part 311 of the second supporting part 311 and the third supporting part 312 protruding forward from the end of the second supporting part 311 away from the first supporting part 310 to abut against the bottom end of the display panel 1
  • the third supporting portion 312 is supported on the bottom of the display panel 1 .
  • the covering portion 71 is in contact with the supporting rib 31 and extends inward beyond the supporting rib 31 and the bottom of the display panel 1 to protect the bottom of the display panel 1 .
  • the display device also includes a screw 8 , through which a through hole is formed in the connecting portion 70 , and a threaded hole is formed in the top of the connecting rib 33 , and the screw 8 passes through the through hole and is threadedly connected with the threaded hole.
  • each connecting rib 33 When there are multiple connecting ribs 33 arranged at intervals along the bottom side of the backplane main body 30, the top of each connecting rib 33 is provided with a threaded hole, and the connecting portion 70 is provided with a through hole corresponding to each threaded hole. , There are also multiple screws 8, and each screw 8 passes through a through hole and is threadedly connected with a threaded hole. Multiple screws 8 ensure that the connection between the front shell 7 and the connecting rib 33 is more stable and reliable. Of course, the front shell 7 can also be fixedly connected to the connecting rib 33 by bonding or riveting.
  • FIG. 6 is a second partial perspective view of the embodiment of the display device of the present application.
  • the display device further includes an electric control module (not shown in the figure), and the electric control module is disposed on the back of the backplane main body 30 .
  • the edge of the display panel 1 is connected with a flexible circuit board 10 , and the flexible circuit board 10 passes between adjacent connecting ribs 33 .
  • the flexible circuit board 10 is electrically connected to the electric control module after passing between the adjacent connecting ribs 33 .
  • the accommodation space for the flexible circuit board 10 is provided between the adjacent connecting ribs 33 , which prevents the extrusion of the flexible circuit board 10 by the front shell 7 and avoids the extrusion damage of the flexible circuit board 10 .
  • the backboard main body 30 and its support ribs 31 , connecting ribs 33 , and diaphragm lugs 6 are made of plastic and are manufactured in an integrated manner, thereby completing the manufacture of the backboard 3 .
  • the bottom edge of the backboard main body 30 is bent forward and protrudes with support ribs 31, which can be supported at the bottom of the display panel 1; the first support block 4 is sandwiched between the support ribs 31 Between the top surface of the diffuser plate 2 and the bottom edge of the diffuser plate 2 , the front end of the first support block 4 is in contact with the back of the display panel 1 , and the rear end of the first support block 4 is in contact with the front side of the back plate main body 30 .
  • the backboard 3 further includes a connecting rib 33 extending forward from the bottom edge of the backboard main body 30 and protruding downward.
  • the front shell 7 is fixedly connected to the connecting rib 33 and has a distance from the bottom side of the backboard main body 30 .
  • the supporting ribs 31 and the connecting ribs 33 replace the connection structure on the ground-side plastic frame in the related art, so that the structure of the display device in the related art is optimized, the supporting plastic frame on the ground side is removed, the production cost is reduced, and the production cost is increased.
  • a display device includes a display panel, the display panel: a driving substrate, an ink layer, and a light emitting chip.
  • the driving substrate is used to provide a driving signal;
  • the ink layer is located on the surface of the driving substrate, wherein the ink layer is provided with chip accommodating parts at intervals;
  • the light emitting chip is located on the surface of the driving substrate and the ink layer At the position of the chip accommodating part of the layer, the size of the light-emitting chip matches the size of the chip accommodating part.
  • FIG. 7 is a schematic structural diagram of a driving substrate according to an embodiment of the present application.
  • the driving substrate includes Glass glass 711 , GI buffer layer 712 , active semiconductor layer 713 , source 714 , drain 715 , G gate 716 , and passivation barrier layer 717 .
  • the driving substrate is used for providing driving signals.
  • FIG. 8 is a schematic structural diagram of a driving substrate prepared with an ink layer provided in the present application.
  • an ink layer is prepared on the surface of the driving substrate.
  • an ink layer is prepared on the surface of the barrier layer of the driving substrate.
  • the ink layer is provided with chip accommodating parts at intervals.
  • FIG. 8 shows three positions for placing light-emitting chips, and the ink layer of these three positions for placing light-emitting chips is etched, that is, three chip accommodating parts are shown in FIG. 8 .
  • the chip accommodating part is used for placing the light emitting chip. As shown in FIG.
  • the driving substrate includes Glass 711 , GI buffer layer 712 , active semiconductor layer 713 , source 714 , drain 715 , G gate 716 , passivation barrier layer 717 , and ink layer 818 .
  • the size of the ink layer matches the size of the driving substrate. In some embodiments, the size of the ink layer is the same as that of the driving substrate.
  • a large amount of melanin is added to the ink layer to improve the ability of the ink layer to absorb ambient light, ensure ink color consistency and contrast, and prevent light crosstalk.
  • FIG. 9 is a schematic structural diagram of a driving substrate prepared with a bonding layer provided in the present application.
  • a bonding layer is prepared between the light-emitting chip and the driving substrate.
  • a bonding layer is prepared on the chip accommodating portion of the ink layer.
  • the bonding layer includes a matrix and a conductive material dispersed in the matrix. The dimensions of the bonds and layers match those of the light-emitting chip.
  • the driving substrate includes Glass glass 711, GI buffer layer 712, active semiconductor layer 713, source source 714, drain drain 715, G gate 716, passivation barrier layer 717, ink layer 818, bonding layer 919.
  • the thickness of the ink layer between the light-emitting chips is 5 microns to 30 microns, and the thickness of the ink layer between the electrodes of the driving substrate is 0.1 microns to 1 micron.
  • FIG. 10 is a schematic diagram of bonding a chip and a driving substrate provided in the present application, and the chip and the driving substrate are electrically connected through the bonding layer shown.
  • the chip is a Mini LED chip or a Micro LED chip.
  • FIG. 10 respectively shows that the display device includes a blue chip, a red chip and a green chip. The blue light chip, the green light chip and the red light chip are respectively located at different etching positions of the ink color layer.
  • the driving substrate includes Glass glass 711, GI buffer layer 712, active semiconductor layer 713, source source 714, drain drain 715, G gate 716, passivation barrier layer 717, ink layer 818, bonding layer 919, the blue light chip 1020, the red light chip 1021 and the green light chip 1022.
  • the dimensions of the bonds and layers match those of the light-emitting chip. In some embodiments, the dimensions of the keys and layers are the same as the dimensions of the light emitting chip.
  • the function of the bonding layer is to establish electrical interconnection between the light-emitting chip and the driving substrate, and has a conductive effect.
  • FIG. 11 is a schematic structural diagram of a display device provided in the present application.
  • an encapsulation layer is prepared on the side of the ink layer away from the driving substrate.
  • the encapsulation layer is a transparent encapsulation layer.
  • the driving substrate includes Glass glass 711, GI buffer layer 712, active semiconductor layer 713, source source 714, drain drain 715, G gate 716, passivation barrier layer 717, ink layer 818, bonding layer 919, a blue light chip 1020, a red light chip 1021, a green light chip 1022, and an encapsulation layer 1123.
  • the ink layer 818 is also prepared in the space between the electrodes 1124 of the driving substrate. In this way, only the upper surface of the LED light-emitting chip emits light, and the rest of the light is absorbed by the ink layer, which further improves the light-emitting efficiency of the light-emitting chip.
  • the shape of the driving substrate is the same as the overall shape of the display device, generally, it can be set as a rectangle or a square.
  • the driving substrate is used to provide driving signals to the chip.
  • the driving substrate can be an array substrate of a glass substrate, and the array substrate can be manufactured using a mature thin-film process.
  • the chip is located on the driving substrate and electrically connected with the driving substrate.
  • the chip is used as a sub-pixel unit for image display.
  • the size of the chip reaches the micron level or sub-millimeter level.
  • the chip adopts a Mini LED (Mini Light Emitting Diode, Mini LED for short) chip or a Micro LED (Micro Light Emitting Diode, Micro LED for short) chip.
  • Mini LED Small Light Emitting Diode
  • Micro LED Micro Light Emitting Diode
  • the size of Mini LED is larger than that of Micro LED.
  • Mini LED or Micro LED can be used as the sub-pixel unit according to the implementation situation.
  • the encapsulation layer covers the surface of the chip and the driving substrate, and is used for encapsulating and protecting the chip.
  • the encapsulation layer can be deposited on the surface of the driving substrate and the chip by using inorganic materials such as silicon oxide and silicon nitride. It can also be formed on the surface of the driving substrate and the chip by alternately stacking inorganic layers and organic layers, and can also be directly attached to the surface of the driving substrate and the chip by using a water-oxygen barrier film, which is not limited here.
  • FIG. 12 is a schematic structural diagram of a display device provided by the present application.
  • the driving substrate includes: a substrate 111 , a gate metal layer 112 , a gate insulating layer 113 , an active layer 114 , a source-drain metal layer 115 , a passivation layer 116 , an ink layer 117 , an encapsulation layer 118 and pads p.
  • the substrate 111 is located at the bottom of the display device and has a bearing function.
  • the shape of the substrate 111 is rectangular or square, including the sky side, the ground side, the left side and the right side.
  • the sky side is opposite to the ground side
  • the left side is opposite to the right side
  • the sky side is connected to one end on the left side and one side on the right side respectively
  • the ground side is connected to the other end on the left side and the other end on the right side respectively.
  • the size of the substrate 111 is adapted to the size of the display device, and generally, the size of the substrate is the same as the size of the display device.
  • the substrate 111 is made of materials such as glass, and the glass needs to be cleaned, dried and other operations before being fabricated.
  • the substrate 111 may also be a buffer layer formed on the glass substrate, which is not limited here. When the substrate 111 is a buffer layer, the glass substrate needs to be peeled off after the driving substrate is fabricated.
  • the gate metal layer 112 is located on the substrate 111 . As shown in FIG. 12 , the gate metal layer 112 includes a gate G. As shown in FIG. The pattern of the gate metal layer 112 can be made by depositing the entire metal layer first, and then etching to form a pattern. The gate metal layer 112 can be made of single-layer metal or multi-layer metal, which is not limited here.
  • the gate insulating layer 113 is located on a side of the gate metal layer 112 away from the substrate 111 .
  • the gate insulating layer 113 is used to insulate the gate metal layer 112 , so that other metal layers can be formed on the gate insulating layer 113 .
  • the gate insulating layer 113 may be an inorganic layer of silicon oxide, silicon nitride, or metal oxide, and may include a single layer or multiple layers.
  • the active layer 114 is located on a side of the gate insulating layer 113 away from the gate metal layer 112 .
  • the active layer 114 includes source and drain regions formed by doping N-type impurity ions or P-type impurity ions.
  • the region between the source region and the drain region is the channel region a which is not doped.
  • the active layer 114 can be made of materials such as amorphous silicon or polycrystalline silicon.
  • the source-drain metal layer 115 is located on a side of the active layer 114 away from the gate insulating layer 113 . As shown in FIG. 6 , the source-drain metal layer 115 includes a source electrode and a drain electrode. The pattern of the source-drain metal layer 115 can be made by depositing the entire metal layer first, and then etching to form a pattern.
  • the gate G, the active layer, the source source and the drain drain form a thin film transistor.
  • the passivation layer 116 is located on a side of the active layer 114 and the source-drain metal layer 115 away from the gate insulating layer 113 .
  • the passivation layer 116 is used to insulate the active layer 114 and the source-drain metal layer 115 , and at the same time planarize the surface of the film layer, which is beneficial to form other devices on the passivation layer 116 .
  • the passivation layer 116 can be made of materials such as silicon nitride or silicon oxide.
  • the passivation layer 116 includes vias for exposing drains and power signal lines.
  • the ink layer 117 is located on the side of the passivation layer 116 away from the substrate.
  • the ink layer is etched at the chip position.
  • the encapsulation layer 118 is located on the side of the ink layer 117 away from the substrate.
  • the pads p are located on the side of the passivation layer 116 away from the source-drain metal layer 115 , one of the pads p is electrically connected to the drain through a via hole, and the other pad is electrically connected to the power signal line through a via hole.
  • the chip includes two electrodes, which are respectively used as the positive pole and the negative pole of the chip, and the two electrodes are electrically connected to the circuit in the driving substrate through the pad p, so that the driving substrate can drive the chip to display different brightness.
  • FIG. 7 is a flowchart of a manufacturing method of a display device provided by an embodiment of the present application.
  • the manufacturing method of the display device includes:
  • the ink color layer is prepared by methods such as spin coating, doctor blade coating, and inkjet printing.
  • wet etching may be used to etch the ink layer at the position of the light emitting chip.
