WO2021107665A1 - 열가소성 수지 조성물 및 이를 포함하는 성형품 - Google Patents

열가소성 수지 조성물 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2021107665A1
WO2021107665A1 PCT/KR2020/017039 KR2020017039W WO2021107665A1 WO 2021107665 A1 WO2021107665 A1 WO 2021107665A1 KR 2020017039 W KR2020017039 W KR 2020017039W WO 2021107665 A1 WO2021107665 A1 WO 2021107665A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
weight
reflectance
parts
Prior art date
Application number
PCT/KR2020/017039
Other languages
English (en)
French (fr)
Inventor
김현수
김익모
이상화
이봉재
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to CN202080081196.5A priority Critical patent/CN114761488B/zh
Publication of WO2021107665A1 publication Critical patent/WO2021107665A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article comprising the same. More specifically, the present invention relates to a polyester-based thermoplastic resin composition having excellent reflectance, reflectance retention, impact resistance, heat resistance, molding processability, and the like, and a molded article including the same.
  • LEDs Light emitting diodes
  • OLEDs organic light emitting diodes
  • the light emitting diode package (package) of the light emitting diode with component materials such as a reflector, a reflector cup, a scrambler, and a housing to maximize light efficiency through high reflectance.
  • component materials such as a reflector, a reflector cup, a scrambler, and a housing to maximize light efficiency through high reflectance. to form These component materials must be able to withstand high temperatures and minimize the decrease in whiteness due to reduced reflectance and yellowing.
  • polyester resins, copolymers thereof, blends thereof, etc. each exhibit useful properties and are applied to various fields including interior and exterior materials of products, and are also used as material for the parts.
  • Polyester resins mainly used for component materials are highly heat-resistant polyester resins such as wholly aromatic polyester resins. High heat-resistant polyester resins do not deform at high temperatures and have excellent discoloration resistance, but have problems in that the crystallization rate is slow, mechanical strength is low, and impact resistance is poor.
  • an additive such as an inorganic filler is mixed with a polyester resin to improve impact resistance, rigidity, and the like.
  • an additive such as an inorganic filler is used in excess, there is a concern that a problem of deterioration in moldability such as bleed-out may occur.
  • thermoplastic resin composition capable of implementing high reflectance
  • the content of white pigments and the like must be increased.
  • the impact resistance of the thermoplastic resin composition may be reduced. There are concerns.
  • thermoplastic resin composition excellent in reflectance, reflectance retention, impact resistance, heat resistance, molding processability, and the like, which does not cause the above problems, so as to be applicable to parts materials for light emitting diodes and the like.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in reflectance, reflectance retention, impact resistance, heat resistance, molding processability, and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 50 to about 90% by weight of polycyclohexane-1,4-dimethylene terephthalate resin, and about 80 to about 90 mol% of terephthalic acid and about 10 to about 20 mol% of isophthalic acid.
  • a polyester resin comprising about 10 to about 50 wt% of a glycol-modified polyester resin comprising a repeating unit derived from an acid component and a repeating unit derived from a diol component including 1,4-cyclohexanedimethanol; about 5 to about 30 parts by weight of glass fiber; about 5 to about 50 parts by weight of a white pigment; and about 0.1 to about 10 parts by weight of a chain extender.
  • the content of 1,4-cyclohexanedimethanol in the total diol component may be about 20 to about 100 mol%.
  • the white pigment may include at least one of titanium oxide, zinc oxide, zinc sulfide, zinc sulfate, barium sulfate, calcium carbonate, and alumina.
  • the chain extender may include at least one of a compound of an aromatic diol compound and epichlorohydrin, and a modified acrylic copolymer.
  • the weight ratio of the glass fiber and the chain extender may be about 1:1 to about 200:1.
  • the thermoplastic resin composition may have a reflectance of about 92 to about 99% with respect to 450 nm wavelength light of a 90 mm ⁇ 50 mm ⁇ 2.5 mm specimen measured according to ASTM E1331. .
  • thermoplastic resin composition may have a reflectance retention calculated according to Equation 1 below about 90 to about 99%:
  • Equation 1 Rf 0 is the initial reflectance with respect to 450 nm wavelength light of a 90 mm ⁇ 50 mm ⁇ 2.5 mm size specimen measured according to ASTM E1331, and Rf 1 is the specimen at 85° C. and 85% relative humidity. , after standing for 300 hours, reflectance after constant temperature and humidity test for light with a wavelength of 450 nm measured according to ASTM E1331.
  • thermoplastic resin composition may have an unnotched Izod impact strength of about 25 to about 40 kgf ⁇ cm/cm of a 1/8′′ thick specimen measured according to ASTM D256.
  • thermoplastic resin composition has a heat deflection temperature (HDT) of about 230 to about 270° C., measured under the conditions of a load of 1.82 MPa and a temperature increase rate of 120° C./hr, according to ASTM D648.
  • HDT heat deflection temperature
  • Another aspect of the present invention relates to a molded article.
  • the molded article is formed from the thermoplastic resin composition according to any one of 1 to 9 above.
  • the molded article may be a reflector or a reflector cup for LEDs.
  • the present invention has the effect of providing a thermoplastic resin composition excellent in reflectance, reflectance retention, impact resistance, heat resistance, molding processability, and the like, and a molded article formed therefrom.
  • the molded article is useful as a reflector or reflector cup for LEDs.
  • FIG. 1 is a cross-sectional view of a semiconductor device including a reflector cup formed from a thermoplastic resin composition according to an embodiment of the present invention.
  • thermoplastic resin composition according to the present invention comprises (A) a polyester resin; (B) glass fibers; (C) white pigment; and (D) a chain extender.
  • the polyester resin of the present invention includes (A1) polycyclohexane-1,4-dimethylene terephthalate resin; and (A2) glycol-modified polyester resin.
  • the polycyclohexane-1,4-dimethylene terephthalate (PCT) resin of the present invention can improve the heat resistance and rigidity of the thermoplastic resin composition, and contains terephthalic acid and its derivatives as a dicarboxylic acid component and 1 as a diol component.
  • ,4-cyclohexanedimethanol (CHDM) is polymerized according to a known polycondensation method.
  • the polycyclohexane-1,4-dimethylene terephthalate resin has a weight average molecular weight measured in a hexafluoroisopropanol (HFIP) solvent by gel permeation chromatography (GPC) of about 3,000 to about 200,000 g/mol, for example from about 5,000 to about 150,000 g/mol.
  • GPC gel permeation chromatography
  • the content of the polycyclohexane-1,4-dimethylene terephthalate resin may be from about 50 to about 90% by weight, for example from about 55 to about 85% by weight, based on 100% by weight of the total polyester resin. have.
  • the content of the polycyclohexane-1,4-dimethylene terephthalate resin is less than 50% by weight among 100% by weight of the total polyester resin, the reflectance, heat resistance, discoloration resistance, molding processability, etc. of the thermoplastic resin composition may be reduced. There is a risk, and when it exceeds 90% by weight, there is a possibility that the impact resistance of the thermoplastic resin composition may be lowered.
  • the glycol-modified polyester resin of the present invention is applied together with the polycyclohexane-1,4-dimethylene terephthalate resin and the like to improve the impact resistance and flow properties of the thermoplastic resin composition, and is about 80 to about terephthalic acid.
