WO2021107147A1 - 繊維状セルロース、繊維状セルロース分散液及びシート - Google Patents

繊維状セルロース、繊維状セルロース分散液及びシート Download PDF

Info

Publication number
WO2021107147A1
WO2021107147A1 PCT/JP2020/044375 JP2020044375W WO2021107147A1 WO 2021107147 A1 WO2021107147 A1 WO 2021107147A1 JP 2020044375 W JP2020044375 W JP 2020044375W WO 2021107147 A1 WO2021107147 A1 WO 2021107147A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
mass
dispersion
fine fibrous
pulp
Prior art date
Application number
PCT/JP2020/044375
Other languages
English (en)
French (fr)
Inventor
▲祥▼行 堤
悠介 松原
真代 野口
剛之 白尾
貴之 大渕
山根 教郎
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2021561579A priority Critical patent/JPWO2021107147A1/ja
Publication of WO2021107147A1 publication Critical patent/WO2021107147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to fibrous cellulose, fibrous cellulose dispersion and sheet.
  • cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like.
  • the cellulose fibers in addition to fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less, fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging.
  • Patent Document 1 discloses a method for producing fine fibers, which comprises a step of treating a cellulose raw material with an enzyme and a step of defibrating the cellulose raw material after the enzyme treatment.
  • it is studied to sufficiently refine the cellulose raw material and increase the yield of fine fibers by performing enzyme treatment.
  • Patent Document 1 aims to produce fine fibers having a long fiber length and a large aspect ratio.
  • Patent Document 2 discloses fine fibrous cellulose having an average fiber width of 200 nm or less, a degree of polymerization of 50 or more and 500 or less, and a predetermined polar group. Here, it is studied to obtain fine fibrous cellulose that does not easily form aggregates when mixed with an emulsion resin.
  • a dispersion having a degree of polymerization of 248 to 454 and a viscosity of 108 to 740 at a concentration of 0.5% is obtained.
  • Fine fibrous cellulose exerts an excellent thickening effect in a dispersion liquid, and may be used for paints and cosmetics.
  • the fine fibrous cellulose exerts an excellent thickening effect, it is difficult to obtain a fine fibrous cellulose dispersion having a high concentration (for example, 3% by mass or more).
  • agglomerates (lumps) of fine fibrous cellulose are generated. It became clear by the examination of the present inventors.
  • the dispersion liquid containing fine fibrous cellulose at a high concentration may be diluted and used depending on the mode of use. In such a case, the dispersion may be required to exhibit excellent particle dispersibility.
  • the present inventors provide a high-concentration fine fibrous cellulose dispersion liquid in which fine fibrous cellulose is uniformly dispersed. We proceeded with the study for the purpose of doing so. In addition, the present inventors have repeatedly studied so that excellent particle dispersibility can be exhibited when a high-concentration fine fibrous cellulose dispersion is diluted and used.
  • the present inventors have made fine fibers in which the viscosity of the aqueous dispersion can be within a predetermined range when the aqueous dispersion has a concentration of 0.5% by mass.
  • fine fibrous cellulose having an ionic substituent introduced in a predetermined amount or more it is a high-concentration fine fibrous cellulose dispersion liquid in which fine fibrous cellulose is uniformly dispersed. It has been found that a fibrous cellulose dispersion can be obtained.
  • the present inventors have found that when the high-concentration fine fibrous cellulose dispersion thus obtained is diluted, the diluted dispersion can exhibit excellent particle dispersibility, and the present inventors have found that the diluted dispersion can exhibit excellent particle dispersibility. Has been completed.
  • the present invention has the following configuration.
  • the amount of the ionic substituent introduced is 1.00 mmol / g or more, and the amount is 1.00 mmol / g or more.
  • the viscosity of the aqueous dispersion at 23 ° C. is 108 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • Fibrous cellulose [2] The fibrous cellulose according to [1], wherein the degree of polymerization of the fibrous cellulose is more than 230 and 450 or less.
  • the fibrous cellulose When the fibrous cellulose is used as an aqueous dispersion having a concentration of 6.0% by mass, the viscosity of the aqueous dispersion at 23 ° C. is 2,000,000 mPa ⁇ s or more and 30,000,000 mPa ⁇ s or less.
  • the fibrous cellulose When the fibrous cellulose is used as an aqueous dispersion having a concentration of 13.0% by mass, the viscosity of the aqueous dispersion at 23 ° C. is 5,000,000 mPa ⁇ s or more and 100,000,000 mPa ⁇ s or less. 1]
  • the fibrous cellulose according to any one of [3].
  • the ionic substituent is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group, [5].
  • the fibrous cellulose-containing dispersion liquid according to [6] wherein the concentration of fibrous cellulose is 3.0% by mass or more.
  • a fine fibrous cellulose dispersion liquid in which fine fibrous cellulose is uniformly dispersed which is a high-concentration fine fibrous cellulose dispersion liquid.
  • the diluted dispersion exhibits excellent particle dispersibility.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fibrous cellulose-containing slurry having a carboxy group and the pH.
  • the fibrous cellulose of the present embodiment is a fibrous cellulose having a fiber width of 1000 nm or less and having an ionic substituent, and the amount of the ionic substituent introduced is 1.00 mmol / g or more, and the fibrous cellulose Is a fibrous cellulose having a viscosity of 108 mPa ⁇ s or more and 1000 mPa ⁇ s or less at 23 ° C. when an aqueous dispersion having a concentration of 0.5% by mass is used.
  • fibrous cellulose having a fiber width of 1000 nm or less is also referred to as fine fibrous cellulose.
  • the viscosity of the fine fibrous cellulose dispersion is the viscosity value 3 minutes after the start of measurement, at 23 ° C. and a rotation speed of 3 rpm using a B-type viscometer.
  • a B-type viscometer for example, an analog viscometer T-LVT manufactured by BLOOKFIELD can be used.
  • the viscosity of the aqueous dispersion having a concentration of 0.5% by mass may be 108 mPa ⁇ s or more, preferably 200 mPa ⁇ s or more, more preferably 250 mPa ⁇ s or more, and 350 mPa ⁇ s or more. Is even more preferable.
  • the viscosity of the aqueous dispersion having a concentration of 0.5% by mass may be 1000 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 2,000,000 mPa ⁇ s or more, preferably 3,000,000 mPa. -S or more is more preferable, and 4,000,000 mPa ⁇ s or more is particularly preferable.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 30,000,000 mPa ⁇ s or less, preferably 2,000,000 mPa.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 5,000,000 mPa ⁇ s or more, preferably 1,000,000 mPa. -S or more is more preferable, and 18,000,000 mPa ⁇ s or more is particularly preferable.
  • the fine fibrous cellulose is used as an aqueous dispersion having a concentration of 13.0% by mass, the viscosity of the aqueous dispersion at 23 ° C.
  • the viscosity of the water dispersion with a concentration of 6.0% by mass or the water dispersion with a concentration of 13.0% by mass was set to a rotation speed of 0.3 rpm at 23 ° C. using a B-type viscometer, and 3 minutes after the start of measurement. Is the viscosity value of.
  • a digital viscometer DV2TT-LVT manufactured by BLOOKFIELD can be used as the B-type viscometer.
  • fine fibrous cellulose was prepared in an aqueous dispersion having a concentration of 6.0% by mass or 13.0% by mass, it was stirred with a disperser at 4000 rpm for 3 minutes, and then a rotating and revolving supermixer (Sinky).
  • the fine fibrous cellulose dispersion is defoamed with ARE-250) manufactured by the company.
  • a disperser at 4000 rpm for 3 minutes, and then a rotating and revolving supermixer (Sinky).
  • the fine fibrous cellulose dispersion is defoamed with ARE-250) manufactured by the company.
  • an aqueous dispersion having a concentration higher than the concentration of 6.0% by mass or 13.0% by mass is obtained.
  • An aqueous dispersion having a concentration of 6.0% by mass or a concentration of 13.0% by mass may be obtained by diluting the aqueous dispersion with water.
  • the viscosity of the aqueous dispersion having a concentration of 0.5 to 2.0% by mass is equivalent to the viscosity of the aqueous dispersion having the same concentration in the present embodiment, 6.0% by mass or 13. It is impossible to obtain a high-concentration aqueous dispersion such as 0% by mass, and a dispersion having a viscosity within the above range can be obtained in a high-concentration aqueous dispersion such as 6.0% by mass or 13.0% by mass. It is not possible.
  • the dispersion liquid of the phosphorylated pulp to be subjected to the defibration treatment is made to have a high concentration, and the defibration treatment is performed on such a high concentration pulp dispersion liquid, and if necessary, it will be described later.
  • the viscosity of the aqueous dispersion containing 3.0% by mass or more of fine fibrous cellulose (for example, 6.0% by mass or 13.0% by mass) can be increased. It became possible to measure and succeeded in obtaining an aqueous dispersion having a relatively low viscosity as a high-concentration dispersion.
  • the particle dispersibility of the diluted water dispersion liquid can be enhanced.
  • a dispersion liquid containing a high concentration of fine fibrous cellulose can be obtained. Therefore, it is possible to significantly reduce the storage cost and the transportation cost of the dispersion liquid. Further, in the present embodiment, the production efficiency of the fine fibrous cellulose dispersion can be increased.
  • the degree of polymerization of the fibrous cellulose is preferably greater than 230, more preferably 240 or more.
  • the degree of polymerization of the fibrous cellulose is preferably 450 or less, more preferably 400 or less, further preferably 350 or less, further preferably 300 or less, and even more preferably 290 or less. Even more preferably, it is 280 or less.
  • the degree of polymerization of the fibrous cellulose may be more than 230 and 450 or less, or more than 230 and 280 or less.
  • the degree of polymerization of the fine fibrous cellulose is a value calculated from the pulp viscosity measured according to Tappi T230. Specifically, the viscosity (referred to as ⁇ 1) measured by dispersing the fine fibrous cellulose to be measured in an aqueous solution of copper ethylenediamine and the blank viscosity (referred to as ⁇ 0) measured only with the dispersion medium are measured and then the ratio. Viscosity ( ⁇ sp) and intrinsic viscosity ([ ⁇ ]) are measured according to the following formulas.
  • c in the formula indicates the concentration of fine fibrous cellulose at the time of viscosity measurement.
  • DP degree of polymerization
  • the viscosity of the aqueous dispersion at 23 ° C. is within the above range.
  • a fine fibrous cellulose dispersion having a high concentration and in which the fine fibrous cellulose is uniformly dispersed is preferably used for various purposes. For example, it is preferably used for sheet forming, reinforcing material, and paint, and is particularly preferably used for applications where transparency is required.
  • the diluted aqueous dispersion exhibits excellent particle dispersibility, so that the fine fibrous cellulose of the present embodiment is thickened. It is also preferably used as an agent.
  • the concentration of the fine fibrous cellulose dispersion is preferably 3.0% by mass or more, more preferably 4.0% by mass or more, and further preferably 5.0% by mass or more. It is more preferably 6.0% by mass or more, and particularly preferably 10.0% by mass or more.
  • the concentration of the fine fibrous cellulose dispersion means the content of the fine fibrous cellulose with respect to the total mass of the fine fibrous cellulose dispersion.
  • a dispersion liquid containing 3.0% by mass or more of fine fibrous cellulose with respect to the total mass of the dispersion liquid that is, a dispersion liquid having a fine fibrous cellulose dispersion liquid concentration of 3.0% by mass or more).
  • a high-concentration fine fibrous cellulose dispersion Is called a high-concentration fine fibrous cellulose dispersion.
  • the fine fibrous cellulose is uniformly dispersed in the high-concentration fine fibrous cellulose dispersion obtained by dispersing the fine fibrous cellulose of the present embodiment in a solvent such as water. Therefore, the high-concentration fine fibrous cellulose dispersion is highly transparent.
  • the fine fibrous cellulose is dispersed in a solvent such as water to obtain a high-concentration dispersion liquid of 6.0% by mass, so that the fine fibrous cellulose can be visually confirmed. Can not do it. In such a case, it can be evaluated that the fine fibrous cellulose is uniformly dispersed in the high-concentration fine fibrous cellulose dispersion liquid. Further, in such a case, the high-concentration fine fibrous cellulose dispersion liquid does not become cloudy and is translucent or transparent.
  • the fibrous cellulose of the present embodiment is a fine fibrous cellulose having a fiber width of 1000 nm or less.
  • the fiber width of the fibrous cellulose is more preferably 100 nm or less, and further preferably 8 nm or less.
  • the fiber width of fibrous cellulose can be measured, for example, by observation with an electron microscope.
  • the average fiber width of the fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fibrous cellulose is, for example, 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Especially preferable.
  • the fibrous cellulose is, for example, monofibrous cellulose.
  • the average fiber width of fibrous cellulose is measured as follows, for example, using an electron microscope. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid to prepare a sample for TEM observation. And. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
  • a straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the fiber length of the fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 600 ⁇ m or less. preferable.
  • the fiber length of the fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the fibrous cellulose preferably has an I-type crystal structure.
  • the ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion.
  • the crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less.
  • the fibrous cellulose (fine fibrous cellulose) having a fiber width of 1000 nm or less is cellulose nanofiber (CNF), and the fibrous cellulose (fine fibrous cellulose) is cellulose nanocrystal (CNC). Is not included.
  • the axial ratio (fiber length / fiber width) of cellulose nanocrystal (CNC) is usually about 10 or more and 30 or less. Further, by setting the axial ratio of the fibrous cellulose to the above lower limit value or more, it is preferable in that handling such as dilution becomes easy when, for example, the fibrous cellulose is treated as an aqueous dispersion.
  • the fibrous cellulose in this embodiment has, for example, both a crystalline region and a non-crystalline region.
  • the fine fibrous cellulose having both a crystalline region and a non-crystalline region and having an axial ratio within the above range is realized by a method for producing fine fibrous cellulose described later.
  • the fibrous cellulose of this embodiment has an ionic substituent.
  • the ionic substituent can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent. Further, the ionic substituent is preferably a group that breaks the ester bond and connects to the fibrous cellulose. In this case, the ester bond is formed by dehydration condensation of the fibrous cellulose and the compound serving as an ionic substituent.
  • anionic group as an ionic substituent examples include a phosphate group or a substituent derived from a phosphorusoxo acid group (sometimes referred to simply as a phosphorusoxo acid group), a carboxy group or a substituent derived from a carboxy group (simply a carboxy group). It is preferably at least one selected from a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (sometimes simply referred to as a sulfur oxo acid group), a phosphorus oxo acid group and a carboxy. It is more preferably at least one selected from the groups, and particularly preferably a phosphoroxoic acid group.
  • the transparency of the dispersion can be more effectively enhanced when the dispersion is made into a high-concentration dispersion. Further, by introducing a phosphorus oxo acid group into the fibrous cellulose, the salt resistance of the fibrous cellulose can be improved.
  • the phosphoric acid group or the substituent derived from the phosphoric acid group is, for example, a substituent represented by the following formula (1).
  • a plurality of types of substituents represented by the following formula (1) may be introduced into each fibrous cellulose.
  • the substituents represented by the following formula (1) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • n is preferably 1.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group, an allyl group and the like, but are not particularly limited.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • a carboxy group to the main chain or side chain of the various hydrocarbon group, a carboxy group, a carboxylate group (-COO -), hydroxy group, selected from the functional groups such as an amino group and an ammonium group
  • the functional groups such as an amino group and an ammonium group
  • Examples thereof include functional groups in which at least one type is added or substituted, but the functional group is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • Examples of the organic onium ion include an organic ammonium ion and an organic phosphonium ion.
  • examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion, and examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • alkali metal ions such as sodium, potassium, and lithium
  • divalent metal ions such as calcium and magnesium
  • hydrogen ions such as sodium and magnesium
  • ammonium ions such as sodium, potassium, and lithium
  • the plurality of ⁇ b + present are each. It may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the phosphate group or the substituent derived from the phosphorous acid group includes a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphoric acid group, and a phosphite group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group).
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example).
  • it may be a monomethylphosphoric acid group, a polyoxyethylene alkylphosphoric acid group), an alkylphosphonic acid group (for example, a methylphosphonic acid group), or the like.
  • the sulfur oxoacid group (sulfur oxoacid group or a substituent derived from the sulfur oxoacid group) is, for example, a substituent represented by the following formula (2).
  • a plurality of types of substituents represented by the following formula (2) may be introduced into each fibrous cellulose. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • organic onium ion examples include an organic ammonium ion and an organic phosphonium ion.
  • Examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion
  • examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • alkali metal ions such as sodium, potassium, and lithium
  • divalent metal ions such as calcium and magnesium
  • hydrogen ions hydrogen ions
  • ammonium ions such as calcium and magnesium
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the amount of the ionic substituent introduced into the fibrous cellulose may be 1.00 mmol / g or more per 1 g (mass) of the fibrous cellulose, preferably 1.10 mmol / g or more, and 1.20 mmol / g or more. Is more preferable.
  • the amount of the ionic substituent introduced into the fibrous cellulose is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less per 1 g (mass) of the fibrous cellulose, for example, 3 It is more preferably 0.00 mmol / g or less, further preferably 2.50 mmol / g or less, and particularly preferably 2.00 mmol / g or less.
  • the denominator in the unit mmol / g indicates the mass of fibrous cellulose when the counter ion of the ionic substituent is a hydrogen ion (H +).
  • the amount of the ionic substituent introduced into the fibrous cellulose can be measured by, for example, the neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • the amount of the phosphorus oxo acid group introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the defibration treatment similar to the defibration treatment step described later may be performed on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained.
