WO2021107718A1 - 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법 - Google Patents

온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법 Download PDF

Info

Publication number
WO2021107718A1
WO2021107718A1 PCT/KR2020/017186 KR2020017186W WO2021107718A1 WO 2021107718 A1 WO2021107718 A1 WO 2021107718A1 KR 2020017186 W KR2020017186 W KR 2020017186W WO 2021107718 A1 WO2021107718 A1 WO 2021107718A1
Authority
WO
WIPO (PCT)
Prior art keywords
warm
elastic
microchannel
architecture
elastic metal
Prior art date
Application number
PCT/KR2020/017186
Other languages
English (en)
French (fr)
Inventor
박재영
임태홍
이민수
김호형
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190155127A external-priority patent/KR102366949B1/ko
Priority claimed from KR1020200129785A external-priority patent/KR102415426B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to EP20891491.1A priority Critical patent/EP4067067A4/en
Priority to US17/780,854 priority patent/US20230001666A1/en
Publication of WO2021107718A1 publication Critical patent/WO2021107718A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/08Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of metal, e.g. sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2002/005Appearance of panels

Definitions

  • the present invention relates to a metal laminate having a feeling of warmth and elasticity, and more particularly, by simulating the microstructure and organizational characteristics of a natural object (wood), the metal material is architected to have a structure that gives a human-friendly feeling of warmth and elasticity (architecturing) It relates to a feeling of warmth and elasticity produced by metal architectural plate material.
  • a new material refers to a material having new characteristics that do not exist until now or supplement the disadvantages of the existing material and enhance the strength of the material with manufacturing technology and processing technology developed based on the existing material or the new material.
  • Such a metal material has the advantage of excellent durability while giving a luxurious aesthetic and glossiness to the article.
  • the conventional metal material is heavier than aluminum, plastic, and fiber glass reinforced plastic (FRP) due to its high specific weight, and has a tactile feel that gives a sense of stability to people like foam, cork, rubber, wood and leather. It had the disadvantage of not being able to bring it and giving it a cold touch.
  • the technical problem to be achieved by the present invention is to solve the problem that the conventional metal material does not give a sense of warmth and elasticity, which gives a sense of stability to people, despite having various advantages such as high ductility, strength, and excellent energy absorption, and
  • An object of the present invention is to provide a warm and elastic metal architecture plate material capable of realizing not cold metal and soft touch, and a method for manufacturing the same.
  • the technical task to be achieved by the present invention is to mimic the microstructure and organizational characteristics of natural objects, especially wood, to provide a warm and elastic metal architecture plate material that is structurally stable, durable, and has a sense of stability to the touch, and a method for manufacturing the same will provide
  • an embodiment of the present invention provides a sense of warmth and resilience metal architectural plate material.
  • the warm and elastic metal architecture plate material substrate microchannels formed at regular intervals; and micro-channels with a sense of warmth and elasticity formed to protrude between the micro-channels of the base. It may be characterized in that the channels are stacked to form warm and elastic channels, which are spaces for controlling thermal conductivity and elastic modulus.
  • the thickness of the warm and elastic metal architectural material may be characterized in that it is 3 ⁇ m to 100 ⁇ m.
  • a ratio of the width of the warm and elastic microchannel to the width of the base microchannel may be 1:10 to 10:1.
  • the warm and elastic microchannels may include a pair of inclined portions protruding from one end of the base microchannel at a predetermined contact angle; and a floor connecting the other ends of the ends connected to the base microchannel of the pair of inclined portions to each other; it may be characterized in that it is configured to include.
  • the substrate microchannel may have a width of 5 ⁇ m to 5000 ⁇ m.
  • the width of the floor may be 1 ⁇ m to 4000 ⁇ m.
  • the contact angle may be an angle formed by the inclined portion with the floor or the base microchannel, and may be 0° to 90°.
  • the warm and elastic metal architecture plate is a bottom surface of the base microchannel of the warm and elastic metal architecture material in which the tops of the warm and elastic microchannels of one of the warm and elastic metal architecture materials are different. It may be characterized in that it is laminated to form the warmth and elasticity channel by being laminated so as to be in contact with the .
  • a first warm and elastic metal architecture material in which a ratio of the width of the warm and elastic microchannel to the width of the base microchannel is 1:2n-1 (n is an integer greater than or equal to 1), and the warm and elastic microchannel
  • the ratio of the width of the substrate microchannel to the width of the base microchannel may be 1:2n (n is an integer greater than or equal to 1), wherein the second warm and elastic metal architecture materials are alternately stacked and configured.
  • another embodiment of the present invention provides a sense of warmth and elasticity of the metal architecture plate material.
  • the warm and elastic metal architecture plate material is a space for thermal conductivity and elasticity control by stacking plate-shaped warm and elastic metal architecture materials having a micro thickness. configured to form sensory channels,
  • the warm and elastic metal architecture material may include a plurality of substrate microchannels formed at regular intervals; and a plurality of first warm and elastic microchannels formed to protrude between the base microchannels.
  • the first warm and elastic microchannel includes a second warm and elastic microchannel, which is formed to protrude on the first warm and elastic microchannel and has a smaller width than the first warm and elastic microchannel. It is characterized in that it is configured in the shape of a step,
  • the warm and elastic metal architecture materials may be characterized in that the first warm and elastic microchannels are spaced apart from each other and stacked so as not to overlap each other.
  • the warm and elastic metal architecture material is formed on the second warm and elastic microchannel in the same manner as when the second warm and elastic microchannel is formed to protrude on the first warm and elastic microchannel.
  • it may be characterized in that a plurality of warm and elastic microchannels are sequentially and repeatedly formed to protrude in a step shape.
  • the first warm feeling and elastic feeling microchannel The first warm feeling and elastic feeling microchannel
  • the pair of first slopes may be configured to include a first crest connecting the other ends of the ends connected to the base microchannel to each other.
  • the second floor of one of the warm and elastic metal architecture materials is laminated to contact the bottom surface of the base microchannel of the other warm and elastic metal architecture material to form the warm and elastic channels. It may be characterized by being laminated.
  • the thickness of the warm and elastic metal architectural material may be characterized in that it is 10 ⁇ m to 100 ⁇ m.
  • the warmth and elasticity of the present invention having the configuration described above, the metal architectural plate material, the thermal conductivity may be one characterized in that 0.05 W / m ⁇ K to 10 W / m ⁇ K.
  • the elastic modulus may be characterized in that 0.1 Mpa to 10 GPa.
  • another embodiment of the present invention provides a method for manufacturing a sense of warmth and resilience metal architecture ring plate.
  • the method for manufacturing the warm and elastic metal architecture plate includes base microchannels formed at regular intervals and warm and elastic microchannels formed to protrude between the base microchannels. Manufacturing a plate-like warmth and elasticity metal architecture materials having a micro-thickness; laminating the warm and elastic metal architecture materials so that the base microchannels and the warm and elastic microchannels form warm and elastic channels that are spaces for thermal conductivity control; and press-molding and attaching the laminate of the warm and elastic metal architecture materials.
  • the warm and elastic microchannel may include a pair of inclined portions protruding from one end of the base microchannel at a predetermined contact angle; and a floor connecting the other ends of the ends of the pair of inclined portions connected to the base microchannel to each other; it may be characterized in that it is manufactured to include.
  • the step of press-molding and attaching the laminate of the warm and elastic metal architecture material may be characterized in that it is performed using a spacer having a target thickness of the warm and elastic metal architecture material.
  • the present invention since it has a regular internal pore structure by precisely mimicking the microstructure and organizational characteristics of natural materials such as foam, cork, rubber, wood and leather, it is structurally stable and , it is possible to control the thermal conductivity and elastic modulus by controlling the tissue structure, so that it is possible to provide a warm and elastic metal architecture plate material capable of realizing a human-friendly sense of warmth and elasticity like a natural product, and a method for manufacturing the same. .
  • FIG. 1 is a view showing a comparison of the microstructure and structure (a) of a natural object (wood), which is a motif of the structural features of the metal plate of the present invention, and a cross-sectional photograph (b) of the metal plate of the present invention to be described later.
  • FIG. 2 is a schematic diagram schematically showing the structure of the warm and elastic metal architectural plate 1 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram schematically showing the structure of the warm and elastic metal architecture material 10 according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram schematically showing a feeling of warmth and elasticity of the metal architectural plate 1 according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram schematically showing the structure of a metal plate in which warm and elastic microchannels are stacked in parallel to each other.
  • FIG. 6 is a schematic diagram schematically showing the structure of a warm and elastic metal architecture plate material 2 according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram schematically showing the structure of the warm and elastic metal architecture material 20 of the present invention.
  • FIG. 8 is a schematic diagram schematically showing the structure of the warm and elastic metal architecture material 20 of the present invention.
  • FIG. 9 is a schematic diagram schematically showing a feeling of warmth and elasticity of a metal architecture-engineering plate 3 according to another embodiment of the present invention.
  • FIG. 10 is a view showing a photograph of the warm and elastic metal architecture ring material according to an embodiment of the present invention described above.
  • FIG. 11 is a schematic diagram schematically illustrating a method of manufacturing a warm-sensitive and elastic metal architectural plate material according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram schematically illustrating a press forming process in the step (S30) of press forming and attaching a laminate of warm and elastic metallic architecture materials of the present invention.
  • FIG. 13 is a table showing the equivalent thermal conductivity according to the ratio of the width of the warm and elastic microchannel to the width of the base microchannel and the laminate thickness of the warm and elastic metal architecture plate according to an embodiment of the present invention.
  • FIG. 14 is a graph showing the change in thermal conductivity according to the thickness of the warm and elastic metal architecture plate material according to an embodiment of the present invention.
  • 15 is a graph showing the change in thermal conductivity according to the ratio of the width of the warm and elastic microchannel to the width of the base microchannel of the warm and elastic metal architecture plate according to an embodiment of the present invention.
  • 16 is a graph showing the derivation of the thermal conductivity relational expression according to the ratio of the width of the warm and elastic microchannel and the width of the base microchannel of the warm and elastic metal architecture plate material according to an embodiment of the present invention.
  • 17 is a view showing examples of other materials corresponding to the warmth according to the thermal conductivity of the thermal and elastic metal architecture plate material according to an embodiment of the present invention.
  • FIG. 19 is a graph showing the tensile test results for each direction of the warmth and elasticity of the metal architectural plate material of the present invention.
  • the present invention provides a warm and elastic metal architecture plate, comprising: substrate microchannels formed at regular intervals; And plate-shaped warm and elastic metal architecture materials having a micro-thickness including; and warm and elastic micro-channels formed to protrude between the base micro-channels,
  • the base microchannels and the warm and elastic microchannels are stacked to form warm and elastic channels that are spaces for controlling thermal conductivity and elastic modulus.
  • 'architecturing' means laminating a warm and elastic metal material.
  • 'architecturing' is a term used a lot in architecture, and refers to the stacking of truss structures by making a frame or structure in the shape of a triangle and a net of straight members.
  • terms such as lamina and laminate are used for the technology of laminating thin metal plates, but the architectural term 'architecturing' is used because the plate of the present invention uses a different structure.