  • inkjet printing PECVD, ALD, coating and other methods are used to coat one or several packaging layers on the surface of the ink layer facing away from the driving substrate.
  • both the driving substrate and the light-emitting chip can be manufactured using mature processes in the related art, which will not be repeated here.
  • the ink layer is prepared on the surface of the driving substrate, and the ink layer is provided with chip accommodating parts at intervals, and the chip accommodating parts are used to place light-emitting chips.
  • the chip accommodating part is only provided at the position where the light-emitting chip is placed, and the size of the light-emitting chip is small, so the size of the chip accommodating part is small and will not affect the consistency of the ink color.
  • This application mainly relates to the improvement of the structure of the ink layer, and solves the contradictory problem in traditional display devices that increasing the blackness of the ink will increase the contrast but at the same time reduce the light output.
  • the ink color layer only needs to ensure the performance of ink color uniformity and contrast, that is, the higher the blackness of the resin, the higher the light absorption, so the better the ink color consistency and contrast, there is no need to consider the problem of light emission, only the position where the light-emitting chip is placed.
  • the size of the position of the light-emitting chip is small, so the size of the chip accommodating part is small, which will not affect the consistency of the ink color.
  • a bonding layer is prepared between the light-emitting chip and the driving substrate, and the light-emitting chip and the driving substrate are electrically connected through the bonding layer.
  • a transparent encapsulation layer is prepared on the side of the ink layer away from the driving substrate.
  • the display device includes a driving substrate for providing a driving signal; an ink layer located on the surface of the driving substrate, wherein the ink layer is provided with chip accommodating parts at intervals; a light-emitting chip located on the On the surface of the driving substrate and at the position of the chip accommodating portion of the ink layer, the size of the light-emitting chip matches the size of the chip accommodating portion.
  • This application mainly relates to the improvement of the structure of the ink layer, and solves the contradictory problem in traditional display devices that increasing the blackness of the ink will increase the contrast but at the same time reduce the light output.
  • the ink color layer only needs to ensure the performance of ink color uniformity and contrast, that is, the higher the blackness of the resin, the higher the light absorption, so the better the ink color consistency and contrast, there is no need to consider the problem of light emission, only the position where the light-emitting chip is placed.
  • the size of the position of the light-emitting chip is small, so the size of the chip accommodating part is small, which will not affect the consistency of the ink color.
  • An ink layer is arranged between the electrodes of the driving substrate.
  • a bonding layer is prepared between the light-emitting chip and the driving substrate.
  • the bonding layer includes a matrix and a conductive material dispersed in the matrix.
  • the chip is a Mini LED chip or a Micro LED chip.
  • the display device includes a blue light chip, a green light chip and a red light chip, and the blue light chip, the green light chip and the red light chip are respectively located in the chip accommodating parts with different ink color layers.
  • An encapsulation layer is prepared on the side of the ink layer away from the driving substrate.
  • the encapsulation layer is a transparent encapsulation layer. Therefore, it is further ensured that both the ink color consistency and the light extraction rate of the display device are taken into consideration.
  • Some embodiments of the present application also provide a method for manufacturing a display device.
  • the method includes: making a driving substrate, preparing an ink layer on the surface of the driving substrate, and curing the ink layer by heating and baking;
  • the ink layer is etched at the position of the chip to obtain a chip accommodating portion, and bonds and layers are prepared in the chip accommodating portion;
  • the light-emitting chip is transferred to the driving substrate by using a mass transfer method, and the driving substrate is heated to make the The light-emitting chip and the driving substrate are electrically interconnected through the bonds and layers; a transparent encapsulation layer is prepared on the side of the ink layer away from the driving substrate.
  • the yield rate and transfer rate of MicroLED mass transfer technology are important indicators considered in microLED manufacturing.
  • the lower transfer rate prolongs the preparation time of Micro LED products; while the lower transfer yield increases the difficulty of inspection and repair.
  • the transfer of adhesive materials is an important technical direction.
  • adhesive materials such as photolytic adhesive or pyrolytic adhesive are used. After the adhesive is used to paste the Micro LED chip and transfer it to the target substrate, use light or The heat dissociates the adhesive to achieve the purpose of peeling off the chip.
  • these adhesive materials cannot be used after photolysis and pyrolysis, and the adhesive material and the transfer substrate need to be remade (the general process operation is to coat the transfer adhesive material on the transfer substrate). This increases process time and material costs.
  • an embodiment of the present application provides a display device, which includes a light-emitting chip manufactured by the following method.
  • the hole structure is etched in the temporary substrate, and the transfer adhesive is coated in the hole structure.
  • the transfer glue is excited, the structure is full of holes, and the light-emitting chip to be transferred can be picked up by the excited transfer glue.
  • the transfer glue is cooled and shrunk into the hole structure.
  • the transfer adhesive material that has cooled and shrunk into the hole structure can be excited again, so that the transfer adhesive material can be reused and the transfer cost is reduced. Because after the light-emitting chip is transferred once, there is no need to re-make the adhesive material and the transfer substrate, so the transfer efficiency of the light-emitting chip is improved.
  • FIG. 14 shows a flow chart of a method for mass transfer of light emitting chips in some embodiments.
  • the display device provided by this application using the mass transfer method of light-emitting chips includes:
  • This application performs mass transfer of light-emitting chips through temporary substrates.
  • a hole structure is etched in the temporary substrate, and a transfer adhesive is coated in the hole structure.
  • the hole structure includes at least one of circular hole structure, triangular hole structure and polygonal hole structure.
  • the number of the hole structures is at least two.
  • the shapes of the multiple hole structures contained in the temporary substrate can be the same or different.
  • the temporary substrate contains 10 hole structures, and these 10 hole structures can all be circular hole structures, or all be triangular hole structures. structure, or all polygonal hole structures. It may also be that a part of the 10 hole structures is a circular hole structure, another part is a triangular hole structure, and a part is a polygonal hole structure. As long as it has a hole structure to realize the mass transfer of light-emitting chips.
  • the transfer glue material includes lamination glue and expansion particles.
  • the lamination glue includes but not limited to silicone resin, epoxy resin and acrylic resin, and the expansion particles can be thermoplastic elastomers that reversibly expand and contract when excited by heat or light.
  • the volume of the expanded particles dispersed in the laminating adhesive expands so that the transfer adhesive material is in a foamed state as a whole, and the transfer adhesive material in the foamed state is connected to the light-emitting chip to be transferred to realize the pickup of the light-emitting chip to be transferred chip.
  • Transfer the picked-up light-emitting chip to the target driving substrate, and the transfer adhesive material cools and shrinks into the hole structure.
  • the expanded particles are cooled to make them shrink, so that the overall volume of the transfer adhesive material shrinks and shrinks into the hole structure of the substrate.
  • the transfer adhesive shrinks into the hole structure of the temporary substrate, the light-emitting chip will be peeled off, so as to achieve the peeling effect.
  • the above process completes the technological process of bonding, picking up, transferring, and releasing the light-emitting chip, so that the effect of mass transfer can be achieved.
  • the ratio of the expanded particles to the laminating glue is 0.1% to 10%. According to different adhesion requirements, the ratio of expansion particles to laminating glue can be adjusted.
  • the opening diameter of the hole structure is smaller than the minimum side length of the light-emitting chip, and the transfer glue
  • the volume after cooling shrinkage is smaller than the internal volume of the pore structure.
  • the shape of the light-emitting chip can be square, rectangular, etc. If the light-emitting chip is square, the opening diameter of the hole structure is smaller than the side length of the light-emitting chip; side length.
  • the light-emitting chip may also be circular, and if the light-emitting chip is circular, the opening diameter of the hole structure is smaller than the diameter of the light-emitting chip.
  • a pixel unit includes three sub-pixels that respectively emit red light, green light and blue light. To achieve full color display.
  • the mass transfer method of light-emitting chips provided in the embodiment of the present invention can be used for the transfer of single-color light-emitting chips, and can also be used for the transfer of three-color light-emitting chips.
  • red, blue and green light-emitting chips are transferred from their substrates to a temporary substrate.
  • one transfer substrate can be used to transfer the light-emitting chips of three colors to the target driving substrate at one time, and then the light-emitting chips and the driving substrate are electrically connected using a bonding process. Therefore, the driving substrate and the light-emitting chips of the three colors only need to be bonded once to complete the electrical connection, which improves the stability of the driving substrate and prolongs the service life of the driving substrate.
  • the picked-up light-emitting chip is transferred to the transfer substrate, and the transfer adhesive material is cooled and shrunk into the hole structure; the transfer substrate transfers the light-emitting chip to the target driving substrate.
  • the process of picking up the light-emitting chip to be transferred in S142 specifically includes the steps shown in Figure 15:
  • the substrate includes a sapphire substrate.
  • the light-emitting chip is a Mini LED chip or a Micro LED chip.
  • the present application also provides a display device, which includes a light-emitting chip prepared by using any one of the above-mentioned mass transfer methods for the light-emitting chip.
  • the display device prepared by the above mass transfer method has a shorter manufacturing process time and lower cost, and the transfer efficiency of Micro LED is higher.
  • the display device may be a MicroLED display device, and the MicroLED display device may be a mobile phone, a computer, a tablet, a TV, an electronic photo frame, and other display devices for image display, which are not limited herein.
  • the present application provides a mass transfer method of light-emitting chips, which solves the problem that the existing bulk transfer adhesive cannot be reused, and reduces the material input cost; at the same time, the patent can significantly improve the transfer efficiency, which reduces the production cost.
  • the temporary substrate 01 used for mass transfer of light-emitting chips is etched into a circular hole structure 11 .
  • the transfer glue 12 is applied to the hole structure 11 of the temporary substrate to form a state as shown in FIG. 17 .
  • the transfer glue material is composed of lamination glue and expansion particles
  • the lamination glue includes but not limited to silicone resin, epoxy resin and acrylic resin
  • the expansion particles can be a thermoplastic elastomer that reversibly expands and shrinks when excited by heat or light. When excited by heat or light, the volume of the expanded particles dispersed in the laminating adhesive expands so that the entire transfer adhesive is in a foaming state, as shown in Figure 17.
  • the temporary substrate can bond LED chips to achieve the pick-up effect, and the bonded chips can be transferred to other substrates to achieve the purpose of transfer.
  • the expanded particles are cooled to make them shrink, so that the overall volume of the transfer adhesive material shrinks and shrinks into the hole structure of the substrate, as shown in FIG. 18 .
  • the LED chip will be peeled off to achieve the peeling effect (the size of the LED chip is larger than the width of the opening of the substrate hole).
  • the mass transfer process specifically includes the following:
  • the temporary substrate coated with the above-mentioned transfer adhesive is bonded to the COW (chiponboard), as shown in Figure 19.
  • the light-emitting chip 14 is peeled off from the sapphire substrate 13 using a laser, and the LED is picked up from the temporary substrate.
  • Figure 20 shows.
  • the temporary substrate 01 carrying the LED chip and the transfer substrate 02 are bonded together, as shown in FIG.
  • the transfer adhesive material cools and shrinks into the hole structure, and the LED chip is peeled off, as shown in Figure 22.
  • the substrate is temporarily separated to complete the transfer process, as shown in Figure 23.
  • the hole opening diameter of the temporary substrate needs to be smaller than the minimum side length of the light-emitting chip, so after the transfer adhesive shrinks, the light-emitting chip and the transfer adhesive are peeled off due to the obstruction of the hole.
  • FIG. 24 is a schematic diagram of a display device after the transfer substrate transfers the LED chip to the TFT substrate.
  • the display device in FIG. 11 includes Glass glass 21 , GI buffer layer 22 , active semiconductor layer 23 , source 24 , drain 25 , G gate 26 , passivation barrier layer 27 , and light-emitting chip 28 .
  • the transfer substrate continues to transfer the LED chip to the TFT substrate (target drive substrate) to achieve the purpose of transfer.
  • the overall process of mass transfer is completed.
  • the transfer of the substrate in this application can also use the transfer method of the temporary substrate, that is, the mass transfer method of reversible transfer adhesive is used in the two transfer processes.
  • the transfer process of this method is the same as above, and will not be repeated here.
  • the hole structure may be a triangular hole structure, a rectangular hole structure, a trapezoidal hole structure, and the like. The principle is the same as above, and will not be repeated here.
  • the mass transfer method provided by this application will rapidly increase the transfer rate of mass transfer, and at the same time, the transfer adhesive can be reused, which can save a large part of material expenditure.
  • the traditional mass transfer process often requires the dissociation of the adhesive, such as photolysis or pyrolysis.