  • the titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • two points are confirmed in which the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociating acid of the fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point.
  • the amount is equal to the amount of the second dissociating acid of the fibrous cellulose contained in the slurry used for the titration, and the amount of alkali required from the start to the second end point of the titration is the fibrous cellulose contained in the slurry used for the titration. Is equal to the total amount of dissociated acid.
  • the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group is apparently It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group also referred to as the first dissociated acid amount in the present specification matches the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximized.
  • the denominator of the above-mentioned phosphorus oxo acid group introduction amount indicates the mass of the acid-type fibrous cellulose
  • the phosphorus oxo acid group amount of the acid-type fibrous cellulose (hereinafter referred to as the phosphorus oxo acid group amount). (Called (acid type))).
  • the denominator is converted to the mass of fibrous cellulose when the cation C is a counterion.
  • Phosphoric acid group amount (C type) Phosphoric acid group amount (acid type) / ⁇ 1+ (W-1) x A / 1000 ⁇ A [mmol / g]: Total amount of anion derived from phosphoric acid group of fibrous cellulose (total amount of dissociated acid of phosphoric acid group) W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a dispersion containing fibrous cellulose having a carboxy group as an ionic substituent.
  • the amount of the carboxy group introduced into the fibrous cellulose is measured, for example, as follows. First, the dispersion liquid containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the defibration treatment similar to the defibration treatment step described later may be performed on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • the increment (differential value of pH with respect to the amount of alkali dropped) became maximum, and this maximum point was the first. Called one end point.
  • the region from the start of titration to the first end point in FIG. 2 is referred to as a first region.
  • the amount of alkali required in the first region is equal to the amount of carboxy groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fibrous cellulose to be titrated, so that the amount of carboxy group introduced (mmol). / G) is calculated.
  • the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid type fibrous cellulose, the carboxy group amount of the acid type fibrous cellulose (hereinafter, the carboxy group amount (acid type)). ) Is shown.
  • the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of fibrous cellulose when the cation C is a counterion.
  • the amount of carboxy groups (hereinafter, the amount of carboxy groups (C type)) possessed by the fibrous cellulose in which the cation C is a counter ion can be determined.
  • Carboxylic acid group amount (C type) Carboxylic acid group amount (acid type) / ⁇ 1+ (W-1) x (carboxyl group amount (acid type)) / 1000 ⁇ W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • the amount of ionic substituents In the measurement of the amount of ionic substituents by the titration method, if the amount of one drop of sodium hydroxide aqueous solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than it should be. It may not be obtained.
  • As an appropriate dropping amount and titration interval for example, it is desirable to titrate 10 to 50 ⁇ L of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds.
  • the amount of sulfur oxoacid group introduced into fibrous cellulose can be calculated by measuring the amount of sulfur in a sample obtained by wet-ashing a slurry containing fibrous cellulose and then diluting it at an appropriate magnification. Specifically, fibrous cellulose is wet-ashed with perchloric acid and concentrated nitric acid, diluted at an appropriate magnification, and the amount of sulfur is measured by ICP emission analysis. The value obtained by dividing the fibrous cellulose tested by the absolute dry mass is defined as the amount of sulfur oxoacid groups (unit: mmol / g).
  • the fibrous cellulose according to the present embodiment and the dispersion liquid containing the fibrous cellulose have been described above. Further, in the present specification, as another embodiment, it is a fine fibrous cellulose-containing dispersion having a fiber width of 1000 nm or less and having an ionic substituent, and the content of the fine fibrous cellulose is the dispersion liquid. Also disclosed are fine fibrous cellulose-containing dispersions having a total mass of 5.0% by mass or more and 14.0% by mass or less and a degree of polymerization of the fine fibrous cellulose of 235 or more and 290 or less.
  • the viscosity of the fine fibrous cellulose-containing dispersion measured using a B-type viscometer is particularly preferably 4800 ⁇ 10 3 mPa ⁇ s or more and 30,000 ⁇ 10 3 mPa ⁇ s or less.
  • a phosphoric acid group or a substituent derived from the phosphoric acid group (among them, a phosphoric acid group) is particularly preferable.
  • the amount of the ionic substituent introduced into the fine fibrous cellulose is particularly preferably 1.00 mmol / g or more and 2.00 mmol / g or less.
  • the other description is the same as the description of the fibrous cellulose according to the present embodiment and the dispersion liquid containing the fibrous cellulose, and thus is omitted here.
  • Fine fibrous cellulose is produced from a fiber raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, but for example, broad-leaved kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), broad-leaved dissolved pulp (LDKP, LDSP), coniferous dissolved pulp (NDKP, NDSP), Chemical pulp such as soda pulp (AP), unbleached kraft pulp (UKP) and oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) ) And mechanical pulp such as thermomechanical pulp (TMP, BCTMP).
  • LLKP broad-leaved kraft pulp
  • NKP broad-leaved kraft pulp
  • SP broad-leaved dissolved pulp
  • NDKP coniferous dissolved pulp
  • Chemical pulp such as soda pulp (AP), unbleached kraft pulp (UKP) and oxygen bleached kraft pulp (OKP), semi-chemical pulp such
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper.
  • one of the above types may be used alone, or two or more types may be mixed and used.
  • wood pulp and deinked pulp are preferable from the viewpoint of availability. Further, among wood pulp, long fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during defibration treatment and a large axial ratio with less decomposition of cellulose in the pulp can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • softwood-derived pulp is preferably used because it has good defibration properties during defibration treatment, which will be described later, and transparency when made into a dispersion liquid is further improved.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • the step of producing the fine fibrous cellulose includes a step of introducing an ionic substituent.
  • the ionic substituent introduction step include a phosphorus oxo acid group introduction step.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is introduced into cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
  • the reaction between the fiber raw material containing cellulose and Compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “Compound B”). You may.
  • the reaction of the fiber raw material containing cellulose with the compound A may be carried out in the absence of the compound B.
  • the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state.
  • a fiber raw material in a dry state or a wet state since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted.
  • a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted are examples of the compound A and the compound B.
  • the reaction is highly homogeneous, it is preferable to add the mixture in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution.
  • the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of compound A and compound B may be added to the fiber raw material, or after the excess amounts of compound A and compound B are added to the fiber raw material, respectively, the surplus compound A and compound B are added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration-condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphorus pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Phosphates, phosphorous acids, dehydration-condensed phosphates include phosphoric acid, phosphorous acid or dehydration-condensed phosphoric acid lithium salts, sodium salts, potassium salts, ammonium salts, etc. It can be a sum.
  • sodium phosphate and sodium phosphate are easy to apply.
  • Salt, potassium salt of phosphoric acid, ammonium or phosphite of phosphoric acid, sodium salt of phosphite, potassium salt of phosphite, ammonium salt of phosphite are preferred, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the addition amount of phosphorus atoms to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
  • Compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • triethylamine in particular is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band.
  • a mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • compound A is added to a thin sheet-shaped fiber raw material by a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like.
  • a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like.
  • This makes it possible to suppress uneven concentration of the compound A in the fiber raw material and more uniformly introduce the phosphorus oxo acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphoric acid esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. it can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
  • the amount of the phosphorus oxo acid group introduced into the fiber raw material may be 1.00 mmol / g or more per 1 g (mass) of the fibrous cellulose, preferably 1.10 mmol / g or more, and 1.20 mmol / g or more. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced into the fiber raw material is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol per 1 g (mass) of the fibrous cellulose, for example.
  • the process for producing fine fibrous cellulose may include, for example, a carboxy group introduction step as an ionic substituent introduction step.
  • the carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. This is done by treating with an acid anhydride of the compound or a derivative thereof.
  • the compound having a group derived from a carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, itaconic acid, citric acid, aconitic acid and the like.
  • Examples include tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and itaconic anhydride. Acid anhydrides can be mentioned.
  • the derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
  • the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group.
  • the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment.
  • the alkaline TEMPO oxidation treatment can be carried out, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
  • the amount of the carboxy group introduced into the fibrous cellulose varies depending on the type of the substituent.
  • the carboxy group when it is introduced by TEMPO oxidation, it may be 1.00 mmol / g or more per 1 g (mass) of the fibrous cellulose. It is preferably 1.10 mmol / g or more, and more preferably 1.20 mmol / g or more.
  • the amount of the carboxy group introduced into the fibrous cellulose is preferably 3.65 mmol / g or less, more preferably 3.00 mmol / g or less, and further preferably 2.50 mmol / g or less. , 2.00 mmol / g or less is particularly preferable.
  • the substituent when it is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose.
  • the amount of the carboxy group introduced within the above range it is possible to facilitate the miniaturization of the fiber raw material and enhance the stability of the fibrous cellulose. Further, by setting the amount of the carboxy group introduced within the above range, it becomes easy to obtain a fine fibrous cellulose dispersion having a high concentration and high transparency.
  • the process for producing fine fibrous cellulose may include, for example, a sulfur oxoacid group introduction step as an ionic substituent introduction step.
  • a sulfur oxoacid group introduction step cellulose fibers having a sulfur oxoacid group (sulfur oxoacid group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfur oxoacid.
  • a compound capable of introducing a sulfur oxoacid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is selected.
  • At least one compound (hereinafter, also referred to as "Compound C") is used.
  • the compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfite or a salt thereof, sulfuric acid amide, and the like, but the compound C is not particularly limited.
  • sulfuric acid those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used.
  • sulfurous acid examples include 5% sulfurous acid water.
  • the sulfate or sulfite examples include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees.
  • sulfuric acid amide sulfamic acid or the like can be used.
  • the sulfur oxoacid group introduction step it is preferable to use the compound B in the above-mentioned ⁇ phosphooxoacid group introduction step> in the same manner.
  • the sulfur oxoacid group introduction step it is preferable to mix the cellulose raw material with an aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, and then heat-treat the cellulose raw material.
  • the heat treatment temperature it is preferable to select a temperature at which the sulfur oxoacid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reactions of the fibers.
  • the heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher.
  • the heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10000 seconds or less. It is preferable to do so.
  • Equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer drying device.
  • Band type drying device, filtration drying device, vibration flow drying device, air flow drying device, vacuum drying device, infrared heating device, far infrared heating device, microwave heating device, high frequency drying device can be used.
  • the amount of the sulfur oxoacid group introduced into the cellulose raw material may be 1.00 mmol / g or more, preferably 1.10 mmol / g or more, and more preferably 1.20 mmol / g or more.
  • the amount of sulfur oxoacid group introduced into the cellulose raw material is preferably 5.00 mmol / g or less, more preferably 3.00 mmol / g or less, and further preferably 2.50 mmol / g or less. It is preferably 2.00 mmol / g or less, and particularly preferably 2.00 mmol / g or less.
  • a washing step can be performed on the ionic substituent-introduced fiber, if necessary.
  • the washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.
  • an alkali treatment may be performed on the fiber raw material between the step of introducing an ionic substituent and the step of defibration treatment described later.
  • the alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the ionic substituent-introduced fiber in an alkaline solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound.
  • sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent.
  • the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the ionic substituent-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10000% by mass or less, based on the absolute dry mass of the ionic substituent-introduced fiber. The following is more preferable.
  • the ionic substituent introduction fiber may be washed with water or an organic solvent after the ionic substituent introduction step and before the alkali treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated ionic substituent-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
  • the fiber raw material may be subjected to acid treatment between the step of introducing an ionic substituent and the defibration treatment step described later.
  • the ionic substituent introduction step, the acid treatment, the alkali treatment, and the defibration treatment may be performed in this order.
  • the method of acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic liquid containing an acid.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
  • Fine fibrous cellulose can be obtained by defibrating (mechanically treating) the ionic substituent-introduced fiber in the defibration treatment step.
  • a defibration treatment apparatus can be used.
  • the defibrating apparatus is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a twin shaft.
  • a kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used.
  • the defibration treatment step for example, it is preferable to dilute the ionic substituent-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones examples include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate, butyl acetate and the like.
  • the aprotic polar solvent examples include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the concentration of the cellulose fiber at the time of the defibration treatment can be appropriately set, but in the present embodiment, the concentration of the cellulose fiber at the time of the defibration treatment is preferably 3.0% by mass or more, and 4.0% by mass or more. It is more preferably 5.0% by mass or more, and 6.0% by mass or more is particularly preferable.
  • the upper limit of the concentration of the cellulose fibers during the defibration treatment is not particularly limited, but may be, for example, 20.0% by mass. In the present embodiment, by setting the concentration of the cellulose fibers at the time of the defibration treatment within the above range, it is possible to uniformly disperse the fine fibrous cellulose and obtain a highly transparent high-concentration dispersion liquid.
  • concentration of the cellulose fiber during the defibration treatment within the above range, it is possible to increase the production efficiency of the fine fibrous cellulose, and as a result, a processed product such as a dispersion liquid or a sheet containing the fine fibrous cellulose can be produced. It is also possible to produce efficiently.
  • concentration of cellulose fibers during the defibration treatment within the above range, it is possible to obtain a highly concentrated dispersion, and it is possible to reduce costs during transportation and storage.
  • the slurry obtained by dispersing the ionic substituent-introduced fiber in a dispersion medium may contain a solid content other than the ionic substituent-introduced fiber such as urea having a hydrogen bond property.
  • the method for producing fine fibrous cellulose of the present embodiment preferably includes a step of further reducing the molecular weight in addition to the steps as described above. Specifically, as described above, a step of subjecting appropriately treated cellulose fibers to a defibration treatment to obtain a fibrous cellulose having a fiber width of 1000 nm or less, and a step of subjecting the fibrous cellulose to a low molecular weight treatment. Is preferably included. That is, it is preferable that the method for producing fine fibrous cellulose of the present embodiment includes, for example, a step of subjecting the cellulose fibers to a defibration treatment and then a molecular weight reduction treatment.
  • the molecular weight reduction treatment may be performed before the defibration treatment step.
  • the molecular weight reduction treatment may be performed before the defibration treatment and then the molecular weight reduction treatment after the defibration treatment.
  • the defibration treatment may be performed again after the molecular weight reduction treatment is performed, and then the defibration treatment is further performed.
  • the viscosity of the aqueous dispersion at 23 ° C. is 100 mPa ⁇ s or less.
  • the step of applying the molecular weight reduction treatment is preferably a step of reducing the degree of polymerization of fibrous cellulose having a fiber width of 1000 nm or less to 450 or less, and more preferably a step of reducing the degree of polymerization to 400 or less. It is more preferably 350 or less, further preferably 300 or less, further preferably 290 or less, and particularly preferably 280 or less.
  • Examples of the step of performing the low molecular weight treatment include an ozone treatment step, an enzyme treatment step, an acid treatment step, a sub-critical water treatment step, and the like.