  • the conventional metal material is a material for various interior and exterior materials, and although its usefulness is good, it is heavier than natural materials, gives a cold touch to the user, and has the disadvantage that it does not provide a human-friendly feeling of warmth and elasticity like natural materials. This was what was needed.
  • the present invention is derived to solve the problem that the above-mentioned conventional metal material having rigidity and ductility cannot provide human-friendly sense of warmth and elasticity, and it uses an existing metal, but is lighter and warmer than the existing metal material. It is a technical goal to provide a metal material that can feel warm and elastic, which are human-friendly tactile sensations.
  • FIG. 1 is a view showing a comparison of the microstructure and structure (a) of a natural object (wood), which is a motif of the structural features of the metal plate of the present invention, and a cross-sectional photograph (b) of the metal plate of the present invention to be described later.
  • the present invention does not provide human-friendly sense of warmth and elasticity to the metal material having rigidity and ductility in the prior art described above. It is derived to solve this problem, and it can be confirmed that it is possible to provide a metal that uses existing metal but is lighter than existing metal through new manufacturing technology and can make people feel a friendly touch of warmth and elasticity.
  • the present invention uses the existing metal, but changes the design of the pattern and shape, and adjusts the spacing and thickness between the shapes, so that the soft touch and warmth of leather and the visual stability conveyed by the pattern of wood while retaining the advantages of metal It can be confirmed that it is possible to provide a metal architecture plate with a sense of warmth and elasticity as a new material that is superior to composite materials or new molecular materials, which are currently emerging as new materials, which can elevate various emotions of people.
  • a feeling of warmth and elasticity will be described with a metal architecture ring plate according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram schematically showing the structure of the warm and elastic metal architectural plate 1 according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram schematically showing the structure of the warm and elastic metal architecture material 10 according to an embodiment of the present invention.
  • the warmth and resilience metal architecture sheet material 1 is a plate-like warmth and elasticity metal architecture material 10 having a micro-thickness is laminated. It may be configured to form the warmth and elasticity channels 300 that are spaces for controlling thermal conductivity and elasticity.
  • the warm and elastic metal architecture material 10 includes a plurality of substrate microchannels 200 formed at regular intervals; and a plurality of warm and elastic microchannels 100 formed to protrude between the base microchannels.
  • the warm and elastic metal architecture material 10 includes a foil having a thickness of 3 ⁇ m to 100 ⁇ m of a metal or alloy such as aluminum, copper, iron, stainless steel and invar (Nib-Fe alloy), the substrate microchannel It is characterized in that it can be manufactured by press working using a mold having the shape of the 200 and the warm and elastic microchannels 100 .
  • a metal or alloy such as aluminum, copper, iron, stainless steel and invar (Nib-Fe alloy
  • the base microchannels 200 and the warm and elastic microchannels 100 may be formed along a horizontal or vertical longitudinal direction of the warm and elastic metal architecture material 10 .
  • a ratio of the width 101 of the warm and elastic microchannel 100 to the width 201 of the base microchannel 200 may be 1:10 to 10:1. More preferably, a ratio of the width 101 of the warm and elastic microchannel 100 to the width 201 of the base microchannel 200 may be 1:1 to 5.
  • the warm and elastic microchannel 100 includes a pair of inclined portions 104 protruding from one end of the base microchannel 200 at a predetermined contact angle; and a floor 102 connecting the other ends of the ends connected to the base microchannel 200 of the pair of inclined portions 104 to each other.
  • the width 101 of the warm and elastic microchannel 100 may be 5 ⁇ m to 5000 ⁇ m.
  • the width 201 of the substrate microchannel 200 may be 5 ⁇ m to about 5 ⁇ m depending on the ratio of the width 101 of the warm and elastic microchannel 100 to the width 201 of the substrate microchannel 200 . 5000 ⁇ m.
  • the width 103 of the floor 102 may be 1 ⁇ m to 4000 ⁇ m.
  • the contact angle 105 is an angle between the inclined portion 104 and the floor 102 or the base microchannel 200, and may be 0° to 90°.
  • the warm and elastic metal architecture plate 1 has a floor 102 of the warm and elastic microchannel 100 of one warm and elastic metal architecture material 10 . It may be characterized in that it is laminated to form the warm and elastic channel 300 by being laminated to contact the bottom surface of the base microchannel 200 of the other warm and elastic metal architecture material 10 . have.
  • the thermal conductivity of the warm and resilient metal architectural sheet 1 formed by laminating the warm and resilient metal architecture materials 10 having the above-described configuration is 0.05 W/m ⁇ K to 10 W/m ⁇ can have K.
  • the thermal conductivity of the warm and elastic metal architecture sheet material 1 is the thermal conductivity of the warm and elastic metal architecture sheet material 1, y, the width 101 of the warm and elastic microchannel 100
  • y A(1)e -A(2) x + A(3) and [ It may be characterized in that it is designed using Table 1].
  • the thermal conductivity of the warm and elastic metal architecture plate material 1 of the present invention manufactured as described above corresponds to a value similar to the thermal conductivity value of a part of rubber or leather, or a natural material such as wood. Therefore, it can be confirmed that the metal plate of the present invention can give a human-friendly feeling similar to a natural product while using a metal material.
  • FIG. 4 is a schematic diagram schematically showing a feeling of warmth and elasticity of a metal architectural plate 1 according to another embodiment of the present invention.
  • a plate-shaped warm and elastic metal architecture material 10 having a micro-thickness is laminated to obtain thermal conductivity and It may be configured to form the warmth and elasticity channels 300 that are spaces for controlling the elasticity.
  • the warm and elastic metal architecture material 10 includes a plurality of substrate microchannels 200 formed at regular intervals; and a plurality of warm and elastic microchannels 100 formed to protrude between the base microchannels.
  • the warm and elastic metal architectural plate 1 is, the warm and elastic metal architecture material 10, the width of the warm and elastic micro-channel 100 and the base micro-channel 200
  • the ratio of the width of the first warm and elastic metal architecture material 11 and the warm and elastic microchannel to the width of the base microchannel is 1 in a width ratio of 1:2n-1 (n is an integer greater than or equal to 1).
  • : 2n (n is an integer greater than or equal to 1) may be characterized in that the second warm and elastic metal architecture material 12 is alternately stacked.
  • FIG. 5 is a schematic diagram schematically showing the structure of a metal plate in which warm and elastic microchannels are stacked in parallel to each other.
  • the warm and elastic microchannels when the warm and elastic microchannels are stacked in parallel without being spaced apart from each other as in FIG. 5 , the warm and elastic microchannels overlap each other to provide a sense of warmth and elasticity of the present invention. Since the elastic channel cannot be formed, a human-friendly tactile effect of warmth and elasticity cannot be imparted.
  • the ratio of the width of the warm and elastic microchannel 100 to the width of the base microchannel 200 has a ratio of 1:2n-1 (odd number) and 1:2n (even number), respectively.
  • the warm and elastic metal architecture material 10 includes a foil having a thickness of 10 ⁇ m to 100 ⁇ m of a metal or alloy such as aluminum, copper, iron, stainless, and invar (Nib-Fe alloy), the substrate microchannel It may be manufactured by using the electroplating method on a mold having the shape of the microchannels with a sense of warmth and elasticity.
  • a metal or alloy such as aluminum, copper, iron, stainless, and invar (Nib-Fe alloy
  • the base microchannels 200 and the warm and elastic microchannels 100 are formed along the horizontal or vertical longitudinal direction of the warm and elastic metal architecture material 10 .
  • the warm and elastic metal architecture material 10 is the same as the warm and elastic metal architecture material 10 of the above-described embodiment, and thus will be described with reference to FIG. 3 .
  • the width 101 of the warm and elastic microchannel 100 may be 1 ⁇ m to 1,000 ⁇ m.
  • the width 201 of the base microchannel 200 has a ratio of 1:2n-1 or 1:2n (n is an integer greater than or equal to 1) with the width 101 of the warm and elastic microchannel 100. ) may be characterized as having a size constituting a
  • the width 103 of the floor 102 may be smaller than or equal to the width 101 of the warm and elastic microchannel 100, and more specifically, 1 ⁇ m to 1,000 ⁇ m. It may be characterized in that it is ⁇ m.
  • the contact angle 105 is an angle between the inclined portion 104 and the floor 102 or the base microchannel 200, and may be 0° to 90°, and more preferably , may be characterized in that 5 ° to 85 °.
  • the warm and elastic metal architecture material 10 may be laminated by using a soldering lamination method to improve the porosity and flexibility of the laminated structure to form a plate material.
  • the thermal conductivity of the warm and elastic metal architecture-ring plate 1 having the above-described configuration may be in the range of 0.05 W/m ⁇ K to 5 W/m ⁇ K.
  • the thermal conductivity value as described above represents a value similar to the thermal conductivity value of a part of rubber or leather, or a natural material such as wood. Therefore, it can be confirmed that the metal plate of the present invention can give a human-friendly feeling similar to a natural product while using a metal material.
  • the modulus of elasticity of the warm and elastic metal architecture-ring plate 1 having the above-described configuration may be in a range of 0.1 Mpa to 10 GPa.
  • the elastic modulus value as described above has a value of about 1/50 of that of a solid metal solid. Therefore, it can be confirmed that the metal plate of the present invention can give a human-friendly sense of elasticity while using a metal material.
  • thermal conductivity and modulus of elasticity are increased by controlling the tissue structure while having a regular internal pore structure by precisely simulating the microstructure and organizational characteristics of natural materials. It has the effect of providing a metal plate that can be controlled and can realize the human-friendly feeling of warmth and elasticity like a natural product.
  • a feeling of warmth and elasticity will be described with a metal architecture ring plate according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram schematically showing the structure of a warm and elastic metal architecture plate material 2 according to another embodiment of the present invention.
  • FIG 7 and 8 are schematic views schematically showing the structure of the warm and elastic metal architecture material 20 of the present invention.
  • plate-shaped warm and elastic metal architecture materials 20 having a micro-thickness are laminated. Doedoe configured to form a sense of warmth and elasticity channels 300, which are spaces for controlling thermal conductivity and elasticity,
  • the warm and elastic metal architecture material 20 includes a plurality of substrate microchannels 200 formed at regular intervals; and a plurality of first warm and elastic microchannels 100 formed to protrude between the base microchannels,
  • the first sense of warmth and elasticity microchannel 100 includes a second sense of warmth and elasticity formed to protrude on the microchannel 100 for sense of warmth and elasticity, and having a width smaller than that of the first sense of warmth and elasticity microchannel; It may be characterized in that it is configured in a step shape including the elastic microchannel 110 .
  • the warm and elastic metal architecture materials 20 may be stacked so that the first warm and elastic microchannels 100 are spaced apart from each other so as not to overlap each other.
  • the first warm and elastic microchannels 100 when the first warm and elastic microchannels 100 are stacked in parallel without being spaced apart from each other, they overlap each other to provide a warm and elastic channel 300, which is a space giving a sense of warmth and elasticity of the present invention. Since it cannot be formed, a human-friendly tactile effect of warmth and elasticity cannot be imparted.
  • the first warm and elastic microchannels 100 are stacked apart from each other, not parallel to each other, so that they do not overlap during stacking, and a form having a pore structure like the microstructure of a natural material can be formed.
  • a second second having a width 111 smaller than the width 101 of the first warm and elastic microchannel 100 is formed to protrude on the first warm and elastic microchannel 100 .
  • the warm and elastic metal architecture material 20 is formed in the same manner as the second warm and elastic micro-channel 110 is formed to protrude on the first warm and elastic micro-channel 100 .
  • the amount of elastic deformation can be adjusted to have a desired elasticity.
  • the warm and elastic metal architecture material 20 includes a foil having a thickness of 10 ⁇ m to 100 ⁇ m of a metal or alloy such as aluminum, copper, iron, stainless, or invar (Nib-Fe alloy), the substrate microchannel It may be manufactured by using the electroplating method on a mold having the shape of the microchannels with a sense of warmth and elasticity.
  • a metal or alloy such as aluminum, copper, iron, stainless, or invar (Nib-Fe alloy