  • the chemical reaction process takes a certain amount of time, and after the photolytic adhesive is dissociated, it needs to be recoated before transferring the LED chip, which not only wastes the adhesive material but also prolongs the process time, which is an obstacle to the overall transfer efficiency of the mass transfer. It also indirectly lengthens the production cycle and cost of Micro LED products.
  • the simple, fast and reversible mass transfer method of the present application can solve the problem that the current mass transfer rate cannot meet the mass production requirements, and can also reduce the cost of adhesive material input.
  • the application can greatly improve the production efficiency of Micro LED and reduce the production cost, and reduce the cost of Micro LED.
  • the embodiment of the present application also provides a mass transfer method of light-emitting chips, including: coating a transfer adhesive in the hole structure of the temporary substrate; activating the transfer adhesive to pick up the light-emitting chips to be transferred; The light-emitting chip is transferred to the target driving substrate, and the transfer glue is cooled and shrunk into the hole structure.
  • the hole structure is etched in the temporary substrate, and the transfer adhesive is coated in the hole structure. After the transfer glue is excited, the structure is full of holes, and the light-emitting chip to be transferred can be picked up by the excited transfer glue. After the picked-up light-emitting chips are transferred to the target driving substrate, the transfer glue is cooled and shrunk into the hole structure.
  • the transfer adhesive material that has cooled and shrunk into the hole structure can be excited again, so that the transfer adhesive material can be reused and the transfer cost is reduced. Because after the light-emitting chip is transferred once, there is no need to re-make the adhesive material and the transfer substrate, so the transfer efficiency of the light-emitting chip is improved.
  • the hole structure includes at least one of a circular hole structure, a triangular hole structure and a polygonal hole structure.
  • the number of the hole structures is at least two.
  • the transfer glue material includes lamination glue and expansion particles.
  • the opening diameter of the hole structure is smaller than the width of the light emitting chip.
  • Picking up the light-emitting chip to be transferred includes: laminating the chip to be transferred with the substrate; exciting the transfer adhesive to a foamed state, and connecting the transfer adhesive to the light-emitting chip to be transferred through the transfer adhesive in the foamed state; The transferred light-emitting chip is peeled off from the substrate, and the light-emitting chip to be transferred is picked up to complete.
  • the substrate includes a sapphire substrate.
  • the light-emitting chip is a Mini LED chip or a Micro LED chip. Thus, the transfer efficiency of the light-emitting chip is ensured.
  • the present application also provides a display device including a light-emitting chip using the above-mentioned mass transfer method.
  • the manufacturing process time of the display device prepared by the above-mentioned mass transfer method is shorter, and the transfer efficiency of Micro LED is higher.
  • the cost of Micro LED products is significantly higher than that of traditional display products (LCD, OLED).
  • the cost of chips in Micro LED products accounts for more than 50% of the overall cost. If the cost of chips can be reduced, the cost of Micro LED products can be greatly reduced.
  • the vertical chip can be made below 10 microns. Taking 4inch sapphire substrate as an example, the smaller the chip size, the more chips can be produced on a sapphire substrate, and the corresponding chip cost will be lower. However, the light efficiency of the chip decreases with the reduction of the chip size, especially the efficiency of the red light chip is less than 1%.
  • the vertical chip size is too small (below 10 microns), which makes it difficult to prepare the color conversion layer, and the alignment between the color conversion layer and the chip is also a major difficulty. Therefore, how to find a color conversion technology suitable for tiny vertical chips is a key to reducing the cost of Micro LEDs.
  • embodiments of the present application further provide a method for manufacturing a light-emitting chip and a display device.
  • This application introduces ITO (indium tin oxide) electrodes into the vertical chip and prepares the quantum dot color conversion layer on the ITO.
  • ITO indium tin oxide
  • This method solves the problem of difficulty in preparing the color conversion layer for micro-sized vertical chips (below 10 microns) in traditional MicroLED display devices and the problem of low light efficiency of red vertical chips. The cost of the product.
  • the quantum dot color conversion layer is prepared on the surface of the N electrode of the MicroLED chip, and there is no need to make an additional color conversion layer substrate. This avoids problems such as the difficulty of attaching the first substrate and the second substrate in the prior art, the accuracy of attaching and optical crosstalk, and reduces the cost of MicroLED display devices because there is no need to make an additional color conversion layer substrate.
  • Fig. 27 shows a schematic diagram of a manufacturing process of a display device including a light-emitting chip provided by some embodiments, and the process includes the following steps:
  • S271 Prepare an epitaxial layer on the growth substrate, and prepare a metal bonding layer on one side of the epitaxial layer.
  • S272 Etch the epitaxial layer to form a light-emitting chip, and establish electrical interconnection between the light-emitting chip and the driving substrate through the metal bonding layer.
  • S273 Remove the growth substrate, prepare an N electrode on the other side of the epitaxial layer, and prepare a quantum dot color conversion layer on the surface of the N electrode.
  • the growth substrate may be a sapphire substrate or a silicon substrate, and an epitaxial layer is prepared on the growth substrate.
  • the epitaxial layer includes a buffer layer, an electron transport layer, a light emitting layer and a charge transport layer.
  • Preparing the epitaxial layer on the growth substrate specifically includes sequentially preparing a buffer layer, an electron transport layer, a light emitting layer and a charge transport layer on the growth substrate.
  • Preparing a metal bonding layer on one side of the epitaxial layer specifically includes preparing a metal bonding layer on the surface of the charge transport layer.
  • the epitaxial layer is etched into a light-emitting chip, and the light-emitting chip and the driving substrate are electrically interconnected through a metal bonding layer. Specifically, the light-emitting chip is etched on the epitaxial layer by using an inductively coupled plasma etching method.
  • the growth substrate is removed, and an N electrode is prepared on the other side of the epitaxial layer. Specifically, an N electrode is prepared on the surface of the electron transport layer.
  • a quantum dot color conversion layer is prepared on the surface of the N electrode. Specifically, the quantum dot color conversion layer is prepared on the surface of the N electrode by using an electrojet printing method or an inkjet printing method.
  • the size of the N electrode matches the quantum dot color conversion layer. In some embodiments, the size of the N-electrode is the same as that of the quantum dot color conversion layer.
  • the light-emitting chip in this application includes a micron light-emitting diode (MicroLED) chip.
  • the prepared N electrode has a thickness of 200 nanometers to 1000 nanometers, and the quantum dot color conversion layer has a thickness of 1 micrometer to 20 micrometers.
  • the buffer layer the electron transport layer, the light emitting layer and the charge transport layer, each layer has a thickness of 10 nanometers to 1000 nanometers.
  • Fig. 28 shows a schematic structural diagram of a light-emitting chip (Micro LED chip) provided by some embodiments. As shown in Fig. 3, the light-emitting chip includes:
  • the MicroLED chip includes a vertical chip, which sequentially includes a P electrode 2811 , a bonding layer 2812 , a charge transport layer 2813 , a light emitting layer 2814 , an electron transport layer 2815 and an N electrode 2816 from bottom to top.
  • the bonding layer 2812 includes a silicon substrate 28121 and a bonding material 28122 .
  • P electrode, bonding layer, charge transport layer, light emitting layer, electron transport layer and N electrode are deposited and connected layer by layer.
  • the P electrode, the bonding layer, the charge transport layer, the light emitting layer, the electron transport layer and the N electrode can be deposited and connected layer by layer using MOCVD technology.
  • the silicon substrate 28121 is represented as Si-Substrate, and the bonding material 28122 is represented as Bondingmetal.
  • the charge transport layer 2813 includes: P-type GaN material; the charge transport layer 2813 can be obtained by doping the GaN material with P-type.
  • the electron transport layer 2815 includes: N-type GaN material.
  • the electron transport layer 2815 can be obtained by N-type doping GaN material.
  • GaN materials such as gallium nitride and the like.
  • the P-type GaN material is represented as P-GaN, and the N-type GaN material is represented as N-GaN.
  • Light emitting layer 2814 includes quantum wells. Quantum wells are denoted as MQWs.
  • the light-emitting layer 2814 can be formed by using a multi-quantum well layer through a vapor deposition process.
  • the bonding layer can be manufactured by uniformly dispersing the conductive particles in the matrix using the current mature manufacturing process.
  • the conductive material may be conductive particles. In the natural state, the conductive particles uniformly dispersed in the matrix do not contact each other and cannot form a conductive path. Therefore, the bonding layer exhibits insulating properties in its natural state.
  • the N electrode 2816 includes: an indium tin oxide (ITO) electrode. Because the ITO electrode is transparent, it does not hinder the light output of the vertical chip, nor does it hinder the photoexcitation of the quantum dots on the ITO electrode by the vertical chip.
  • ITO indium tin oxide
  • Micro LED chips include: blue light vertical chips.
  • the quantum dot color conversion layer includes: a green quantum dot color conversion layer or a red quantum dot color conversion layer.
  • the quantum dot color conversion layer can be prepared on the surface of the N electrode by using an electrojet printing method or an inkjet printing method.
  • the left side of Figure 29 is a schematic structural diagram of a MicroLED chip including a green quantum dot color conversion layer 2921, the green quantum dot color conversion layer is represented as QD-Green, and the right side of Figure 29 is a schematic structural diagram of a MicroLED chip including a red quantum dot color conversion layer 2922, The red quantum dot color conversion layer is denoted as QD-Red.
  • the quantum dot color conversion layer is prepared on the surface of the N electrode of the MicroLED chip, and there is no need to make an additional color conversion layer substrate. It avoids problems such as the difficulty of attaching the first substrate and the second substrate in the prior art, the accuracy of attaching and optical crosstalk, and reduces the cost of the MicroLED display device because it does not need to make an additional color conversion layer substrate.
  • Figure 30 shows a schematic structural view of a display device provided by some embodiments.
  • the display device includes a blue vertical chip containing a green quantum dot color conversion layer, a blue vertical chip containing a red quantum dot color conversion layer, and a vertical chip without a color conversion layer. Blu-ray vertical chips.
  • the blue light vertical chip directly emits blue light (without color conversion layer); the blue light vertical chip emits blue light to excite the green quantum dots in the green quantum dot color conversion layer, and the green quantum dots absorb blue light and emit green light; the blue light vertical chip emits blue light to excite red quantum dots
  • the red quantum dots in the point color conversion layer, the red quantum dots absorb blue light and emit red light.
  • the existence of the blue vertical chip without the color conversion layer makes the pixel contain the blue component
  • the existence of the blue vertical chip with the green quantum dot color conversion layer makes the pixel contain the green component
  • the blue vertical chip with the red quantum dot color conversion layer makes the pixel contain red component.
  • the display device may be a vertical chip display device driven in active addressing driving mode AM.
  • the display device includes: a thin film transistor TFT substrate 3031, on which there is a MicroLED chip 3032, a buffer layer 3033 and an ITO electrode layer 3034 are deposited, and the quantum dot color conversion on the ITO electrode layer 3034 At layer 3035 an encapsulation layer 3036 and glass 3037 are prepared.
  • the produced blue light vertical chip is bonded to the TFT substrate, and then a buffer layer is deposited.
  • the buffer layer can be made of materials such as silicon oxide or silicon nitride, and finally an ITO electrode layer is deposited.
  • the TFT substrate is located at the bottom of the display device, and its size is generally adapted to the overall size of the display device, and the size of the TFT substrate is slightly smaller than that of the display device.
  • the shape of the TFT substrate is the same as the overall shape of the display device, and can be set as a rectangle or a square. When the display device is a special-shaped display device, the shape of the TFT substrate can be adaptively set to other shapes, which is not limited here. In some embodiments, the TFT substrate can also be formed by splicing multiple TFT substrate units.
  • the size of the spliced TFT substrate is compatible with the overall size of the display device, the size of the spliced TFT substrate is slightly smaller than the size of the display device, and its overall shape can also be rectangular, square or irregular, which will not be described here. limited.
  • the TFT substrate can be manufactured using the current mature thin film technology, and the TFT substrate can be made as an active driving substrate.
  • the TFT substrate is used to provide driving signals.
  • Micro LED chips are located on the surface of the TFT substrate and distributed in an array. In this application, when the size of the MicroLED chip is reduced to the pixel level, the MicroLED can be directly used as a light-emitting unit for image display.
  • the TFT takes the circuit structure of 2T1C as an example, but it is not limited thereto, and can be designed as 7T1C or other circuits.
  • Fig. 31 is a schematic circuit diagram of a display device. This application takes the circuit design of 2T1C as an example to drive the vertical chip in the display device to emit light, but it is not limited to this structure.
  • 2T1C is one of the TFT drive circuits: the gate V sel provides a voltage to turn on the T1 circuit, and the voltage of V data can be applied to the gate of T2 through T1. When the applied voltage of V data reaches the conduction condition of T2 , T2 conduction.