  • the step of applying the low molecular weight treatment is preferably at least one selected from the ozone treatment step, the enzyme treatment step, the acid treatment step and the subcritical water treatment step, and is selected from the ozone treatment step and the enzyme treatment step. It is particularly preferable that there is at least one type.
  • the ozone addition rate with respect to 1 g of the fine fibrous cellulose contained in the fine fibrous cellulose dispersion (slurry) is preferably 1.0 ⁇ 10 -4 g or more, preferably 1.0 ⁇ 10 -3 g. The above is more preferable, and 1.0 ⁇ 10-2 g or more is further preferable.
  • the ozone addition rate with respect to 1 g of fine fibrous cellulose is preferably 1.0 ⁇ 10 1 g or less.
  • the mixture After adding ozone to the fine fibrous cellulose dispersion (slurry), the mixture may be stirred for 10 seconds or more and 10 minutes or less under the conditions of 10 ° C. or more and 50 ° C. or less, and then allowed to stand for 1 minute or more and 100 minutes or less. preferable.
  • the enzyme is added to the fine fibrous cellulose dispersion (slurry).
  • the enzyme used at this time is preferably a cellulase-based enzyme.
  • Cellulase-based enzymes are classified into the sugar hydrolase family based on the higher-order structure of the catalytic domain having the function of hydrolyzing cellulose. Cellulase-based enzymes are roughly classified into endo-glucanase and cellobiohydrolase according to their cellulolytic properties.
  • Endo-type glucanase is highly hydrolyzable to amorphous portions of cellulose, soluble cellooligosaccharides, and cellulose derivatives such as carboxymethyl cellulose, and randomly cleaves their molecular chains from the inside to reduce the degree of polymerization.
  • cellobiohydrolase decomposes the crystalline portion of cellulose to give cellobiose.
  • cellobiohydrolase hydrolyzes from the end of the cellulose molecule and is also called an exo-type or processive enzyme.
  • the enzyme used in the enzyme treatment step is not particularly limited, but it is preferable to use endo-type glucanase.
  • the enzyme treatment step it is preferable to add the enzyme so that the enzyme activity is 0.1 nkat or more, more preferably 1 nkat or more, and 10 nkat or more so that the enzyme activity is 0.1 nkat or more with respect to 1 g of the fine fibrous cellulose. It is more preferred to add the enzyme. Further, it is preferable to add the enzyme so that the enzyme activity is 100,000 nkat or less with respect to 1 g of the fine fibrous cellulose, and it is more preferable to add the enzyme so that the enzyme activity is 50,000 nkat or less. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is treated under the condition of 0 ° C. or higher and lower than 80 ° C. for 1 minute or more and 100 hours or less, and then placed under the condition of 80 ° C. or higher. It is preferable to inactivate the enzyme.
  • the acid treatment step includes, for example, sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochloric acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid, sulfonic acid (eg methane).
  • This is a step of mixing with sulfonic acid) or the like.
  • the acid treatment step is preferably a step of mixing with hypochlorous acid (hypochlorous acid treatment step).
  • hypochlorous acid treatment step sodium hypochlorite can be used as the fine fibrous cellulose dispersion (slurry).
  • the addition rate of sodium hypochlorite is preferably 1.0 ⁇ 10 -4 g or more, more preferably 1.0 ⁇ 10 -3 g or more, with respect to 1 g of fine fibrous cellulose. It is more preferably 0 ⁇ 10 ⁇ 2 g or more, and particularly preferably 1.0 ⁇ 10 -1 g or more.
  • the addition rate of sodium hypochlorite is preferably 1.0 ⁇ 10 2 g or less with respect to 1 g of fine fibrous cellulose. After adding sodium hypochlorite to the fine fibrous cellulose dispersion (slurry), it is preferable to stir for 1 minute or more and 10 hours or less under the conditions of 10 ° C. or higher and 50 ° C. or lower.
  • the fine fibrous cellulose dispersion (slurry) is subjected to high-temperature and high-pressure treatment to bring it into a sub-critical state.
  • Fine fibrous cellulose is hydrolyzed in a subcritical state. Specifically, after the fine fibrous cellulose dispersion (slurry) is placed in the reaction vessel, the temperature is raised to 150 ° C. or higher and 500 ° C. or lower, preferably 150 ° C. or higher and 350 ° C. or lower, and the pressure in the reaction vessel is increased. Pressurize to 10 MPa or more and 80 MPa or less, preferably 10 MPa or more and 20 MPa or less.
  • the heating and pressurizing time at this time is preferably 0.1 seconds or more and 100 seconds or less, and more preferably 3 seconds or more and 50 seconds or less.
  • a defibration treatment step after the low molecular weight treatment step.
  • a defibration treatment step before and after the low molecular weight treatment step.
  • the same steps as those described above can be exemplified, but among them, in the defibration treatment step after the low molecular weight treatment step, a high pressure homogenizer or an ultrahigh pressure homogenizer can be used. preferable.
  • the present embodiment may relate to a method for producing fine fibrous cellulose, which comprises at least one step of defibrating a cellulose fiber having an ionic substituent and one step of reducing the molecular weight.
  • the method for producing fine fibrous cellulose further increases the concentration of cellulose fibers during the defibration treatment by including at least one step of defibrating the cellulose fibers having an ionic substituent and one step of reducing the molecular weight. be able to. As a result, a high-concentration fine fibrous cellulose dispersion can be efficiently obtained.
  • the method for producing fine fibrous cellulose may include a defibration treatment step, a low molecular weight treatment step, and a defibration treatment step in this order, and the low molecular weight treatment step and the defibration treatment.
  • the step, the low molecular weight treatment step, and the defibration treatment step may be included in this order.
  • the molecular weight reduction treatment step is preferably at least one selected from an ozone treatment step, an enzyme treatment step, an acid treatment step and a subcritical water treatment step, and ozone. It is particularly preferable that it is at least one selected from the treatment step and the enzyme treatment step.
  • the present embodiment may be an invention relating to the fibrous cellulose dispersion liquid containing the above-mentioned fine fibrous cellulose.
  • the fibrous cellulose dispersion liquid is a fibrous cellulose dispersion liquid (also referred to as a fine fibrous cellulose-containing dispersion liquid, a fine fibrous cellulose-containing slurry or a slurry) obtained by dispersing fine fibrous cellulose in a solvent containing water.
  • a fibrous cellulose aqueous dispersion liquid obtained by dispersing in a solvent containing water as a main component is more preferable.
  • the content of fine fibrous cellulose (concentration of fine fibrous cellulose) in the fibrous cellulose dispersion is preferably 3.0% by mass or more with respect to the total mass of the fibrous cellulose dispersion. It is more preferably 0% by mass or more, further preferably 5.0% by mass or more, and particularly preferably 6.0% by mass or more.
  • the content of the fine fibrous cellulose (concentration of the fine fibrous cellulose) is preferably 30.0% by mass or less, preferably 20.0% by mass or less, based on the total mass of the fibrous cellulose dispersion. More preferably.
  • the viscosity of the dispersion at 23 ° C. may be 108 mPa ⁇ s or more, and 250 mPa ⁇ s. It is preferably 350 mPa ⁇ s or more, and more preferably 350 mPa ⁇ s or more.
  • the viscosity of the dispersion at 23 ° C. may be 1000 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less.
  • the viscosity of the fine fibrous cellulose dispersion is a viscosity value 3 minutes after the start of measurement, at 23 ° C.
  • a rotation speed of 3 rpm using a B-type viscometer for example, an analog viscometer T-LVT manufactured by BLOOKFIELD can be used.
  • a rotating and revolving supermixer manufactured by Shinky Co., Ltd., ARE-. In 250), the fine fibrous cellulose dispersion is defoamed.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 2,000,000 mPa ⁇ s or more, and 3,000,000 mPa ⁇ s. The above is more preferable, and 4,000,000 mPa ⁇ s or more is particularly preferable.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 30,000,000 mPa ⁇ s or less, preferably 2,000,000 mPa.
  • the viscosity of the aqueous dispersion at 23 ° C. is preferably 5,000,000 mPa ⁇ s or more, preferably 1,000,000 mPa. -S or more is more preferable, and 18,000,000 mPa ⁇ s or more is particularly preferable.
  • the fine fibrous cellulose is used as an aqueous dispersion having a concentration of 13.0% by mass, the viscosity of the aqueous dispersion at 23 ° C.
  • the viscosity of the water dispersion with a concentration of 6.0% by mass or the water dispersion with a concentration of 13.0% by mass was set to a rotation speed of 0.3 rpm at 23 ° C. using a B-type viscometer, and 3 minutes after the start of measurement. Is the viscosity value of.
  • a digital viscometer DV2T manufactured by BLOOKFIELD can be used as the B-type viscometer DV2T manufactured by BLOOKFIELD.
  • fine fibrous cellulose was prepared in an aqueous dispersion having a concentration of 6.0% by mass or 13.0% by mass, it was stirred with a disperser at 4000 rpm for 3 minutes, and then a rotating and revolving supermixer (Sinky).
  • the fine fibrous cellulose dispersion is defoamed with ARE-250) manufactured by the company.
  • a disperser at 4000 rpm for 3 minutes, and then a rotating and revolving supermixer (Sinky).
  • the fine fibrous cellulose dispersion is defoamed with ARE-250) manufactured by the company.
  • an aqueous dispersion having a concentration higher than the concentration of 6.0% by mass or 13.0% by mass is obtained.
  • An aqueous dispersion having a concentration of 6.0% by mass or a concentration of 13.0% by mass may be obtained by diluting the aqueous dispersion with water.
  • the haze of the dispersion is preferably 80% or less, preferably 60% or less. Is more preferably 40% or less, further preferably 30% or less, further preferably 15% or less, and particularly preferably 5% or less.
  • the haze of the dispersion liquid is in the above range, it means that the fibrous cellulose dispersion liquid has high transparency and the fine fibrous cellulose has good dispersibility.
  • the haze of the fine fibrous cellulose dispersion is a fibrous cellulose dispersed in a liquid glass cell (manufactured by Fujiwara Seisakusho, MG-40, backlit path) having an optical path length of 1 cm. It is a value measured by adding a liquid and conforming to JIS K 7136: 2000 and using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute). Before the measurement, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours. In addition, the zero point measurement at the time of haze measurement is performed with ion-exchanged water contained in the same glass cell.
  • the fibrous cellulose dispersion may contain a solvent containing water and other additives in addition to the fine fibrous cellulose.
  • other additives include antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, preservatives (for example, phenoxyethanol) and the like.
  • the fibrous cellulose dispersion liquid may contain a hydrophilic polymer, a hydrophilic low molecule, an organic ion or the like as optional components.
  • the hydrophilic polymer is preferably a hydrophilic oxygen-containing organic compound (excluding the above-mentioned cellulose fibers), and examples of the oxygen-containing organic compound include polyethylene glycol, polyethylene oxide, casein, dextrin, starch, and modification. Distillate, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), polyethylene oxide, polyvinylpyrrolidone, polyvinylmethyl ether, polyacrylates, acrylic acid alkyl ester copolymer, urethane copolymer, cellulose derivative (hydroxy) Ethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.) and the like.
  • the oxygen-containing organic compound include polyethylene glycol, polyethylene oxide, casein, dextrin, starch, and modification. Distillate, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), polyethylene oxide, polyvinyl
  • the hydrophilic low molecule is preferably a hydrophilic oxygen-containing organic compound, and more preferably a polyhydric alcohol.
  • the polyhydric alcohol include glycerin, sorbitol, ethylene glycol and the like.
  • Examples of the organic ion include tetraalkylammonium ion and tetraalkylphosphonium ion.
  • Examples of the tetraalkylammonium ion include tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion, and lauryltrimethyl.
  • Examples thereof include ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethylbenzylammonium ion and tributylbenzylammonium ion.
  • Examples of the tetraalkylphosphonium ion include tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, and lauryltrimethylphosphonium ion. Further, examples of the tetrapropyl onium ion and the tetrabutyl onium ion include tetra n-propyl onium ion and tetra n-butyl onium ion, respectively.
  • the fine fibrous cellulose of the present embodiment can be a highly concentrated dispersion. Therefore, it is particularly preferably used in applications where it is desired to add fine fibrous cellulose at a high concentration.
  • the fine fibrous cellulose of the present embodiment is used as an additive to foods, cosmetics, cement, paints (for painting vehicles such as automobiles, ships, aircraft, etc., for building materials, for daily necessities, etc.), inks, pharmaceuticals, and the like. Can be done.
  • the fine fibrous cellulose of the present embodiment can be applied to daily necessities by adding it to a resin-based material or a rubber-based material.
  • the fine fibrous cellulose dispersion liquid of the present embodiment is preferably a dispersion liquid for forming a sheet, and the present embodiment may relate to the above-mentioned sheet containing the fine fibrous cellulose.
  • a coating step of applying the fine fibrous cellulose dispersion liquid on the base material, or for forming the sheet It is preferable to include a papermaking step of making the composition.
  • a resin layer or an inorganic layer may be further laminated on the sheet thus obtained.
  • the present embodiment may have the following configurations.
  • ⁇ 101> A fine fibrous cellulose-containing dispersion having a fiber width of 1000 nm or less and having an ionic substituent.
  • the content of the fine fibrous cellulose is 5.0% by mass or more and 14.0% by mass or less with respect to the total mass of the dispersion liquid.
  • the degree of polymerization of the fine fibrous cellulose is 235 or more and 290 or less. Fine fibrous cellulose-containing dispersion.
  • ⁇ 102> The fine fibrous cellulose-containing dispersion according to ⁇ 101>, wherein the viscosity measured using a B-type viscometer is 4800 ⁇ 10 3 mPa ⁇ s or more and 30,000 ⁇ 10 3 mPa ⁇ s or less.
  • ⁇ 103> The fine fibrous cellulose-containing dispersion according to ⁇ 101> or ⁇ 102>, wherein the ionic substituent is a phospholic acid group or a substituent derived from a phosphoxoic acid group.
  • ⁇ 104> The fine fibrous cellulose-containing according to any one of ⁇ 101> to ⁇ 103>, wherein the amount of the ionic substituent introduced into the fine fibrous cellulose is 1.00 mmol / g or more and 2.00 mmol / g or less. Dispersion solution.
  • a method for producing fibrous cellulose which comprises a step of subjecting fibrous cellulose to a low molecular weight treatment.
  • a method for producing fibrous cellulose wherein when the fibrous cellulose is an aqueous dispersion having a concentration of 0.5% by mass, the viscosity of the aqueous dispersion at 23 ° C. is 108 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • ⁇ 112> The method for producing fibrous cellulose according to ⁇ 111>, wherein the concentration of cellulose fibers in the step of obtaining fibrous cellulose having a fiber width of 1000 nm or less by performing a defibration treatment is 3.0% by mass or more.
  • ⁇ 113> The method for producing fibrous cellulose according to ⁇ 111> or ⁇ 112>, wherein the step of applying the molecular weight reduction treatment is a step of reducing the degree of polymerization of the fibrous cellulose to 450 or less.
  • the step of applying the low molecular weight treatment is any one of ⁇ 111> to ⁇ 113>, which is at least one selected from an ozone treatment step, an enzyme treatment step, an acid treatment step, and a subcritical water treatment step.
  • ⁇ 116> A fibrous cellulose produced by the method for producing a fibrous cellulose according to any one of ⁇ 111> to ⁇ 115>.
  • ⁇ Manufacturing example 1> [Manufacturing of phosphorylated pulp]
  • raw material pulp softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
  • the raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water.
  • the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above-mentioned washing treatment to obtain phosphorylated pulp A.
  • the infrared absorption spectrum of the phosphorylated pulp A thus obtained was measured using FT-IR. As a result, absorption based on the phosphate group was observed around 1230 cm -1 , and it was confirmed that the phosphate group was added to the pulp.
  • Phosphorylated pulp B was obtained by further performing the phosphorylation treatment and the washing treatment of Production Example 1 once on the washed phosphorylated pulp obtained in Production Example 1.
  • Phosphorylated pulp C was obtained by performing the same treatment as in Production Example 1 except that the raw material pulp used in Production Example 1 was hardwood pulp (dry sheet) manufactured by Oji Paper Co., Ltd.
  • Phosphorylated pulp D was obtained by performing the same treatment as in Production Example 1 except that the raw material pulp used in Production Example 1 was hardwood kraft pulp (dry sheet) manufactured by Celulose Nipo.
  • the pulp obtained after the D0 step treatment was diluted to 3% by mass with ion-exchanged water, and then dehydrated and washed with Buchner funnel.
  • the E / P stage treatment was performed by immersing in a constant temperature water tank having a temperature of 70 ° C. for 100 minutes.
  • the obtained pulp was diluted to 3% by mass with ion-exchanged water, and then dehydrated and washed with Buchner funnel.
  • the pulp after the E / P stage treatment is placed in a plastic bag, the pulp concentration is adjusted to 10% by mass using ion-exchanged water, and then 0.3% by mass of chlorine dioxide is added to the total mass of the absolute dry pulp. It was immersed in a constant temperature water tank having a temperature of 70 ° C. for 80 minutes to perform a D1 stage bleaching treatment. The obtained pulp was diluted to 3% by mass with ion-exchanged water, and then dehydrated and washed with Büchner funnel to obtain bleached pulp. [Phosphorylation] The bleached pulp was adjusted to have 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water to obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain phosphorylated pulp E.
  • TEMPO oxidized pulp softwood kraft pulp (undried) made by Oji Paper was used. Alkaline TEMPO oxidation treatment was carried out on this raw material pulp as follows. First, the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts. Then, 13% by mass sodium hypochlorite solution was added to 1.0 g of pulp so as to be 3.8 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
  • the washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating the operation of filtration and dehydration. It was. When the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows.
  • the dehydrated sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8).
  • 113 parts by mass of 80% by mass of sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours with stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
  • the washing treatment is carried out by dehydrating the post-oxidized pulp slurry to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the slurry, and then repeating the operation of filtering and dehydrating. It was.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set and TEMPO oxide pulp A was obtained.
  • ⁇ Manufacturing example 8> The same treatment as in Production Example 6 was carried out except that the raw material pulp used in Production Example 6 was broadleaf kraft pulp (undried) manufactured by Oji Paper Co., Ltd. to obtain TEMPO oxidized pulp C.
  • ⁇ Manufacturing example 9> [Manufacturing of subphosphorylated pulp]
  • raw material pulp softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