  • - Includes a repeating unit derived from a diol component including cyclohexanedimethanol.
  • the glycol-modified polyester resin includes the dicarboxylic acid component and 1,4-cyclohexanedimethanol (CHDM) in an amount of from about 20 to about 100 mol%, for example from about 35 to about 100 mol% and having 2 carbon atoms. It can be prepared by polycondensation of a diol component comprising from about 0 to about 80 mol% of an alkylene glycol of 6-6, for example, from 0 to about 65 mol%. Within the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, and the like.
  • CHDM 1,4-cyclohexanedimethanol
  • the glycol-modified polyester resin has a weight average molecular weight of about 3,000 to about 200,000 g/mol, as measured in a hexafluoroisopropanol (HFIP) solvent by gel permeation chromatography (GPC), for example from about 5,000 to about 150,000 g/mol.
  • HFIP hexafluoroisopropanol
  • GPC gel permeation chromatography
  • the content of the glycol-modified polyester resin may be from about 10 to about 50% by weight, for example, from about 15 to about 45% by weight of 100% by weight of the total polyester resin.
  • the content of the glycol-modified polyester resin is less than about 10% by weight among 100% by weight of the total polyester resin, there is a risk that the impact resistance, fluidity, etc. of the thermoplastic resin composition may decrease, and when it exceeds about 50% by weight, There is a possibility that the reflectance, heat resistance, discoloration resistance, etc. of the thermoplastic resin composition may decrease.
  • Glass fibers according to an embodiment of the present invention can improve the rigidity, impact resistance, etc. of the thermoplastic resin composition, and include circular cross-sectional glass fibers, flat-shaped glass fibers, and their combinations, and the like.
  • the circular cross-section glass fiber may be a glass fiber having an average diameter of a circular cross-section measured by an optical microscope of about 6 to about 8 ⁇ m, for example, about 6 to about 7.5 ⁇ m.
  • the thermoplastic resin composition may have excellent rigidity, appearance characteristics, and the like.
  • the flat glass fiber may be a conventional flat glass fiber used in the thermoplastic resin composition, for example, the aspect ratio of the cross-section measured with an optical microscope is about 1.5 to about 8, for example, for example, it may be about 1.6 to about 5, and the minor diameter may be about 6 to about 12 ⁇ m.
  • the surface smoothness of the thermoplastic resin composition (molded article) may be improved, and the reflectance may be improved.
  • the glass fiber may have an average length of about 1 to about 5 mm before extrusion, and an average length of about 100 to about 700 ⁇ m after extrusion (processing), for example, about 110 to about 690 ⁇ m. .
  • the thermoplastic resin composition may have excellent impact resistance, rigidity, and appearance characteristics.
  • the glass fiber coated with a surface treatment agent on the surface may be used in order to increase bonding strength with a component of a thermoplastic resin composition such as a polyester resin.
  • a surface treatment agent a silane-based compound, a urethane-based compound, or an epoxy-based compound may be used, but is not limited thereto.
  • the glass fiber may be included in an amount of about 5 to about 30 parts by weight, for example, about 5 to about 25 parts by weight based on about 100 parts by weight of the polyester resin.
  • the content of the glass fiber is less than about 5 parts by weight based on about 100 parts by weight of the polyester resin, there is a risk that the impact resistance, rigidity, etc. of the thermoplastic resin composition may decrease, and when it exceeds about 30 parts by weight, the thermoplastic resin There exists a possibility that the reflectance of a composition, molding processability, etc. may fall.
  • the white pigment according to an embodiment of the present invention can improve whiteness, reflectance, discoloration resistance, light stability, etc. of the thermoplastic resin composition together with other components, and a conventional white pigment can be used without limitation.
  • a conventional white pigment can be used without limitation.
  • titanium oxide, zinc oxide, zinc sulfide, zinc sulfate, barium sulfate, calcium carbonate, alumina, white lead (2PbCO 3 ⁇ Pb(OH) 2 ), etc. are used alone or by mixing two or more types.
  • titanium oxide (TiO 2 ) having a crystal structure of a rutile type or a tetragonal system may be used.
  • the average particle diameter of the white pigment may be about 0.01 to about 2.0 ⁇ m, for example, about 0.05 to about 0.7 ⁇ m. In the above range, the whiteness and reflectance of the thermoplastic resin composition may be excellent.
  • the average particle size is the number average particle size measured with a particle size analyzer (manufacturer: Beckman Coulter, equipment name: LS 13 320), and is a value specified by D50 (the particle size at the point where the distribution rate is 50%).
  • the white pigment may be surface-treated with an organic surface treatment agent or an inorganic surface treatment agent.
  • the organic surface treatment agent may include, but is not limited to, a silane coupling agent, polydimethylsiloxane, trimethylolpropane (TMP), pentaerythritol, and combinations thereof.
  • a silane coupling agent vinyltriethoxysilane, 2-aminopropyltriethoxysilane, 2-glycidoxypropyltriethoxysilane, or the like may be used.
  • the inorganic surface treatment agent aluminum oxide (alumina, Al 2 O 3 ), silicon dioxide (silica, SiO 2 ), zirconia (zircon dioxide, ZrO 2 ), sodium silicate, sodium aluminate, sodium aluminum silicate, zinc oxide , mica, etc. may be used, and two or more of them may be mixed and used.
  • the organic surface treatment agent or the inorganic surface treatment agent may be included in an amount of about 5 parts by weight or less based on about 100 parts by weight of the white pigment during the surface treatment. In the above range, the whiteness and reflectance of the thermoplastic resin composition may be more excellent.
  • the white pigment may be included in an amount of about 5 to about 50 parts by weight, for example, about 10 to about 40 parts by weight, based on 100 parts by weight of the polyester resin.
  • the content of the white pigment is less than about 5 parts by weight based on about 100 parts by weight of the polyester resin, there is a risk that the reflectance, reflectance retention, and discoloration resistance of the thermoplastic resin composition may be lowered, and it may exceed about 50 parts by weight. In this case, there is a fear that the impact resistance, molding processability, etc. of the thermoplastic resin composition may decrease.
  • the chain extender of the present invention can be applied together with the polyester resin, glass fiber, etc. to improve the impact resistance, heat resistance, discoloration resistance, etc. of the thermoplastic resin composition, and is a compound of an aromatic diol compound and epichlorohydrin ( phenoxy resin) and at least one of a modified acrylate copolymer.
  • a bisphenol A-type epoxy resin (Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2-(chloromethyl)oxirane) and the like.
  • an acrylic copolymer having an epoxy reactive group may be used as the modified acrylic copolymer.
  • the chain extender has a weight average molecular weight (Mw) of about 5,000 to about 60,000 g/mol, for example, about 6,500 to about 55,000 g/mol, measured by gel permeation chromatography (GPC).
  • Mw weight average molecular weight
  • the thermoplastic resin composition may have excellent impact resistance, dimensional stability, and the like.
  • the chain extender may be included in an amount of about 0.1 to about 10 parts by weight, for example, about 0.1 to about 5 parts by weight based on about 100 parts by weight of the polyester resin.
  • the content of the chain extender is less than about 0.1 parts by weight based on about 100 parts by weight of the polyester resin, there is a risk that the impact resistance, heat resistance, etc. of the thermoplastic resin composition may decrease, and when it exceeds about 10 parts by weight, the thermoplastic resin composition There exists a possibility that the reflectance of a resin composition, reflectance retention, impact resistance, etc. may fall.