  • V dd can apply a voltage to the vertical chip through T2, and the vertical chip can complete light emission through current.
  • the quantum dot color conversion layer is continuously prepared, and the AM-driven full-color Micro LED display device formed by it is shown in FIG. 32 .
  • this application continues to prepare the encapsulation layer and glass as the protection of the display device, as shown in FIG. 33 .
  • the display device includes Glass glass 41, GI buffer layer 42, active semiconductor layer 43, source source 44, drain drain 45, G gate 46, passivation barrier layer 47, vertical chips 48, quantum dots Color conversion layer 49, encapsulation layer 50.
  • the encapsulation layer is located on the side of the micron light-emitting diode chip away from the TFT substrate, and its transparency is greater than 95%. Usually, it needs to cover the entire surface of the micron light-emitting diode chip, and its size and shape are adapted to the size and shape of the TFT substrate. .
  • the encapsulation layer can usually be made of an inorganic insulating material that isolates water and oxygen. When applied to a flexible display device, it can also be made of organic layers and inorganic layers alternately, which is not limited here.
  • the encapsulation layer is used for encapsulating and protecting the micron light emitting diode chip, prolonging the service life of the micron light emitting diode chip, thereby improving the stability of the display device.
  • the embodiment of the present application provides a method for preparing a light-emitting chip, including: preparing an epitaxial layer on a growth substrate, and preparing a metal bonding layer on one side of the epitaxial layer; etching the epitaxial layer to form a light-emitting chip, and the The light-emitting chip and the driving substrate are electrically interconnected through the metal bonding layer; the growth substrate is removed, an N electrode is prepared on the other side of the epitaxial layer, and a quantum dot color conversion layer is prepared on the surface of the N electrode.
  • the N electrode includes an indium tin oxide ITO electrode.
  • the bonding layer includes a silicon substrate and a bonding material.
  • the charge transport layer includes P-type GaN material; the electron transport layer includes N-type GaN material.
  • the light emitting layer includes quantum wells.
  • the light emitting chip includes: a blue light vertical chip.
  • the quantum dot color conversion layer includes: a green quantum dot color conversion layer or a red quantum dot color conversion layer.
  • the quantum dot color conversion layer is prepared on the surface of the N electrode of the light-emitting chip, and there is no need to prepare a color conversion layer substrate additionally. It avoids problems such as the difficulty of attaching the first substrate and the second substrate in the prior art, the accuracy of attaching and optical crosstalk, and reduces the cost of the MicroLED display device because it does not need to make an additional color conversion layer substrate.
  • the present application also provides a display device including the above-mentioned light-emitting chip, including: a blue vertical chip comprising a green quantum dot color conversion layer, a blue vertical chip comprising a red quantum dot color conversion layer, and a blue vertical chip not comprising a color conversion layer .
  • the display device also includes: an encapsulation layer and glass prepared at the quantum dot color conversion layer.
  • the TFT substrate of the thin film transistor is bonded with a MicroLED chip, a deposition buffer layer and an ITO electrode layer, and an encapsulation layer and glass are prepared at the quantum dot color conversion layer on the ITO electrode layer.
  • a pixel unit includes three sub-pixels that respectively emit red light, green light and blue light.
  • a pixel unit includes a blue vertical chip without a color conversion layer, a blue vertical chip with a green quantum dot color conversion layer, and a blue vertical chip with a red quantum dot color conversion layer to achieve full-color display.
  • the application continues to prepare the encapsulation layer and glass as the protection of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种显示装置,涉及显示技术领域,所述显示装置包括:显示面板、扩散板、背板、第一支撑块,其中,扩散板间隔地设于所述显示面板的背侧;背板包括背板主体以及由所述背板主体的底侧边沿向前弯折凸伸的支撑筋;所述背板主体设于所述扩散板的背侧,所述支撑筋伸置于所述扩散板和所述显示面板的下方,并支撑在所述显示面板的底端;第一支撑块,其夹设于所述支撑筋的顶面与所述扩散板的底端边沿之间;所述第一支撑块的前端与所述显示面板的背面相抵,所述第一支撑块的后端与所述背板主体的前侧面相抵。如此,优化了相关技术中显示装置的结构,去除了地侧的支撑胶框,降低了生产成本。

Description

一种显示装置
相关申请的交叉引用
在2021年10月19日提交、申请号为202122521676.3;在2021年12月21日提交、申请号为202111573242.6;在2021年12月21日提交、申请号为202111572161.4;要求在2021年12月22日提交、申请号为202111575777.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种显示装置。
背景技术
随着技术的发展和科技的进步,显示装置在生活中随处可见,如液晶显示器和电视机。以电视机为例,随着行业的发展,产品竞争愈发激烈,低成本产品自然会带来较大的竞争优势。
目前市场上的显示装置,通常在显示装置的地侧采用支撑胶框来支撑面板、扩散板及膜片,采用胶框设计必然需要开发相应的模具,从而导致生产成本的增加,降低了产品的价格竞争优势。
发明内容
本申请提供了一种显示装置,包括:显示面板;扩散板,其间隔地设于所述显示面板的背侧;背板,其包括背板主体以及由所述背板主体的底侧边沿向前弯折凸伸的支撑筋;所述背板主体设于所述扩散板的背侧,所述支撑筋伸置于所述扩散板和所述显示面板的下方,并支撑在所述显示面板的底端;第一支撑块,其夹设于所述支撑筋的顶面与所述扩散板的底端边沿之间;所述第一支撑块的前端与所述显示面板的背面相抵,所述第一支撑块的后端与所述背板主体的前侧面相抵。
附图说明
图1是本申请显示装置实施例的局部剖视图一;
图2是本申请显示装置实施例的局部剖视图二;
图3是本申请显示装置实施例的局部剖视图三;
图4是本申请显示装置实施例的局部剖视图四;
图5是本申请显示装置实施例的局部立体图一;
图6是本申请显示装置实施例的局部立体图二;
图7为本申请提供的驱动基板结构示意图;
图8为本申请提供的制备有墨色层的驱动基板结构示意图;
图9为本申请提供的制备有键合层的驱动基板结构示意图;
图10为本申请提供的芯片与驱动基板键合示意图;
图11为本申请提供的显示装置结构示意图;
图12为本申请提供的显示装置结构示意图;
图13为本申请实施例提供的显示装置的制作方法的流程图;
图14为本申请提供的发光芯片的巨量转移方法的流程图;
图15为本申请提供的拾取待转移的发光芯片的流程图;
图16为本申请提供的暂时基板示意图;
图17为本申请提供的暂时基板的孔洞结构中转移胶材发泡状态示意图;
图18为本申请提供的在暂时基板的孔洞结构中转移胶材冷却收缩状态示意图;
图19为本申请提供的巨量转移发光芯片过程示意图;
图20为本申请提供的暂时基板拾取发光芯片过程示意图;
图21为本申请提供的载有LED芯片的暂时基板与转移基板贴合示意图;
图22为本申请提供的载有LED芯片的暂时基板的孔洞结构中转移胶材冷却收缩状态示意图;
图23为本申请提供的载有LED芯片的暂时基板与LED芯片剥离示意图;
图24为本申请提供的转移基板转移LED芯片到TFT基板过程示意图;