  • the raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of phosphorous acid (phosphonic acid) and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to add 33 parts by mass of phosphorous acid (phosphonic acid), 120 parts by mass of urea, and 150 parts of water.
  • the amount was adjusted to be parts by mass, and a chemical-impregnated pulp was obtained.
  • the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphorous acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
  • the obtained subphosphorylated pulp was washed.
  • the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of subphosphorized pulp is stirred so that the pulp is uniformly dispersed, and then the operation of filtering and dehydrating is repeated.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the washed subphosphorylated pulp was neutralized as follows. First, the washed subphosphorylated pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a subphosphorylated pulp slurry having a pH of 12 or more and 13 or less. Obtained. Then, the subphosphorylated pulp slurry was dehydrated to obtain a neutralized subphosphorylated pulp. Next, the neutralized subphosphorylated pulp was subjected to the above washing treatment to obtain subphosphorylated pulp A.
  • the infrared absorption spectrum of the subphosphorylated pulp A thus obtained was measured using FT-IR.
  • P O-based absorption of the phosphonic acid group, which is a tautomer of the phosphite group, was observed near 1210 cm -1, and a (sub) phosphorous acid group (phosphonic acid group) was added to the pulp. It was confirmed that there was.
  • Subphosphorized pulp B was obtained by performing the same treatment as in Production Example 9 except that the raw material pulp used in Production Example 9 was hardwood pulp (dry sheet) manufactured by Oji Paper Co., Ltd.
  • Subphosphorylated pulp C was obtained by performing the same treatment as in Production Example 9 except that the raw material pulp used in Production Example 9 was hardwood kraft pulp (dry sheet) manufactured by Celulose Nipo.
  • the infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR. As a result, it was confirmed that a sulfate group (absorption based on a sulfone group was observed and a sulfate group (sulfone group) was added to the pulp in the vicinity of 1220-1260 cm -1. Also, it was obtained by X-ray diffraction. It was confirmed that the sulfated pulp maintained the cellulose type I crystal.
  • Example 1 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a slurry having a solid content concentration of 6.0% by mass. This slurry was treated once with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. An enzyme-containing solution having an activity of 21000 nkat was added to 1000 g of this dispersion (solid content concentration 6.0% by mass, solid content 60 g) and subjected to enzyme treatment at a temperature of 50 ° C. The amount of enzyme added at this time was set to 350 nkat with respect to 1 g of fine fibrous cellulose.
  • the temperature of the obtained dispersion was set to 100 ° C., and the enzyme was heat-inactivated.
  • the amount of phosphate group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mmol / g.
  • Example 2 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a slurry having a solid content concentration of 7.0% by mass.
  • This slurry is treated once with a high-pressure homogenizer at a pressure of 200 MPa, and a solution of sodium hypochlorite (effective chlorine concentration 12% by mass) is applied to 1000 g (solid content concentration 7.0% by mass, solid content 70 g). 170 g was added and mixed well at room temperature. Then, it was treated three times with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion.
  • Example 3 Ozone so as to be 0.1 part by mass with respect to 1 part by mass of fine fibrous cellulose with respect to 1000 g of the fibrous cellulose dispersion liquid of Example 1 (solid content concentration 6.0% by mass, solid content 60 g). was added, and the mixture was stirred at 25 ° C. in a closed container and then allowed to stand for 30 minutes. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated three times with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion.
  • Example 4 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 1 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used. The amount of carboxy group measured by the measuring method described later was 1.30 mmolg.
  • Example 5 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used.
  • Example 6 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 3 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used.
  • Example 7 Production Example 9 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 1 except that the obtained subphosphorylated pulp A was used.
  • the amount of phosphite group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.51 mmol / g.
  • the total amount of dissociated acid was 1.54 mmol / g.
  • Example 8 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2 except that the subphosphorylated A pulp obtained in Production Example 9 was used.
  • Example 9 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 3 except that the subphosphorylated pulp A obtained in Production Example 9 was used.
  • Example 10 The phosphorylated pulp A obtained in Production Example 1 was treated once with a single disc refiner to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. For other treatments, a fine fibrous cellulose dispersion was obtained in the same manner as in Example 1.
  • Example 11 The TEMPO oxidized pulp A obtained in Production Example 6 was treated once with a single disc refiner to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. For other treatments, a fine fibrous cellulose dispersion was obtained in the same manner as in Example 3.
  • Example 12 The subphosphorylated pulp A obtained in Production Example 9 was treated once with a single disc refiner to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. For other treatments, a fine fibrous cellulose dispersion was obtained in the same manner as in Example 3.
  • Example 13 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a slurry having a solid content concentration of 6.0% by mass.
  • An enzyme-containing liquid having an activity of 21000 nkat was added to 1000 g of this slurry (solid content concentration 6.0% by mass, solid content 60 g) and subjected to enzyme treatment at a temperature of 50 ° C.
  • the amount of enzyme added at this time was set to 350 nkat with respect to 1 g of fine fibrous cellulose.
  • it was treated with a high-pressure homogenizer at a pressure of 200 MPa four times to obtain a fine fibrous cellulose dispersion.
  • the temperature of the obtained dispersion was set to 100 ° C., and the enzyme was heat-inactivated.
  • Example 14 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a slurry having a solid content concentration of 6.0% by mass.
  • Ozone was added to 1000 g of this slurry (solid content concentration 6.0% by mass, solid content 60 g) so as to be 0.1 part by mass with respect to 1 part by mass of fine fibrous cellulose, and inside the closed container. After stirring at 25 ° C., the mixture was allowed to stand for 30 minutes. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated with a high-pressure homogenizer at a pressure of 200 MPa four times to obtain a fine fibrous cellulose dispersion.
  • Example 15 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 14 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used.
  • Example 16 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 13 except that the subphosphorylated pulp A obtained in Production Example 9 was used.
  • Example 17 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 1 except that the phosphorylated pulp C obtained in Production Example 3 was used.
  • Example 18 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 1 except that the phosphorylated pulp E obtained in Production Example 5 was used.
  • Example 19 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 3 except that the phosphorylated pulp D obtained in Production Example 4 was used.
  • Example 20 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 3 except that the TEMPO oxidized pulp B obtained in Production Example 7 was used.
  • Example 21 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 3 except that the subphosphorylated pulp B obtained in Production Example 10 was used.
  • Example 22 Ion-exchanged water was added to the subphosphorylated pulp C obtained in Production Example 11 to prepare a slurry having a solid content concentration of 6.0% by mass. This slurry was treated once with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. An enzyme-containing solution having an activity of 33000 nkat was added to 1000 g of this dispersion (solid content concentration 6.0% by mass, solid content 60 g) and subjected to enzyme treatment at a temperature of 50 ° C. The amount of enzyme added at this time was set to 550 nkat per 1 g of fine fibrous cellulose.
  • Example 23 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a slurry having a solid content concentration of 13.0% by mass. This slurry was treated once with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. An enzyme-containing liquid having an activity of 45500 nkat was added to 1000 g of this dispersion (solid content concentration 13.0% by mass, solid content 130 g) and subjected to enzyme treatment at a temperature of 50 ° C. The amount of enzyme added at this time was set to 350 nkat with respect to 1 g of fine fibrous cellulose.
  • the temperature of the obtained dispersion was set to 100 ° C., and the enzyme was heat-inactivated.
  • the amount of phosphate group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mmol / g.
  • Example 24 Ozone was added to the fibrous cellulose dispersion obtained in Example 23 so as to have a ratio of 0.1 part by mass with respect to 1 part by mass of pulp, and the mixture was stirred at 25 ° C. in a closed container for 30 minutes. It was left still. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated with a high-pressure homogenizer at a pressure of 200 MPa four times to obtain a fine fibrous cellulose dispersion.
  • Example 25 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 23 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used.
  • Example 26 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 24 except that the TEMPO oxidized pulp A obtained in Production Example 6 was used.
  • Example 27 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 23 except that the subphosphorylated pulp A obtained in Production Example 9 was used.
  • Example 28 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 24 except that the subphosphorylated pulp A obtained in Production Example 9 was used.
  • Example 29 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a pulp slurry having a solid content concentration of 13.0% by mass.
  • An enzyme-containing liquid having an activity of 45500 nkat was added to 1000 g of this pulp slurry (solid content concentration 13.0% by mass, solid content 130 g) and subjected to enzyme treatment at a temperature of 50 ° C.
  • the amount of enzyme added at this time was set to 350 nkat with respect to 1 g of fine fibrous cellulose. Then, it was treated with a high-pressure homogenizer at a pressure of 200 MPa five times to obtain a fine fibrous cellulose dispersion.
  • the temperature of the obtained dispersion was set to 100 ° C., and the enzyme was heat-inactivated.
  • the amount of phosphate group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mmol / g.
  • Example 30 Ion-exchanged water was added to the TEMPO oxidized pulp A obtained in Production Example 6 to prepare a pulp slurry having a solid content concentration of 13.0% by mass. Ozone was added so as to have a ratio of 0.1 part by mass with respect to 1 part by mass of pulp, and the mixture was stirred at 25 ° C. in a closed container and then allowed to stand for 30 minutes. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated with a high-pressure homogenizer at a pressure of 200 MPa five times to obtain a fine fibrous cellulose dispersion.
  • Example 31 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 30 except that the subphosphorylated pulp A obtained in Production Example 9 was used.
  • Example 32 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 23 except that the phosphorylated pulp C obtained in Production Example 3 was used.
  • Example 33 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 23 except that the phosphorylated pulp E obtained in Production Example 5 was used.
  • Example 34 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 24 except that the phosphorylated pulp D obtained in Production Example 4 was used.
  • Example 35 Ion-exchanged water was added to the TEMPO oxidized pulp C obtained in Production Example 8 to prepare a slurry having a solid content concentration of 13.0% by mass. This slurry was treated once with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. An enzyme-containing solution having an activity of 71500 nkat was added to 1000 g of this dispersion (solid content concentration 13.0% by mass, solid content 130 g) and subjected to enzyme treatment at a temperature of 50 ° C. The amount of enzyme added at this time was set to 550 nkat per 1 g of fine fibrous cellulose.
  • Example 36 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 24 except that the TEMPO oxidized pulp B obtained in Production Example 7 was used.
  • Example 37 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 35 except that the subphosphorylated pulp C obtained in Production Example 11 was used.
  • Example 38 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 24 except that the subphosphorylated pulp B obtained in Production Example 10 was used.
  • Example 39 Ion-exchanged water was added to the phosphorylated pulp B obtained in Production Example 2 to prepare a pulp slurry having a solid content concentration of 6.0% by mass.
  • Ozone was added so as to have a ratio of 0.1 part by mass with respect to 1 part by mass of pulp, and the mixture was stirred at 25 ° C. in a closed container and then allowed to stand for 30 minutes. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated three times with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion.
  • the amount of phosphate group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 2.0 mmol / g.
  • the total amount of dissociated acid was 3.35 mmol / g.
  • Example 40 Ion-exchanged water was added to the phosphorylated pulp A obtained in Production Example 1 to prepare a pulp slurry having a solid content concentration of 6.0% by mass. Ozone was added so as to have a ratio of 0.05 parts by mass with respect to 1 part by mass of pulp, and the mixture was stirred at 25 ° C. in a closed container and then allowed to stand for 30 minutes. Then, the container was opened and stirred for 5 hours to volatilize the ozone remaining in the dispersion. Then, it was treated three times with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion.
  • Example 41 Ion-exchanged water was added to the sulfated pulp obtained in Production Example 12 to prepare a slurry having a solid content concentration of 6.0% by mass. This slurry was treated once with a high-pressure homogenizer at a pressure of 200 MPa to obtain a fibrous cellulose dispersion containing fine fibrous cellulose. An enzyme-containing solution having an activity of 21000 nkat was added to 1000 g of this dispersion (solid content concentration 6.0% by mass, solid content 60 g) and subjected to enzyme treatment at a temperature of 50 ° C. The amount of enzyme added at this time was set to 350 nkat with respect to 1 g of fine fibrous cellulose.
  • a sheet was prepared by the following procedure.
  • Polyethylene oxide (PEO-3P, manufactured by Sumitomo Seika Chemical Co., Ltd.) was added to ion-exchanged water in an amount of 5% by mass, and the mixture was stirred and dissolved to obtain an aqueous polyethylene oxide solution.
  • the solid content concentration was 5% by mass, and in Examples 23 to 38, the solid content concentration was appropriately diluted with ion-exchanged water so as to be 10% by mass, and the coating liquid was used. did.
  • the coating liquid is weighed so that the finished thickness of the obtained sheet (layer composed of the solid content of the coating liquid) is 40 ⁇ m, coated on a commercially available polycarbonate plate, and placed in a dryer at 100 ° C. It was dried for 30 minutes.
  • a metal frame for damming (a gold frame having an inner dimension of 180 mm ⁇ 180 mm and a height of 5 cm) was arranged on the polycarbonate plate so as to have a predetermined basis weight.
  • the dried sheet was peeled off from the polycarbonate plate to obtain a fine fibrous cellulose-containing sheet.
  • the temperature of the obtained dispersion was set to 100 ° C., and the enzyme was heat-inactivated.
  • the amount of phosphate group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mmol / g.
  • the amount of phosphorus oxo acid groups in the fine fibrous cellulose is a fibrous form prepared by diluting a fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion exchange water so that the content is 0.2% by mass. The measurement was performed by treating the cellulose-containing slurry with an ion exchange resin and then performing titration with an alkali.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, which has been conditioned) with a volume of 1/10 is added to the fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. , The resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m. For titration using alkali, the change in pH value indicated by the slurry is measured while adding 10 ⁇ L of a 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry treated with an ion exchange resin every 5 seconds. I went by doing.
  • the titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration.
  • the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration.
  • the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of phosphorus oxo acid groups (mmol / g).
  • the amount of carboxy group of the fine fibrous cellulose is a fibrous cellulose prepared by diluting a fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion exchange water so that the content is 0.2% by mass.
  • the contained slurry was treated with an ion exchange resin and then titrated with an alkali to measure the content.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, which has been conditioned) with a volume of 1/10 is added to the fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • 50 ⁇ L of a 0.1 N sodium hydroxide aqueous solution is added to the fibrous cellulose-containing slurry treated with an ion exchange resin once every 30 seconds to obtain the electrical conductivity of the slurry. This was done by measuring the change in value.
  • the amount of carboxy group (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 2 of the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
  • the viscosity of the dispersion liquid thus obtained was measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD).
  • the measurement conditions were a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of the measurement was taken as the viscosity of the dispersion liquid.
  • the viscosity of the fine fibrous cellulose dispersion at each concentration was measured as follows. First, the defoaming treatment of the fine fibrous cellulose dispersion was performed with a rotation / revolution type super mixer (ARE-250 manufactured by Shinky Co., Ltd.). Next, the viscosity of the obtained dispersion was measured using a B-type viscometer (digital viscometer DV2T manufactured by BLOOKFIELD). The rotation speed was 0.3 rpm under the measurement conditions of 23 ° C., and the viscosity value 3 minutes after the start of the measurement was taken as the viscosity of the dispersion liquid.
  • ARE-250 manufactured by Shinky Co., Ltd.
  • B-type viscometer digital viscometer DV2T manufactured by BLOOKFIELD
  • the specific viscosity and degree of polymerization of the fine fibrous cellulose were measured according to Tappi T230. That is, after measuring the viscosity (referred to as ⁇ 1) measured by dispersing the fine fibrous cellulose to be measured in a dispersion medium and the blank viscosity (referred to as ⁇ 0) measured only with the dispersion medium, the specific viscosity ( ⁇ sp), The intrinsic viscosity ([ ⁇ ]) was measured according to the following formula.
  • c in the formula indicates the concentration of cellulose fibers at the time of viscosity measurement.
  • DP degree of polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液を提供することを課題とする。本発明は、繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、イオン性置換基の導入量は1.00mmol/g以上であり、繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、繊維状セルロースに関する。