  • the base microchannels 200 and the warm and elastic microchannels 100 are formed along the horizontal or vertical longitudinal direction of the warm and elastic metal architecture material 20 .
  • the first warm and elastic microchannel 100 of the warm and elastic metal architecture material 20 is the base microchannel 200 .
  • a pair of first inclined portions 104 protruding from one end of the first inclined portion 104 with a predetermined contact angle 105; and a first ridge 102 connecting the other ends of the ends of the pair of first inclined portions 104 connected to the base microchannel 200 to each other.
  • the second warm and elastic microchannel 110 may include a pair of second inclined portions 114 protruding from the first floor 102 at a predetermined contact angle 115 ; and a second crest 112 connecting the other ends of the ends of the pair of second inclined portions 114 connected to the first crest 102 to each other.
  • the warm and elastic metal architecture material 20 is formed with a third warm and elastic microchannel in the same manner as the second warm and elastic microchannel is formed to protrude on the first warm and elastic microchannel. , a plurality of warm and elastic microchannels including the fourth sense of warmth and elasticity are sequentially formed to protrude, and thus may be configured in a step shape.
  • the warm and elastic metal architecture materials 20 formed in a step shape have the second floor 112 of one warm and elastic metal architecture material 20 having a different sense of warmth and elasticity.
  • the warm and elastic microchannels 100 are not parallel to each other and are spaced apart, so that the warm and elastic channels ( 300), it is possible to form a shape having a pore structure such as a microstructure of a natural material without overlapping during lamination, and to control the elasticity by controlling the amount of elastic deformation.
  • the width 103 of the first crest 102 and the width 113 of the second crest 112 may each independently be 1,000 ⁇ m or less.
  • the first contact angle 105 may be an angle between the first inclined portion 104 and the first crest 102 or the base microchannel 200 .
  • the second contact angle 115 may be an angle between the second inclined portion 114 and the second crest 112 or the first crest 102 .
  • the first contact angle 105 and the second contact angle 115 may each independently be 0° to 90°.
  • the warm and elastic metal architecture material 20 may be laminated by using a soldering lamination method to improve the porosity and flexibility of the laminated structure to form a plate material.
  • the thickness of the warm and elastic metal architectural material may be characterized in that it is 10 ⁇ m to 100 ⁇ m.
  • the thermal conductivity of the warm and elastic metal architecture-ring plate material 2 having the above-described configuration may be 0.05 W/m ⁇ K to 5 W/m ⁇ K.
  • the thermal conductivity value as described above corresponds to a value similar to the thermal conductivity value of a part of rubber or leather, or a natural material such as wood. Therefore, it can be confirmed that the metal plate of the present invention can give a human-friendly feeling similar to a natural product while using a metal material.
  • the modulus of elasticity of the warm and elastic metal architecture-ring plate 2 having the above-described configuration may be in a range of 0.1 Mpa to 10 Gpa.
  • the value of the modulus of elasticity as described above corresponds to a lower value compared to a solid metal solid, which corresponds to a value similar to the value of the modulus of elasticity of a natural material such as wood or leather. Therefore, it can be confirmed that the metal plate of the present invention can give a human-friendly sense of elasticity similar to that of a natural product while using a metal material.
  • FIG. 9 is a schematic diagram schematically showing a feeling of warmth and elasticity of a metal architecture-engineering plate 3 according to another embodiment of the present invention.
  • a warm and elastic metal architecture sheet 3 is provided in the warm and elastic metal architectural sheet according to an embodiment of the present invention. It may be characterized in that it is formed by further laminating a flat plate-type metal plate material 30 in which warm and elastic microchannels and base microchannels are not formed for the use of a metal-sensitive architecture plate material.
  • FIG. 10 is a view showing a photograph of the warm and elastic metal architecture ring material according to an embodiment of the present invention described above.
  • thermal conductivity and modulus of elasticity are increased by controlling the tissue structure while having a regular internal pore structure by precisely simulating the microstructure and organizational characteristics of natural materials. It is possible to provide a metal plate that can be controlled and can realize the human-friendly sense of warmth and elasticity like a natural material.
  • a method of manufacturing a feeling of warmth and elasticity of a metal architecture-ring plate according to another embodiment of the present invention will be described.
  • FIG. 11 is a schematic diagram schematically illustrating a method of manufacturing a warm-sensitive and elastic metal architectural plate material according to another embodiment of the present invention.
  • substrate microchannels formed at regular intervals and warm and elastic microchannels formed to protrude between the substrate microchannels are Manufacturing a plate-like warmth and elasticity metal architecture materials having a micro-thickness including (S10); stacking the warm and elastic metal architecture materials so that the base microchannels and the warm and elastic microchannels form warm and elastic channels that are spaces for thermal conductivity control (S20); and a step (S30) of press-molding and attaching a laminate of warm and elastic metal architecture materials.
  • the thermal conductivity of the warm and elastic metal architecture plate is y
  • the ratio of the warm and elastic microchannel width to the base microchannel width is x.
  • y A(1)e -A(2)x + A(3) depending on the thickness of the warm and elastic metal architecture material, and the coefficient is from [Table 1] characterized in that it is obtained.
  • the produced warm and elastic feeling by controlling the ratio of the width of the warm and elastic microchannel to the width of the base microchannel. It may be a step of manufacturing the metal architecture material with a sense of warmth and elasticity so that the thermal conductivity of the metal architecture plate material is 0.05 W/m ⁇ K to 10 W/m ⁇ K.
  • the warm and elastic microchannel may include a pair of inclined portions protruding from one end of the base microchannel at a predetermined contact angle; and a floor connecting the other ends of the ends connected to the base microchannel of the pair of inclined portions to each other.
  • the warm and elastic metal architecture material in which the floor of the warm and elastic microchannel of one of the warm and elastic metal architecture materials is different is different. It is characterized in that the step of laminating the warm and elastic metal architecture materials so as to be in contact with the bottom surface of the microchannel of the substrate.
  • the ridges are preferably located at the center of the bottom surface of the substrate microchannel.
  • FIG. 12 is a schematic diagram schematically illustrating a press forming process in the step (S30) of press forming and attaching a laminate of warm and elastic metallic architecture materials of the present invention.
  • the spacer 40 having a target thickness of the warm and resilient metal architecture sheet 1 is used. characterized in that
  • the warm and elastic metal architecture plate material to be produced After laminating the warm and elastic metal architecture materials 10 to correspond to the thickness of the warm and elastic metal architecture plate 1 to be produced, the warm and elastic metal architecture plate material to be produced ( After arranging a pair of spacers 40 having a height corresponding to the target thickness of 1), hot press forming is performed to manufacture the warm and elastic metal architecture designing plate 1 .
  • the warm and elastic metal architecture materials 10 stacked by the spacer 40 are not subjected to excessive pressure, so that uniformly shaped warm and elastic channels can be formed.
  • the present invention Due to the characteristics of the above configuration, according to an embodiment of the present invention, it has a uniform shape of warmth and elasticity channels, so it can be manufactured to have certain physical properties and mass-produced, and, if necessary, thermal conductivity and There is an effect that it is possible to provide a method of manufacturing a metal architecture ring plate material with a sense of warmth and elasticity that can control the sense of elasticity.
  • FIG. 13 is a table showing the equivalent thermal conductivity according to the ratio of the width of the warm and elastic microchannel to the width of the base microchannel and the laminate thickness of the warm and elastic metal architecture plate according to an embodiment of the present invention.
  • Thermal conductivity was measured after fabricating ⁇ m and 30 ⁇ m sense of warmth and elasticity metal architecture plate materials. As a result of the measurement, it was confirmed that the thermal conductivity had a maximum of 1.261 W/m ⁇ K and a minimum of 0.111 W/m ⁇ K, and thus it was confirmed that a warming effect using a metal could be provided.
  • FIG. 14 is a graph showing the change in thermal conductivity according to the thickness of the warm and elastic metal architecture plate material according to an embodiment of the present invention.
  • the warm and elastic metal architecture sheet material having a ratio of the width of the warm and elastic microchannel to the width of the base microchannel is 1:1, 1:2, and 1:4, respectively.
  • stacking architectural materials in A-shape, B-shape, and C-shape, respectively, and in the case of 0, 1, and 2 sheets of metallic architectural materials with a sense of warmth and elasticity added to each of A, B, and C shapes The thermal conductivity according to the thickness change was measured. As a result of the measurement, it was confirmed that the thermal conductivity of the thermal and elastic metal architecture plate material had a linear relationship with the thickness.
  • 15 is a graph showing the change in thermal conductivity according to the ratio of the width of the warm and elastic microchannel to the width of the base microchannel of the warm and elastic metal architecture plate according to an embodiment of the present invention.
  • heat conduction of warm and resilient metal architecture plates having thicknesses of 50 ⁇ m, 40 ⁇ m, and 30 ⁇ m, and having different warm and elastic microchannel widths and ratios of the base microchannel widths degrees were measured.
  • 16 is a graph showing the derivation of the thermal conductivity relational expression according to the ratio of the width of the warm and elastic microchannel and the width of the base microchannel of the warm and elastic metal architecture plate material according to an embodiment of the present invention.
  • the warm and elastic metal architecture plate of the embodiment of the present invention can be manufactured to have desired thermal conductivity by adjusting the ratio of the width of the warm and elastic microchannel to the width of the base microchannel. have.
  • 17 is a view showing examples of other materials corresponding to the warmth according to the thermal conductivity of the thermal and elastic metal architecture plate material according to an embodiment of the present invention.
  • Fig. 17 (a) is a graph showing the ratio of thermal conductivity with other materials and the thermal conductivity of the present invention and the feeling of resilience, and (b) is the feeling of warmth constituting the feeling of warmth and resilience of the metal architectural plate of the present invention;
  • Thermal conductivity spacing ratios 1, 2 and 3, initial data measured by the thickness and number of layers of the elastic metal architecture material and thermal conductivity derived using the thermal conductivity derivation equation (gap ratio 0.2 and 5, data for function verification) is a table indicating
  • the metal architecture plates with a sense of warmth and elasticity could be manufactured to have a sense of warmth of materials such as wood, cotton, leather, rubber, glass, and rock.
  • a feeling of warmth and elasticity according to an embodiment of the present invention was manufactured a metal architecture ring plate.
  • the warm and elastic architectural metal material was manufactured so that a ratio of the width of the warm and elastic microchannel to the base microchannel was 1:4 by using an electroplating method.
  • the warm and elastic architecture metal material prepared as described above was laminated in 6 layers using a soldering method, and then the flat material was laminated on the uppermost and lowermost layers to complete the warm and elastic metal architecture plate material.
  • a warm and elastic metal architectural plate was manufactured in the same manner as in Preparation Example 1, except that the warm and elastic architecture metal material was laminated in five layers.
  • a warm and elastic metal architecture plate was prepared in the same manner as in Preparation Example 1, except that the ratio of the widths of the warm and elastic microchannels and the base microchannels was 1:1.
  • the warm and elastic metal architecture plate of the present invention conducts heat at a level similar to that of a natural product. It can be seen that it can be controlled to have a degree.
  • the elastic modulus of the warm and elastic metal architectural plate material has a low elastic modulus of 0.48 Mpa, which is about 1/500,000 level compared to a solid metal solid having no channels. can be seen to indicate. That is, the modulus of elasticity can be controlled by manufacturing and stacking the warm and resilient metallic material by controlling various factors such as the width ratio of the warm and resilient metal architectural sheet of the present invention, the width of the floor, and the contact angle as described above. , it can be confirmed that it can be manufactured to have a desired elasticity similar to that of a natural product.