图25为本申请提供的载有LED芯片的暂时基板与LED芯片剥离另一示意图;
图26为本申请提供的其他暂时基板的形状设计示意图;
图27为本申请提供的一种发光芯片的制备过程示意图;
图28为本申请提供的一种MicroLED芯片结构示意图;
图29为本申请提供的另一种MicroLED芯片结构示意图;
图30为本申请提供的一种显示装置结构示意图;
图31为本申请提供的显示装置的电路示意图;
图32为本申请提供的AM驱动的全彩化MicroLED显示装置结构示意图;
图33为本申请提供的另一种显示装置结构示意图。
具体实施方式
体现本申请特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本申请能够在不同的实施方式上具有各种的变化,其皆不脱离本申请的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本申请。
相关技术中,通常在显示装置的地侧采用支撑胶框来支撑面板、扩散板及膜片,采用胶框设计必然需要开发相应的模具,从而导致生产成本的增加,降低了产品的价格竞争优势。
图1是本申请显示装置实施例的局部剖视图一。图2是本申请显示装置实施例的局部剖视图二。图3是本申请显示装置实施例的局部剖视图三。
为便于表述,文中以显示装置立放使用时的状态为参考,以显示面板1面向使用者的方向为前方,背向使用者的方向为后方,以向着显示面板1中心的方向为内,背离显示面板1中心的方向为外。
参阅图1至图3所示,本实施例提供了一种显示装置,其为直下式的入光方式,显示装置包括显示面板1、扩散板2、背板3、第一支撑块4。
显示面板1为液晶显示面板,显示装置为液晶显示装置。扩散板2间隔地设于显示面板1的背侧。
背板3包括背板主体30以及由背板主体30的底侧边沿向前弯折凸伸的支撑筋31。
背板主体30为中部内凹形成有凹腔,凹腔的腔壁顶端向外水平延伸形成有环形凸缘的结构。当然,背板主体30也可以设计成平板状的复合板结构。
支撑筋31伸置于扩散板2和显示面板1的下方,而且,支撑筋31支撑在显示面板1的底端,以限制显示面板1的上下窜动,避免了显示面板1因上下窜动所造成的破裂。
支撑筋31为沿背板主体30底侧均匀间隔设置的多个,多个支撑筋31可将显示面板1支撑得更加稳固,不易出现破裂。
背板主体30设于扩散板2的背侧,扩散板2与背板主体30的前侧固定连接,例如,扩散板2与背板主 体30通过粘接方式固定。可以理解的,扩散板2的背面通过双面胶粘贴到背板主体30的前侧面。在扩散板2和背板主体30之间均匀布置有多段双面胶,从而将扩散板2和背板主体30牢固粘接,解决了扩散板2朝向显示面板1跳窜的问题。
第一支撑块4夹设于支撑筋31的顶面与扩散板2的底端边沿之间,以限制扩散板2的上下窜动。
第一支撑块4的前端与显示面板1的背面相抵,第一支撑块4的后端与背板主体30的前侧面相抵。第一支撑块4设置在显示面板1与背板主体30之间,第一支撑块4对显示面板1起到了支撑作用,避免了显示面板1底侧向后下榻所导致的折弯破裂。
在本实施例中,第一支撑块4由塑胶材料制成,如聚碳酸酯(英文简称PC),聚氯乙烯(英文简称PVC)以及聚乙烯(英文简称PE),使得第一支撑块4具有弹性。第一支撑块4的塑胶材料能够对显示面板1具有一定的缓冲作用,有效的包装显示面板1的安全。
再有,第一支撑块4为沿背板主体30底侧均匀间隔设置的多个,多个第一支撑块4可使显示面板1受力更加均匀,以对显示面板1起到稳固的支撑。
并且,多个第一支撑块4夹设于支撑筋31的顶面与扩散板2的底端边沿之间,在防止扩散板2的上下窜动同时,使得扩散板2的底端受力更加均匀。
上述显示装置,背板主体30的底侧边沿向前弯折凸伸有支撑筋31,支撑筋31能够支撑在显示面板1的底端;第一支撑块4夹设于支撑筋31的顶面与扩散板2的底端边沿之间,第一支撑块4的前端与显示面板1的背面相抵,第一支撑块4的后端与背板主体30的前侧面相抵。如此,优化了相关技术中显示装置的结构,去除了地侧的支撑胶框,降低了生产成本。
参阅图3所示,支撑筋31包括由背板主体30的底侧边沿向前凸伸并置于扩散板2下方的第一支撑部310、自第一支撑部310远离背板主体30的一端向下凸伸的第二支撑部311、以及自第二支撑部311远离第一支撑部310一端向前凸伸以与显示面板1底端相抵的第三支撑部312,其中,第一支撑部310的顶面与第一支撑块4相抵,第三支撑部312支撑在显示面板1的底端。
由上述第一支撑部310、第二支撑部311、第三支撑部312组成的支撑筋31,整体呈由内向外弯折的Z字型。如此结构的支撑筋31,构造简单实用。当然,支撑筋31还可以设计成包括L字型结构在内的其他结构,只要能起到对显示面板1底端的支撑作用即可。
由背板主体30与支撑筋31构成的背板3由塑料制成,通过一体成型的方式制造。
参阅图3所示,第二支撑部311与第三支撑部312之间设置有第二支撑块32,第二支撑块32与第二支撑部311相抵,并且,第二支撑块32夹设于第三支撑部312与显示面板1的底端之间。第二支撑块32有效起到了调节的作用,以便于调整对显示面板1底端支撑的位置,从而对显示面板1的底端加以稳定可靠的支撑。
第二支撑块32也是由塑胶材料制成,如聚碳酸酯(英文简称PC),聚氯乙烯(英文简称PVC)以及聚乙烯(英文简称PE),使得第二支撑块32具有弹性。由塑胶材料制成的第二支撑块32同样能够对显示面板1具有一定的缓冲作用,有效的包装显示面板1的安全。
参阅图2和图3所示,显示装置还包括膜片5和膜片挂耳6,其中,膜片5固定于扩散板2背向背板主体30的一侧。膜片挂耳6固定于背板主体30的内侧,并且膜片挂耳6穿设于扩散板2与膜片5之间,以将扩散板2和膜片5与背板主体30锁固。
膜片5的背面与扩散板2背向背板主体30的侧面通过粘接方式固定,例如,膜片5的背面通过双面胶粘贴到扩散板2背向背板主体30的侧面。再例如,膜片5与扩散板2之间均匀布置有多段双面胶,从而将膜片5与扩散板2牢固粘接,解决了膜片5跳窜的问题,而且还能够防止膜片5受热皱缩。
膜片挂耳6为在背板主体30内侧面均匀间隔排布的多个,以将膜片5牢牢挂稳,解决了膜片5上下窜 动易引起显示面板1磨伤的问题。在一种可能的实施方式中,膜片挂耳6也可以不均匀间隔分布,只要能够实现将膜片5挂接的功能即可,本申请对此不做限制。
背板主体30及其上的支撑筋31、膜片挂耳6由塑料制成,通过一体成型的方式制得,从而完成背板3的制造。
图4是本申请显示装置实施例的局部剖视图四。图5是本申请显示装置实施例的局部立体图一。
参阅图3并结合图4和图5所示,显示装置还包括沿背板主体30的底侧延伸的前壳7,背板3还包括由背板主体30的底侧边沿向前延伸并向下凸起的连接筋33。前壳7与连接筋33固定连接,并与背板主体30的底侧之间具有间隔。
连接筋33代替了现有相关技术中地侧胶框上的连接结构,前壳7与连接筋33固定连接,连接筋33对前壳7进行支撑,防止组装后前壳7挤压显示面板1。
连接筋33为沿背板主体30的底侧间隔设置的多个,每个连接筋33与一支撑筋31相邻设置。多个连接筋33确保了前壳7与背板3之间的连接稳固。
连接筋33呈拱形,前壳7与连接筋33的顶部固定连接。拱形结构的连接筋33具有一定的弹性,以应对前壳7与连接筋33连接处的膨胀与收缩。
前壳7包括衔接部70以及从衔接部70的前端向内凸伸的盖合部71,衔接部70与连接筋33的顶部固定连接。盖合部71与支撑筋31相抵,并向内超出支撑筋31及显示面板1的底端,以对显示面板1的底端起到保护作用。
当支撑筋31如前述由背板主体30的底侧边沿向前凸伸并置于扩散板2下方的第一支撑部310、自第一支撑部310远离背板主体30的一端向下凸伸的第二支撑部311、以及自第二支撑部311远离第一支撑部310一端向前凸伸以与显示面板1底端相抵的第三支撑部312组成时,第一支撑部310的顶面与第一支撑块4相抵,第三支撑部312支撑在显示面板1的底端。盖合部71与支撑筋31相抵,并向内超出支撑筋31及显示面板1的底端,以对显示面板1的底端起到保护作用。
显示装置还包括螺钉8,衔接部70贯穿设有通孔,连接筋33的顶部贯穿设有螺纹孔,螺钉8穿过通孔与螺纹孔螺纹连接。
当连接筋33为沿背板主体30的底侧间隔设置的多个时,每个连接筋33的顶部均贯穿设有螺纹孔,衔接部70贯穿设有与各个螺纹孔一一对应的通孔,螺钉8也为多个,每个螺钉8穿过一通孔与一螺纹孔螺纹连接。多个螺钉8确保了前壳7与连接筋33之间的连接更加稳固可靠。当然,前壳7还可以采用粘接或铆接的方式与连接筋33固定连接。
图6是本申请显示装置实施例的局部立体图二。
参阅图6所示,显示装置还包括电控模块(图中未示出),电控模块设置于背板主体30的背面。显示面板1的边缘连接有柔性电路板10,柔性电路板10从相邻的连接筋33之间穿过。柔性电路板10从相邻的连接筋33之间穿过后与电控模块电性连接。
相邻的连接筋33之间为柔性电路板10提供了容纳空间,防止了前壳7对柔性电路板10的挤压,避免了柔性电路板10的挤压损伤。
背板主体30及其上的支撑筋31、连接筋33、膜片挂耳6由塑料制成,通过一体成型的方式制得,从而完成背板3的制造。
本申请提供的显示装置,背板主体30的底侧边沿向前弯折凸伸有支撑筋31,支撑筋31能够支撑在显示面板1的底端;第一支撑块4夹设于支撑筋31的顶面与扩散板2的底端边沿之间,第一支撑块4的前端与显示面板1的背面相抵,第一支撑块4的后端与背板主体30的前侧面相抵。
背板3还包括由背板主体30的底侧边沿向前延伸并向下凸起的连接筋33。
前壳7与连接筋33固定连接,并与背板主体30的底侧之间具有间隔。
支撑筋31和连接筋33代替了现有相关技术中地侧胶框上的连接结构,如此,优化了相关技术中显示装置的结构,去除了地侧的支撑胶框,降低了生产成本,增加了显示装置,特别是液晶显示器、电视机等的价格优势。
本申请一些实施方式的显示装置,包括显示面板,该显示面板:驱动基板、墨色层及发光芯片。其中,驱动基板,用于提供驱动信号;墨色层,位于所述驱动基板的表面,其中,所述墨色层间隔设置有芯片容置部;发光芯片,位于所述驱动基板的表面且所述墨色层的芯片容置部位置处,所述发光芯片的尺寸与所述芯片容置部的尺寸相匹配。
图7为本申请实施方式的驱动基板结构示意图。图7中驱动基板包括Glass玻璃711,GI缓冲层712,active半导体层713,source源极714,drain漏极715,G栅极716,passivation阻隔层717。驱动基板用于提供驱动信号。
图8为本申请提供的制备有墨色层的驱动基板结构示意图。图8中在驱动基板的表面制备有墨色层。具体的,如图8所示,在驱动基板的阻隔层的表面制备有墨色层。并且墨色层间隔设置有芯片容置部。图8中示出了三个放置发光芯片的位置,对这三个放置发光芯片的位置的墨色层进行了刻蚀,即图8中示出了三个芯片容置部。芯片容置部用于放置发光芯片。如图8所示,驱动基板包括Glass玻璃711,GI缓冲层712,active半导体层713,source源极714,drain漏极715,G栅极716,passivation阻隔层717,墨色层818。墨色层的尺寸与驱动基板的尺寸相匹配。在一些实施例中,墨色层的尺寸与驱动基板的尺寸相同。
墨色层添加大量的黑色素,提升墨色层吸收环境光的能力,保证墨色一致性和对比度,并且可以防光串扰。
图9为本申请提供的制备有键合层的驱动基板结构示意图。所述发光芯片和所述驱动基板之间制备有键合层。具体的,在墨色层的芯片容置部制备有键合层。键合层包括基质和分散在所述基质中的导电材料。键和层的尺寸与发光芯片的尺寸相匹配。如图3所示,驱动基板包括Glass玻璃711,GI缓冲层712,active半导体层713,source源极714,drain漏极715,G栅极716,passivation阻隔层717,墨色层818,键合层919。发光芯片之间的墨色层的厚度为5微米至30微米,驱动基板的电极之间的墨色层的厚度为0.1微米至1微米。
图10为本申请提供的芯片与驱动基板键合示意图,所述芯片和所述驱动基板通过所示键合层电连接。所述芯片为MiniLED芯片或MicroLED芯片。图10中分别示出了显示装置包括蓝光芯片、红光芯片和绿光芯片。所述蓝光芯片、绿光芯片和红光芯片分别位于所述墨色层不同的刻蚀处。如图10所示,驱动基板包括Glass玻璃711,GI缓冲层712,active半导体层713,source源极714,drain漏极715,G栅极716,passivation阻隔层717,墨色层818,键合层919,蓝光芯片1020、红光芯片1021和绿光芯片1022。键和层的尺寸与发光芯片的尺寸相匹配。在一些实施例中,键和层的尺寸与发光芯片的尺寸相同。键合层的作用是发光芯片与驱动基板之间建立电气互联,具有导电作用。
图11为本申请提供的显示装置结构示意图,如图11所示,所述墨色层背离所述驱动基板的一侧制备有封装层。为了不影响芯片的出光率,所述封装层为透明封装层。如图10所示,驱动基板包括Glass玻璃711,GI缓冲层712,active半导体层713,source源极714,drain漏极715,G栅极716,passivation阻隔层717,墨色层818,键合层919,蓝光芯片1020,红光芯片1021,绿光芯片1022,封装层1123。
如图11所示,在驱动基板的电极1124之间的空隙也制备有墨色层818。这样只有LED发光芯片的上表面出光,其余光均被墨色层吸收,进一步提高了发光芯片的出光效率。
驱动基板的形状与显示装置的整体形状相同,通常情况下,可以设置为矩形或方形。
驱动基板用于向芯片提供驱动信号。在本申请中,驱动基板可以采用玻璃基材的阵列基板,阵列基板可以采用目前成熟的薄膜工艺进行制作,其具体结构可以参见现有技术中的LCD或OLED显示装置的阵列基板,在此不做赘述。