  • the weight ratio (B:D) of the glass fiber (B) and the chain extender (D) may be from about 1:1 to about 200:1, for example from about 3:1 to about 150:1. have. Within the above range, heat resistance, impact resistance, discoloration resistance, etc. of the thermoplastic resin composition may be more excellent.
  • thermoplastic resin composition according to one embodiment of the present invention may further include conventional additives according to the use within the range that does not impair the desired effect.
  • additives include antioxidants, stabilizers, flame retardants, flame retardant auxiliary agents, anti-drip agents, nucleating agents, release agents, antibacterial agents, surfactants, coupling agents, plasticizers, compatibilizers, lubricants, antistatic agents, combinations thereof, and the like. not limited
  • the antioxidant may include phenols, amines, sulfur, and mankind
  • the stabilizer heat stabilizer, light stabilizer
  • the stabilizer may include lactone compounds, hydroquinones, copper halide, iodine compounds, and the like.
  • the flame retardant bromine-based, chlorine-based, phosphorus-based, antimony-based, inorganic compounds and the like may be exemplified.
  • its content when the additive is used, its content may be about 20 parts by weight or less, for example, about 0.1 to about 15 parts by weight based on about 100 parts by weight of the polyester resin, but is not limited thereto.
  • thermoplastic resin composition may be prepared through a known method.
  • each component and, if necessary, additives are mixed with a Henschel mixer, V blender, tumbler blender, ribbon blender, etc., and melt-extruded at a temperature of about 250 to about 350° C. using a single screw extruder or twin screw extruder. It can be prepared in the form of pellets.
  • the thermoplastic resin composition has a reflectance of about 92 to about 99%, for example, about 93 to about 95, with respect to 450 nm wavelength light of a 30 mm ⁇ 50 mm ⁇ 2.5 mm specimen measured according to ASTM E1331. It can be %.
  • thermoplastic resin composition may have a reflectance retention calculated according to Formula 1 of about 90 to about 99%, for example, about 92 to about 96%.
  • Equation 1 Rf 0 is the initial reflectance with respect to 450 nm wavelength light of a 90 mm ⁇ 50 mm ⁇ 2.5 mm size specimen measured according to ASTM E1331, and Rf 1 is the specimen at 85° C. and 85% relative humidity. , after standing for 300 hours, reflectance after constant temperature and humidity test for light with a wavelength of 450 nm measured according to ASTM E1331.
  • thermoplastic resin composition has an unnotched Izod impact strength of about 25 to about 40 kgf ⁇ cm/cm, for example, about 25 to about 38 kgf ⁇ cm/cm.
  • the thermoplastic resin composition has a heat deflection temperature (HDT) of about 230 to about 270° C., for example, about 235 to about 230° C., measured under the conditions of a load of 1.82 MPa and a temperature increase rate of 120° C./hr, according to ASTM D648. It may be about 260°C.
  • HDT heat deflection temperature
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • a molded article may be manufactured by a known molding method such as injection molding, double injection molding, blow molding, extrusion molding, or thermoforming.
  • the molded article is excellent in reflectance, reflectance retention, impact resistance, rigidity, heat resistance, etc., so long as it is used for reflecting light, it can be applied without limitation.
  • it can be used as a reflector for light emitting devices such as parts of various electric and electronic products, indoor and outdoor lighting, automotive lighting, and display devices, and is particularly useful as a reflector or reflector cup for LEDs.
  • thermoplastic resin composition of the present invention can manufacture various types of reflectors or reflector cups 1, and the prepared reflector cups 1 include various known electrodes 2, substrates 3 ), sealing resin (4), wire (5), light emitting diode (LED, 6), etc. can be assembled into a product including a light emitting diode (LED) or an organic light emitting diode (OLED) such as a semiconductor device, lighting device, etc. .
  • LED light emitting diode
  • OLED organic light emitting diode
  • polycyclohexane-1,4-dimethylene terephthalate resin (dicarboxylic acid component: terephthalic acid 100 mol%, diol component: 1,4-cyclohexanedimethanol 100 mol%, weight average molecular weight: 30,000 g/ mol, manufacturer: SK Chemicals, product name: Puratan 0502) was used.
  • A2 glycol-modified polyester resin (dicarboxylic acid component: 87 mol% of terephthalic acid and 13 mol% of isophthalic acid, diol component: 100 mol% of 1,4-cyclohexanedimethanol, weight average molecular weight: 30,000 g/mol; Manufacturer: SK Chemicals, product name: Skypura 1631) was used.
  • (A3) glycol-modified polyester resin (dicarboxylic acid component: 95.5 mol% of terephthalic acid and 4.5 mol% of isophthalic acid, diol component: 100 mol% of 1,4-cyclohexanedimethanol, weight average molecular weight: 30,000 g/mol; Manufacturer: Eastman, product name: Eastman Copolyester 13319) was used.
  • a circular cross-section glass fiber (manufacturer: CPIC, product name: ECS303W-3-E) was used.
  • Titanium oxide (TiO 2 , manufacturer: Chemours, product name: R103) was used.
  • Bisphenol A type epoxy resin (Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2-(chloromethyl)oxirane, manufacturer: InChemRez, product name: PKHH) was used.
  • extrusion was performed at 300° C. to prepare pellets.
  • a 6 oz injection machine molding temperature 300°C, mold temperature 130°C
  • Reflectance (unit: %): According to ASTM E1331, measure the reflectance (using the specular component included (SCI) mode) of a 90 mm ⁇ 50 mm ⁇ 2.5 mm specimen for 450 nm wavelength light (LED light source) did. 3600 CIE Lab. of Minolta Co., Ltd. (KONICA MINOLTA HOLDINGS, INC.) was used as a reflectance meter.
  • Equation 1 Rf 0 is the initial reflectance with respect to 450 nm wavelength light of a 90 mm ⁇ 50 mm ⁇ 2.5 mm size specimen measured according to ASTM E1331, and Rf 1 is the specimen at 85° C. and 85% relative humidity. , after standing for 300 hours, reflectance after constant temperature and humidity test for light with a wavelength of 450 nm measured according to ASTM E1331.
  • Unnotched Izod impact strength (unit: kgf ⁇ cm/cm): According to ASTM D256, the unnotched Izod impact strength of a 1/8′′ thick specimen was measured.
  • Heat deflection temperature (unit: °C): According to ASTM D648, the heat deflection temperature (HDT) was measured under the conditions of a load of 1.82 MPa and a temperature increase rate of 120 °C/hr.
  • melt-flow index (MI, unit: g/10min): It was measured at 300° C. and 1.2 kgf according to ASTM D1238.
  • thermoplastic resin composition according to the present invention has excellent reflectance, reflectance retention, impact resistance, heat resistance, molding processability, and balance of physical properties thereof.
  • thermoplastic resin when the polycyclohexane-1,4-dimethylene terephthalate resin is applied below the content range of the present invention (the glycol-modified polyester resin exceeds the content range of the present invention) (Comparative Example 1), the thermoplastic resin It can be seen that the reflectance, heat resistance, etc.
  • thermoplastic resin composition When applied (Comparative Example 2), it can be seen that the impact resistance of the thermoplastic resin composition is lowered, and when applying the glycol-modified polyester resin (A3) instead of the glycol-modified polyester resin (A2) of the present invention ( Comparative Example 3), it can be seen that the impact resistance of the thermoplastic resin composition is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지 약 50 내지 약 90 중량%, 및 테레프탈산 약 80 내지 약 90 몰% 및 이소프탈산 약 10 내지 약 20 몰%를 포함하는 디카르복실산 성분 유래 반복단위 및 1,4-시클로헥산디메탄올을 포함하는 디올 성분 유래 반복단위를 포함하는 글리콜 변성 폴리에스테르 수지 약 10 내지 약 50 중량%를 포함하는 폴리에스테르 수지 약 100 중량부; 유리 섬유 약 5 내지 약 30 중량부; 백색 안료 약 5 내지 약 50 중량부; 및 사슬 연장제 약 0.1 내지 약 10 중량부;를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 등이 우수하다.