Abstract

본 발명의 일 실시예는 온감 및 탄성감 금속 아키텍처링 판재를 제공한다. 본 발명의 일 실시예에 따르면, 일정 간격으로 형성되는 기재 마이크로 채널들; 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들;을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이, 열전도도 및 탄성률 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 적층되어 구성되는 것을 특징으로 하여 인간 친화적인 온감 및 탄성감의 촉감을 주는 금속 아키텍처링 판재를 제공 가능한 효과가 있다.

Description

온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법
본 발명은 온감 및 탄성감을 가지는 금속 적층체에 관한 것으로, 더욱 상세하게는, 자연물(나무)의 미세 구조 및 조직적 특성을 모사하여 금속 소재를 인간 친화적인 온감 및 탄성감을 주는 구조를 가지도록 아키텍처링(architecturing)하여 제작된 온감 및 탄성감 금속 아키텍처링 판재에 관한 것이다.
일반적으로, 신소재는 기존의 소재나 새로운 소재를 기초로 발전된 제조 기술 및 가공 기술로 기존 소재의 단점을 보완하고 소재의 장점을 끌어올리거나, 현재까지 없는 새로운 특성을 가지는 소재를 의미한다.
최근 이러한 신소재를 개발하기 위한 연구가 활발히 진행되고 있다. 그 중에서도, IT · 전자제품 외장재나 자동차 내/외장재뿐만 아니라 건축·인테리어 내/외장재 등의 표면 소재로 다양하게 활용되고 있는 금속 소재에 대한 연구가 활발하다.
이러한 금속 소재는 물품에 고급스러운 심미감과 광택감을 부여하면서도 내구성이 뛰어난 장점을 가진다. 그러나 종래의 금속 소재는 높은 비 중량으로 인해 알루미늄이나 플라스틱, FRP(fiber glass reinforce plastic)에 비해 무겁고, 발포재(foam), 코르크(cork), 고무, 나무와 가죽처럼 사람에게 안정감을 주는 촉감을 가져다주지 못하고 차가운 촉감을 주는 단점을 가지고 있었다.
이를 해결하기 위하여, 최근에는 사람에게 안정감을 주는 감성을 구현한 금속 신소재를 개발하는 연구가 활발하게 진행되고 있다.
그러나 종래의 감성 구현 금속 소재의 경우 색상에 관련한 시각적 효과를 나타내는 제품에 한정되어 사람에게 안정감을 주는 온감 및 탄성감 등의 촉감 구현이 가능한 금속 소재에 대한 개발은 미흡한 실정이었다.
이를 위하여, CFRP(carbon fiber reinforce plastic) 분야에서 탄소섬유의 강도 보강을 위해 탄소섬유 원단에 그물 구조물을 밀착 가공하는 기술 등을 적용하여 금속의 연성 및 강성의 장점을 섬유 등에 이용하고자 한 기술이 있었다(대한민국 등록특허 제10-1961103호). 그러나 현재까지 금속 자체로서 인간 친화적인 촉감인 온감 및 탄성감을 제공하지는 못하고 있다.
또한, 금속 소재 내부에 기공 구조를 형성함으로써 촉감을 부여하려는 여러 시도들이 있었다. 그러나 종래의 기술들은 불규칙적 기공 형상과 구조적 문제로 인하여 물리적인 특성이 균일하지 않아 내구성이 낮고 사용이 제한적이며 양산화가 어렵다는 문제점이 있었다.
따라서 금속의 장점인 연성 및 강도를 가지면서도, 인간 친화적인 촉감인 온감 및 탄성감을 가지도록 구조를 개선한 온감 및 탄성감 금속 아키텍처링 판재 및 아키텍처링 방법의 필요성이 커지고 있다.
본 발명이 이루고자 하는 기술적 과제는, 종래 금속 소재가 높은 연성, 강도 및 뛰어난 에너지 흡수율 등 여러 장점을 가짐에도 불구하고 사람에게 안정감을 주는 온감 및 탄성감의 촉감을 주지 못하는 문제점을 해결하고, 소비자의 필요에 따라 차갑지 않은 금속 및 부드러운 촉감 구현이 가능한 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는, 자연물, 특히 나무의 미세 구조 및 조직적 특성을 모사하여 구조적으로 안정하고 내구성이 좋으면서도 안정감 있는 촉감을 갖는 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예는 온감 및 탄성감 금속 아키텍처링 판재를 제공한다.
본 발명의 일 실시예에 있어서, 상기 온감 및 탄성감 금속 아키텍처링 판재는, 일정 간격으로 형성되는 기재 마이크로 채널들; 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들;을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이, 상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 및 탄성률 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 적층되어 구성되는 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재의 두께는, 3 ㎛ 내지 100 ㎛인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1 : 10 ~ 10 : 1인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 마이크로 채널은, 상기 기재 마이크로 채널의 일측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부; 및 상기 한 쌍의 경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루;를 포함하여 구성되는 것을 특징으로 하는 것일 수 있다.
상기 기재 마이크로 채널의 폭은, 5㎛ 내지 5000㎛인 것을 특징으로 하는 것일 수 있다.
상기 마루의 폭은, 1㎛ 내지 4000㎛ 인 것을 특징으로 하는 것일 수 있다.
상기 접촉각은, 상기 경사부가 상기 마루 또는 상기 기재 마이크로 채널과 이루는 각도로서, 0° 내지 90° 인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 판재는, 하나의 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 온감 및 탄성감 마이크로 채널의 마루가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 기재 마이크로 채널의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 채널을 형성하도록 적층되는 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1:2n-1(n은 1 이상의 정수)을 이루는 제1 온감 및 탄성감 금속 아키텍처링 소재 및 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1:2n(n은 1 이상의 정수)을 이루는 제2 온감 및 탄성감 금속 아키텍처링 소재가 번갈아 적층되어 구성되는 것을 특징으로 하는 것일 수 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 온감 및 탄성감 금속 아키텍처링 판재를 제공한다.
본 발명의 일 실시예에 있어서, 상기 온감 및 탄성감 금속 아키텍처링 판재는, 마이크로 두께를 갖는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이 적층되어 열전도도 및 탄성감 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 구성되되,
상기 온감 및 탄성감 금속 아키텍처링 소재는, 일정 간격으로 형성되는 복수개의 기재 마이크로 채널; 및 상기 기재 마이크로 채널 사이에서 돌출되도록 형성된 복수개의 제1 온감 및 탄성감 마이크로 채널;을 포함하고,
상기 제1 온감 및 탄성감 마이크로 채널은, 상기 제1 온감 및 탄성감 마이크로 채널 상에 돌출되도록 형성된, 상기 제1 온감 및 탄성감 마이크로 채널보다 작은 폭을 갖는 제2 온감 및 탄성감 마이크로 채널을 포함하여 계단 형상으로 구성된 것을 특징으로 하고,
상기 온감 및 탄성감 금속 아키텍처링 소재들은 상기 제1 온감 및 탄성감 마이크로 채널들이 서로 겹치지 않게 이격되어 적층되는 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재는, 상기 제1 온감 및 탄성감 마이크로 채널 상에 상기 제2 온감 및 탄성감 마이크로 채널이 돌출되도록 형성된 것과 동일한 방식으로, 상기 제2 온감 및 탄성감 마이크로 채널 상으로 복수 개의 온감 및 탄성감 마이크로 채널들이 순차적으로 반복 돌출 형성되어 계단 형상으로 구성되는 것을 특징으로 하는 것일 수 있다.
상기 제 1 온감 및 탄성감 마이크로 채널은,
상기 기재 마이크로 채널의 일측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 제1경사부; 및
상기 한 쌍의 제1경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 제1마루;를 포함하여 구성되는 것을 특징으로 하는 것일 수 있다.
상기 제2 온감 및 탄성감 마이크로 채널은,
상기 제1마루 상에 일정 접촉각을 가지고 돌출되는 한 쌍의 제2경사부; 및
상기 한 쌍의 제2경사부의 상기 제1마루와 연결되는 단부들의 타측 단부들을 서로 연결하는 제2마루;를 포함하여 구성되는 것을 특징으로 하는 것일 수 있다.
하나의 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 제2마루가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 기재 마이크로 채널의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 채널을 형성하도록 적층되는 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재의 두께는, 10 ㎛ 내지 100㎛인 것을 특징으로 하는 것일 수 있다.
전술한 구성을 갖는 본 발명의 상기 온감 및 탄성감 금속 아키텍처링 판재는, 열전도도는 0.05 W/mㆍK 내지 10 W/mㆍK인 특징으로 하는 것일 수 있다.
또한, 상기 온감 및 탄성감 금속 아키텍처링 판재는, 탄성계수는 0.1 Mpa 내지 10 GPa인 것을 특징으로 하는 것일 수 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 실시예는 온감 및 탄성감 금속 아키텍처링 판재의 제조방법을 제공한다.
본 발명의 실시예에 있어서, 상기 온감 및 탄성감 금속 아키텍처링 판재의 제조방법은, 일정 간격으로 형성되는 기재 마이크로 채널들 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계; 상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 상기 온감 및 탄성감 금속 아키텍처링 소재들을 적층하는 단계; 및 상기 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계;를 포함하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계에서의 상기 온감 및 탄성감 마이크로 채널은, 상기 기재 마이크로 채널의 일 측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부; 및 상기 한 쌍의 경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루;를 포함하도록 제작되는 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계는, 상기 온감 및 탄성감 금속 아키텍처링 판재의 목표 두께를 가지는 스페이서를 이용하여 수행되는 것을 특징으로 하는 것일 수 있다.