芯片位于驱动基板之上,与驱动基板电连接。在本申请中,芯片作为子像素单元进行图像显示。在具体实施时,芯片的尺寸达到微米量级或次毫米级别。
在本申请一些实施例中,芯片采用MiniLED(MiniLightEmittingDiode,简称MiniLED)芯片或MicroLED(MicroLightEmittingDiode,简称MicroLED)芯片。其中,MiniLED的尺寸大于MicroLED的尺寸。在应用于不同的应用场景,对像素级别的要求不同时,可以根据实现情况采用MiniLED或MicroLED作为子像素单元。
封装层覆盖于芯片和驱动基板的表面,用于对芯片封装保护。封装层可以采用氧化硅、氮化硅等无机材料沉积于驱动基板和芯片的表面。也可以采用无机层和有机层交替堆积的方式形成在驱动基板和芯片的表面,还可以采用水氧阻隔膜直接贴附在驱动基板和芯片的表面,在此不做限定。
图12为本申请提供的显示装置结构示意图。驱动基板包括:衬底111、栅极金属层112、栅极绝缘层113、有源层114、源漏金属层115、钝化层116、墨色层117、封装层118和焊盘p。
衬底111位于显示装置的底部,具有承载作用。衬底111的形状为矩形或方形,包括天侧、地侧、左侧和右侧。其中天侧和地侧相对,左侧和右侧相对,天侧分别与左侧的一端和右侧的一侧相连,地侧分别与左侧的另一端和右侧的另一端相连。
衬底111的尺寸与显示装置的尺寸相适应,通常情况下,衬底的尺寸与显示装置的尺寸相同。
在一些实施例中,衬底111采用玻璃等材料,在进行制作之前,需要对玻璃进行清洗、烘干等操作。在一些实施例中,衬底111还可以为形成于玻璃基板之上的缓冲层,在此不做限定。当衬底111为缓冲层时,需要在制作完驱动基板之后,将玻璃基板剥离。
栅极金属层112位于衬底111之上。如图12所示,栅极金属层112包括栅极G。栅极金属层112的图形可以采用先沉积整层金属层,再进行刻蚀形成图形的方式进行制作。栅极金属层112可以采用单层金属或多层金属进行制作,在此不做限定。
栅极绝缘层113位于栅极金属层112背离衬底111的一侧。栅极绝缘层113用于对栅极金属层112进行绝缘,从而可以在栅极绝缘层113之上再形成其它金属层。栅极绝缘层113可以为氧化硅、氮化硅或金属氧化物的无机层,并且可以包括单层或多层。
有源层114位于栅极绝缘层113背离栅极金属层112的一侧。有源层114包括通过掺杂N型杂质离子或P型杂质离子而形成的源极区域和漏极区域。在源极区域和漏极区域之间的区域是不进行掺杂的沟道区a。有源层114可以采用非晶硅或多晶硅等材料进行制作。
源漏金属层115位于有源层114背离栅极绝缘层113的一侧。如图6所示,源漏金属层115包括源极source和漏极drain。源漏金属层115的图形可以采用先沉积整层金属层,再进行刻蚀形成图形的方式进行制作。
其中,栅极G、有源层、源极source和漏极drain构成薄膜晶体管。
钝化层116位于有源层114和源漏金属层115背离栅极绝缘层113的一侧。钝化层116用于对有源层114和源漏金属层115进行绝缘,同时将膜层表面平整化,有利于在钝化层116之上再形成其它器件。钝化层116可以采用氮化硅或氧化硅等材料进行制作。钝化层116包括用于暴露漏极drain和电源信号线的过孔。
墨色层117位于钝化层116背离衬底的一侧。在芯片位置处对墨色层进行刻蚀。封装层118位于墨色层117背离衬底的一侧。
焊盘p位于钝化层116背离源漏金属层115的一侧,其中一个焊盘p通过过孔与漏极drain电连接,另一个焊盘通过过孔与电源信号线电连接。芯片包括两个电极,分别作为芯片的正极和负极,两个电极通过焊盘p与驱动基板中的线路电连接,由此驱动基板可以驱动芯片显示不同的亮度。
另一方面,本申请实施例提供一种显示装置的制作方法。图7为本申请实施例提供的显示装置的制作方法的流程图。
如图13所示,显示装置的制作方法包括:
S131、制作驱动基板,在所述驱动基板的表面制备墨色层,通过加热烘烤的方式固化所述墨色层。
其中,在驱动基板的表面,通过旋涂、刮涂、喷墨打印等方法制备墨色层。
S132、在发光芯片位置处对墨色层进行刻蚀,得到芯片容置部,在所述芯片容置部制备键和层。
其中,可以采用湿法刻蚀的方式,在发光芯片位置处对墨色层进行刻蚀。
S133、使用巨量转移方法将发光芯片转移至所述驱动基板,加热所述驱动基板,使所述发光芯片与所述驱动基板通过所述键和层建立电气互联。
S134、在所述墨色层背离所述驱动基板的一侧制备透明封装层。
其中,使用喷墨打印、PECVD、ALD、覆膜等方法在墨色层背离驱动基板的一侧表面涂覆一层或几层封装层。
其中,驱动基板和发光芯片均可以采用相关技术中成熟的工艺进行制作,在此不做赘述。
本申请中在驱动基板的表面制备墨色层,并且墨色层间隔设置有芯片容置部,芯片容置部用于放置发光芯片。一方面,由于墨色层不覆盖发光芯片,因此墨色层不会影响发光芯片的出光效率。另一方面,仅在放置发光芯片的位置处设置有芯片容置部,发光芯片位置尺寸微小,因此芯片容置部的尺寸微小,不会影响墨色的一致性。本申请主要涉及对墨色层结构的改善,解决传统显示装置中增加墨色黑度会增加对比度但同时会减弱出光的矛盾问题。墨色层只需要保证墨色均一性和对比度的性能,即树脂黑度越高,吸收光线越高,因而墨色一致性和对比度越好,不需要考虑出光问题,仅在放置发光芯片的位置处设置有芯片容置部,发光芯片位置尺寸微小,因此芯片容置部的尺寸微小,不会影响墨色的一致性。
在具体实施时,在发光芯片和驱动基板之间制备键合层,发光芯片和驱动基板通过键合层进行电连接。在墨色层背离驱动基板的一侧制备透明封装层。
本申请一些实施方式的显示装置,包括驱动基板,用于提供驱动信号;墨色层,位于所述驱动基板的表面,其中,所述墨色层间隔设置有芯片容置部;发光芯片,位于所述驱动基板的表面且所述墨色层的芯片容置部位置处,所述发光芯片的尺寸与所述芯片容置部的尺寸相匹配。本申请主要涉及对墨色层结构的改善,解决传统显示装置中增加墨色黑度会增加对比度但同时会减弱出光的矛盾问题。墨色层只需要保证墨色均一性和对比度的性能,即树脂黑度越高,吸收光线越高,因而墨色一致性和对比度越好,不需要考虑出光问题,仅在放置发光芯片的位置处设置有芯片容置部,发光芯片位置尺寸微小,因此芯片容置部的尺寸微小,不会影响墨色的一致性。
所述驱动基板的电极之间设置有墨色层。所述发光芯片和所述驱动基板之间制备有键合层。所述键合层包括基质和分散在所述基质中的导电材料。所述芯片为MiniLED芯片或MicroLED芯片。所述显示装置包括蓝光芯片、绿光芯片和红光芯片,所述蓝光芯片、绿光芯片和红光芯片分别位于所述墨色层不同的芯片容置部。所述墨色层背离所述驱动基板的一侧制备有封装层。所述封装层为透明封装层。从而进一步保证了兼顾显示装置的墨色一致性和出光率。
本申请的一些实施方式还提供了一种显示装置的制作方法,该方法包括:制作驱动基板,在所述驱动基板的表面制备墨色层,通过加热烘烤的方式固化所述墨色层;在发光芯片位置处对墨色层进行刻蚀,得到芯片容置部,在所述芯片容置部制备键和层;使用巨量转移方法将发光芯片转移至所述驱动基板, 加热所述驱动基板,使所述发光芯片与所述驱动基板通过所述键和层建立电气互联;在所述墨色层背离所述驱动基板的一侧制备透明封装层。
MicroLED巨量转移技术的良率和转移速率是microLED制造中考虑的重要指标。较低的转移速率加长了MicroLED产品的制备时程;而较低的转移良率则增加了检测和修复的难度。巨量转移工艺中,转移胶材是一个重要的技术方向,一般而言会使用光解胶或热解胶等胶材,在使用胶材黏贴MicroLED芯片并转移到目标基板后,使用光或热将胶材解离从而达到剥离芯片的目的。但这些胶材在光解和热解后无法继续使用,需要重新制作胶材和转移基板(一般工艺操作是在转移基板上涂布转移胶材)。这会提升了工艺流程时间和材料成本。
考虑上述问题,本申请实施方式提供一种显示装置,上述显示装置包括采用如下方法制作的发光芯片。本申请中在暂时基板中刻蚀孔洞结构,在孔洞结构中涂布转移胶材。转移胶材激发后布满孔洞结构中,可以通过激发后的转移胶材拾取待转移的发光芯片。将拾取到的发光芯片转移至目标驱动基板上之后,转移胶材冷却收缩至孔洞结构中。在下次转移发光芯片时可以再次激发冷却收缩至孔洞结构中的转移胶材,实现转移胶材的重复利用,降低了转移成本。因为在转移一次发光芯片之后,无需重新制作胶材和转移基板,因此提升了发光芯片的转移效率。
图14示出了一些实施例的发光芯片的巨量转移方法的流程图。
参考图14,本申请提供的采用发光芯片的巨量转移方法制作的显示装置,包括:
S141、在暂时基板的孔洞结构中涂布转移胶材;
S142、激发所述转移胶材,拾取待转移的发光芯片;
S143、将拾取到的发光芯片转移至目标驱动基板上,转移胶材冷却收缩至孔洞结构中。
本申请通过暂时基板进行发光芯片的巨量转移。在暂时基板中刻蚀孔洞结构,在孔洞结构中涂布转移胶材。其中,所述孔洞结构包括圆形孔洞结构、三角形孔洞结构和多边形孔洞结构中的至少一种。所述孔洞结构的数量为至少两个。需要说明的是,对于暂时基板包含的多个孔洞结构,其形状可以相同也可以不同,例如暂时基板包含10个孔洞结构,这10个孔洞结构可以都是圆形孔洞结构,或者都是三角形孔洞结构,再或者都是多边形孔洞结构。也可以是这10个孔洞结构中一部分为圆形孔洞结构,再一部分为三角形孔洞结构,再一部分为多边形孔洞结构。只要具备孔洞结构实现发光芯片的巨量转移即可。
通过激发所述转移胶材,拾取待转移的发光芯片。所述转移胶材包括贴合胶和膨胀粒子。贴合胶包括但不限于硅树脂、环氧树脂和丙烯酸树脂,而膨胀粒子可以为受热或光激发的可逆膨胀收缩的热塑性弹性体。
当受热或光激发时,分散在贴合胶中的膨胀粒子体积膨胀使得转移胶材整体呈发泡状态,通过发泡状态的转移胶材与待转移的发光芯片连接,实现拾取待转移的发光芯片。将拾取到的发光芯片转移至目标驱动基板上,转移胶材冷却收缩至孔洞结构中。当发光芯片转移完成后,冷却膨胀粒子使其收缩,使得转移胶材整体体积缩小并收缩至基板孔洞结构中。
转移胶材收缩到暂时基板的孔洞结构中后,发光芯片将被剥离开来,从而达到剥离效果。以上过程完成了对发光芯片的粘合拾取、转移、释放的工艺过程,从而可以达成巨量转移的效果。
膨胀粒子与贴合胶的配比为0.1%至10%。根据不同的粘合力需求可以调整膨胀粒子与贴合胶的配比。
为了保证胶材收缩到暂时基板的孔洞结构中后,发光芯片将被剥离开来,从而达到剥离效果,所述孔洞结构的开口直径小于所述发光芯片最小的边长,并且所述转移胶材冷却收缩后的体积小于所述孔洞结构内部体积。这样在转移胶材收缩后,由于孔洞结构的阻碍,使得发光芯片与转移胶材剥离开。发光芯片的形状可以是正方形、长方形等,如果发光芯片是正方形,则孔洞结构的开口直径小于所述发光芯 片的边长;如果发光芯片是长方形,则孔洞结构的开口直径小于所述发光芯片最小的边长。另外,发光芯片还可能是圆形,如果发光芯片是圆形,则孔洞结构的开口直径小于所述发光芯片的直径。
本申请中,一个像素单元包括三个分别发出红光、绿光和蓝光的三个子像素,在具体实施时,可以分别采用红色发光芯片、绿色发光芯片和蓝色发光芯片构成一个像素单元,用以实现全彩显示。
本发明实施例中提供的发光芯片的巨量转移方法可用于单色发光芯片的转移,也可用于三色发光芯片的转移。在具体实施时,红色、蓝色和绿色发光芯片从其衬底上转移至暂时基板。再将红色、蓝色和绿色的发光芯片从暂时基板上转移至转移基板上时,需要分别将暂时基板的红色发光芯片、暂时基板的蓝色发光芯片和暂时基板上的绿色发光芯片分别转移至同一块转移基板上的对应位置上。由此,便可使用一块转移基板一次性地将三种颜色的发光芯片都转移至目标驱动基板上,再使用键合工艺将发光芯片与驱动基板电连接。由此,驱动基板与三种颜色的发光芯片只需要进行一次键合处理便可完成电连接,提高了驱动基板的稳定性,延长了驱动基板的寿命。
本申请中,将拾取到的发光芯片转移至转移基板上,转移胶材冷却收缩至孔洞结构中;所述转移基板将所述发光芯片转移至目标驱动基板上。
S142中的拾取待转移的发光芯片的过程,具体包括如图15所示的步骤:
S1421、待转移芯片与衬底贴合。
S1422、激发所述转移胶材达到发泡状态,通过发泡状态的转移胶材与待转移的发光芯片连接。
S1423、使用激光将所述待转移的发光芯片从所述衬底上剥离,拾取待转移的发光芯片完成。
所述衬底包括蓝宝石衬底。所述发光芯片为MiniLED芯片或MicroLED芯片。
本申请还提供了一种显示装置,该显示装置包括使用上述任一发光芯片的巨量转移方法制备而成的发光芯片。采用上述巨量转移方法制备而成的显示装置的制备工艺时间更短,成本更低,MicroLED的转移效率更高。该显示装置可以为MicroLED显示装置,该MicroLED显示装置可以为手机、电脑、平板、电视、电子相框等用于图像显示的显示设备,在此不做限定。
本申请提供一种发光芯片的巨量转移方法,解决了现有巨量转移胶材不可重复利用的难题,降低了材料投入成本;同时本专利可显著提升转移效率,这降低了生产成本。
如图16所示为发光芯片巨量转移所使用的暂时基板01,刻蚀成圆形孔洞结构11。使用时将转移胶材12涂布到暂时基板的孔洞结构11中,形成如图17的状态。其中,转移胶材由贴合胶和膨胀粒子组成,贴合胶包括但不限于硅树脂、环氧树脂和丙烯酸树脂,而膨胀粒子可以为受热或光激发的可逆膨胀收缩的热塑性弹性体。当受热或光激发时,分散在贴合胶中的膨胀粒子体积膨胀使得转移胶材整体呈发泡状态,如图17所示。此时的暂时基板可以粘合LED芯片,达到拾取效果,粘合后的芯片可以被转移到其他基板中,达到转移目的。而当LED芯片转移完成后,冷却膨胀粒子使其收缩,使得转移胶材整体体积缩小并收缩至基板孔洞结构中,如图18所示。胶材收缩到暂时基板的孔洞中后,LED芯片将被剥离开来,从而达到剥离效果(LED芯片尺寸大于基板孔洞开口的宽度)。以上过程完成了对LED芯片的粘合拾取、转移、释放的工艺过程,从而可以达成巨量转移的效果。