Description

열가소성 수지 조성물 및 이를 포함하는 성형품
본 발명은 열가소성 수지 조성물 및 이를 포함하는 성형품에 관한 것이다. 보다 구체적으로, 본 발명은 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 등이 우수한 폴리에스테르계 열가소성 수지 조성물 및 이를 포함하는 성형품에 관한 것이다.
발광다이오드(LED; light emitting diode) 및 유기발광다이오드(OLED; organic light emitting diode)는 뛰어난 에너지 효율과 긴 수명으로 인하여, 기존의 광원을 급속히 대체하며 각광을 받고 있다. 일반적으로 발광다이오드는 높은 반사율을 통해 광효율을 극대화시킬 수 있도록, 리플렉터(reflector), 리플렉터 컵(reflector cup), 스크램블러(scrambler), 하우징(housing) 등의 부품 소재와 함께 발광다이오드 패키지(package)를 형성한다. 이러한 부품 소재는 높은 온도에 견딜 수 있으며, 반사율 저하 및 황변화로 인한 백색도 저하를 최소화할 수 있어야 한다.
엔지니어링 플라스틱으로서, 폴리에스테르 수지, 이의 공중합체, 이의 블렌드(blend) 등은 각각 유용한 특성을 나타내어, 제품의 내외장재를 포함한 다양한 분야에 적용되고 있으며, 상기 부품 소재로도 사용되고 있다. 부품 소재에 주로 사용되는 폴리에스테르 수지는 전방향족 폴리에스테르 수지 등의 고내열성 폴리에스테르 수지이다. 고내열성 폴리에스테르 수지는 높은 온도에서 변형이 없고, 내변색 특성이 우수하나, 결정화 속도가 느리고, 기계적 강도가 낮으며, 내충격성이 떨어진다는 문제점이 있다.
이를 해결하기 위하여, 종래에는 폴리에스테르 수지에 무기 필러 등의 첨가제를 혼합하여 내충격성, 강성 등을 향상시키고자 하였다. 그러나, 무기 필러 등의 첨가제를 과량 사용할 경우, 블리드 아웃(bleed-out) 등의 성형 가공성 저하 문제가 발생할 우려가 있다.
또한, 고반사율을 구현할 수 있는 열가소성 수지 조성물을 얻기 위해서는 백색 안료 등의 함량을 증가시켜야 하나, 이 경우, 백색 안료, 무기 필러 등이 과량 첨가됨에 따라, 오히려 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.
따라서, 발광다이오드용 부품 소재 등에 적용할 수 있도록, 상기 문제가 발생되지 않는, 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 공개특허 제10-2013-0076733호 등에 개시되어 있다.
본 발명의 목적은 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지 약 50 내지 약 90 중량%, 및 테레프탈산 약 80 내지 약 90 몰% 및 이소프탈산 약 10 내지 약 20 몰%를 포함하는 디카르복실산 성분 유래 반복단위 및 1,4-시클로헥산디메탄올을 포함하는 디올 성분 유래 반복단위를 포함하는 글리콜 변성 폴리에스테르 수지 약 10 내지 약 50 중량%를 포함하는 폴리에스테르 수지 약 100 중량부; 유리 섬유 약 5 내지 약 30 중량부; 백색 안료 약 5 내지 약 50 중량부; 및 사슬 연장제 약 0.1 내지 약 10 중량부;를 포함하는 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 글리콜 변성 폴리에스테르 수지는 전체 디올 성분 중 1,4-시클로헥산디메탄올의 함량이 약 20 내지 약 100 몰%일 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 백색 안료는 산화티탄, 산화아연, 황화아연, 황산아연, 황산바륨, 탄산칼슘 및 알루미나 중 1종 이상을 포함할 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 사슬 연장제는 방향족 디올 화합물과 에피클로로히드린의 합성물, 개질된 아크릴 공중합체 중 1종 이상을 포함할 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 유리 섬유 및 상기 사슬 연장제의 중량비는 약 1 : 1 내지 약 200 : 1일 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 열가소성 수지 조성물은 ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 반사율이 약 92 내지 약 99%일 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 열가소성 수지 조성물은 하기 식 1에 따라 산출한 반사율 유지율이 약 90 내지 약 99%일 수 있다:
[식 1]
반사율 유지율(%) = 100 - {[(Rf0 - Rf1) / Rf0] × 100}
상기 식 1에서, Rf0는 ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 초기 반사율이고, Rf1은 상기 시편을 85℃, 85% 상대 습도 조건에서, 300시간 방치 후, ASTM E1331에 의거하여 측정한 450 nm 파장 광에 대한 항온 항습 시험 후 반사율이다.
8. 상기 1 내지 7 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 언노치 아이조드 충격강도가 약 25 내지 약 40 kgf·cm/cm일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 ASTM D648에 의거하여, 하중 1.82 MPa, 승온속도 120℃/hr의 조건에서 측정한 열변형온도(HDT)가 약 230 내지 약 270℃일 수 있다.
10. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 9 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성된다.
11. 상기 10 구체예에서, 상기 성형품은 LED용 리플렉터 또는 리플렉터 컵일 수 있다.
본 발명은 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다. 상기 성형품은 LED용 리플렉터 또는 리플렉터 컵으로 유용하다.
도 1은 본 발명의 일 실시예에 따른 열가소성 수지 조성물로부터 형성된 리플렉터 컵을 포함하는 반도체 장치의 단면도이다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 폴리에스테르 수지; (B) 유리 섬유; (C) 백색 안료; 및 (D) 사슬 연장제;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 폴리에스테르 수지
본 발명의 폴리에스테르 수지는 (A1) 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지; 및 (A2) 글리콜 변성 폴리에스테르 수지;를 포함한다.
(A1) 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지
본 발명의 폴리시클로헥산-1,4-디메틸렌테레프탈레이트(PCT) 수지는 열가소성 수지 조성물의 내열성, 강성 등을 향상시킬 수 있는 것으로서, 디카르복실산 성분으로 테레프탈산 및 그 유도체와 디올 성분으로 1,4-시클로헥산디메탄올(CHDM)을 공지된 중축합 방법에 따라 중합한 것이다.
구체예에서, 상기 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지는 겔 투과 크로마토그라피(gel permeation chromatography: GPC)로 헥사플루오로이소프로판올(HFIP) 용매에서 측정한 중량평균분자량이 약 3,000 내지 약 200,000 g/mol, 예를 들면 약 5,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내변색성, 성형 가공성 등이 우수할 수 있다.
구체예에서, 상기 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지의 함량은 전체 폴리에스테르 수지 100 중량% 중, 약 50 내지 약 90 중량%, 예를 들면 약 55 내지 약 85 중량%일 수 있다. 상기 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지의 함량이 전체 폴리에스테르 수지 100 중량% 중, 50 중량% 미만일 경우, 열가소성 수지 조성물의 반사율, 내열성, 내변색성, 성형 가공성 등이 저하될 우려가 있고, 90 중량%를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.
(A2) 글리콜 변성 폴리에스테르 수지
본 발명의 글리콜 변성 폴리에스테르 수지는 상기 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지 등과 함께 적용되어, 열가소성 수지 조성물의 내충격성, 유동 특성 등을 향상시킬 수 있는 것으로서, 테레프탈산 약 80 내지 약 90 몰%, 예를 들면 약 85 내지 약 90 몰% 및 이소프탈산 약 10 내지 약 20 몰%, 예를 들면 약 10 내지 약 15 몰%를 포함하는 디카르복실산 성분 유래 반복단위 및 1,4-시클로헥산디메탄올을 포함하는 디올 성분 유래 반복단위를 포함한다. 상기 테레프탈산 및 이소프탈산의 함량이 상기 범위를 벗어날 경우, 열가소성 수지 조성물의 내열성, 내변색성 등이 저하될 우려가 있다.
구체예에서, 상기 글리콜 변성 폴리에스테르 수지는 상기 디카르복실산 성분과 1,4-시클로헥산디메탄올(CHDM) 약 20 내지 약 100 몰%, 예를 들면 약 35 내지 약 100 몰% 및 탄소수 2 내지 6의 알킬렌 글리콜 약 0 내지 약 80 몰%, 예를 들면 0 내지 약 65 몰%를 포함하는 디올 성분을 중축합하여 제조할 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 글리콜 변성 폴리에스테르 수지는 겔 투과 크로마토그라피(gel permeation chromatography: GPC)로 헥사플루오로이소프로판올(HFIP) 용매에서 측정한 중량평균분자량이 약 3,000 내지 약 200,000 g/mol, 예를 들면 약 5,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성, 강성 등이 우수할 수 있다.