Description

繊維状セルロース、繊維状セルロース分散液及びシート
 本発明は、繊維状セルロース、繊維状セルロース分散液及びシートに関する。
 従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。
 微細繊維状セルロースを製造する際には、セルロース原料を含むスラリーを解繊処理(機械処理)することが行われている。例えば、特許文献1には、セルロース原料を酵素で処理する工程と、酵素処理後のセルロース原料を解繊する工程を含有する微細繊維の製造方法が開示されている。ここでは、酵素処理を行うことでセルロース原料を充分に微細化し、微細繊維の収率を高めることが検討されている。また、特許文献1では、繊維長が長く、かつアスペクト比の大きな微細繊維を製造することを目的としている。
 また、特許文献2には、平均繊維幅が200nm以下であり、重合度が50以上500以下であり、所定の極性基を有する微細繊維状セルロースが開示されている。ここでは、エマルション樹脂と混ぜ合わせた際に凝集物を形成しにくい微細繊維状セルロースを得ることが検討されている。なお、特許文献2の実施例では、重合度が248~454であり、0.5%濃度における粘度が108~740の分散液が得られている。
国際公開第2013/176033号 特開2014-34673号公報
 微細繊維状セルロースは、分散液中では、優れた増粘作用を発揮するため、塗料や化粧品の用途に用いられる場合がある。しかしながら、微細繊維状セルロースは優れた増粘作用を発揮するが故に高濃度(例えば3質量%以上)の微細繊維状セルロース分散液とすることが困難であった。また、微細繊維状セルロースの高濃度分散液を得ようとした場合、分散液中で微細繊維状セルロースが均一に分散せず、場合によっては微細繊維状セルロースの凝集物(ダマ)等が発生することが本発明者らの検討により明らかとなった。
 一方で、微細繊維状セルロースを高濃度で含む分散液は、使用態様によっては希釈して用いられる場合がある。このような場合、その分散液は優れた粒子分散性を発揮することが求められる場合がある。
 そこで本発明者らは、このような従来技術の課題を解決するために、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液を提供することを目的として検討を進めた。また、本発明者らは、高濃度の微細繊維状セルロース分散液を希釈して用いる際には、優れた粒子分散性が発揮されるように検討を重ねた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、0.5質量%濃度の水分散液とした場合に、その水分散液の粘度を所定範囲内とし得る微細繊維状セルロースであって、所定量以上のイオン性置換基が導入された微細繊維状セルロースを用いることにより、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液が得られることを見出した。また、本発明者らは、このようにして得られた高濃度の微細繊維状セルロース分散液を希釈した際には、希釈分散液が優れた粒子分散性を発揮し得ることを見出し、本発明を完成するに至った。
 具体的に、本発明は、以下の構成を有する。
[1] 繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、
 イオン性置換基の導入量は1.00mmol/g以上であり、
 繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、
繊維状セルロース。
[2] 繊維状セルロースの重合度は230超え450以下である、[1]に記載の繊維状セルロース。
[3] 繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度が2,000,000mPa・s以上30,000,000mPa・s以下である、[1]又は[2]に記載の繊維状セルロース。
[4] 繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度が5,000,000mPa・s以上100,000,000mPa・s以下である、[1]~[3]のいずれかに記載の繊維状セルロース。
[5] イオン性置換基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、[1]~[4]のいずれかに記載の繊維状セルロース。
[6] [1]~[5]のいずれかに記載の繊維状セルロースを含む繊維状セルロース含有分散液。
[7] 繊維状セルロースの濃度が3.0質量%以上である[6]に記載の繊維状セルロース含有分散液。
[8] [1]~[5]のいずれかに記載の繊維状セルロースを含むシート。
 本発明によれば、高濃度の微細繊維状セルロース分散液であって、微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液を得ることができる。また、本発明においては、高濃度の微細繊維状セルロース分散液を希釈した際、希釈分散液は優れた粒子分散性を発揮する。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(繊維状セルロース)
 本実施形態の繊維状セルロースは、繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、イオン性置換基の導入量は1.00mmol/g以上であり、繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、繊維状セルロースである。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースともいう。
 微細繊維状セルロース分散液(水分散液)の粘度はB型粘度計を用いて、23℃で、回転速度3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。なお、微細繊維状セルロースを0.5質量%濃度の水分散液に希釈した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。0.5質量%濃度の水分散液の粘度は、108mPa・s以上であればよく、200mPa・s以上であることが好ましく、250mPa・s以上であることがより好ましく、350mPa・s以上であることがさらに好ましい。また、0.5質量%濃度の水分散液の粘度は、1000mPa・s以下であればよく、700mPa・s以下であることが好ましい。
 また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、2,000,000mPa・s以上であることが好ましく、3,000,000mPa・s以上であることがより好ましく、4,000,000mPa・s以上であること特に好ましい。また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、30,000,000mPa・s以下であることが好ましく、20,000,000mPa・s以下であることがより好ましく、10,000,000mPa・s以下であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、5,000,000mPa・s以上であることが好ましく、10,000,000mPa・s以上であることがより好ましく、18,000,000mPa・s以上であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、100,000,000mPa・s以下であることが好ましく、50,000,000mPa・s以下であることがより好ましく、30,000,000mPa・s以下であること特に好ましい。6.0質量%濃度の水分散液もしくは、13.0質量%濃度の水分散液の粘度はB型粘度計を用いて、23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、デジタル粘度計DV2TT-LVTを用いることができる。なお、微細繊維状セルロースを6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製する際には、6.0質量%濃度もしくは13.0質量%濃度よりも高濃度の水分散液を得て、該水分散液を水で希釈することにより6.0質量%濃度もしくは13.0質量%濃度の水分散液を得てもよい。
 従来技術においては、3.0質量%以上の高濃度の水分散液を得ることが困難であり、6.0質量%や13.0質量%といった高濃度の水分散液を得ること自体が不可能であった。また、従来技術において得られた微細繊維状セルロース分散液を濃縮するなどして6.0質量%や13.0質量%濃度の水分散液とした場合であっても、水分散液がゲル状となったり、水分散液に粒状物(繊維の凝集物)等が発生するなどして均一な水分散液を得ることができなかった。当然ながらこのような高濃度の水分散液においては、その粘度の測定は不可能であった。例えば、0.5~2.0質量%濃度の水分散液を解繊処理に施した後、加熱処理やエバポレーターで濃縮を行った場合、濃縮の過程で壁面に膜状物が発生するなどして、微細繊維状セルロースが均一に分散した6.0質量%以上の分散液を得ることはできない。このため、たとえ、0.5~2.0質量%濃度の水分散液の粘度が本実施形態における同濃度の水分散液の粘度と同等であったとしても、6.0質量%や13.0質量%といった高濃度の水分散液を得ることがそもそも不可能であり、6.0質量%や13.0質量%といった高濃度の水分散液において上記範囲内の粘度を有する分散液を得ることはできない。
 一方、本実施形態においては、微細繊維状セルロースのイオン性置換基の導入量を所定値以上とし、さらに、0.5質量%濃度の水分散液とした場合の23℃における水分散液の粘度が上記範囲内となる微細繊維状セルロースを得ることにより、高濃度であり、かつ微細繊維状セルロースが均一に分散した微細繊維状セルロースの分散液を得ることに成功した。また、本実施形態においては、解繊処理に供するリン酸化パルプの分散液を高濃度とし、このような高濃度のパルプ分散液に解繊処理を施し、また、必要に応じて後述するような低分子化処理を併せて施すことで、微細繊維状セルロースを3.0質量%以上含む水分散液(例えば、6.0質量%や13.0質量%の水分散液)においてもその粘度を測定することが可能となり、高濃度分散液としては比較的低粘度の水分散液を得ることに成功した。さらに、本実施形態においては、高濃度分散液を希釈して用いる場合には、希釈水分散液の粒子分散性を高めることもできる。
 上述したように、本実施形態においては、微細繊維状セルロースを高濃度で含む分散液を得ることができる。このため、分散液の保管コストや輸送コストの大幅な削減が可能となる。さらに、本実施形態においては、微細繊維状セルロース分散液の生産効率を高めることもできる。
 本実施形態において、繊維状セルロースの重合度は230より大きいこと好ましく、240以上であることがより好ましい。また、繊維状セルロースの重合度は450以下であることが好ましく、400以下であることがより好ましく、350以下であることがさらに好ましく、300以下であることが一層好ましく、290以下であることがより一層好ましく、280以下であることが特に好ましい。例えば、繊維状セルロースの重合度は230超え450以下であってもよく、230超え280以下であってもよい。
 微細繊維状セルロースの重合度は、Tappi T230に従い測定されたパルプ粘度から計算した値である。具体的には、測定対象の微細繊維状セルロースを、銅エチレンジアミン水溶液に分散させて測定した粘度(η1とする)、及び分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定する。
 ηsp=(η1/η0)-1
 [η]=ηsp/(c(1+0.28×ηsp))
 ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
 さらに、下記式から重合度(DP)を算出する。
 DP=1.75×[η]
 この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
 本実施形態においては、微細繊維状セルロースの重合度を上記範囲内とし、さらに、0.5質量%濃度の水分散液とした場合の23℃における水分散液の粘度が上記範囲内となる微細繊維状セルロースを得ることにより、高濃度の微細繊維状セルロース分散液であって、かつ微細繊維状セルロースが均一に分散した微細繊維状セルロース分散液が得られやすくなる。このような高濃度の微細繊維状セルロース分散液は種々の用途に好ましく用いられる。例えば、シート形成用途や補強材用途、塗料用途に好ましく用いられ、特に、透明性が求められる用途に好ましく用いられる。また、本実施形態の微細繊維状セルロースを用いた高濃度分散液を希釈した際には、希釈水分散液は優れた粒子分散性を発揮するため、本実施形態の微細繊維状セルロースは増粘剤としての用途としても好ましく用いられる。
 本実施形態においては、高濃度の微細繊維状セルロース分散液を得ることができる。例えば、微細繊維状セルロース分散液の濃度は、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが一層好ましく、10.0質量%以上であることが特に好ましい。なお、本明細書において、微細繊維状セルロース分散液の濃度とは、微細繊維状セルロース分散液の全質量に対する微細繊維状セルロースの含有量を言う。また、本明細書においては、分散液の全質量に対して微細繊維状セルロースを3.0質量%以上含む分散液(すなわち、微細繊維状セルロース分散液濃度が3.0質量%以上の分散液)を高濃度の微細繊維状セルロース分散液と言う。
 本実施形態の微細繊維状セルロースを水等の溶媒に分散させて得られる高濃度の微細繊維状セルロース分散液中において、微細繊維状セルロースは均一に分散している。このため、高濃度の微細繊維状セルロース分散液は高透明である。例えば、微細繊維状セルロースを水等の溶媒に分散させて6.0質量%の高濃度分散液とした場合、分散液中に微細繊維状セルロースが分散するため、微細繊維状セルロースを目視で確認することができない。このような場合に、高濃度の微細繊維状セルロース分散液中において、微細繊維状セルロースは均一に分散していると評価できる。また、このような場合、高濃度の微細繊維状セルロース分散液は白濁することがなく、半透明もしくは透明である。
 本実施形態の繊維状セルロースは、繊維幅が1000nm以下である微細繊維状セルロースである。繊維状セルロースの繊維幅は100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。
 繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。
 繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
 繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
 繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロース(微細繊維状セルロース)は、セルロースナノファイバー(CNF)であり、繊維状セルロース(微細繊維状セルロース)にはセルロースナノクリスタル(CNC)は含まれないものとする。セルロースナノクリスタル(CNC)の軸比(繊維長/繊維幅)は通常10以上30以下程度である。また、繊維状セルロースの軸比を上記下限値以上とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
 本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
 本実施形態の繊維状セルロースは、イオン性置換基を有する。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することが特に好ましい。また、イオン性置換基は、エステル結合を解して繊維状セルロースに連結する基であることが好ましい。この場合、エステル結合は、繊維状セルロースとイオン性置換基となる化合物の脱水縮合で形成される。
 イオン性置換基としてのアニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、および硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)から選択される少なくとも1種であることが好ましく、リンオキソ酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。繊維状セルロースにリンオキソ酸基を導入することで、高濃度分散液とした場合に分散液の透明性をより効果的に高めることができる。また、繊維状セルロースにリンオキソ酸基を導入することで、繊維状セルロースの耐塩性を向上させることもできる。
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各繊維状セルロースには、下記式(1)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。
 Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
 リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。
 また、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)は、例えば下記式(2)で表される置換基である。各繊維状セルロースには、下記式(2)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
 繊維状セルロースに対するイオン性置換基の導入量は、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、イオン性置換基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。さらにイオン性置換基の導入量を上記範囲内とすることにより、繊維状セルロースの耐塩性を向上させることもできる。
 繊維状セルロースに対するイオン性置換基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
 図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 図2は、イオン性置換基としてカルボキシ基を有する繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
 また、繊維状セルロースに対する硫黄オキソ酸基の導入量は、繊維状セルロースを含むスラリーを、湿式灰化した後、適当な倍率で希釈した試料の硫黄量を測定することで算出することができる。具体的には、繊維状セルロースを過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定する。供試した繊維状セルロースの絶乾質量で除した値を硫黄オキソ酸基量(単位:mmol/g)とする。
 以上、本実施形態に係る繊維状セルロース及び当該繊維状セルロースを含む分散液について説明した。また、本明細書では、別の実施形態として、繊維幅が1000nm以下であり、イオン性置換基を有する微細繊維状セルロース含有分散液であって、微細繊維状セルロースの含有量が、分散液の全質量に対して5.0質量%以上14.0質量%以下であり、微細繊維状セルロースの重合度が、235以上290以下である、微細繊維状セルロース含有分散液もまた、開示される。微細繊維状セルロース含有分散液のB型粘度計を用いて測定された粘度は、4800×10mPa・s以上30000×10mPa・s以下であることが特に好ましい。微細繊維状セルロースのイオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基(その中でもリン酸基)が特に好ましい。また、微細繊維状セルロースに対するイオン性置換基の導入量は、1.00mmol/g以上2.00mmol/g以下が特に好ましい。その他の説明については、上記の本実施形態に係る繊維状セルロース及び当該繊維状セルロースを含む分散液の説明と同様であるため、ここでは省略する。
(微細繊維状セルロースの製造方法)
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、広葉樹溶解パルプ(LDKP、LDSP)、針葉樹溶解パルプ(NDKP、NDSP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。中でも、針葉樹由来のパルプは、後述する解繊処理時の解繊性が良好であり、分散液とした際の透明性がより向上するため好ましく用いられる。
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リンオキソ酸基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程を含む。イオン性置換基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩または亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、または亜リン酸、亜リン酸ナトリウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
 リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
 リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。
 繊維原料に対するリンオキソ酸基の導入量は、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維原料に対するリンオキソ酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、リンオキソ酸基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。また、リンオキソ酸基の導入量を上記範囲内とすることにより、繊維状セルロースの耐塩性を向上させることもできる。
<カルボキシ基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
 繊維状セルロースに対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、繊維状セルロース1g(質量)あたり1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、繊維状セルロースに対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが特に好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、カルボキシ基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。
<硫黄オキソ酸基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、硫黄オキソ酸基導入工程を含んでもよい。硫黄オキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、硫黄オキソ酸基を有するセルロース繊維(硫黄オキソ酸基導入繊維)を得ることができる。
 硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、硫黄オキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。