本申请中,巨量转移过程具体包括如下:
首先将涂有上述转移胶材的暂时基板与COW(chiponboard)贴合,如图19所示,贴合完成后使用激光将发光芯片14从蓝宝石衬底13上剥离,暂时基板拾取LED完成,如图20所示。将载有LED芯片的暂时基板01与转移基板02贴合,如图21所示,其中,载有LED芯片的暂时基板01与转移基板02通过转移胶03贴合。转移胶材冷却收缩入孔洞结构中,LED芯片被剥离开来,如图22所示。暂时基板分离,完成转移过程,如图23所示。需要说明的是:暂时基板的孔洞开口直径需要小于发光芯片最小的边长,因此在转移胶收缩后,由于孔洞的阻碍,使得发光芯片与转移胶剥离开。
图24为转移基板转移LED芯片到TFT基板后的显示装置示意图。图11中显示装置包括Glass玻璃21,GI缓冲层22,active半导体层23,source源极24,drain漏极25,G栅极26,passivation阻隔层27、发光芯片28。
转移基板继续将LED芯片转移到TFT基板(目标驱动基板)中,达到转移目的。最终巨量转移的整体工艺完成。优选地,如图25所示,本申请中转移基板也可以使用暂时基板的转移方式,即两次转移过程均使用这种可逆转移胶材的巨量转移方式。该方式转移过程同上,此处不再进行赘述。
本申请中还可以使用其他暂时基板的形状设计,如图26所示。孔洞结构可以是三角形孔洞结构、矩形孔洞结构、梯形孔洞结构等。其原理同上,此处不再进行赘述。
本申请提供的这种巨量转移方法将快速提升巨量转移的转移速率,同时该转移胶材可重复使用,这可以节省一大部分材料开支。传统巨量转移过程往往需要胶材的解离,如光解或热解等。该化学反应过程需要一定时间,且光解胶被解离后需要重新涂布再去转移LED芯片,不仅浪费胶材又延长了工艺时间,这对于巨量转移整体的转移效率是一种阻碍,也间接加长了MicroLED产品的生产周期和成本。本申请的这种简洁、快速、可逆的巨量转移方法可以解决当前巨量转移速率达不到量产要求的问题,也可以减少胶材投入成本。本申请可以大大提升MicroLED生产效率并降低生产成本,降低MicroLED成本。
本申请实施方式还提供了一种发光芯片的巨量转移方法,包括:在暂时基板的孔洞结构中涂布转移胶材;激发所述转移胶材,拾取待转移的发光芯片;将拾取到的发光芯片转移至目标驱动基板上,转移胶材冷却收缩至孔洞结构中。本申请中在暂时基板中刻蚀孔洞结构,在孔洞结构中涂布转移胶材。转移胶材激发后布满孔洞结构中,可以通过激发后的转移胶材拾取待转移的发光芯片。将拾取到的发光芯片转移至目标驱动基板上之后,转移胶材冷却收缩至孔洞结构中。在下次转移发光芯片时可以再次激发冷却收缩至孔洞结构中的转移胶材,实现转移胶材的重复利用,降低了转移成本。因为在转移一次发光芯片之后,无需重新制作胶材和转移基板,因此提升了发光芯片的转移效率。
在本申请一些实施例中,所述孔洞结构包括圆形孔洞结构、三角形孔洞结构和多边形孔洞结构中的至少一种。所述孔洞结构的数量为至少两个。所述转移胶材包括贴合胶和膨胀粒子。所述孔洞结构的开口直径小于所述发光芯片的宽度。将拾取到的发光芯片转移至转移基板上,转移胶材冷却收缩至孔洞结构中;所述转移基板将所述发光芯片转移至目标驱动基板上。拾取待转移的发光芯片包括:待转移芯片与衬底贴合;激发所述转移胶材达到发泡状态,通过发泡状态的转移胶材与待转移的发光芯片连接;使用激光将所述待转移的发光芯片从所述衬底上剥离,拾取待转移的发光芯片完成。所述衬底包括蓝宝石衬底。所述发光芯片为MiniLED芯片或MicroLED芯片。从而保证了发光芯片的转移效率。
本申请还提供一种包括使用上述巨量转移方法的发光芯片的显示装置,采用上述巨量转移方法制备而成的显示装置的制备工艺时间更短,MicroLED的转移效率更高。
MicroLED产品成本显著高于传统显示产品(LCD、OLED)。MicroLED产品中芯片成本占整体成本的50%以上,如果能降低芯片成本,则可以大幅降低MicroLED产品的成本。而垂直芯片可以做到10微米以下,已4inch蓝宝石衬底为例,芯片尺寸越小,一片蓝宝石衬底产出的芯片越多,相应的芯片成本就越低。但芯片的光效随着芯片尺寸的降低而减小,尤其是红光芯片效率不到1%。而如果使用蓝光芯片+色转换技术,则因为垂直芯片尺寸太小(10微米以下),导致色转换层制备困难,且色转换层与芯片的对位也是一大困难。因此,如何找到适用于微小的垂直芯片的色转换技术是一个降低MicroLED成本的关键。
考虑上述问题,本申请实施方式还提供一种发光芯片的制备方法及显示装置。本申请在垂直芯片中引入ITO(氧化铟锡)电极并在ITO上制备量子点色转换层。该方法解决了传统MicroLED显示器件中微小尺寸垂直芯片(10微米以下)制备色转换层难度大的问题和红光垂直芯片光效低的问题,同时也 避免了使用色转换基板,可以显著降低MicroLED产品的成本。
在实际使用过程中,在MicroLED芯片的N电极的表面制备量子点色转换层,无需另外制作色转换层基板。避免了现有技术中第一基板和第二基板对贴技术难度较大,对贴精度及光串扰等问题,并且因为不需要另外制作色转换层基板,降低了MicroLED显示器件的成本。
图27示出了一些实施例提供的一种包括发光芯片的显示装置的制备过程示意图,该过程包括以下步骤:
S271:在生长基板上制备外延层,在所述外延层的一侧制备金属键合层。
S272:将所述外延层刻蚀出发光芯片,所述发光芯片与驱动基板通过所述金属键合层建立电气互联。
S273:去除所述生长基板,在所述外延层的另一侧制备N电极,在所述N电极的表面制备量子点色转换层。
生长基板可以是蓝宝石衬底基板或者硅基底基板,在生长基板上制备外延层。其中,外延层包括缓冲层、电子传输层、发光层和电荷传输层。在生长基板上制备外延层,具体包括,在生长基板上依次制备缓冲层、电子传输层、发光层和电荷传输层。在外延层的一侧制备金属键合层,具体包括,在电荷传输层的表面制备金属键合层。
将外延层刻蚀出发光芯片,发光芯片与驱动基板通过金属键合层建立电气互联。具体的,利用电感耦合等离子刻蚀方法,在外延层刻蚀出发光芯片。去除生长基板,在外延层的另一侧制备N电极。具体的,在电子传输层的表面制备N电极。
在N电极的表面制备量子点色转换层。具体的,利用电喷印方法或喷墨打印方法,在N电极的表面制备量子点色转换层。N电极的尺寸与量子点色转换层相匹配。在一些实施例中,N电极的尺寸与量子点色转换层相同。
本申请中的发光芯片包括微米发光二极管MicroLED芯片。制备的N电极的厚度为200纳米至1000纳米,量子点色转换层的厚度为1微米至20微米。缓冲层、电子传输层、发光层和电荷传输层中,各层的厚度为10纳米至1000纳米。
图28示出了一些实施例提供的一种发光芯片(微米发光二极管MicroLED芯片)结构示意图,如图3所示,发光芯片依次包括:
P电极2811、键合层2812、电荷传输层2813、发光层2814、电子传输层2815和N电极2816;所述P电极、键合层、电荷传输层、发光层、电子传输层和N电极层层沉积连接;其中,N电极2816的表面制备有量子点色转换层2817。
如图28所示,MicroLED芯片包括垂直芯片,其自下而上依次包括P电极2811、键合层2812、电荷传输层2813、发光层2814、电子传输层2815和N电极2816。其中,键合层2812包括硅基底28121和键合材料28122。P电极、键合层、电荷传输层、发光层、电子传输层和N电极层层沉积连接。其中,P电极、键合层、电荷传输层、发光层、电子传输层和N电极可以使用MOCVD技术层层沉积连接。硅基底28121表示为Si-Substrate,键合材料28122表示为Bondingmetal。电荷传输层2813包括:P型GaN材料;电荷传输层2813可以将GaN材料进行P型掺杂得到。电子传输层2815包括:N型GaN材料。电子传输层2815可以将GaN材料进行N型掺杂得到。GaN材料例如氮化镓等。P型GaN材料表示为P-GaN,N型GaN材料表示为N-GaN。发光层2814包括量子阱。量子阱表示为MQWs。发光层2814可以采用多量子阱层,通过气相沉积工艺形成。键合层可以使用目前成熟的制作工艺将导电粒子均匀分散在基质中进行制作。优选地,导电材料可以是导电粒子。在自然状态下,均匀分散在基质中的各个导电粒子之间不相互接触,无法形成导电通路。因此,键合层在自然状态下呈现绝缘特性。
本申请中,N电极2816包括:氧化铟锡ITO电极。因为ITO电极是透明的,这既不阻碍垂直芯片的出光,也不妨碍垂直芯片对ITO电极上量子点的光激发。
本申请中,MicroLED芯片包括:蓝光垂直芯片。为了实现像素点包含三原色分量。量子点色转换层包括:绿色量子点色转换层或红色量子点色转换层。其中,可以通利用电喷印方法或喷墨打印方法在N电极的表面制备量子点色转换层。
图29左侧为包含绿色量子点色转换层2921的MicroLED芯片结构示意图,绿色量子点色转换层表示为QD-Green,图29右侧为包含红色量子点色转换层2922的MicroLED芯片结构示意图,红色量子点色转换层表示为QD-Red。
本申请中在MicroLED芯片的N电极的表面制备量子点色转换层,无需另外制作色转换层基板。避免了现有技术中第一基板和第二基板对贴技术难度较大,对贴精度及光串扰等问题,并且因为不需要另外制作色转换层基板,降低了MicroLED显示器件的成本。
图30示出了一些实施例提供的一种显示装置结构示意图,显示装置包括包含绿色量子点色转换层的蓝光垂直芯片、包含红色量子点色转换层的蓝光垂直芯片和未包含色转换层的蓝光垂直芯片。蓝光垂直芯片直接发射蓝光(未含色转换层);蓝光垂直芯片发出蓝光激发绿色量子点色转换层中的绿色量子点,绿色量子点吸收蓝光并发射绿光;蓝光垂直芯片发出蓝光激发红色量子点色转换层中的红色量子点,红色量子点吸收蓝光并发射红光。未包含色转换层的蓝光垂直芯片的存在使得像素点包含蓝色分量,包含绿色量子点色转换层的蓝光垂直芯片的存在使得像素点包含绿色分量,包含红色量子点色转换层的蓝光垂直芯片的存在使得像素点包含红色分量。
本申请中,显示装置可以是有源选址驱动模式AM驱动的垂直芯片显示装置。如图30所示,显示装置包括:薄膜晶体管TFT基板3031,所述TFT基板3031上键和有MicroLED芯片3032,沉积缓冲层3033和ITO电极层3034,在ITO电极层3034上的量子点色转换层3035处制备了封装层3036和玻璃3037。本申请中,首先将制作好的蓝光垂直芯片键合到TFT基板上,再沉积缓冲层,缓冲层可以采用氧化硅或氮化硅等材料,最后沉积ITO电极层。
TFT基板位于显示装置的底部,通常情况下其尺寸与显示装置的整体尺寸相适应,TFT基板的尺寸略小于显示装置的尺寸。TFT基板的形状与显示装置的整体形状相同,可以设置为矩形或方形。当显示装置为异形显示装置时,TFT基板的形状可以适应性设置为其它形状,在此不做限定。在一些实施例中,TFT基板还可以由多块TFT基板单元拼接而成。其中,拼接而成的TFT基板的尺寸与显示装置的整体尺寸相适应,拼接而成的TFT基板的尺寸略小于显示装置的尺寸,其总体形状也可以为矩形、方形或异形,在此不做限定。TFT基板可以采用目前成熟的薄膜工艺进行制作,TFT基板可以制作为有源驱动基板。TFT基板用于提供驱动信号。MicroLED芯片位于TFT基板的表面,呈阵列分布。在本申请中当MicroLED芯片的尺寸缩小到像素级别,可以直接采用MicroLED作为发光单元直接用于图像显示。
本申请中TFT以2T1C的电路结构为例,但不限于此,可以为7T1C或其他电路设计。图31为显示装置的电路示意图。本申请以2T1C的电路设计为例驱动显示装置中的垂直芯片发光,但不限于此结构。2T1C是其中一种TFT驱动电路:栅极V sel给电压使得T1电路导通,V data的电压就可以通过T1施加到T2的栅极上,当V data的施加电压达到T2的导通条件后,T2导通。V dd即可通过T2施加电压给垂直芯片,垂直芯片通过电流即可完成发光。在垂直芯片的ITO电极上继续制备量子点色转换层,其形成的AM驱动的全彩化MicroLED显示装置如图32所示。在完成色转换层基础上,本申请中继续制备了封装层和玻璃,作为显示装置的保护,如图33所示。图32和图33中,显示装置包括Glass玻璃41,GI缓冲层42,active半导体层43,source源极44,drain漏极45,G栅极46,passivation阻隔层47, 垂直芯片48,量子点色转换层49,封装层50。图33中,封装层位于微米发光二极管芯片背离TFT基板的一侧,其透明度大于95%,通常情况下需要覆盖全部微米发光二极管芯片的表面,其尺寸和形状与TFT基板的尺寸和形状相适应。封装层通常可以采用隔绝水氧的无机绝缘材料进行制作,当应用于柔性显示装置时,也可以采用有机层和无机层交替制作,在此不做限定。封装层用于封装保护微米发光二极管芯片,延长微米发光二极管芯片的寿命,以此提高显示装置的稳定性。
本申请实施方式提供了一种发光芯片的制备方法,包括:在生长基板上制备外延层,在所述外延层的一侧制备金属键合层;将所述外延层刻蚀出发光芯片,所述发光芯片与驱动基板通过所述金属键合层建立电气互联;去除所述生长基板,在所述外延层的另一侧制备N电极,在所述N电极的表面制备量子点色转换层。N电极包括氧化铟锡ITO电极。键合层包括硅基底和键合材料。电荷传输层包括P型GaN材料;电子传输层包括N型GaN材料。发光层包括量子阱。所述发光芯片包括:蓝光垂直芯片。量子点色转换层包括:绿色量子点色转换层或红色量子点色转换层。本申请中在发光芯片的N电极的表面制备量子点色转换层,无需另外制作色转换层基板。避免了现有技术中第一基板和第二基板对贴技术难度较大,对贴精度及光串扰等问题,并且因为不需要另外制作色转换层基板,降低了MicroLED显示器件的成本。