본 발명의 실시예에 따르면, 발포재(foam), 코르크(cork), 고무, 나무 및 가죽과 같은 자연물의 미세 구조 및 조직적 특성을 정밀하게 모사하여 규칙적인 내부 기공 구조를 가지므로 구조적으로 안정하면서도, 상기 조직 구조를 제어하여 열전도도 및 탄성계수를 제어할 수 있어 자연물과 같은 인간친화적인 온감 및 탄성감의 촉감을 구현 가능한 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법을 제공 가능한 효과가 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 금속 판재가 갖는 구조적 특징의 모티브가 된 자연물(나무)의 미세 구조와 조직(a) 및 후술하는 본 발명의 금속 판재의 단면 사진(b)을 비교하여 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)의 구조를 개략적으로 나타낸 모식도이다.
도 3은 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 소재(10)의 구조를 개략적으로 나타낸 모식도이다.
도 4는 본 발명의 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)를 개략적으로 나타낸 모식도이다.
도 5는 온감 및 탄성감 마이크로 채널들이 서로 평행하게 적층 된 금속 판재의 구조를 개략적으로 나타낸 모식도이다.
도 6은 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(2)의 구조를 개략적으로 나타낸 모식도이다.
도 7은 본 발명의 온감 및 탄성감 금속 아키텍처링 소재(20)의 구조를 개략적으로 나타낸 모식도이다.
도 8은 본 발명의 온감 및 탄성감 금속 아키텍처링 소재(20)의 구조를 개략적으로 나타낸 모식도이다.
도 9는 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(3)를 개략적으로 나타낸 모식도이다.
도 10은 전술한 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 사진을 나타내는 도면이다.
도 11은 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 제조방법을 개략적으로 나타내는 모식도이다.
도 12는 본 발명의 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계(S30)에서의 프레스 성형 공정을 개략적으로 나타내는 모식도이다.
도 13은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비 및 적층 두께에 따른 등가 열전도도를 나타내는 표이다.
도 14는 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 두께에 따른 열전도도 변화를 나타내는 그래프이다.
도 15는 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비에 따른 열전도도 변화를 나타내는 그래프이다.
도 16은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비에 따른 열전도도 관계식 도출을 나타내는 그래프이다.
도 17은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 열전도도에 따른 온감에 대응하는 타 소재들의 예를 나타내는 도면이다.
도 18은 본 발명의 온감 및 탄성감 금속 아키텍처링 판재의 단면 구조 및 측정한 열전도도를 나타내는 표이다.
도 19는 본 발명의 온감 및 탄성감 금속 아키텍처링 판재의 방향별 인장 시험 결과를 나타낸 그래프이다.
본 발명인 온감 및 탄성감 금속 아키텍처링 판재는, 일정 간격으로 형성되는 기재 마이크로 채널들; 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들;을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이,
상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 및 탄성률 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 적층되어 구성되는 것을 특징으로 하는 것일 수 있다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 설명을 위한 용어 중 '아키텍처링(architecturing)'은, 온감 및 탄성감 금속 소재를 적층한 것을 의미한다.
일반적으로, '아키텍처링(architecturing)'이란 건축학에서 많이 쓰이는 용어로, 직선의 부재를 삼각형 그물모양으로 뼈대나 구조를 만들어 트러스 구조물을 적층한 것을 일컫는다. 일반적으로 얇은 금속 판막을 적층하는 기술에는 lamina 및 laminate 등의 용어가 사용되는 것이 보통이나, 본 발명의 판재는 이와 다른 구조를 사용하기에 '아키텍처링(architecturing)'이라는 건축학 용어를 사용하였다.
전술한 바와 같이, 종래 금속 소재는 다양한 내외장재 표면 소재로 그 활용성이 좋음에도 자연물 소재에 비해 무겁고 사용자에게 차가운 촉감을 주고 자연물 소재와 같은 인간친화적인 온감 및 탄성감을 주지 못한다는 단점이 있어 이의 개선이 필요한 실정이었다.
따라서, 본 발명은 상술한 종래 강성과 연성을 갖는 금속 소재에 인간 친화적인 촉감인 온감 및 탄성감을 제공하지 못하는 문제점을 해결하기 위해 도출된 것으로서, 기존 금속을 이용하지만 기존 금속 소재에 비하여 가벼우며 따뜻하고 인간 친화적인 촉감인 온감 및 탄성감을 느끼게 할 수 있는 금속 소재를 제공하는 것을 기술적 목표로 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 금속 판재가 갖는 구조적 특징의 모티브가 된 자연물(나무)의 미세 구조와 조직(a) 및 후술하는 본 발명의 금속 판재의 단면 사진(b)을 비교하여 나타낸 도면이다.
도 1을 참조하면, 자연물, 특히 나무의 미세 구조 및 조직적 특징에 착안하여, 본 발명은 상술한 종래기술에서의 강성과 연성을 가지는 금속 소재에 인간 친화적인 촉감인 온감 및 탄성감을 제공하지 못하는 문제점을 해결하기 위해 도출된 것으로서, 기존 금속을 이용하지만 신 제조기술을 통하여 기존 금속에 비해 가볍고, 사람에게 온감 및 탄성감의 친화적 촉감을 느끼게 만들 수 있는 금속을 제공 가능한 것을 확인할 수 있다.
즉, 본 발명은 기존의 금속을 사용하지만 패턴과 형상의 설계 변경, 그리고 형상 사이의 간격과 두께 등을 조절하여 금속의 장점은 간직한 채 가죽의 부드러운 촉감과 온감, 목재의 무늬가 전해주는 시각적 안정감을 통해 사람의 다양한 감성을 끌어올릴 수 있는, 현재 신소재로 부각 받는 복합재나 신고분자 재료보다 더 우수한 새로운 신소재로서의 온감 및 탄성감 금속 아키텍처링 판재를 제공 가능한 것을 확인할 수 있다.
본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재를 설명한다.
도 2는 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)의 구조를 개략적으로 나타낸 모식도이다.
도 3은 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 소재(10)의 구조를 개략적으로 나타낸 모식도이다.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)는, 마이크로 두께를 갖는 판상의 온감 및 탄성감 금속 아키텍처링 소재(10)들이 적층되어 열전도도 및 탄성감 제어를 위한 공간인 온감 및 탄성감 채널(300)들을 형성하도록 구성된 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)는, 일정 간격으로 형성되는 복수개의 기재 마이크로 채널(200); 및 상기 기재 마이크로 채널 사이에서 돌출되도록 형성된 복수개의 온감 및 탄성감 마이크로 채널(100);을 포함하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)는, 알루미늄, 구리, 철, 스테인리스 및 인바(Nib-Fe 합금) 등의 금속 또는 합금의 두께 3㎛ 내지 100㎛를 가지는 포일을, 상기 기재 마이크로 채널(200)들과 상기 온감 및 탄성감 마이크로 채널(100)들의 형상을 가지는 금형을 이용한 프레스 가공에 의해 제작될 수 있는 것을 특징으로 한다.
상기 기재 마이크로 채널(200)들과 상기 온감 및 탄성감 마이크로 채널(100)들은 상기 온감 및 탄성감 금속 아키텍처링 소재(10)의 가로 또는 세로의 길이 방향을 따라 형성되는 것을 특징으로 할 수 있다.
상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)과 상기 기재 마이크로 채널(200)의 폭(201)의 비는 1 : 10 ~ 10 : 1인 것을 특징으로 하는 것일 수 있다. 더욱 바람직하게는, 상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)과 상기 기재 마이크로 채널(200)의 폭(201)의 비는 1 : 1 ~ 5 인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 마이크로 채널(100)은, 상기 기재 마이크로 채널(200)의 일측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부(104); 및 상기 한 쌍의 경사부(104)의 상기 기재 마이크로 채널(200)과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루(102);를 포함하여 구성되는 것을 특징으로 할 수 있다.
상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)은, 5㎛ 내지 5000㎛인 것을 특징으로 하는 것일 수 있다.
상기 기재 마이크로 채널(200)의 폭(201)은, 상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)과 상기 기재 마이크로 채널(200)의 폭(201)의 비에 따라, 5 ㎛ 내지 5000 ㎛ 를 가질 수 있다.
상기 마루(102)의 폭(103)은, 1㎛ 내지 4000㎛ 인 것을 특징으로 하는 것일 수 있다.
상기 접촉각(105)은, 상기 경사부(104)가 상기 마루(102) 또는 상기 기재 마이크로 채널(200)과 이루는 각도로서, 0° 내지 90° 인 것을 특징으로 할 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 판재(1)는, 도 2와 같이, 하나의 상기 온감 및 탄성감 금속 아키텍처링 소재(10)의 상기 온감 및 탄성감 마이크로 채널(100)의 마루(102)가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재(10)의 상기 기재 마이크로 채널(200)의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 채널(300)을 형성하도록 적층되는 것을 특징으로 하는 것일 수 있다.
상술한 구성을 가지는 상기 온감 및 탄성감 금속 아키텍처링 소재(10)들이 적층되어 형성되는 상기 온감 및 탄성감 금속 아키텍처링 판재(1)의 열 전도도는 0.05 W/mㆍK 내지 10 W/mㆍK 를 가질 수 있다. 이때, 상기 온감 및 탄성감 금속 아키텍처링 판재(1)의 열전도도는, 온감 및 탄성감 금속 아키텍처링 판재(1)의 열전도도를 y, 온감 및 탄성감 마이크로 채널(100)의 폭(101)과 기재 마이크로 채널(200)의 폭(201)의 비를 x라 할 때, y= A(1)e -A(2) x + A(3)과 상기 열전도도 도출 식의 각 계수를 나타내는 [표 1]을 이용하여 설계되는 것을 특징으로 하는 것일 수 있다.
두께 추가적층 A(1) A(2) A(3)

