WO2021106775A2 - ガーネット型リチウム固体電解質材料および電池 - Google Patents
ガーネット型リチウム固体電解質材料および電池 Download PDFInfo
- Publication number
- WO2021106775A2 WO2021106775A2 PCT/JP2020/043353 JP2020043353W WO2021106775A2 WO 2021106775 A2 WO2021106775 A2 WO 2021106775A2 JP 2020043353 W JP2020043353 W JP 2020043353W WO 2021106775 A2 WO2021106775 A2 WO 2021106775A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- garnet
- solid electrolyte
- electrolyte material
- type lithium
- lithium solid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G35/00—Compounds of tantalum
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/28—Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a garnet-type lithium solid electrolyte material and a battery.
- lithium-ion batteries have been used for batteries for smartphones and batteries for electric vehicles.
- an electrolytic solution is used as an electrolyte in which Li (lithium) ions can move.
- Li (lithium) ions can move.
- an all-solid-state battery that uses a solid electrolyte instead of an electrolytic solution is being developed.
- the solid electrolyte used in the all-solid-state lithium-ion battery include sulfide-based and oxide-based lithium-ion crystals.
- the sulfide-based solid electrolyte is suitable for a battery having high Li ion conductivity and emphasizing energy density.
- harmful substances hydrogen sulfide (H 2 S)
- H 2 S hydrogen sulfide
- the oxide-based solid electrolyte has a problem that the Li ion conductivity is lower than that of the sulfide-based solid electrolyte.
- an oxide-based solid electrolyte having a conductivity of 10 -3 (S / cm) or more at room temperature is desirable.
- a garnet-type lithium solid electrolyte material such as perovskite-type La 0.51 Li 0.34 TiO 2.94 is known. (See, for example, Non-Patent Document 1).
- a sintered body of a garnet-type lithium solid electrolyte produced by a sintering method is known.
- the sintered body voids are likely to be contained inside and the surface condition becomes rough, so that it is difficult to densify the obtained sintered body.
- the sintered garnet-type lithium solid electrolyte has a problem that its mechanical strength is weak due to voids and rough surface conditions, and it is liable to cause damage during processing and handling. Further, since the thickness is required to secure the mechanical strength, it is difficult to reduce the thickness.
- the garnet-type lithium solid electrolyte of the sintered body has grain boundaries of crystals, the interfacial resistance when lithium ions pass through the grain boundaries is large, and it is difficult to improve the lithium ion conductivity. There is also a problem of causing an internal short circuit in the crystal.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a garnet-type lithium solid electrolyte material capable of improving the lithium ion conductivity and increasing the internal short-circuit critical current density. It is also an object of the present invention to provide a battery including at least a part of the garnet type lithium solid electrolyte material.
- the garnet-type lithium solid electrolyte material of the present invention is characterized by being composed of a single crystal and having a surface roughness Ra of 0.1 nm or more and 10 nm or less on the front surface and the back surface.
- the three-point bending strength is in the range of 47.5 MPa or more and 155.5 MPa or less.
- the single crystal is a self-supporting crystal having a thickness.
- the thickness is in the range of 20 ⁇ m or more and 1 mm or less.
- the thickness is in the range of 30 ⁇ m or more and 0.5 mm or less.
- the planar shape is a circular shape or a circular shape in which an orientation flat surface is formed, and the diameter is 30 mm or more.
- the planar shape is a square, and the area of the square is 730 mm 2 or more.
- the battery of the present invention is characterized by using at least a part of the garnet type lithium solid electrolyte material described in any one of the above.
- the present invention it is possible to provide a garnet-type lithium solid electrolyte material capable of improving the lithium ion conductivity and increasing the internal short-circuit critical current density. Further, it is possible to provide a battery including at least a part of the garnet type lithium solid electrolyte material.
- the points plotted in the figure show the measurement results of the sintered body, and the ones plotted with x marks are single crystals. Shows the value.
- the first feature of this embodiment is that the garnet-type lithium solid electrolyte material is made of a single crystal, and the surface roughness Ra of the front surface and the back surface is in the range of 0.1 nm or more and 10 nm or less.
- interfacial resistance due to grain boundaries can be suppressed to improve lithium ion conductivity, and internal short circuits can be suppressed. Further, when the surface roughness is 0.1 nm or more, the surface processing step can be simplified.
- the second feature is that the three-point bending strength is in the range of 47.5 MPa or more and 155.5 MPa or less.
- the third feature is that the single crystal is a self-supporting crystal having a thickness.
- the garnet-type lithium solid electrolyte material retains its bulk shape, which facilitates mechanical handling and processing.
- the fourth feature is that the thickness is in the range of 20 ⁇ m or more and 1 mm or less.
- electrodes can be formed on the front and back surfaces of the garnet-type lithium solid electrolyte material and used for battery applications, and handling and processing are easy.
- the fifth feature is that the thickness is in the range of 30 ⁇ m or more and 0.5 mm or less.