本申请还提供了一种包括上述发光芯片的显示装置,包括:包含绿色量子点色转换层的蓝光垂直芯片、包含红色量子点色转换层的蓝光垂直芯片和未包含色转换层的蓝光垂直芯片。所述显示装置还包括:在量子点色转换层处制备的封装层和玻璃。薄膜晶体管TFT基板,TFT基板上键合有MicroLED芯片、沉积缓冲层和ITO电极层,在ITO电极层上的量子点色转换层处制备了封装层和玻璃。一个像素单元包括三个分别发出红光、绿光和蓝光的三个子像素。在具体实施时,一个像素单元包括未包含色转换层的蓝光垂直芯片、包含绿色量子点色转换层的蓝光垂直芯片和包含红色量子点色转换层的蓝光垂直芯片,用以实现全彩显示。在完成色转换层基础上,本申请中继续制备了封装层和玻璃,作为显示装置的保护。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (21)

  1. 一种显示装置,包括:
    显示面板;
    扩散板,其间隔地设于所述显示面板的背侧;
    背板,其包括背板主体以及由所述背板主体的底侧边沿向前弯折凸伸的支撑筋;所述背板主体设于所述扩散板的背侧,所述支撑筋伸置于所述扩散板和所述显示面板的下方,并支撑在所述显示面板的底端;
    第一支撑块,其夹设于所述支撑筋的顶面与所述扩散板的底端边沿之间;
    所述第一支撑块的前端与所述显示面板的背面相抵,所述第一支撑块的后端与所述背板主体的前侧面相抵。
  2. 根据权利要求1所述的显示装置,所述支撑筋包括由所述背板主体的底侧边沿向前凸伸并置于所述扩散板下方的第一支撑部、自所述第一支撑部远离所述背板主体的一端向下凸伸的第二支撑部、以及自所述第二支撑部远离所述第一支撑部的一端向前凸伸以与所述显示面板底端相抵的第三支撑部,其中,所述第一支撑部的顶面与所述第一支撑块相抵,所述第三支撑部支撑在所述显示面板的底端。
  3. 根据权利要求2所述的显示装置,所述第二支撑部与所述第三支撑部之间设置有第二支撑块,所述第二支撑块与所述第二支撑部相抵,并且,所述第二支撑块夹设于所述第三支撑部与所述显示面板的底端之间。
  4. 根据权利要求1所述的显示装置,还包括:
    膜片,其固定于所述扩散板背向所述背板主体的一侧;
    膜片挂耳,其固定于所述背板主体的内侧,且穿设于所述扩散板与所述膜片之间,以将所述扩散板和所述膜片与所述背板主体锁固。
  5. 根据权利要求1所述的显示装置,所述显示装置还包括沿所述背板主体的底侧延伸的前壳,所述背板还包括由所述背板主体的底侧边沿向前延伸并向下凸起的连接筋;所述前壳与所述连接筋固定连接,并与所述背板主体的底侧之间具有间隔。
  6. 根据权利要求5所述的显示装置,所述连接筋为沿所述背板主体的底侧间隔设置的多个,每个所述连接筋与一所述支撑筋相邻设置。
  7. 根据权利要求6所述的显示装置,所述显示面板的边缘连接有柔性电路板,所述柔性电路板从相邻的所述连接筋之间穿过。
  8. 根据权利要求5所述的显示装置,所述连接筋呈拱形,所述前壳与所述连接筋的顶部固定连接。
  9. 根据权利要求8所述的显示装置,所述前壳包括衔接部以及从所述衔接部的前端向内凸伸的盖合部,所述衔接部与所述连接筋的顶部固定连接;所述盖合部与所述支撑筋相抵,并向内超出所述支撑筋及所述显示面板的底端。
  10. 根据权利要求9所述的显示装置,所述显示装置还包括螺钉,所述衔接部贯穿设有通孔,所述连接筋的顶部贯穿设有螺纹孔,所述螺钉穿过所述通孔与所述螺纹孔螺纹连接。
  11. 根据权利要求1所述的显示装置,所述显示面板包括:
    驱动基板,用于提供驱动信号;
    墨色层,位于所述驱动基板的表面,其中,所述墨色层间隔设置有芯片容置部;
    发光芯片,位于所述驱动基板的表面且所述墨色层的芯片容置部位置处,所述发光芯片的尺寸与所述芯片容置部的尺寸相匹配。
  12. 根据权利要求11所述的显示装置,在所述驱动基板的电极之间制备有墨色层。
  13. 根据权利要求11所述的显示装置,所述发光芯片和所述驱动基板之间制备有键合层。
  14. 根据权利要求13所述的显示装置,所述键和层的尺寸与所述发光芯片的尺寸相匹配。
  15. 根据权利要求13所述的显示装置,所述键合层包括基质和分散在所述基质中的导电材料。
  16. 根据权利要求11所述的显示装置,所述墨色层的尺寸与所述驱动基板的尺寸相匹配。
  17. 根据权利要求12所述的显示装置,所述发光芯片之间的墨色层的厚度为5微米至30微米,所述驱动基板的电极之间的墨色层的厚度为0.1微米至1微米。
  18. 根据权利要求11所述的显示装置,所述显示装置包括蓝光芯片、绿光芯片和红光芯片,所述蓝光芯片、绿光芯片和红光芯片分别位于所述墨色层不同的刻蚀处。
  19. 根据权利要求11所述的显示装置,所述墨色层背离所述驱动基板的一侧制备有封装层。
  20. 根据权利要求1所述的显示装置,所述显示面板包括发光芯片,所述发光芯片采用如下方法制作,包括:
    在生长基板上制备外延层,在所述外延层的一侧制备金属键合层;
    将所述外延层刻蚀出发光芯片,所述发光芯片与驱动基板通过所述金属键合层建立电气互联;
    去除所述生长基板,在所述外延层的另一侧制备N电极,在所述N电极的表面制备量子点色转换层。
  21. 根据权利要求1所述的显示装置,所述显示面板包括使用如下制备方法制备而成的发光芯片:
    在暂时基板的孔洞结构中涂布转移胶材;
    激发所述转移胶材,拾取待转移的发光芯片;
    将拾取到的发光芯片转移至目标驱动基板上,转移胶材冷却收缩至孔洞结构中。
PCT/CN2022/123086 2021-10-19 2022-09-30 一种显示装置 WO2023066013A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202122521676.3 2021-10-19
CN202122521676.3U CN216119393U (zh) 2021-10-19 2021-10-19 显示装置
CN202111573242.6A CN116314477A (zh) 2021-12-21 2021-12-21 一种发光芯片的巨量转移方法及显示装置
CN202111573242.6 2021-12-21
CN202111572161.4A CN116314476A (zh) 2021-12-21 2021-12-21 一种发光芯片的制备方法及显示装置
CN202111572161.4 2021-12-21
CN202111575777.7 2021-12-22
CN202111575777.7A CN116344702A (zh) 2021-12-22 2021-12-22 一种显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2023066013A1 true WO2023066013A1 (zh) 2023-04-27

Family

ID=86057921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123086 WO2023066013A1 (zh) 2021-10-19 2022-09-30 一种显示装置

Country Status (1)

Country Link
WO (1) WO2023066013A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255026A1 (en) * 2010-04-14 2011-10-20 Au Optronics Corporation Backlight module and liquid crystal display module
CN106772775A (zh) * 2017-02-08 2017-05-31 京东方科技集团股份有限公司 一种导光板、背光模组和液晶显示装置
CN209183154U (zh) * 2019-01-17 2019-07-30 京东方科技集团股份有限公司 显示面板和显示装置
CN211375249U (zh) * 2020-03-03 2020-08-28 昆山龙腾光电股份有限公司 一种显示装置
CN216119393U (zh) * 2021-10-19 2022-03-22 海信视像科技股份有限公司 显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255026A1 (en) * 2010-04-14 2011-10-20 Au Optronics Corporation Backlight module and liquid crystal display module
CN106772775A (zh) * 2017-02-08 2017-05-31 京东方科技集团股份有限公司 一种导光板、背光模组和液晶显示装置
CN209183154U (zh) * 2019-01-17 2019-07-30 京东方科技集团股份有限公司 显示面板和显示装置
CN211375249U (zh) * 2020-03-03 2020-08-28 昆山龙腾光电股份有限公司 一种显示装置
CN216119393U (zh) * 2021-10-19 2022-03-22 海信视像科技股份有限公司 显示装置

Similar Documents

Publication Publication Date Title
US11424227B2 (en) Display panel, display module, and display device
US10797040B2 (en) Method of manufacturing display module using LED
US11818945B2 (en) Transparent organic light emitting display apparatus and method of manufacturing the same
CN102496683B (zh) 可挠式有机发光装置及其制作方法
US10700103B2 (en) Array substrate with inorganic light-emitting diode and display device with inorganic light-emitting diode
WO2018149158A1 (zh) Oled显示面板及其制备方法、显示装置
WO2019223567A1 (zh) 显示基板、显示装置以及显示基板的制作方法
US9484332B2 (en) Micro solar cell powered micro LED display
US20200111390A1 (en) Stretchable display panel and device and manufacturing method of the same
US20220367771A1 (en) Display device using micro led, and manufacturing method therefor
US11362075B2 (en) Micro light emitting diode display substrate, device and fabrication method thereof
KR20160087264A (ko) 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
EP4064359A1 (en) Display apparatus using light-emitting device
US11616107B2 (en) Display substrate and manufacturing method thereof, display device
KR20180102424A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
CN100435380C (zh) 带支撑板的有机电致发光器件及其制作方法
CN112652617A (zh) 一种Micro-LED新型显示器件的制备方法
JP2023123546A (ja) Ledの転写方法及びそれを用いた表示装置の製造方法
WO2023066013A1 (zh) 一种显示装置
TW201024836A (en) Display drivers
US20230363202A1 (en) Display substrate, display panel and display device
US20240038940A1 (en) Transfer substrate used in manufacture of display apparatus, display apparatus, and manufacturing method for display apparatus
CN203456465U (zh) 电致发光装置
CN110993761A (zh) 有源矩阵彩色显示器件
US11843024B2 (en) Micro LED display device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882624

Country of ref document: EP

Kind code of ref document: A1