구체예에서, 상기 글리콜 변성 폴리에스테르 수지의 함량은 전체 폴리에스테르 수지 100 중량% 중, 약 10 내지 약 50 중량%, 예를 들면 약 15 내지 약 45 중량%일 수 있다. 상기 글리콜 변성 폴리에스테르 수지의 함량이 전체 폴리에스테르 수지 100 중량% 중, 약 10 중량% 미만일 경우, 열가소성 수지 조성물의 내충격성, 유동성 등이 저하될 우려가 있고, 약 50 중량%를 초과할 경우, 열가소성 수지 조성물의 반사율, 내열성, 내변색성 등이 저하될 우려가 있다.
(B) 유리 섬유
본 발명의 일 구체예에 따른 유리 섬유는 열가소성 수지 조성물의 강성, 내충격성 등을 향상시킬 수 있는 것으로서, 원형 단면(circular cross-sectional) 유리 섬유, 평판형(flat-shaped) 유리 섬유, 이들의 조합 등을 포함할 수 있다.
구체예에서, 상기 원형 단면 유리 섬유는 광학 현미경(optical microscope)으로 측정한 원형 단면의 평균 직경이 약 6 내지 약 8 ㎛, 예를 들면 약 6 내지 약 7.5 ㎛인 유리 섬유일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 강성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 평판형 유리 섬유는 열가소성 수지 조성물에 사용되는 통상적인 평판형 유리 섬유일 수 있으며, 예를 들면 광학 현미경(optical microscope)으로 측정한 단면의 종횡비가 약 1.5 내지 약 8, 예를 들면 약 1.6 내지 약 5일 수 있고, 단경이 약 6 내지 약 12 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물(성형품)의 표면 평활도가 개선될 수 있고, 반사율이 향상될 수 있다.
구체예에서, 상기 유리 섬유는 압출 전 평균 길이가 약 1 내지 약 5 mm일 수 있고, 압출(가공) 후 평균 길이가 약 100 내지 약 700 ㎛, 예를 들면 약 110 내지 약 690 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 강성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 유리 섬유는 폴리에스테르 수지 등 열가소성 수지 조성물 구성 성분과의 결합력을 증가시키기 위하여, 표면에 표면처리제를 코팅한 것을 사용할 수 있다. 상기 표면처리제로는 실란계 화합물, 우레탄계 화합물, 에폭시계 화합물 등을 사용할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 유리 섬유는 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 5 내지 약 30 중량부, 예를 들면 약 5 내지 약 25 중량부로 포함될 수 있다. 상기 유리 섬유의 함량이 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 5 중량부 미만일 경우, 열가소성 수지 조성물의 내충격성, 강성 등이 저하될 우려가 있고, 약 30 중량부를 초과할 경우, 열가소성 수지 조성물의 반사율, 성형 가공성 등이 저하될 우려가 있다.
(C) 백색 안료
본 발명의 일 구체예에 따른 백색 안료는 다른 구성 성분과 함께 열가소성 수지 조성물의 백색도, 반사율, 내변색성, 광안정성 등을 향상시킬 수 있는 것으로서, 통상의 백색 안료를 제한 없이 사용할 수 있다. 예를 들면, 산화티탄, 산화아연, 황화아연, 황산아연, 황산바륨, 탄산칼슘, 알루미나, 연백(white lead, 2PbCO3·Pb(OH)2) 등을 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 구체적으로, 결정 구조가 루타일형 또는 정방정계인 산화티탄(TiO2) 등을 사용할 수 있다.
구체예에서, 상기 백색 안료의 평균 입경은 약 0.01 내지 약 2.0 ㎛, 예를 들면 약 0.05 내지 약 0.7 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 백색도, 반사율 등이 우수할 수 있다. 여기서, 평균 입경은 입도 분석기(제조사: Beckman Coulter, 장비명: LS 13 320)로 측정한 수평균 입경이고, D50(분포율이 50% 되는 지점의 입경)으로 특정한 값이다.
구체예에서, 상기 백색 안료는 유기 표면처리제 또는 무기 표면처리제로 표면 처리된 것을 사용할 수 있다. 상기 유기 표면처리제로는 실란 커플링제, 폴리디메틸실록산, 트리메틸올프로판(TMP), 펜타에리트리톨, 이들의 조합 등이 사용될 수 있으나 이에 제한되지 않는다. 예를 들면, 상기 실란 커플링제로는 비닐트리에톡시실란, 2-아미노프로필트리에톡시실란, 2-글리시독시프로필트리에톡시실란 등을 사용할 수 있다. 또한, 상기 무기 표면처리제로는 산화알루미늄(알루미나, Al2O3), 이산화규소(실리카, SiO2), 지르코니아(이산화지르콘, ZrO2), 규산나트륨, 알루민산나트륨, 규산나트륨알루미늄, 산화아연, 운모 등이 사용될 수 있으며, 이들은 2종 이상 혼합하여 사용할 수도 있다. 상기 유기 표면처리제 또는 무기 표면처리제는 표면 처리 시, 백색 안료 약 100 중량부에 대하여 약 5 중량부 이하로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 백색도 및 반사율 등이 더욱 우수할 수 있다.
구체예에서, 상기 백색 안료는 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 5 내지 약 50 중량부, 예를 들면 약 10 내지 약 40 중량부로 포함될 수 있다. 상기 백색 안료의 함량이 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 5 중량부 미만일 경우, 열가소성 수지 조성물의 반사율, 반사율 유지율, 내변색성 등이 저하될 우려가 있고, 약 50 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성, 성형 가공성 등이 저하될 우려가 있다.
(D) 사슬 연장제
본 발명의 사슬 연장제는 상기 폴리에스테르 수지, 유리 섬유 등과 함께 적용되어, 열가소성 수지 조성물의 내충격성, 내열성, 내변색성 등을 향상시킬 수 있는 것으로서, 방향족 디올 화합물과 에피클로로히드린의 합성물(페녹시 수지), 개질된 아크릴 공중합체(modified acrylate copolymer) 중 1종 이상을 포함할 수 있다.
구체예에서, 상기 방향족 디올 화합물과 에피클로로히드린의 합성물로는 비스페놀 A와 에피클로로히드린의 합성물인 비스페놀 A형 에폭시 수지(Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2-(chloromethyl)oxirane) 등을 포함할 수 있다.
구체예에서, 상기 개질된 아크릴 공중합체로는 에폭시 반응기를 갖는 아크릴 공중합체 등을 사용할 수 있다.
구체예에서, 상기 사슬 연장제는 겔 투과 크로마토그라피(gel permeation chromatography: GPC)로 측정한 중량평균분자량(Mw)이 약 5,000 내지 약 60,000 g/mol, 예를 들면 약 6,500 내지 약 55,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 치수 안정성 등이 우수할 수 있다.
구체예에서, 상기 사슬 연장제는 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 0.1 내지 약 10 중량부, 예를 들면 약 0.1 내지 약 5 중량부로 포함될 수 있다. 상기 사슬 연장제의 함량이 상기 폴리에스테르 수지 약 100 중량부에 대하여, 약 0.1 중량부 미만일 경우, 열가소성 수지 조성물의 내충격성, 내열성 등이 저하될 우려가 있고, 약 10 중량부를 초과할 경우, 열가소성 수지 조성물의 반사율, 반사율 유지율, 내충격성 등이 저하될 우려가 있다.
구체예에서, 상기 유리 섬유(B) 및 상기 사슬 연장제(D)의 중량비(B:D)는 약 1 : 1 내지 약 200 : 1, 예를 들면 약 3 : 1 내지 약 150 : 1일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내열성, 내충격성, 내변색성 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 목적하는 효과를 손상시키지 않는 범위 내에서 용도에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제로는 산화방지제, 안정제, 난연제, 난연보조제, 적하방지제, 핵제, 이형제, 항균제, 계면활성제, 커플링제, 가소제, 상용화제, 활제, 정전기 방지제, 이들의 조합 등을 예시할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 산화방지제로는 페놀류, 아민류, 황류, 인류 등을 예시할 수 있고, 상기 안정제(열안정제, 광안정제)로는 락톤 화합물, 하이드로퀴논류, 할로겐화 구리, 요오드 화합물 등을 예시할 수 있으며, 상기 난연제로는 브롬계, 염소계, 인계, 안티몬계, 무기계 화합물 등을 예시할 수 있다.
구체예에서, 상기 첨가제 사용 시, 그 함량은 상기 폴리에스테르 수지 약 100 중량부에 대하여 약 20 중량부 이하, 예를 들면 약 0.1 내지 약 15 중량부일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 공지의 방법을 통해 제조될 수 있다. 예를 들면, 각각의 구성 성분과 필요에 따라, 첨가제를 헨셀믹서, V 블렌더, 텀블러 블렌더, 리본 블렌더 등으로 혼합하고, 이를 일축 압출기 또는 이축 압출기를 이용하여 약 250 내지 약 350℃ 온도에서 용융 압출하여 펠렛상으로 제조할 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM E1331에 의거하여 측정한 30 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 반사율이 약 92 내지 약 99%, 예를 들면 약 93 내지 약 95%일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 하기 식 1에 따라 산출한 반사율 유지율이 약 90 내지 약 99%, 예를 들면 약 92 내지 약 96%일 수 있다.
[식 1]
반사율 유지율(%) = 100 - {[(Rf0 - Rf1) / Rf0] × 100}