- electrodes can be formed on the front and back surfaces of the garnet-type lithium solid electrolyte material and used for battery applications, and mechanical strength can be ensured to suppress damage and reduce the resistance value. it can.
- the sixth feature is that the plane shape is a circular shape or a circular shape with an orientation flat surface formed, and the diameter is 30 mm or more.
- the seventh feature is that the plane shape is square and the area of the square is 730 mm 2 or more.
- the eighth feature is that it is a battery that uses at least a part of the garnet-type lithium solid electrolyte material described in any one of the above.
- the garnet-type lithium solid electrolyte material of the present embodiment has a cubic garnet-type structure, contains at least four metal atoms, and three of the four metal atoms are Li, La, and Zr. , The other metal atom is any of Nb, Ta, Ga.
- Examples of the garnet-type lithium solid electrolyte material is represented by the general formula Li 7-x-y La 3 Zr 2-x-y Nb x Ta y O 12 (0.2 ⁇ x + y ⁇ 1.0,0 ⁇ x ⁇ 1. 0, 0 ⁇ y ⁇ 1.0), or Li 7-3 x Ga x La 3 Zr 2 O 12 (0.08 ⁇ x ⁇ 0.5).
- the single crystal means that the crystal plane orientations of the garnet-type lithium solid electrolyte materials are aligned, and as an example, the measurement results of the X-ray diffraction spectrum using CuK ⁇ rays show (400) and (800). It can be confirmed by seeing a clear peak depending on the plane orientation. Since the garnet-type lithium solid electrolyte material is a single crystal, there are no grain boundaries, and it is possible to reduce the interface resistance, improve the internal short-circuit critical current density, and obtain high bending strength.
- the fact that the garnet-type lithium solid electrolyte material is self-supporting means that the bulk garnet-type lithium solid electrolyte material retains its shape even if it is not supported by other members. Therefore, even if it is a single crystal, a thin film or a laminated structure epitaxially grown on another substrate is not included in the self-supporting structure.
- the self-supporting garnet-type lithium solid electrolyte material can be held and moved by a processing device or a jig.
- the size of the obtained garnet-type lithium solid electrolyte material does not meet the size required by the above standard, the size in the above standard may be changed for measurement and conversion.
- FIG. 1 is an explanatory diagram showing the structure of the battery 10 using the garnet-type lithium solid electrolyte material 1 according to the present embodiment.
- the battery 10 includes a garnet-type lithium solid electrolyte material 1, a positive electrode 2, and a negative electrode 3.
- Garnet-type lithium solid electrolyte material 1 has a garnet-type structure of cubic system, Li 7-x-y La 3 Zr 2-x-y Nb x Ta y O 12 (0.2 ⁇ x + y ⁇ 1 .0, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.0), or Li 7-3 x Ga x La 3 Zr 2 O 12 (0.08 ⁇ x ⁇ 0.5) with a self-supporting single crystal It is configured.
- FIG. 1 shows a flat plate shape as the garnet type lithium solid electrolyte material 1, but the shape is not limited, and the shape is not limited, and the shape is not limited. It may be trapezoidal or the like.
- the garnet type lithium solid electrolyte material 1 has a front surface and a back surface, a positive electrode 2 is formed on the front surface, and a negative electrode 3 is formed on the back surface. Further, although not shown, there is a film or foil called a current collector such as Al or Au on the outside of each of the positive electrode 2 and the negative electrode 3.
- the garnet-type lithium solid electrolyte material 1 preferably has a surface roughness Ra of 0.1 nm or more and 10 nm or less on the front surface and the back surface.
- a surface roughness Ra of 0.1 nm or more and 10 nm or less on the front surface and the back surface.
- the garnet type lithium solid electrolyte material 1 preferably has a three-point bending strength in the range of 47.5 MPa or more and 155.5 MPa or less. Since the garnet-type lithium solid electrolyte material 1 has a three-point bending strength in this range, damage during processing and handling can be suppressed.
- the thickness of the garnet-type lithium solid electrolyte material 1 is preferably in the range of 20 ⁇ m or more and 1 mm or less. When the thickness is within this range, the positive electrode 2 and the negative electrode 3 can be formed on the front and back surfaces of the garnet-type lithium solid electrolyte material 1 and used for battery applications, and handling and processing are easy.
- a more preferable thickness is in the range of 30 ⁇ m or more and 0.5 mm or less. By setting the thickness within this range, it is possible to further secure mechanical strength, suppress damage, and reduce the resistance value.
- the size of the garnet-type lithium solid electrolyte material 1 is preferably 30 mm or more in diameter when the planar shape is a circular shape or a circular shape in which an orientation flat surface is formed.
- the area is preferably 730 mm 2 or more. This makes it possible to increase the size of the garnet-type lithium solid electrolyte material 1 and increase the capacity and output of the all-solid-state battery when used in the battery 10.
- the positive electrode 2 is an electrode film formed on the surface of the garnet-type lithium solid electrolyte material 1, and for example, LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) or the like can be used.
- the negative electrode 3 is an electrode film formed on the back surface of the garnet-type lithium solid electrolyte material 1, and Li or the like can be used, for example.