50
0 3.046 1.104 0.251
1 2.859 1.068 0.194
2 2.951 1.058 0.217

40
0 2.356 1.074 0.165
1 2.182 1.082 0.142
2 2.214 1.001 0.139

30
0 1.675 1.073 0.111
1 1.605 1.119 0.097
2 1.689 1.084 0.112
상기와 같이 제조되는 본 발명의 온감 및 탄성감 금속 아키텍처링 판재(1)의 상기 열 전도도는 고무류나 가죽류의 일부 또는 나무와 같은 자연물 소재의 열전도도 값과 유사한 값에 해당한다. 따라서, 본 발명의 금속 판재는 금속 소재를 이용하면서도 자연물과 유사한 인간 친화적인 온감을 줄 수 있다는 것을 확인할 수 있다.
본 발명의 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)를 설명한다.
도 4는 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)를 개략적으로 나타낸 모식도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(1)는, 마이크로 두께를 갖는 판상의 온감 및 탄성감 금속 아키텍처링 소재(10)들이 적층되어 열전도도 및 탄성감 제어를 위한 공간인 온감 및 탄성감 채널(300)들을 형성하도록 구성된 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)는, 일정 간격으로 형성되는 복수개의 기재 마이크로 채널(200); 및 상기 기재 마이크로 채널 사이에서 돌출되도록 형성된 복수개의 온감 및 탄성감 마이크로 채널(100);을 포함하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 판재(1)는, 이러한 상기 온감 및 탄성감 금속 아키텍처링 소재(10)들이, 상기 온감 및 탄성감 마이크로 채널(100)의 폭과 상기 기재 마이크로 채널(200)의 폭의 비가 1:2n-1(n은 1 이상의 정수)을 이루는 제1 온감 및 탄성감 금속 아키텍처링 소재(11) 및 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1:2n(n은 1 이상의 정수)을 이루는 제2 온감 및 탄성감 금속 아키텍처링 소재(12)가 번갈아 적층되어 구성되는 것을 특징으로 하는 것일 수 있다.
도 5는 온감 및 탄성감 마이크로 채널들이 서로 평행하게 적층 된 금속 판재의 구조를 개략적으로 나타낸 모식도이다.
도 5를 참조하면, 도 5와 같이 온감 및 탄성감 마이크로 채널들이 서로 이격되지 않고 평행하게 적층할 경우, 온감 및 탄성감 마이크로 채널들이 서로 겹치게 되어 본 발명의 온감 및 탄성감을 부여하는 공간인 온감 및 탄성감 채널을 형성하지 못하게 되므로 온감 및 탄성감의 인간친화적 촉감 효과를 부여할 수 없게 된다.
따라서, 본 발명과 같이 상기 온감 및 탄성감 마이크로 채널(100)의 폭과 상기 기재 마이크로 채널(200)의 폭의 비가 각각 1:2n-1(홀수) 및 1:2n(짝수)의 비율을 갖는 상기 온감 및 탄성감 금속 아키텍처링 소재(10)들을 번갈아 적층함으로써, 상기 온감 및 탄성감 마이크로 채널(100)들이 서로 평행하지 않고 이격되게 적층되도록 함으로써, 적층 시 겹치지 않고 자연물의 미세 구조와 같은 기공 구조를 갖는 형태를 형성할 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)는, 알루미늄, 구리, 철, 스테인레스, 인바(Nib-Fe 합금) 등의 금속 또는 합금의 두께 10 ㎛ 내지 100㎛를 가지는 포일을, 상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들의 형상을 가지는 금형에 전주 도금 방식을 이용하여 제조된 것일 수 있다.
상기 기재 마이크로 채널(200)들과 상기 온감 및 탄성감 마이크로 채널(100)들은 상기 온감 및 탄성감 금속 아키텍처링 소재(10)의 가로 또는 세로의 길이 방향을 따라 형성된다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)는, 전술한 일 실시예의 온감 및 탄성감 금속 아키텍처링 소재(10)와 동일하므로 도 3을 참조하여 설명한다.
도 3을 참조하면, 상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)은 1㎛ 내지 1,000㎛ 인 것을 특징으로 하는 것일 수 있다.
상기 기재 마이크로 채널(200)의 폭(201)은 상기와 같이 상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)과의 비율이 1:2n-1 또는 1:2n (n은 1 이상의 정수)를 이루는 크기를 갖는 것을 특징으로 할 수 있다.
상기 마루(102)의 폭(103)은, 상기 온감 및 탄성감 마이크로 채널(100)의 폭(101)보다 작거나 같은 값을 갖는 것을 특징으로 하는 것일 수 있으며, 더욱 자세하게는, 1㎛ 내지 1,000㎛ 인 것을 특징으로 하는 것일 수 있다.
상기 접촉각(105)은, 상기 경사부(104)가 상기 마루(102) 또는 상기 기재 마이크로 채널(200)과 이루는 각도로서, 0° 내지 90° 인 것을 특징으로 하는 것일 수 있으며, 더욱 바람직하게는, 5° 내지 85° 인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(10)들은 솔더링의 적층 방법을 이용하여 적층구조의 기공률과 유연성을 향상시키는 방법으로 적층 되어 판재로 형성될 수 있다.
상술한 구성을 가지는 상기 온감 및 탄성감 금속 아키텍처링 판재(1)의 열전도도는 0.05 W/m·K 내지 5 W/m·K를 가질 수 있다.
상기와 같은 열전도도 값은 고무류나 가죽류의 일부, 또는 나무와 같은 자연물 소재의 열전도도 값과 비슷한 값을 나타낸다. 따라서, 본 발명의 금속 판재는 금속 소재를 이용하면서도 자연물과 유사한 인간친화적 온감을 줄 수 있다는 것을 확인할 수 있다.
상술한 구성을 가지는 상기 온감 및 탄성감 금속 아키텍처링 판재(1)의 탄성계수는 0.1 Mpa 내지 10 GPa를 가질 수 있다.
상기와 같은 탄성계수 값은 솔리드 금속 고체와 비교하여 약 1/50 수준의 값을 가진다. 따라서, 본 발명의 금속 판재는 금속 소재를 이용하면서도 인간친화적 탄성감을 줄 수 있다는 것을 확인할 수 있다.
상기와 같은 구성적 특징으로 인하여, 본 발명의 일 실시예에 따르면, 자연물의 미세 구조 및 조직적 특성을 정밀하게 모사하여 규칙적인 내부 기공 구조를 가지면서도 상기 조직 구조를 제어하여 열전도도 및 탄성계수를 제어할 수 있어 자연물과 같은 인간친화적인 온감 및 탄성감의 촉감을 구현 가능한 금속 판재를 제공 가능한 효과가 있다.
본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재를 설명한다.
도 6은 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(2)의 구조를 개략적으로 나타낸 모식도이다.
도 7 및 도 8은 본 발명의 상기 온감 및 탄성감 금속 아키텍처링 소재(20)의 구조를 개략적으로 나타낸 모식도이다.
도 6 내지 도 8을 참조하면, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(2)는, 마이크로 두께를 갖는 판상의 온감 및 탄성감 금속 아키텍처링 소재(20)들이 적층되어 열전도도 및 탄성감 제어를 위한 공간인 온감 및 탄성감 채널(300)들을 형성하도록 구성되되,
상기 온감 및 탄성감 금속 아키텍처링 소재(20)는, 일정 간격으로 형성되는 복수개의 기재 마이크로 채널(200); 및 상기 기재 마이크로 채널 사이에서 돌출되도록 형성된 복수개의 제1 온감 및 탄성감 마이크로 채널(100)을 포함하고,
상기 제1 온감 및 탄성감 마이크로 채널(100)은, 상기 제1 온감 및 탄성감 마이크로 채널(100) 상에 돌출되도록 형성된, 상기 제1 온감 및 탄성감 마이크로 채널보다 작은 폭을 갖는 제2 온감 및 탄성감 마이크로 채널(110)을 포함하여 계단 형상으로 구성된 것을 특징으로 하는 것일 수 있다.
이때, 상기 온감 및 탄성감 금속 아키텍처링 소재(20)들은 상기 제1 온감 및 탄성감 마이크로 채널(100)들이 서로 겹치지 않게 이격되도록 적층되는 것을 특징으로 하는 것일 수 있다.
전술한 바와 같이, 상기 제1 온감 및 탄성감 마이크로 채널(100)들이 서로 이격되지 않고 평행하게 적층될 경우 서로 겹치게 되어 본 발명의 온감 및 탄성감을 부여하는 공간인 온감 및 탄성감 채널(300)을 형성하지 못하게 되므로 온감 및 탄성감의 인간친화적 촉감 효과를 부여할 수 없게 된다.
따라서, 본 발명과 같이 상기 제1 온감 및 탄성감 마이크로 채널(100)들이 서로 평행하지 않고 이격되게 적층되도록 하여 적층 시 겹치지 않고 자연물의 미세 구조와 같은 기공 구조를 갖는 형태를 형성할 수 있다.
또한, 상기와 같이 상기 제1 온감 및 탄성감 마이크로 채널(100) 상에 돌출되도록 형성된, 상기 제1 온감 및 탄성감 마이크로 채널(100)의 폭(101)보다 작은 폭(111)을 갖는 제2 온감 및 탄성감 마이크로 채널(110)을 포함하여 계단 형상으로 구성함으로써 적층 시 고정되지 않는 부분이 발생하게 되어 탄성 변형량을 크게 하는 등 탄성감을 제어할 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(20)는, 상기 제1 온감 및 탄성감 마이크로 채널(100) 상에 상기 제2 온감 및 탄성감 마이크로 채널(110)이 돌출되도록 형성된 것과 동일한 방식으로 복수 개의 온감 및 탄성감 마이크로 채널(미도시)들이 반복적으로 돌출 형성되도록 함으로써, 원하는 탄성감을 갖도록 탄성 변형량을 조절할 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(20)는, 알루미늄, 구리, 철, 스테인레스, 인바(Nib-Fe 합금) 등의 금속 또는 합금의 두께 10 ㎛ 내지 100㎛를 가지는 포일을, 상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들의 형상을 가지는 금형에 전주 도금 방식을 이용하여 제조된 것일 수 있다.
상기 기재 마이크로 채널(200)들과 상기 온감 및 탄성감 마이크로 채널(100)들은 상기 온감 및 탄성감 금속 아키텍처링 소재(20)의 가로 또는 세로의 길이 방향을 따라 형성된다.
도 7 및 도 8을 참조하면, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 소재(20)의 상기 제1 온감 및 탄성감 마이크로 채널(100)은, 상기 기재 마이크로 채널(200)의 일측 단부로부터 일정 접촉각(105)을 가지고 돌출되는 한 쌍의 제1경사부(104); 및 상기 한 쌍의 제1경사부(104)의 상기 기재 마이크로 채널(200)과 연결되는 단부들의 타측 단부들을 서로 연결하는 제1마루(102);를 포함하여 구성되는 것일 수 있다.
또한, 상기 제2 온감 및 탄성감 마이크로 채널(110)은, 상기 제1 마루(102) 상에 일정 접촉각(115)을 가지고 돌출되는 한 쌍의 제2경사부(114); 및 상기 한 쌍의 제2경사부(114)의 상기 제1마루(102)와 연결되는 단부들의 타측 단부들을 서로 연결하는 제2마루(112);를 포함하여 구성되는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(20)는, 상기 제1 온감 및 탄성감 마이크로 채널 상에 상기 제2 온감 및 탄성감 마이크로 채널이 돌출되도록 형성된 것과 동일한 방식으로 제3 온감 및 탄성감 마이크로 채널, 제4 온감 및 탄성감 마이크로 채널을 포함하는 복수 개의 온감 및 탄성감 마이크로 채널들이 순차적으로 돌출 형성됨으로써, 계단 형상으로 구성될 수 있다.
상기와 같이 계단 형상으로 형성된 상기 온감 및 탄성감 금속 아키텍처링 소재(20)들은, 하나의 상기 온감 및 탄성감 금속 아키텍처링 소재(20)의 상기 제2마루(112)가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재(20)의 상기 기재 마이크로 채널(200)의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 마이크로 채널(100)들이 서로 평행하지 않고 이격되게 적층되어 상기 온감 및 탄성감 채널(300)을 형성하도록 적층됨으로써, 적층 시 겹치지 않고 자연물의 미세 구조와 같은 기공 구조를 갖는 형태를 형성할 수 있으며 탄성 변형량을 조절하여 탄성감을 제어할 수 있다.
상기 제1마루(102)의 폭(103) 및 상기 제2마루(112)의 폭(113)은, 각각 독립적으로 1,000 ㎛ 이하인 것을 특징으로 하는 것일 수 있다.
상기 제1 접촉각(105)은, 상기 제1 경사부(104)가 상기 제1마루(102) 또는 상기 기재 마이크로 채널(200)과 이루는 각도인 것일 수 있다.
상기 제2 접촉각(115)은, 상기 제2 경사부(114)가 상기 제2 마루(112) 또는 상기 제1마루(102)와 이루는 각도인 것일 수 있다.
상기 제1 접촉각(105) 및 상기 제2 접촉각(115)은, 각각 독립적으로 0° 내지 90° 인 것을 특징으로 하는 것일 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재(20)들은 솔더링의 적층 방법을 이용하여 적층구조의 기공률과 유연성을 향상시키는 방법으로 적층 되어 판재로 형성될 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재의 두께는, 10 ㎛ 내지 100㎛인 것을 특징으로 하는 것일 수 있다.
상술한 구성을 가지는 상기 온감 및 탄성감 금속 아키텍처링 판재(2)의 열전도도는 0.05 W/m·K 내지 5 W/m·K를 가질 수 있다.
상기와 같은 열전도도 값은 고무류나 가죽류의 일부, 또는 나무와 같은 자연물 소재의 열전도도 값과 유사한 값에 해당한다. 따라서, 본 발명의 금속 판재는 금속 소재를 이용하면서도 자연물과 유사한 인간친화적 온감을 줄 수 있다는 것을 확인할 수 있다.
상술한 구성을 가지는 상기 온감 및 탄성감 금속 아키텍처링 판재(2)의 탄성계수는 0.1 Mpa 내지 10 Gpa 를 가질 수 있다.