상기 식 1에서, Rf0는 ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 초기 반사율이고, Rf1은 상기 시편을 85℃, 85% 상대 습도 조건에서, 300시간 방치 후, ASTM E1331에 의거하여 측정한 450 nm 파장 광에 대한 항온 항습 시험 후 반사율이다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 두께 1/8" 시편으로 측정한 언노치 아이조드 충격강도가 약 25 내지 약 40 kgf·cm/cm, 예를 들면 약 25 내지 약 38 kgf·cm/cm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D648에 의거하여, 하중 1.82 MPa, 승온속도 120℃/hr의 조건에서 측정한 열변형온도(HDT)가 약 230 내지 약 270℃, 예를 들면 약 235 내지 약 260℃일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 예를 들면, 상기 열가소성 수지 조성물을 이용하여, 사출 성형, 이중 사출 성형, 블로우 성형, 압출 성형, 열 성형 등의 공지된 성형 방법으로 성형품을 제조할 수 있다.
구체예에서, 상기 성형품은 반사율, 반사율 유지율, 내충격성, 강성, 내열성 등이 우수하여, 광을 반사하는 용도라면 제한되지 않고 적용할 수 있다. 예를 들면, 각종 전기, 전자 제품의 부품, 실내외 조명, 자동차 조명, 표시 기기 등의 발광 장치용 반사판으로 사용할 수 있고, 특히, LED용 리플렉터 또는 리플렉터 컵으로 유용하다.
도 1은 본 발명의 일 구체예에 따른 열가소성 수지 조성물로부터 형성된 리플렉터 컵을 포함하는 반도체 장치(패키지)의 단면도이다. 도 1에 도시된 바와 같이, 본 발명의 열가소성 수지 조성물은 다양한 형태의 리플렉터 또는 리플렉터 컵(1)을 제조할 수 있고, 제조된 리플렉터 컵(1)은 공지된 다양한 전극(2), 기판(3), 밀봉수지(4), 와이어(5), 발광다이오드(LED, 6) 등과 함께 반도체 장치, 조명 장치 등의 발광다이오드(LED) 또는 유기발광다이오드(OLED)를 포함하는 제품으로 조립될 수 있다. 또한, 상기 구성은 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 폴리에스테르 수지
(A1) 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지(디카르복실산 성분: 테레프탈산 100 몰%, 디올 성분: 1,4-시클로헥산디메탄올 100 몰%, 중량평균분자량: 30,000 g/mol, 제조사: SK Chemical社, 제품명: Puratan 0502)를 사용하였다.
(A2) 글리콜 변성 폴리에스테르 수지(디카르복실산 성분: 테레프탈산 87 몰% 및 이소프탈산 13 몰%, 디올 성분: 1,4-시클로헥산디메탄올 100 몰%, 중량평균분자량: 30,000 g/mol, 제조사: SK Chemical社, 제품명: Skypura 1631)를 사용하였다.
(A3) 글리콜 변성 폴리에스테르 수지(디카르복실산 성분: 테레프탈산 95.5 몰% 및 이소프탈산 4.5 몰%, 디올 성분: 1,4-시클로헥산디메탄올 100 몰%, 중량평균분자량: 30,000 g/mol, 제조사: Eastman社, 제품명: Eastman Copolyester 13319)를 사용하였다.
(B) 유리 섬유
원형 단면 유리 섬유(제조사: CPIC社, 제품명: ECS303W-3-E)를 사용하였다.
(C) 백색 안료
산화티탄(TiO2, 제조사: Chemours社, 제품명: R103)을 사용하였다.
(D) 사슬 연장제
비스페놀 A형 에폭시 수지(Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2-(chloromethyl)oxirane, 제조사: InChemRez, 제품명: PKHH)를 사용하였다.
실시예 1 내지 9 및 비교예 1 내지 9: 열가소성 수지 조성물의 제조 및 평가
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, 300℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 100℃에서 4시간 동안 건조 후, 6 oz 사출기(성형 온도 300℃, 금형 온도 130℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여, 하기의 방법으로 각 물성을 측정하고, 그 결과를 표 1 및 2에 나타내었다.
물성 측정 방법
(1) 반사율(단위: %): ASTM E1331에 의거하여, 450 nm 파장 광(LED 광원)에 대한 90 mm × 50 mm × 2.5 mm 크기 시편의 반사율(SCI(specular component included) 모드 사용)을 측정하였다. 반사율 측정기로서 미놀타(주)(KONICA MINOLTA HOLDINGS, INC.)의 3600 CIE Lab.을 사용하였다.
(2) 반사율 유지율(단위: %): 하기 식 1에 따라, 반사율 유지율을 산출하였다.
[식 1]
반사율 유지율(%) = 100 - {[(Rf0 - Rf1) / Rf0] × 100}
상기 식 1에서, Rf0는 ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 초기 반사율이고, Rf1은 상기 시편을 85℃, 85% 상대 습도 조건에서, 300시간 방치 후, ASTM E1331에 의거하여 측정한 450 nm 파장 광에 대한 항온 항습 시험 후 반사율이다.
(3) 언노치 아이조드 충격강도(단위: kgf·cm/cm): ASTM D256에 의거하여, 1/8" 두께 시편의 언노치 아이조드 충격강도를 측정하였다.
(4) 열변형온도(단위: ℃): ASTM D648에 의거하여, 하중 1.82 MPa, 승온속도 120℃/hr의 조건에서 열변형온도(HDT)를 측정하였다.
(5) 용융흐름지수(melt-flow index: MI, 단위: g/10min): ASTM D1238에 의거하여 300℃ 및 1.2 kgf의 조건에서 측정하였다.
실시예
1 2 3 4 5 6 7 8 9
(A)(중량%) (A1) 58 67 83 67 67 67 67 67 67
(A2) 42 33 17 33 33 33 33 33 33
(A3) - - - - - - - - -
(B) (중량부) 15 15 15 5 25 15 15 15 15
(C) (중량부) 25 25 25 25 25 10 40 25 25
(D) (중량부) 1 1 1 1 1 1 1 0.1 5
(초기) 반사율 94.3 94.2 94.3 94.6 93.5 93.0 95.1 94.1 93.9
항온 항습 시험 후 반사율 88.1 88.4 89.7 88.5 87.0 86.4 89.3 87.9 88.1
반사율 유지율 93.4 93.8 95.1 93.6 93.0 92.9 93.9 93.4 93.8
언노치 아이조드 충격강도 35.1 32.1 29.8 28.5 34.9 32.4 30.1 28.8 34.3
열변형 온도 242 245 255 240 249 248 241 238 249
용융흐름지수 25 27 26 30 22 28 25 25 21
* 중량부: 폴리에스테르 수지 (A) 100 중량부에 대한 중량부
비교예
1 2 3 4 5 6 7 8 9
(A)(중량%) (A1) 45 95 67 67 67 67 67 67 67
(A2) 55 5 - 33 33 33 33 33 33
(A3) - - 33 - - - - - -
(B) (중량부) 15 15 15 1 33 15 15 15 15
(C) (중량부) 25 25 25 25 25 3 52 25 25
(D) (중량부) 1 1 1 1 1 1 1 0.05 15
(초기) 반사율 90.2 94.1 92.9 94.8 91.1 70.0 95.5 94.2 90.5
항온 항습 시험 후 반사율 81.2 88.2 86.7 88.6 84.3 55.2 91.1 86.2 80.5
반사율 유지율 90.0 93.7 93.3 93.5 92.5 78.9 95.4 91.5 88.9
언노치 아이조드 충격강도 48.6 20.7 22.0 13.0 34.9 32.4 23.6 22.7 21.6
열변형 온도 196 245 245 236 250 246 238 225 247
용융흐름지수 35 24 25 30 18 28 20 25 21
* 중량부: 폴리에스테르 수지 (A) 100 중량부에 대한 중량부
상기 결과로부터, 본 발명에 따른 열가소성 수지 조성물은 반사율, 반사율 유지율, 내충격성, 내열성, 성형 가공성 및 이들의 물성 발란스가 우수함을 알 수 있다.
반면, 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지를 본 발명의 함량 범위 미만으로(글리콜 변성 폴리에스테르 수지를 본 발명의 함량 범위보다 초과하여) 적용할 경우(비교예 1), 열가소성 수지 조성물의 반사율, 내열성 등이 저하됨을 알 수 있고, 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지를 본 발명의 함량 범위보다 초과하여(글리콜 변성 폴리에스테르 수지를 본 발명의 함량 범위 미만으로) 적용할 경우(비교예 2), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있으며, 본 발명의 글리콜 변성 폴리에스테르 수지 (A2) 대신에, 글리콜 변성 폴리에스테르 수지 (A3)를 적용할 경우(비교예 3), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있다. 유리 섬유를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 4), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있고, 유리 섬유를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 5), 열가소성 수지 조성물의 반사율 등이 저하됨을 알 수 있다. 백색 안료를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 6), 열가소성 수지 조성물의 반사율, 반사율 유지율 등이 저하됨을 알 수 있고, 백색 안료를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 7), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있다. 또한, 사슬 연장제를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 8), 열가소성 수지 조성물의 내충격성, 내열성 등이 저하됨을 알 수 있고, 사슬 연장제를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 9), 열가소성 수지 조성물의 반사율, 반사율 유지율, 내충격성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (11)