 硫黄オキソ酸基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、硫黄オキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
 加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
 セルロース原料に対する硫黄オキソ酸基の導入量は、1.00mmol/g以上であればよく、1.10mmol/g以上であることが好ましく、1.20mmol/g以上であることがより好ましい。また、セルロース原料に対する硫黄オキソ酸基の導入量は、5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましく、2.50mmol/g以下であることがさらに好ましく、2.00mmol/g以下であることが特に好ましい。硫黄オキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、硫黄オキソ酸基の導入量を上記範囲内とすることにより、高濃度であり、かつ高透明な微細繊維状セルロース分散液が得られやすくなる。
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。
<酸処理工程>
 微細繊維状セルロースを製造する場合、イオン性置換基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
<解繊処理>
 イオン性置換基導入繊維を解繊処理工程で解繊処理(機械処理)することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
 解繊処理工程においては、たとえばイオン性置換基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 解繊処理時のセルロース繊維の濃度は適宜設定できるが、本実施形態においては、解繊処理時のセルロース繊維の濃度は3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが特に好ましい。また、解繊処理時のセルロース繊維の濃度の上限は特に限定されるものではないが、例えば、20.0質量%としてもよい。本実施形態においては、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、微細繊維状セルロースが均一に分散し、かつ高透明の高濃度分散液を得ることが可能となる。また、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、微細繊維状セルロースの生産効率を高めることが可能となり、結果として微細繊維状セルロースを含む分散液やシートといった加工物を効率よく生産することも可能となる。加えて、解繊処理時のセルロース繊維の濃度を上記範囲内とすることにより、高濃度の分散液を得ることが可能となり、輸送時や保管時のコストダウンも可能となる。
 また、イオン性置換基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。
<低分子化処理>
 本実施形態の微細繊維状セルロースの製造方法は、上述したような工程に加えて、さらに低分子化処理を施す工程を含むことが好ましい。具体的には、上述したように、適宜処理を施したセルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、繊維状セルロースに低分子化処理を施す工程とを含むことが好ましい。すなわち、本実施形態の微細繊維状セルロースの製造方法は、例えば、セルロース繊維に解繊処理を施した後に、低分子化処理を施す工程を含むことが好ましい。なお、解繊処理工程の前に低分子化処理を施してもよく、例えば、解繊処理の前に低分子化処理を施した後に、さらに解繊処理の後に低分子化処理を施してもよい。また、低分子化処理を施した後に、解繊処理を行い、さらに低分子化処理を施した後に、再び解繊処理工程をもよい。中でも、より効果的に低分子化するために、解繊処理の後に低分子化処理を施すことが好ましい。
 本明細書において、低分子化処理を施す工程は、微細繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度を100mPa・s以下となるように、例えば、微細繊維状セルロースの重合度を低下させる工程である。具体的には、低分子化処理を施す工程は、繊維幅が1000nm以下の繊維状セルロースの重合度を450以下にする工程であることが好ましく、400以下にする工程であることがより好ましく、350以下にする工程であることがさらに好ましく、300以下にする工程であることが一層好ましく、290以下にする工程であることがより一層好ましく、280以下にする工程であることが特に好ましい。
 低分子化処理を施す工程としては、例えば、オゾン処理工程、酵素処理工程、酸処理工程、亜臨界水処理工程等を挙げることができる。低分子化処理を施す工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種であることが好ましく、オゾン処理工程及び酵素処理工程から選択される少なくとも1種であることが特に好ましい。
 オゾン処理工程では、微細繊維状セルロース分散液(スラリー)にオゾンを添加する。オゾンを添加する際には、例えば、オゾン/酸素混合気体として添加することが好ましい。この際、微細繊維状セルロース分散液(スラリー)中に含まれる微細繊維状セルロース1gに対するオゾン添加率は、1.0×10-4g以上とすることが好ましく、1.0×10-3g以上とすることがより好ましく、1.0×10-2g以上とすることがさらに好ましい。なお、微細繊維状セルロース1gに対するオゾン添加率は、1.0×10g以下とすることが好ましい。微細繊維状セルロース分散液(スラリー)にオゾンを添加した後には、10℃以上50℃以下の条件下で10秒以上10分以下撹拌を行い、その後、1分以上100分以下静置することが好ましい。
 酵素処理工程では、微細繊維状セルロース分散液(スラリー)に酵素を添加する。この際に用いる酵素は、セルラーゼ系酵素であることが好ましい。セルラーゼ系酵素は、セルロースの加水分解反応機能を有する触媒ドメインの高次構造に基づく糖質加水分解酵素ファミリーに分類される。セルラーゼ系酵素はセルロース分解特性によってエンド型グルカナーゼ(endo-glucanase)とセロビオヒドロラーゼ(cellobiohydrolase)に大別される。エンド型グルカナーゼはセルロースの非晶部分や可溶性セロオリゴ糖、又はカルボキシメチルセルロースのようなセルロース誘導体に対する加水分解性が高く、それらの分子鎖を内側からランダムに切断し、重合度を低下させる。これに対して、セロビオヒドロラーゼはセルロースの結晶部分を分解し、セロビオースを与える。また、セロビオヒドロラーゼはセルロース分子の末端から加水分解し、エキソ型或いはプロセッシブ酵素とも呼ばれる。酵素処理工程において使用する酵素は特に限定されるものではないが、エンド型グルカナーゼを使用することが好ましい。
 酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上80℃未満の条件下で1分以上100時間以下処理を行い、その後、80℃以上の条件下に置くなどして酵素を失活させることが好ましい。
 酸処理工程は、例えば、硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸、スルホン酸(例えばメタンスルホン酸)等と混合する工程である。中でも、酸処理工程は、次亜塩素酸と混合する工程(次亜塩素酸処理工程)であることが好ましい。次亜塩素酸処理工程では、微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを用いることができる。次亜塩素酸ナトリウムの添加率は微細繊維状セルロース1gに対して1.0×10-4g以上であることが好ましく、1.0×10-3g以上であることがより好ましく、1.0×10-2g以上であることがさらに好ましく、1.0×10-1g以上であることが特に好ましい。また、次亜塩素酸ナトリウム添加率は微細繊維状セルロース1gに対して1.0×10g以下であることが好ましい。微細繊維状セルロース分散液(スラリー)に次亜塩素酸ナトリウムを添加した後には、10℃以上50℃以下の条件下で1分以上10時間以下撹拌を行うことが好ましい。
 亜臨界水処理工程では、微細繊維状セルロース分散液(スラリー)に高温高圧処理を施し、亜臨界状態とする。微細繊維状セルロースは亜臨界状態において加水分解される。具体的には、微細繊維状セルロース分散液(スラリー)を反応容器に入れた後、150℃以上500℃以下、好ましくは150℃以上350℃以下となるまで昇温し、反応容器内の圧力を10MPa以上80MPa以下、好ましくは10MPa以上20MPa以下に加圧する。この際の加熱加圧時間は0.1秒以上100秒以下であることが好ましく、3秒以上50秒以下であることがより好ましい。
 低分子化処理工程の後には、さらに解繊処理工程を設けてることが好ましい。中でも、低分子化処理工程の前後に解繊処理工程を設けることが好ましい。この場合、解繊処理工程としては、上述した工程と同様の工程を例示することができるが、中でも、低分子化処理工程後の解繊処理工程では、高圧ホモジナイザー又は超高圧ホモジナイザーを用いることが好ましい。
 なお、本実施形態は、イオン性置換基を有するセルロース繊維を解繊処理する工程と、低分子化処理とを少なくとも1工程ずつ含む、微細繊維状セルロースの製造方法に関するものであってもよい。微細繊維状セルロースの製造方法がイオン性置換基を有するセルロース繊維を解繊処理する工程と、低分子化処理とを少なくとも1工程ずつ含むことで、解繊処理時のセルロース繊維の濃度をより高めることができる。これにより、高濃度の微細繊維状セルロース分散液を効率よく得ることができる。なお、この場合、微細繊維状セルロースの製造方法は、解繊処理工程、低分子化処理工程及び解繊処理工程をこの順で含むものであってもよく、低分子化処理工程、解繊処理工程、低分子化処理工程及び解繊処理工程をこの順で含むものであってもよい。なお、最初の解繊処理工程もしくは低分子化処理工程の前には、上述したようなイオン性置換基導入工程や洗浄工程、アルカリ処理工程等が設けられることが好ましい。このような微細繊維状セルロースの製造方法において、低分子化処理工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種であることが好ましく、オゾン処理工程及び酵素処理工程から選択される少なくとも1種であることが特に好ましい。
(繊維状セルロース分散液)
 本実施形態は、上述した微細繊維状セルロースを含む繊維状セルロース分散液に関する発明であってもよい。繊維状セルロース分散液は、微細繊維状セルロースを、水を含む溶媒に分散させてなる繊維状セルロース分散液(微細繊維状セルロース含有分散液、微細繊維状セルロース含有スラリーもしくはスラリーともいう)であることが好ましく、水を主成分とする溶媒に分散させてなる繊維状セルロース水分散液であることがより好ましい。
 繊維状セルロース分散液中における微細繊維状セルロースの含有量(微細繊維状セルロースの濃度)は、繊維状セルロース分散液の全質量に対して、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましく、5.0質量%以上であることがさらに好ましく、6.0質量%以上であることが特に好ましい。また、微細繊維状セルロースの含有量(微細繊維状セルロースの濃度)は、繊維状セルロース分散液の全質量に対して、30.0質量%以下であることが好ましく、20.0質量%以下であることがより好ましい。
 繊維状セルロース分散液を、微細繊維状セルロース濃度が0.5質量%の繊維状セルロース分散液とした場合、該分散液の23℃における粘度は、108mPa・s以上であればよく、250mPa・s以上であることが好ましく、350mPa・s以上であることがより好ましい。また、該分散液の23℃における粘度は、1000mPa・s以下であればよく、700mPa・s以下であることが好ましい。微細繊維状セルロース分散液の粘度はB型粘度計を用いて、23℃で、回転速度3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。なお、微細繊維状セルロースを0.5質量%濃度の繊維状セルロース分散液を調製する際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。
 微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、2,000,000mPa・s以上であることが好ましく、3,000,000mPa・s以上であることがより好ましく、4,000,000mPa・s以上であること特に好ましい。また、微細繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、30,000,000mPa・s以下であることが好ましく、20,000,000mPa・s以下であることがより好ましく、10,000,000mPa・s以下であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、5,000,000mPa・s以上であることが好ましく、10,000,000mPa・s以上であることがより好ましく、18,000,000mPa・s以上であることが特に好ましい。また、微細繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における水分散液の粘度は、100,000,000mPa・s以下であることが好ましく、50,000,000mPa・s以下であることがより好ましく、30,000,000mPa・s以下であること特に好ましい。6.0質量%濃度の水分散液もしくは、13.0質量%濃度の水分散液の粘度はB型粘度計を用いて、23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値である。B型粘度計としては、例えば、BLOOKFIELD社製、デジタル粘度計DV2Tを用いることができる。なお、微細繊維状セルロースを6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製した際には、ディスパーザーにて4000rpmで3分間撹拌した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行う。6.0質量%濃度もしくは13.0質量%濃度の水分散液に調製する際には、6.0質量%濃度もしくは13.0質量%濃度よりも高濃度の水分散液を得て、該水分散液を水で希釈することにより6.0質量%濃度もしくは13.0質量%濃度の水分散液を得てもよい。
 繊維状セルロース分散液を、微細繊維状セルロース濃度が0.2質量%の繊維状セルロース分散液とした場合、該分散液のヘーズは、80%以下であることが好ましく、60%以下であることがより好ましく、40%以下であることがさらに好ましく、30%以下であることが一層好ましく、15%以下であることがより一層好ましく、5%以下であることが特に好ましい。分散液のヘーズが上記範囲であることは、繊維状セルロース分散液の透明度が高く、微細繊維状セルロースの分散性が良好であることを意味する。ここで、微細繊維状セルロース分散液(微細繊維状セルロース濃度0.2質量%)のヘーズは、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)に繊維状セルロース分散液を入れ、JIS K 7136:2000に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定される値である。なお、測定対象の分散液は測定前に、23℃、相対湿度50%の環境下に24時間静置する。また、ヘーズ測定の際のゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。
 繊維状セルロース分散液は、水を含む溶媒と、微細繊維状セルロースに加えて他の添加剤を含有していてもよい。他の添加剤としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤(例えば、フェノキシエタノール)等を挙げることができる。また、繊維状セルロース分散液は、任意成分としては、親水性高分子、親水性低分子、有機イオン等を含有していてもよい。
 親水性高分子は、親水性の含酸素有機化合物(但し、上記セルロース繊維は除く)であることが好ましく、含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。
 親水性低分子は、親水性の含酸素有機化合物であることが好ましく、多価アルコールであることがさらに好ましい。多価アルコールとしては、例えば、グリセリン、ソルビトール、エチレングリコール等が挙げられる。
 有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn-プロピルオニウムイオン、テトラn-ブチルオニウムイオンなども挙げることができる。
(用途)
 本実施形態の微細繊維状セルロースは、高濃度の分散液になり得る。このため、微細繊維状セルロースを高濃度で添加したい用途に特に好ましく用いられる。例えば、本実施形態の微細繊維状セルロースは、食品、化粧品、セメント、塗料(自動車、船舶、航空機等の乗り物塗装用、建材用、日用品用など)、インク、医薬品などへの添加物として用いることができる。また、本実施形態の微細繊維状セルロースは、樹脂系材料やゴム系材料に添加したりすることで、日用品への応用も可能である。
 また、本実施形態の微細繊維状セルロースを高濃度で含む分散液からシートや塗膜を形成した場合には、シートや塗膜中における微細繊維状セルロースの含有量を高めることができる。これにより、得られるシートや塗膜の機械的強度を高めることができる。例えば、シートや塗膜の引張強度や引張弾性率をより効果的に高めることができる。このように本実施形態の微細繊維状セルロース分散液はシート形成用分散液であることが好ましく、本実施形態は、上述した微細繊維状セルロースを含むシートに関するものであってもよい。
 本実施形態の微細繊維状セルロースを高濃度で含む分散液からシートや塗膜を形成する際には、微細繊維状セルロース分散液を基材上に塗工する塗工工程、または該シート形成用組成物を抄紙する抄紙工程を含むことが好ましい。このようにして得られたシートには、さらに、樹脂層や無機層が積層されてもよい。
 また、本実施形態は、以下の構成を有するものであってもよい。
<101> 繊維幅が1000nm以下であり、イオン性置換基を有する微細繊維状セルロース含有分散液であって、
微細繊維状セルロースの含有量が、分散液の全質量に対して5.0質量%以上14.0質量%以下であり、
微細繊維状セルロースの重合度が、235以上290以下である、
微細繊維状セルロース含有分散液。
<102> B型粘度計を用いて測定された粘度が、4800×10mPa・s以上30000×10mPa・s以下である、<101>に記載の微細繊維状セルロース含有分散液。
<103> イオン性置換基が、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、<101>又は<102>に記載の微細繊維状セルロース含有分散液。
<104> 微細繊維状セルロースに対するイオン性置換基の導入量が、1.00mmol/g以上2.00mmol/g以下である、<101>~<103>のいずれかに記載の微細繊維状セルロース含有分散液。
<111> イオン性置換基を1.00mmol/g以上有するセルロース繊維に解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程と、
 繊維状セルロースに低分子化処理を施す工程とを含む、繊維状セルロースの製造方法であって、
 繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における水分散液の粘度が108mPa・s以上1000mPa・s以下である、繊維状セルロースの製造方法。
<112> 解繊処理を施して繊維幅が1000nm以下の繊維状セルロースを得る工程におけるセルロース繊維の濃度は、3.0質量%以上である、<111>に記載の繊維状セルロースの製造方法。
<113> 低分子化処理を施す工程は、繊維状セルロースの重合度を450以下にする工程である、<111>又は<112>に記載の繊維状セルロースの製造方法。
<114> 低分子化処理を施す工程は、オゾン処理工程、酵素処理工程、酸処理工程及び亜臨界水処理工程から選択される少なくとも1種である、<111>~<113>のいずれかに記載の繊維状セルロースの製造方法。
<115> 低分子化処理を施す工程の後に、さらに解繊処理を施す工程を含む、<111>~<114>のいずれかに記載の繊維状セルロースの製造方法。
<116> <111>~<115>のいずれかに記載の繊維状セルロースの製造方法で製造される繊維状セルロース。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<製造例1>
〔リン酸化パルプの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行いリン酸化パルプAを得た。
 これにより得られたリン酸化パルプAに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られたリン酸化パルプAを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
<製造例2>
 製造例1で得られた洗浄後のリン酸化パルプに対して、更に製造例1のリン酸化処理及び洗浄処理を1回ずつ行うことでリン酸化パルプBを得た。
<製造例3>
 製造例1で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(ドライシート)とした以外は製造例1と同様の処理を行い、リン酸化パルプCを得た。
<製造例4>
 製造例1で用いた原料パルプをセニブラ社製広葉樹クラフトパルプ(ドライシート)とした以外は製造例1と同様の処理を行い、リン酸化パルプDを得た。
<製造例5>
[前加水分解]
 針葉樹材チップを絶乾質量で300g採取し、水道水10リットルに一晩浸漬した。その後、チップを取り出して400メッシュの篩に空け、濾別した。この脱水後のチップを2.5リットル容量のオートクレーブに入れ、液質量比(絶乾後のチップの質量を1とした場合)が3になるように水道水を加えた後、165℃で30分間加熱し、前加水分解を行った。この時のPファクターは380であった。
[蒸解]
 前加水分解後、オートクレーブの脱気コックから廃ガスを抜き出し、オートクレーブ内の圧力が0になったことを確認した後、処理後のチップを400メッシュの篩に空け、濾別した。濾別後のチップを再度2.5リットル容量のオートクレーブに入れ、液比が5となるように蒸解液を加え、蒸解温度165℃、蒸解時間120分の条件下でクラフト蒸解を行った。蒸解液は、チップの絶乾質量に対して活性アルカリを21質量%含み、硫化度は28%であった。蒸解後、黒液とパルプを分離し、パルプを8カットのスクリーンプレートを備えたフラットスクリーンで精選して、蒸解後パルプを得た。
[漂白]
 蒸解後パルプを絶乾質量で70g採取し、絶乾パルプの全質量に対して苛性ソーダを2.0質量%添加し、次いでイオン交換水で希釈してパルプ濃度を10質量%に調整した。このスラリーを間接加熱式オートクレーブに入れ、99.9%の圧縮酸素ガスを注入してゲージ圧力を0.5MPaとし、100℃で60分間、酸素晒を行った。酸素晒終了後、ゲージ圧力が0.05MPa以下になるまで減圧し、パルプをオートクレーブから取り出し、イオン交換水7リットルを用いて洗浄した後、脱水した。このようにして、酸素晒後パルプを得た。