상기와 같은 탄성계수 값은 솔리드 금속 고체와 비교하여 낮은 값에 해당하며, 이는 나무나 가죽과 같은 자연물 소재의 탄성계수 값과 유사한 값에 해당한다. 따라서, 본 발명의 금속 판재는 금속 소재를 이용하면서도 자연물과 유사한 인간친화적 탄성감을 줄 수 있다는 것을 확인할 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(3)를 개략적으로 나타낸 모식도이다.
도 9를 참조하면, 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재(3)는, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재에, 상기 온감 및 탄성감 금속 아키텍처링 판재의 사용을 위하여 온감 및 탄성감 마이크로 채널 및 기재 마이크로 채널들이 형성되지 않은 평판 형의 금속 평판 소재(30)를 더 적층하여 형성된 것을 특징으로 하는 것일 수 있다.
도 10은 전술한 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 사진을 나타내는 도면이다.
상기와 같은 구성적 특징으로 인하여, 본 발명의 일 실시예에 따르면, 자연물의 미세 구조 및 조직적 특성을 정밀하게 모사하여 규칙적인 내부 기공 구조를 가지면서도 상기 조직 구조를 제어하여 열전도도 및 탄성계수를 제어할 수 있어 자연물과 같은 인간 친화적인 온감 및 탄성감의 촉감을 구현 가능한 금속 판재를 제공 가능한 효과가 있다.
본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 제조방법을 설명한다.
도 11은 본 발명의 또 다른 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 제조방법을 개략적으로 나타내는 모식도이다.
도 11을 참조하면, 본 발명의 상기 온감 및 탄성감 금속 아키텍처링 판재의 제조방법은, 일정 간격으로 형성되는 기재 마이크로 채널들 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계(S10); 상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 상기 온감 및 탄성감 금속 아키텍처링 소재들을 적층하는 단계(S20); 및 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계(S30);를 포함할 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계(S10)에서는, 상기 온감 및 탄성감 금속 아키텍처링 판재의 열전도도를 y, 온감 및 탄성감 마이크로 채널 폭과 기재 마이크로 채널의 폭의 비를 x라 할 때, 상기 온감 및 탄성감 금속 아키텍처링 소재의 두께에 따라, y= A(1)e -A(2)x + A(3)에 의해 도출되며, 상기 계수는 상기 [표 1]로부터 얻어지는 것을 특징으로 한다.
상기와 같이, 상기 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계(S10)에서는, 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비를 제어하여, 제작된 온감 및 탄성감 금속 아키텍처링 판재의 열전도도가 0.05 W/m·K 내지 10 W/m·K이 되도록 상기 온감 및 탄성감 금속 아키텍처링 소재를 제작하는 단계일 수 있다. 예를 들어, 상기 [표 1]에서 온감 및 탄성감 금속 아키텍처링 소재의 두께가 30㎛이고 추가 적층이 없는 경우의 상기 온감 및 탄성감 금속 아키텍처링 판재의 열전도도 도출식의 계수는 각각, A(1)=1.675, A(1)=1.073 및 A(3)=0.111로서, 이 경우의 상기 온감 및 탄성감 금속 아키텍처링 판재의 열전도도는 y = 1.675e -1.073x + 0.111에 의해 설정될 수 있다.
상기 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계(S10)에서의 상기 온감 및 탄성감 마이크로 채널은, 상기 기재 마이크로 채널의 일 측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부; 및 상기 한 쌍의 경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루;를 포함하도록 제작되는 것을 특징으로 한다.
상기 온감 및 탄성감 금속 아키텍처링 소재들을 적층하는 단계(S20)는, 하나의 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 온감 및 탄성감 마이크로 채널의 마루가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 기재 마이크로 채널의 저면에 접촉되도록 상기 온감 및 탄성감 금속 아키텍처링 소재들을 적층하는 단계인 것을 특징으로 한다. 이 경우, 상기 마루들은 상기 기재 마이크로 채널의 저면의 중심부에 위치되는 것이 바람직하다.
도 12는 본 발명의 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계(S30)에서의 프레스 성형 공정을 개략적으로 나타내는 모식도이다.
상기 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계(S30)에서는, 상기 온감 및 탄성감 금속 아키텍처링 판재(1)의 목표 두께를 가지는 스페이서(40)를 이용하여 수행되는 것을 특징으로 한다.
상기와 같이, 상기 온감 및 탄성감 금속 아키텍처링 소재(10)들을 제작될 온감 및 탄성감 금속 아키텍처링 판재(1)의 두께에 대응하도록 적층한 후, 제작될 온감 및 탄성감 금속 아키텍처링 판재(1)의 목표 두께에 대응하는 높이를 가지는 한 쌍의 스페이서(40)를 배치한 후 핫 프레스 성형을 수행하는 것에 의해 상기 온감 및 탄성감 금속 아키텍처링 판재(1)가 제작된다. 상기 스페이서(40)에 의해 적층된 온감 및 탄성감 금속 아키텍처링 소재(10)들이 과도한 압력을 받지 않게 되어, 균일한 형상의 온감 및 탄성감 채널들이 형성될 수 있다.
상기와 같은 구성의 특징으로 인하여, 본 발명의 일 실시예에 따르면, 균일한 형상의 온감 및 탄성감 채널을 가지므로 일정한 물리적 특성을 갖도록 제조하여 양산화가 가능하며, 필요에 따라 판재의 열전도도 및 탄성감을 제어 가능한 온감 및 탄성감 금속 아키텍처링 판재의 제조방법을 제공 가능한 효과가 있다.
<실험예 1> 온감 및 탄성감 금속 아키텍처링 판재의 온감 제어
도 13은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비 및 적층 두께에 따른 등가 열전도도를 나타내는 표이다.
도 13과 같이, 온감 및 탄성감 금속 아키텍처링 판재를 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 각각 1: 1, 1 : 2, 1 : 4를 가지는 두께 50㎛, 40㎛, 30㎛의 온감 및 탄성감 금속 아키텍처링 판재들을 제작한 후 열전도도를 측정하였다. 측정 결과, 열전도도가 최대 1.261 W/m·K, 최소 0.111 W/m·K를 가지는 것을 확인하여 금속을 이용한 온감 효과를 제공할 수 있음을 확인하였다.
도 14는 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 두께에 따른 열전도도 변화를 나타내는 그래프이다.
도 14의 경우, 온감 및 탄성감 금속 아키텍처링 판재를 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 각각 1: 1, 1 : 2, 1 : 4를 가지는 온감 및 탄성감 금속 아키텍처링 소재들이 적층된 것을 각각 A형상, B형상, C형상으로 하고, 각각의 A형상, B형상, C형상에서 추가되는 온감 및 탄성감 금속 아키텍처링 소재가 0장, 1장, 2장의 경우에 대하여 두께 변화에 따른 열전도도를 측정하였다. 측정 결과, 온감 및 탄성감 금속 아키텍처링 판재의 열전도도는 두께에 선형적인 관계를 가지고 있음을 확인하였다.
도 15는 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비에 따른 열전도도 변화를 나타내는 그래프이다.
도 15와 같이, 두께 50㎛, 40㎛, 30㎛의 두께를 가지며, 서로 다른 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비를 가지는 온감 및 탄성감 금속 아키텍처링 판재들의 열전도도를 측정하였다.
측정 결과, 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 커질수록 열전도도가 낮아지게 되어, 온감 효과를 더욱 제공할 수 있는 것을 관측하였다.
도 16은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비에 따른 열전도도 관계식 도출을 나타내는 그래프이다.
도 16과 같이, 본 발명의 실시예의 온감 및 탄성감 금속 아키텍처링 판재는 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비를 조절하는 것에 의해 원하는 열전도도를 가지도록 제작될 수 있다.
이 경우, 온감 및 탄성감 금속 아키텍처링 판재의 열전도도를 y, 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비를 x라 하여, 일반식을 y= A(1)e -A(2)x + A(3)이라고 할 때, 온감 및 탄성감 마이크로 채널의 폭과 기재 마이크로 채널의 폭의 비를 가변 시키며 온감 및 탄성감 금속 아키텍처링 판재들을 제작한 후 열전도도를 측정하는 것을 반복하는 실험을 통해 각각의 계수를 결정할 수 있었다. 계수들의 결정은 상기 [표 1]을 통해 결정될 수 있다.
도 17은 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재의 열전도도에 따른 온감에 대응하는 타 소재들의 예를 나타내는 도면이다.
도 17의 (a)는 타 소재들과의 본 발명의 온감 및 탄성감 금속 아키텍처링 판재와의 열전도도 비를 나타내는 그래프이고, (b)는 온감 및 탄성감 금속 아키텍처링 판재를 구성하는 온감 및 탄성감 금속 아키텍처링 소재의 두께와 적층 수별 측정 열전도도(간격비 1, 2 및 3, 초기 데이터)와 열전도도 도출 식을 이용하여 도출된 열전도도(간격비 0.2 및 5, 함수 검증용 데이터)를 나타내는 표이다.
도 17과 같이, 본 발명의 일 실시예의 온감 및 탄성감 금속 아키텍처링 판재들은 목재, 면, 가죽, 고무, 유리, 바위 등의 소재의 온감을 가지도록 제작될 수 있었다.
<실험예 2> 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 제어
본 발명의 온감 및 탄성감 금속 아키텍처링 판재의 온감 및 탄성감 제어 실험을 진행하기 위하여 하기와 같이 제조예 및 비교예를 제조하여 실험에 이용하였다.
<제조예 1>
본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재를 제조하였다.
상기 온감 및 탄성감 금속 아키텍처링 판재를 제조하기 위하여, 먼저 온감 및 탄성감 아키텍처링 금속 소재를 제조하였다.
상기 온감 및 탄성감 아키텍처링 금속 소재는, 전주 도금 방식을 이용하여 상기 온감 및 탄성감 마이크로 채널 및 상기 기재 마이크로 채널의 폭의 비가 1:4를 이루도록 제조하였다.
상기와 같이 제조한 온감 및 탄성감 아키텍처링 금속 소재를 6층으로 솔더링 방식을 이용하여 적층한 후 가장 위층과 가장 아래층에 평판 소재를 적층하여 온감 및 탄성감 금속 아키텍처링 판재를 완성하였다.
<제조예 2>
상기 온감 및 탄성감 아키텍처링 금속 소재를 5층으로 적층한 것을 제외하고는 상기 제조예 1과 동일하게 온감 및 탄성감 금속 아키텍처링 판재를 제조하였다.
<비교예 1>
상기 온감 및 탄성감 마이크로 채널 및 상기 기재 마이크로 채널의 폭의 비가 1:1을 이루도록 제조한 것을 제외하고 상기 제조예 1과 동일하게 온감 및 탄성감 금속 아키텍처링 판재를 제조하였다.
<실험예 2-1>
상기 제조예 1 및 비교예에서 제조된 온감 및 탄성감 금속 아키텍처링 판재의 온감을 확인하는 실험을 진행하였다.
이를 위하여, 상기 제조예 및 비교예에서 제조된 온감 및 탄성감 금속 아키텍처링 판재의 열전도도를 측정하였다.
도 18은 본 발명의 제조예 및 비교예에 따라 제조된 온감 및 탄성감 금속 아키텍처링 판재의 단면 구조 및 측정한 열전도도를 나타내는 표이다.
도 18을 참조하면, 본 발명의 일 실시예에 따라 온감 및 탄성감 마이크로 채널 및 기재 마이크로 채널의 폭의 비를 조절함으로써, 본 발명의 온감 및 탄성감 금속 아키텍처링 판재가 자연물과 비슷한 수준의 열전도도를 갖도록 제어할 수 있다는 것을 확인할 수 있다.
<실험예 2-2>
상기 제조예 2에서 제조된 온감 및 탄성감 금속 아키텍처링 판재의 탄성감을 확인하는 실험을 진행하였다.
이를 위하여, 상기 제조예 2에서 제조된 온감 및 탄성감 금속 아키텍처링 판재의 탄성계수를 측정하였다.
도 19는 본 발명의 제조예 2에 따라 제조된 온감 및 탄성감 금속 아키텍처링 판재의 방향별 인장 시험 결과를 나타낸 그래프이다.
도 19를 참조하면, 본 발명의 일 실시예에 따른 온감 및 탄성감 금속 아키텍처링 판재의 탄성 계수는 채널을 갖지 않는 솔리드 금속 고체와 비교하여 약 1/50만 수준인 0.48 Mpa라는 낮은 탄성계수를 나타내는 것을 확인할 수 있다. 즉, 상기와 같이 본 발명의 온감 및 탄성감 금속 아키텍처링 판재의 폭의 비, 마루의 폭 및 접촉각 등 다양한 인자들을 제어하여 온감 및 탄성감 금속 소재를 제조하여 적층함으로써 탄성계수를 제어할 수 있으며, 이에 따라 자연물과 유사한 수준의 원하는 탄성감을 갖도록 제조될 수 있는 것을 확인할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
1, 2, 3: 온감 및 탄성감 금속 아키텍처링 판재
10: 온감 및 탄성감 금속 아키텍처링 소재
11: 제1 온감 및 탄성감 금속 아키텍처링 소재
12: 제2 온감 및 탄성감 금속 아키텍처링 소재
20: 온감 및 탄성감 금속 아키텍처링 소재
30: 금속 평판 소재
40: 스페이서
100: 온감 및 탄성감 마이크로 채널
101: 온감 및 탄성감 마이크로 채널의 폭
102: 마루
103: 마루의 폭
104: 경사부
105: 접촉각
106: 높이
110: 제2 온감 및 탄성감 마이크로 채널
111: 제2 온감 및 탄성감 마이크로 채널의 폭
112: 제2마루
113: 제2마루의 폭
114: 제2경사부
115: 제2접촉각
116: 제2높이
200: 기재 마이크로 채널
201: 기재 마이크로 채널의 폭
300: 온감 및 탄성감 채널