  1. 폴리시클로헥산-1,4-디메틸렌테레프탈레이트 수지 약 50 내지 약 90 중량%, 및 테레프탈산 약 80 내지 약 90 몰% 및 이소프탈산 약 10 내지 약 20 몰%를 포함하는 디카르복실산 성분 유래 반복단위 및 1,4-시클로헥산디메탄올을 포함하는 디올 성분 유래 반복단위를 포함하는 글리콜 변성 폴리에스테르 수지 약 10 내지 약 50 중량%를 포함하는 폴리에스테르 수지 약 100 중량부;
    유리 섬유 약 5 내지 약 30 중량부;
    백색 안료 약 5 내지 약 50 중량부; 및
    사슬 연장제 약 0.1 내지 약 10 중량부;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 글리콜 변성 폴리에스테르 수지는 전체 디올 성분 중 1,4-시클로헥산디메탄올의 함량이 약 20 내지 약 100 몰%인 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 백색 안료는 산화티탄, 산화아연, 황화아연, 황산아연, 황산바륨, 탄산칼슘 및 알루미나 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 사슬 연장제는 방향족 디올 화합물과 에피클로로히드린의 합성물, 개질된 아크릴 공중합체 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 유리 섬유 및 상기 사슬 연장제의 중량비는 약 1 : 1 내지 약 200 : 1인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 반사율이 약 92 내지 약 99%인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 하기 식 1에 따라 산출한 반사율 유지율이 약 90 내지 약 99%인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 1]
    반사율 유지율(%) = 100 - {[(Rf0 - Rf1) / Rf0] × 100}
    상기 식 1에서, Rf0는 ASTM E1331에 의거하여 측정한 90 mm × 50 mm × 2.5 mm 크기 시편의 450 nm 파장 광에 대한 초기 반사율이고, Rf1은 상기 시편을 85℃, 85% 상대 습도 조건에서, 300시간 방치 후, ASTM E1331에 의거하여 측정한 450 nm 파장 광에 대한 항온 항습 시험 후 반사율이다.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 언노치 아이조드 충격강도가 약 25 내지 약 40 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D648에 의거하여, 하중 1.82 MPa, 승온속도 120℃/hr의 조건에서 측정한 열변형온도(HDT)가 약 230 내지 약 270℃인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 성형품.
  11. 제10항에 있어서, 상기 성형품은 LED용 리플렉터 또는 리플렉터 컵인 것을 특징으로 하는 성형품.
PCT/KR2020/017039 2019-11-29 2020-11-27 열가소성 수지 조성물 및 이를 포함하는 성형품 WO2021107665A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080081196.5A CN114761488B (zh) 2019-11-29 2020-11-27 热塑性树脂组合物和包括其的模制品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190156606A KR102427910B1 (ko) 2019-11-29 2019-11-29 열가소성 수지 조성물 및 이를 포함하는 성형품
KR10-2019-0156606 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021107665A1 true WO2021107665A1 (ko) 2021-06-03