 酸素晒後パルプを絶乾質量で60g採取し、プラスチック袋に入れ、イオン交換水を添加してパルプ濃度を10質量%に調整した。その後、絶乾パルプの全質量に対して1.8質量%の二酸化塩素を添加し、温度が70℃の恒温水槽に70分間浸漬した(D0段処理)。D0段処理後に得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄した。D0段処理後のパルプをプラスチック袋に入れ、イオン交換水を加えてパルプ濃度を10質量%に調整した後、絶乾パルプの全質量に対して苛性ソーダを1.0質量%、過酸化水素を0.3質量%となるように添加してよく混合した。その後、温度が70℃の恒温水槽に100分間浸漬してE/P段処理を行った。得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄した。E/P段処理後のパルプをプラスチック袋に入れ、イオン交換水を用いてパルプ濃度10質量%に調整した後、絶乾パルプの全質量に対して二酸化塩素を0.3質量%添加し、温度が70℃の恒温水槽に80分間浸漬し、D1段漂白処理を行った。得られたパルプをイオン交換水で3質量%に希釈した後、ブフナーロートで脱水、洗浄し、漂白パルプを得た。
[リン酸化]
 この漂白パルプにリン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプEを得た。
<製造例6>
[TEMPO酸化パルプの製造]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80質量%の亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。
 次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とし、TEMPO酸化パルプAを得た。
 また、得られたTEMPO酸化パルプAを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
<製造例7>
 製造例6で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(未乾燥)とした以外は製造例6と同様の処理を行い、TEMPO酸化パルプBを得た。
<製造例8>
 製造例6で用いた原料パルプを王子製紙社製広葉樹クラフトパルプ(未乾燥)とした以外は製造例6と同様の処理を行い、TEMPO酸化パルプCを得た。
<製造例9>
〔亜リン酸化パルプの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、亜リン酸(ホスホン酸)と尿素の混合水溶液を添加して、亜リン酸(ホスホン酸)33質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースに亜リン酸基を導入し、亜リン酸化パルプを得た。
 次いで、得られた亜リン酸化パルプに対して洗浄処理を行った。洗浄処理は、亜リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 次いで、洗浄後の亜リン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後の亜リン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下の亜リン酸化パルプスラリーを得た。次いで、当該亜リン酸化パルプスラリーを脱水して、中和処理が施された亜リン酸化パルプを得た。次いで、中和処理後の亜リン酸化パルプに対して、上記洗浄処理を行い亜リン酸化パルプAを得た。
 これにより得られた亜リン酸化パルプAに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに(亜)リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
<製造例10>
 製造例9で用いた原料パルプを王子製紙社製広葉樹溶解パルプ(ドライシート)とした以外は製造例9と同様の処理を行い、亜リン酸化パルプBを得た。
<製造例11>
 製造例9で用いた原料パルプをセニブラ社製広葉樹クラフトパルプ(ドライシート)とした以外は製造例9と同様の処理を行い、亜リン酸化パルプCを得た。
<製造例12>
〔硫黄オキソ酸化パルプの製造〕
 リン酸化パルプの製造においてリン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用いて、加熱時間を20分間に延長した以外は、製造例1と同様に操作を行い、硫酸化パルプを得た。
 これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン基に基づく吸収が観察され、パルプに硫酸基(スルホン基)が付加されていることが確認された。また、X線回折により、得られた硫酸化パルプがセルロースI型結晶を維持していることが確認された。
<実施例1>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
<実施例2>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が7.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、1000g(固形分濃度7.0質量%、固形分70g)に対して、次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を170g添加し、室温でよく混ぜた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
<実施例3>
 実施例1の繊維状セルロース分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、微細繊維状セルロース1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
<実施例4>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。後述する測定方法で測定されるカルボキシ基量は、1.30mmolgだった。
<実施例5>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例2と同様の方法で微細繊維状セルロース分散液を得た。
<実施例6>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
<実施例7>
 製造例9得られた亜リン酸化パルプAを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は、1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。
<実施例8>
 製造例9で得られた亜リン酸化Aパルプを使用した以外は、実施例2と同様の方法で微細繊維状セルロース分散液を得た。
<実施例9>
 製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
<実施例10>
 製造例1で得られたリン酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例1と同様にして微細繊維状セルロース分散液を得た。
<実施例11>
 製造例6で得られたTEMPO酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例3と同様にして微細繊維状セルロース分散液を得た。
<実施例12>
 製造例9で得られた亜リン酸化パルプAをシングルディスクリファイナーで1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。その他の処理は、実施例3と同様にして微細繊維状セルロース分散液を得た。
<実施例13>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリー1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
<実施例14>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリー1000g(固形分濃度6.0質量%、固形分60g)に対して、微細繊維状セルロース1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。
<実施例15>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例14と同様の方法で微細繊維状セルロース分散液を得た。
<実施例16>
 製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例13と同様の方法で微細繊維状セルロース分散液を得た。
<実施例17>
 製造例3で得られたリン酸化パルプCを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。
<実施例18>
 製造例5で得られたリン酸化パルプEを使用した以外は、実施例1と同様の方法で微細繊維状セルロース分散液を得た。
<実施例19>
 製造例4で得られたリン酸化パルプDを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
<実施例20>
 製造例7で得られたTEMPO酸化パルプBを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
<実施例21>
 製造例10で得られた亜リン酸化パルプBを使用した以外は、実施例3と同様の方法で微細繊維状セルロース分散液を得た。
<実施例22>
 製造例11で得られた亜リン酸化パルプCにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、33000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
<実施例23>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度13.0質量%、固形分130g)に対して、45500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
<実施例24>
 実施例23で得られた繊維状セルロース分散液に、パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。
<実施例25>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
<実施例26>
 製造例6で得られたTEMPO酸化パルプAを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
<実施例27>
 製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
<実施例28>
 製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
<実施例29>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のパルプスラリーを調製した。このパルプスラリー1000g(固形分濃度13.0質量%、固形分130g)に対して、45500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて5回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
<実施例30>
 製造例6で得られたTEMPO酸化パルプAにイオン交換水を添加し、固形分濃度が13.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて5回処理し微細繊維状セルロース分散液を得た。
<実施例31>
 製造例9で得られた亜リン酸化パルプAを使用した以外は、実施例30と同様の方法で微細繊維状セルロース分散液を得た。
<実施例32>
 製造例3で得られたリン酸化パルプCを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
<実施例33>
 製造例5で得られたリン酸化パルプEを使用した以外は、実施例23と同様の方法で微細繊維状セルロース分散液を得た。
<実施例34>
 製造例4で得られたリン酸化パルプDを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
<実施例35>
 製造例8で得られたTEMPO酸化パルプCにイオン交換水を添加し、固形分濃度が13.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度13.0質量%、固形分130g)に対して、71500nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて4回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。
<実施例36>
 製造例7で得られたTEMPO酸化パルプBを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
<実施例37>
 製造例11で得られた亜リン酸化パルプCを使用した以外は、実施例35と同様の方法で微細繊維状セルロース分散液を得た。
<実施例38>
 製造例10で得られた亜リン酸化パルプBを使用した以外は、実施例24と同様の方法で微細繊維状セルロース分散液を得た。
<実施例39>
 製造例2で得られたリン酸化パルプBにイオン交換水を添加し、固形分濃度が6.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.1質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、2.0mmol/gだった。なお、総解離酸量は、3.35mmol/gであった。
<実施例40>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のパルプスラリーを調製した。パルプ1質量部に対して0.05質量部の割合となるようにオゾンを添加し、密閉容器内において25℃で撹拌したのち、30分間静置した。次いで、容器を開放して5時間撹拌し、分散液中に残存するオゾンを揮散させた。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。
<実施例41>
 製造例12で得られた硫酸化パルプにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、21000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して350nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。この微細繊維状セルロース分散液中における微細繊維状セルロースの濃度は6質量%であった。また、後述する〔硫黄オキソ酸基量の測定〕に記載の測定方法で測定される硫酸基量は1.47mmol/gであった。
 実施例1~41の微細繊維状セルロースについて、X線回折により、これらの微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、これらの微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、いずれも3~5nmであった。
 実施例1~41の微細繊維状セルロース分散液を用いて、以下の手順でシートを作製した。イオン交換水に、ポリエチレンオキサイド(住友精化社製、PEO-3P)を5質量%になるように加え、撹拌して溶解させポリエチレンオキサイド水溶液を得た。次いで、得られた微細繊維状セルロース分散液と上記ポリエチレンオキサイド水溶液を微細繊維状セルロース(固形分):ポリエチレンオキサイド(固形分)=100質量部:20質量部の比率となるように混合し塗工液とした。その際、実施例1~22、39、40及び41では固形分濃度が5質量%、実施例23~38では固形分濃度が10質量%となるよう適宜イオン交換水で希釈し塗工液とした。次いで、得られるシート(上記塗工液の固形分から構成される層)の仕上がり厚みが40μmになるように塗工液を計量して、市販のポリカーボネート板に塗工し、100℃の乾燥機にて30分乾燥した。なお、所定の坪量となるようポリカーボネート板上には堰止用の金枠(内寸が180mm×180mm、高さ5cmの金枠)を配置した。次いで、上記ポリカーボネート板から乾燥後のシートを剥離し、微細繊維状セルロース含有シートを得た。
<比較例1>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が2質量%のパルプスラリーを調製した。調製したパルプスラリーを高圧ホモジナイザーで6回処理し、微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液を100℃の送風乾燥機にて固形分濃度が6.0質量%となるまで濃縮して微細繊維状セルロース分散液を得た。
<比較例2>
 製造例6で得られたTEMPO酸化パルプAを使用した以外、比較例1と同様の方法で濃縮して微細繊維状セルロース分散液を得た。
<比較例3>
 製造例9で得られた亜リン酸化パルプAを使用した以外、比較例1と同様の方法で濃縮して微細繊維状セルロース分散液を得た。
<比較例4>
 製造例1で得られたリン酸化パルプAにイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて1回処理し、微細繊維状セルロースを含む繊維状セルロース分散液を得た。この分散液1000g(固形分濃度6.0質量%、固形分60g)に対して、33000nkatの活性を有する酵素含有液を添加し温度50℃で酵素処理した。この時の酵素添加量は微細繊維状セルロース1gに対して550nkatとなるようにした。その後、高圧ホモジナイザーで200MPaの圧力にて3回処理し微細繊維状セルロース分散液を得た。得られた分散液の温度を100℃とし、酵素を熱失活させた。後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
<比較例5>
 王子製紙社製針葉樹クラフトパルプ(未乾燥)にイオン交換水を添加し、固形分濃度が6.0質量%のスラリーを調製した。このスラリーを、高圧ホモジナイザーで200MPaの圧力にて6回処理し、繊維状セルロース分散液を得た。
<測定>
〔リンオキソ酸基量の測定〕
 微細繊維状セルロースのリンオキソ酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
〔カルボキシ基量の測定〕
 微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
〔硫黄オキソ酸基量の測定〕
 得られた繊維状セルロースを過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定した。この硫黄量を、供試した繊維状セルロースの絶乾質量で除した値を硫黄オキソ酸基量(単位:mmol/g)とした。
〔0.5質量%微細繊維状セルロース分散液の粘度の測定〕
 実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液の粘度は、次のように測定した。まず、微細繊維状セルロース分散液を固形分濃度が0.5質量%となるようにイオン交換水により希釈した後に、ディスパーザーにて4000rpmで3分間撹拌した。得られた分散液を、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。次いで、これにより得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。
〔6.0質量%濃度もしくは13.0質量%の微細繊維状セルロース分散液の粘度の測定〕
 各濃度の微細繊維状セルロース分散液の粘度は、次のように測定した。まず、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて微細繊維状セルロース分散液の脱泡処理を行った。次いで、得られた分散液の粘度をB型粘度計(BLOOKFIELD社製、デジタル粘度計DV2T)を用いて測定した。測定条件23℃で、回転速度0.3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。
〔微細繊維状セルロースの比粘度および重合度の測定〕
 微細繊維状セルロースの比粘度および重合度は、Tappi T230に従い測定した。すなわち、測定対象の微細繊維状セルロースを分散媒に分散させて測定した粘度(η1とする)、および分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定した。
  ηsp=(η1/η0)-1
  [η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時のセルロース繊維の濃度を示す。
さらに、下記式から微細繊維状セルロースの重合度(DP)を算出した。
  DP=1.75×[η]
 この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。また、比較例1~3、5については、濃縮前に重合度の測定を行った。
〔微細繊維状セルロース分散液のヘーズの測定〕
 実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液のヘーズの測定は微細繊維状セルロース分散液をイオン交換水で0.2質量%となるように希釈した後、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。ヘーズメーター(村上色彩技術研究所社製、HM-150)で、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)を用いて、JIS K 7136:2000に準拠して測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。
〔微細繊維状セルロース分散液の外観評価〕
実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液について、自転公転型スーパーミキサー(シンキー社製、ARE-250)にて脱泡処理を行った。
その後、目視にて、下記の基準にしたがって外観を評価した。
A:目視で繊維がほぼ確認できず、分散液は透明である。
B:目視にて繊維が確認でき、分散液は半透明である。
C:繊維が均一に分散しておらず分散液は白濁している、もしくは粒状物(繊維の凝集物)が確認できる。
〔微細繊維状セルロースの粒子分散性評価〕
 実施例1~41及び比較例1~5で得た微細繊維状セルロース分散液の粘度を、次のように測定した。まず、微細繊維状セルロース分散液を固形分濃度が0.5質量%となるようにイオン交換水により希釈した後に、ディスパーザーにて4000rpmで3分間撹拌した。活性炭を添加して振り混ぜ、粒子の沈降を確認し、以下の評価基準で評価した。
A:活性炭粒子が10分以上均一に分散されている
B:活性炭粒子が1分以上10分未満、均一に分散されている
C:活性炭粒子が1分未満に沈降する
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例では、高濃度で均一な微細繊維状セルロース分散液が得られており、かつ粒子分散性が高かった。なお、比較例1~3においては、分散液中に粒状物(繊維の凝集物)があり6.0質量%濃度における粘度の測定ができなかった。