Claims (20)

  1. 일정 간격으로 형성되는 기재 마이크로 채널들; 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들;을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이,
    상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 및 탄성률 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 적층되어 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  2. 제1항에 있어서,
    상기 온감 및 탄성감 금속 아키텍처링 소재의 두께는, 3 ㎛ 내지 100 ㎛인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  3. 제1항에 있어서,
    상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1 : 10 ~ 10 : 1인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  4. 제1항에 있어서,
    상기 온감 및 탄성감 마이크로 채널은,
    상기 기재 마이크로 채널의 일측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부; 및
    상기 한 쌍의 경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루;를 포함하여 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  5. 제4항에 있어서,
    상기 기재 마이크로 채널의 폭은, 5㎛ 내지 5000㎛인 것을 특징으로 하는 탄성감 금속 아키텍처링 판재.
  6. 제4항에 있어서,
    상기 마루의 폭은, 1㎛ 내지 4000㎛ 인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  7. 제4항에 있어서,
    상기 접촉각은, 상기 경사부가 상기 마루 또는 상기 기재 마이크로 채널과 이루는 각도로서, 0° 내지 90° 인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  8. 제4항에 있어서,
    하나의 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 온감 및 탄성감 마이크로 채널의 마루가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 기재 마이크로 채널의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 채널을 형성하도록 적층되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  9. 제1항에 있어서,
    상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1:2n-1(n은 1 이상의 정수)을 이루는 제1 온감 및 탄성감 금속 아키텍처링 소재 및 상기 온감 및 탄성감 마이크로 채널의 폭과 상기 기재 마이크로 채널의 폭의 비가 1:2n(n은 1 이상의 정수)을 이루는 제2 온감 및 탄성감 금속 아키텍처링 소재가 번갈아 적층되어 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  10. 마이크로 두께를 갖는 판상의 온감 및 탄성감 금속 아키텍처링 소재들이 적층되어 열전도도 및 탄성감 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 구성되되,
    상기 온감 및 탄성감 금속 아키텍처링 소재는, 일정 간격으로 형성되는 복수개의 기재 마이크로 채널; 및 상기 기재 마이크로 채널 사이에서 돌출되도록 형성된 복수개의 제1 온감 및 탄성감 마이크로 채널;을 포함하고,
    상기 제1 온감 및 탄성감 마이크로 채널은, 상기 제1 온감 및 탄성감 마이크로 채널 상에 돌출되도록 형성된, 상기 제1 온감 및 탄성감 마이크로 채널보다 작은 폭을 갖는 제2 온감 및 탄성감 마이크로 채널을 포함하여 계단 형상으로 구성된 것을 특징으로 하고,
    상기 온감 및 탄성감 금속 아키텍처링 소재들은 상기 제1 온감 및 탄성감 마이크로 채널들이 서로 겹치지 않게 이격되어 적층되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  11. 제10항에 있어서,
    상기 온감 및 탄성감 금속 아키텍처링 소재는, 상기 제1 온감 및 탄성감 마이크로 채널 상에 상기 제2 온감 및 탄성감 마이크로 채널이 돌출되도록 형성된 것과 동일한 방식으로, 상기 제2 온감 및 탄성감 마이크로 채널 상으로 복수 개의 온감 및 탄성감 마이크로 채널들이 순차적으로 반복 돌출 형성되어 계단 형상으로 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  12. 제10항에 있어서,
    상기 제 1 온감 및 탄성감 마이크로 채널은,
    상기 기재 마이크로 채널의 일측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 제1경사부; 및
    상기 한 쌍의 제1경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 제1마루;를 포함하여 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  13. 제10항에 있어서,
    상기 제2 온감 및 탄성감 마이크로 채널은,
    상기 제1마루 상에 일정 접촉각을 가지고 돌출되는 한 쌍의 제2경사부; 및
    상기 한 쌍의 제2경사부의 상기 제1마루와 연결되는 단부들의 타측 단부들을 서로 연결하는 제2마루;를 포함하여 구성되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  14. 제13항에 있어서,
    하나의 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 제2마루가 다른 상기 온감 및 탄성감 금속 아키텍처링 소재의 상기 기재 마이크로 채널의 저면에 접촉되도록 적층되는 것에 의해 상기 온감 및 탄성감 채널을 형성하도록 적층되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  15. 제10항에 있어서,
    상기 온감 및 탄성감 금속 아키텍처링 소재의 두께는, 10 ㎛ 내지 100㎛인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  16. 제1항에 있어서,
    열전도도는 0.05 W/mㆍK 내지 10 W/mㆍK인 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  17. 제1항에 있어서,
    탄성계수는 0.1 Mpa 내지 10 GPa인 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재.
  18. 일정 간격으로 형성되는 기재 마이크로 채널들 및 상기 기재 마이크로 채널들의 사이에서 돌출되도록 형성된 온감 및 탄성감 마이크로 채널들을 포함하는 마이크로 두께를 가지는 판상의 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계;
    상기 기재 마이크로 채널들과 상기 온감 및 탄성감 마이크로 채널들이 열전도도 제어를 위한 공간인 온감 및 탄성감 채널들을 형성하도록 상기 온감 및 탄성감 금속 아키텍처링 소재들을 적층하는 단계; 및
    상기 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계;를 포함하는 온감 및 탄성감 금속 아키텍처링 판재의 제조방법.
  19. 제18항에 있어서,
    상기 온감 및 탄성감 금속 아키텍처링 소재들을 제작하는 단계에서의 상기 온감 및 탄성감 마이크로 채널은, 상기 기재 마이크로 채널의 일 측 단부로부터 일정 접촉각을 가지고 돌출되는 한 쌍의 경사부; 및 상기 한 쌍의 경사부의 상기 기재 마이크로 채널과 연결되는 단부들의 타측 단부들을 서로 연결하는 마루;를 포함하도록 제작되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재의 제조방법.
  20. 제18항에 있어서,
    상기 온감 및 탄성감 금속 아키텍처링 소재들의 적층체를 프레스 성형하여 부착하는 단계는, 상기 온감 및 탄성감 금속 아키텍처링 판재의 목표 두께를 가지는 스페이서를 이용하여 수행되는 것을 특징으로 하는 온감 및 탄성감 금속 아키텍처링 판재의 제조방법.
PCT/KR2020/017186 2019-11-28 2020-11-27 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법 WO2021107718A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20891491.1A EP4067067A4 (en) 2019-11-28 2020-11-27 ARCHITECTURAL METAL PLATE HAVING SENSIBLE HEAT AND ELASTICITY AND METHOD FOR PRODUCING SAME
US17/780,854 US20230001666A1 (en) 2019-11-28 2020-11-27 Metal architectured plate with tactile warmth and elasticity and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0155127 2019-11-28
KR1020190155127A KR102366949B1 (ko) 2019-11-28 2019-11-28 온감 금속 아키텍처링 판재 및 그 제작 방법
KR10-2020-0129785 2020-10-08
KR1020200129785A KR102415426B1 (ko) 2020-10-08 2020-10-08 온감 및 탄성감 금속 아키텍처링 판재

Publications (1)

Publication Number Publication Date
WO2021107718A1 true WO2021107718A1 (ko) 2021-06-03

Family

ID=76129939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017186 WO2021107718A1 (ko) 2019-11-28 2020-11-27 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20230001666A1 (ko)
EP (1) EP4067067A4 (ko)
WO (1) WO2021107718A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220486A (ja) * 1996-02-13 1997-08-26 Usui Internatl Ind Co Ltd メタルハニカム体
KR100229363B1 (ko) * 1994-09-26 1999-11-01 베. 마우스; 베. 디트리히 교차형 배열의 미세구조물을 갖춘 금속 벌집체
JP4330972B2 (ja) * 2003-10-20 2009-09-16 昭和飛行機工業株式会社 ハニカムパネルおよびその製造方法
WO2014055991A1 (en) * 2012-10-05 2014-04-10 Leonard Michael R Layered insulation system
KR20150034393A (ko) * 2013-09-26 2015-04-03 김진관 단열성능이 향상된 열반사형 단열재
KR101961103B1 (ko) 2017-06-12 2019-03-25 석성균 탄소섬유 원단과 금속 그물 구조물을 밀착가공한 탄소섬유 원단 프리프레그 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439046B1 (en) * 1990-01-22 1993-09-22 Atd Corporation Pad including heat sink and thermal insulation areas and laminate having shapability
DE20319319U1 (de) * 2003-12-12 2005-04-28 Carcoustics Tech Center Gmbh Schallabsorbierendes Hitzeschild
US20070243408A1 (en) * 2005-11-22 2007-10-18 Straza George C P Formed core sandwich structure and method and system for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100229363B1 (ko) * 1994-09-26 1999-11-01 베. 마우스; 베. 디트리히 교차형 배열의 미세구조물을 갖춘 금속 벌집체
JPH09220486A (ja) * 1996-02-13 1997-08-26 Usui Internatl Ind Co Ltd メタルハニカム体
JP4330972B2 (ja) * 2003-10-20 2009-09-16 昭和飛行機工業株式会社 ハニカムパネルおよびその製造方法
WO2014055991A1 (en) * 2012-10-05 2014-04-10 Leonard Michael R Layered insulation system
KR20150034393A (ko) * 2013-09-26 2015-04-03 김진관 단열성능이 향상된 열반사형 단열재
KR101961103B1 (ko) 2017-06-12 2019-03-25 석성균 탄소섬유 원단과 금속 그물 구조물을 밀착가공한 탄소섬유 원단 프리프레그 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067067A4

Also Published As

Publication number Publication date
EP4067067A4 (en) 2023-12-27
EP4067067A1 (en) 2022-10-05
US20230001666A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2019088373A1 (ko) 플렉서블 디스플레이 유닛 및 이를 구비하는 이동 단말기
WO2019088372A1 (en) Flexible frame and flexible display unit having the same
WO2017160022A1 (ko) 접이식 허니컴 구조물 및 그의 제조방법
WO2018062828A2 (ko) 이종 소재 접합체 및 이의 제조방법
WO2020222445A1 (ko) 디스플레이용 기판
WO2019168259A1 (ko) 엠보싱 금속판의 양측면 용접을 용이하게 하는 엠보싱 파이프 제조장치 및 이를 이용한 엠보싱 파이프 제조방법
WO2021137478A1 (ko) 탄성 부재
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2021107718A1 (ko) 온감 및 탄성감 금속 아키텍처링 판재 및 이의 제조방법
WO2021101149A1 (ko) 디스플레이용 기판
WO2017069558A1 (ko) 다공성 단일 수지 섬유 복합재 및 다공성 단일 수지 섬유 복합재를 제조하는 방법
WO2013071525A1 (zh) 平板显示装置、立体显示装置以及等离子显示装置
WO2022005070A1 (ko) 탄성 부재 및 이를 포함하는 디스플레이 장치
WO2020262969A1 (ko) 가연성 박막 건축내장 소재가 접착된 금속소재 및 이를 부착하기 위한 부착구조물
WO2016086660A1 (zh) 基于压密技术制成的新型硬木
WO2022030830A1 (ko) 탄성 부재 및 이를 포함하는 디스플레이 장치
WO2016104878A1 (ko) 탄탈륨의 미세조직 및 집합조직 제어방법
WO2016171485A1 (ko) 친수성 및 방오성, 내후성이 향상된 광촉매 시트 및 그의 제조방법
WO2020235773A1 (ko) 타일 바닥재
WO2019156303A1 (ko) 건축용 외장 패널 및 그 조립 구조
WO2021066496A1 (ko) 주름진 표면을 갖는 적층 필름
WO2022173115A1 (ko) 변압기용 냉각 핀
WO2020149662A1 (ko) 복합체 및 복합체의 제조 방법
WO2020242003A1 (ko) 목조 건축물용 토대 및 이를 이용한 시공 방법
WO2017090806A1 (ko) 신축성 섬유 원단이나 일정한 두께 발포시트 또는 신축성이 없는 섬유 원단 또는 격자형 절개선 홈을 이용하여 압공성형이나 진공성형으로 깔창을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891491

Country of ref document: EP

Effective date: 20220628