Family

ID=76128901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017039 WO2021107665A1 (ko) 2019-11-29 2020-11-27 열가소성 수지 조성물 및 이를 포함하는 성형품

Country Status (3)

Country Link
KR (1) KR102427910B1 (ko)
CN (1) CN114761488B (ko)
WO (1) WO2021107665A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027256A (ko) * 2011-04-14 2014-03-06 티코나 엘엘씨 광반사성을 갖는 제품을 제조하기 위한 중합체 조성물
KR20140087504A (ko) * 2012-12-31 2014-07-09 제일모직주식회사 발광장치 리플렉터용 폴리에스테르 수지 조성물 및 이를 이용한 성형품
KR20150062751A (ko) * 2013-11-29 2015-06-08 제일모직주식회사 내변색 및 광특성이 향상된 폴리에스테르 수지 조성물
KR20150102859A (ko) * 2014-02-28 2015-09-08 삼성에스디아이 주식회사 폴리 에스테르 수지 조성물 및 이를 이용한 성형품
US9273206B2 (en) * 2012-07-09 2016-03-01 Eastman Chemical Company Ternary blends of terephthalate or isophthalate polyesters containing EG, CHDM and TMCD
KR20170080177A (ko) * 2015-12-31 2017-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함하는 성형품

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566062B1 (ko) * 2012-12-31 2015-11-04 제일모직주식회사 발광장치 리플렉터용 폴리에스테르 수지 조성물 및 이를 이용한 성형품
EP3091046A4 (en) * 2013-12-30 2017-08-09 LOTTE Fine Chemical Co., Ltd. Composition for producing biodegradable polyester resin, and production method for biodegradable polyester resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027256A (ko) * 2011-04-14 2014-03-06 티코나 엘엘씨 광반사성을 갖는 제품을 제조하기 위한 중합체 조성물
US9273206B2 (en) * 2012-07-09 2016-03-01 Eastman Chemical Company Ternary blends of terephthalate or isophthalate polyesters containing EG, CHDM and TMCD
KR20140087504A (ko) * 2012-12-31 2014-07-09 제일모직주식회사 발광장치 리플렉터용 폴리에스테르 수지 조성물 및 이를 이용한 성형품
KR20150062751A (ko) * 2013-11-29 2015-06-08 제일모직주식회사 내변색 및 광특성이 향상된 폴리에스테르 수지 조성물
KR20150102859A (ko) * 2014-02-28 2015-09-08 삼성에스디아이 주식회사 폴리 에스테르 수지 조성물 및 이를 이용한 성형품
KR20170080177A (ko) * 2015-12-31 2017-07-10 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 포함하는 성형품

Also Published As

Publication number Publication date
KR20210067223A (ko) 2021-06-08
CN114761488A (zh) 2022-07-15
CN114761488B (zh) 2023-11-03
KR102427910B1 (ko) 2022-08-01

Similar Documents

Publication Publication Date Title
KR101549492B1 (ko) 내황변성과 내충격성이 우수한 폴리에스테르 수지 조성물
WO2012081801A1 (ko) 반사성, 내열성 및 내습성이 우수한 폴리아마이드 수지 조성물
KR101842331B1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2013100578A1 (ko) 내황변성과 내충격성이 우수한 폴리에스테르 수지 조성물
US10538661B2 (en) Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
WO2015102177A1 (ko) 내충격성 및 내광성이 우수한 열가소성 수지 조성물
KR20140087500A (ko) 발광장치 리플렉터용 폴리에스테르 수지 조성물 및 이를 이용한 성형품
WO2015030325A1 (ko) 내변색특성 및 내충격성이 우수한 열가소성 수지 조성물
WO2021107665A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2010074417A2 (ko) 나일론계 얼로이 수지 조성물 및 이를 이용한 LED(발광다이오드) 반사체(reflector)
WO2014193046A1 (ko) 반사율 및 내변색성이 우수한 폴리아미드계 수지 조성물
KR101790402B1 (ko) 폴리 에스테르 수지 조성물 및 이를 이용한 성형품
KR102378127B1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2022145760A1 (ko) 발광다이오드 리플렉터용 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2021137520A1 (ko) 발광다이오드 리플렉터용 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2022145730A1 (ko) 발광다이오드 리플렉터
US10468568B2 (en) Polyester resin composition having improved mechanical properties and moldability
US9899580B2 (en) Polyester resin composition having improved mechanical properties and anti-discoloration
US10998477B2 (en) Polyester resin composition having improved mechanical properties and moldability
US11220599B2 (en) Thermoplastic resin composition and article comprising the same
WO2024117646A1 (ko) 발광다이오드 리플렉터용 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2015046678A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2023054909A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2015080356A1 (ko) 광안정성 및 내변색특성이 우수한 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891825

Country of ref document: EP

Kind code of ref document: A1