Claims (8)

  1.  繊維幅が1000nm以下であり、イオン性置換基を有する繊維状セルロースであって、
     前記イオン性置換基の導入量は1.00mmol/g以上であり、
     前記繊維状セルロースを0.5質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が108mPa・s以上1000mPa・s以下である、
    繊維状セルロース。
  2.  前記繊維状セルロースの重合度は230超え450以下である、請求項1に記載の繊維状セルロース。
  3.  前記繊維状セルロースを6.0質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が2,000,000mPa・s以上30,000,000mPa・s以下である、請求項1又は2に記載の繊維状セルロース。
  4.  前記繊維状セルロースを13.0質量%濃度の水分散液とした場合、23℃における前記水分散液の粘度が5,000,000mPa・s以上100,000,000mPa・s以下である、請求項1~3のいずれか1項に記載の繊維状セルロース。
  5.  前記イオン性置換基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の繊維状セルロース。
  6.  請求項1~5のいずれか1項に記載の繊維状セルロースを含む繊維状セルロース含有分散液。
  7.  前記繊維状セルロースの濃度が3.0質量%以上である請求項6に記載の繊維状セルロース含有分散液。
  8.  請求項1~5のいずれか1項に記載の繊維状セルロースを含むシート。
PCT/JP2020/044375 2019-11-29 2020-11-27 繊維状セルロース、繊維状セルロース分散液及びシート WO2021107147A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021561579A JPWO2021107147A1 (ja) 2019-11-29 2020-11-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-217113 2019-11-29
JP2019217113 2019-11-29
JP2020-031744 2020-02-27
JP2020031744 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021107147A1 true WO2021107147A1 (ja) 2021-06-03

Family

ID=76129635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044375 WO2021107147A1 (ja) 2019-11-29 2020-11-27 繊維状セルロース、繊維状セルロース分散液及びシート

Country Status (2)

Country Link
JP (1) JPWO2021107147A1 (ja)
WO (1) WO2021107147A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034673A (ja) * 2012-08-10 2014-02-24 Oji Holdings Corp 微細繊維状セルロース
JP2014101604A (ja) * 2012-11-21 2014-06-05 Oji Holdings Corp 複合材料
JP2015189698A (ja) * 2014-03-28 2015-11-02 王子ホールディングス株式会社 セルロース系水溶性増粘剤
WO2018131721A1 (ja) * 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
WO2020080393A1 (ja) * 2018-10-16 2020-04-23 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034673A (ja) * 2012-08-10 2014-02-24 Oji Holdings Corp 微細繊維状セルロース
JP2014101604A (ja) * 2012-11-21 2014-06-05 Oji Holdings Corp 複合材料
JP2015189698A (ja) * 2014-03-28 2015-11-02 王子ホールディングス株式会社 セルロース系水溶性増粘剤
WO2018131721A1 (ja) * 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
WO2020080393A1 (ja) * 2018-10-16 2020-04-23 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法

Also Published As

Publication number Publication date
JPWO2021107147A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2021215502A1 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
WO2020080393A1 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP7355028B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP6769468B2 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP7131296B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP2022026834A (ja) 成形体及び成形体の製造方法
JP2021098870A (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
WO2021107147A1 (ja) 繊維状セルロース、繊維状セルロース分散液及びシート
WO2021107146A1 (ja) 繊維状セルロース、繊維状セルロース分散液及びシート
WO2021107148A1 (ja) 分散液
JP6816837B1 (ja) 分散液
JP7040576B2 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP6940008B2 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP6769510B2 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP7497658B2 (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
WO2022172832A1 (ja) シートおよび積層体
WO2022145389A1 (ja) 積層体及び積層体の製造方法
JP6780730B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP6780729B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
WO2018110525A1 (ja) 繊維状セルロース含有組成物
JP2022042509A (ja) シート
JP2022031246A (ja) 液状組成物、シート及び積層体
JP2021161353A (ja) 繊維状セルロース、繊維状セルロース含有物及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894473

Country of ref document: EP

Kind code of ref document: A1