- a method for forming the positive electrode 2 and the negative electrode 3 known methods such as crimping and sintering can be used.
- a method for producing the garnet-type lithium solid electrolyte material of the present embodiment will be described.
- various raw materials of a garnet-type lithium solid electrolyte material are prepared, crushed and mixed at a predetermined ratio to process the raw materials into powder.
- the method of pulverization and mixing is not limited, and known methods can be used.
- the molding step the powdered raw material is pressure-molded and fired to obtain a raw material sintered body.
- the methods of pressure molding and firing are not limited, and known methods can be used.
- a lithium compound, a lanthanum compound, a zirconium compound, a tantalum compound, and a niobium compound can be used.
- the lithium compound include Li 2 O and Li 2 CO 3 .
- the lanthanum compound include La 2 O 3 and La (OH) 3 .
- the zirconium compound include ZrO 2 , ZrC l4 , La 2 Zr 2 O 7 , Li 2 ZrO 3, and the like.
- the tantalum compound include Ta 2 O 5 and Ta Cl 5 .
- the niobium compound include Nb 2 O 5 , LiNbO 3 , and LaNbO 4 .
- the melting part forming step and the growing step is not limited, and the crystal can be grown by using various known melting methods. Examples include the Growth) method, the LPE (Liquid Phase Efficiency) method, the CZ (Czochralski) method, and the EFG (Edge-defined Film-fed Growth) method. In order to increase the size of the garnet-type lithium solid electrolyte material, it is preferable to use the CZ method or the EFG method. In the case of a growth method using a crucible, it is preferable to use Ir, which does not react with the raw material melt, as a material for the crucible.
- the atmosphere used in the growth step is preferably N 2 or Ar, and dry air.
- FIG. 2 is a process diagram schematically showing a processing process of the garnet-type lithium solid electrolyte material 1 according to the present embodiment.
- FIG. 2A an As-grown single crystal ingot is grown and formed by a growth step.
- FIG. 2B the outer diameter of the As-grown single crystal ingot after the growth step is ground to process the single crystal garnet type lithium solid electrolyte material into a substantially cylindrical shape.
- FIG. 2C a single crystal having a substantially cylindrical shape is sliced and processed into a plate shape.
- a known diamond slicer device or wire saw device can be used for slicing.
- the outer circumference is chamfered on the surface side of the plate-shaped single crystal.
- the front surface and the back surface are ground and polished to obtain a single crystal garnet-type lithium solid electrolyte material 1.
- a garnet-type lithium solid electrolyte material water or oil can be used as a solvent, and an abrasive in which diamond particles, alumina particles, SiC particles, etc. are dispersed can be used as abrasive grains. Further, as the polishing plate, cast iron, copper, non-woven fabric or the like can be used.
- the surface roughness Ra of the front and back surfaces is adjusted by reducing the particle size of the abrasive grains contained in the abrasive, and the surface roughness Ra is 0.1 nm or more and 10 nm or less. Can be in the range of.
- the method for measuring the surface roughness Ra is not limited, and measurement using a laser microscope, measurement using an atomic force microscope (AFM: Atomic Force Microscope), or the like can be used.
- FIG. 3 is a photograph showing an example of a sample for measuring the three-point bending strength of a garnet-type lithium solid electrolyte material.
- the sample shown in FIG. 3 is Example 1 in this embodiment, and is 4 mm wide from a single crystal of a garnet-type lithium solid electrolyte material 1 having a diameter of 7 mm (horizontal direction in FIG. 3) and a thickness of 0.63 mm (FIG. 3). It is cut out in dimension A). The length of the straight portion cut out with a width of 4 mm was about 6 mm.
- the front surface, the back surface, and both end surfaces are polished using abrasive grains having a particle size of 0.5 ⁇ m or less, and the outer periphery on the front surface side is chamfered. Further, a sintered body of a garnet-type lithium solid electrolyte material was processed into the same shape as that of the above-mentioned Example to prepare Comparative Example 1.
- ⁇ Measurement of 3-point bending strength> A sample of a garnet-type lithium solid electrolyte material processed into the shape shown in FIG. 3 was measured for three-point bending strength using an EZ-Test manufactured by Shimadzu Corporation. As a method for measuring the three-point bending strength, it is preferable to measure in accordance with the JIS R1601 standard, which is a room temperature bending strength test method for fine ceramics. According to JIS R1601, the sample shape is 4 mm wide, 3 mm thick, 36 mm long or more, chamfered, sample quantity N ⁇ 10, distance between fulcrums 30 mm or 40 mm, radius of support tip shape 2-3 mm, cross. The head speed is 0.5 mm / min.
- the single crystal of the obtained garnet-type lithium solid electrolyte material 1 is significantly smaller than the distance between the fulcrums in JIS R1601, and the standard cannot be used as it is. Therefore, the distance between the fulcrums was set to 4 mm, the radius of the tip shape of the support was changed to 1 mm at both ends and 1.5 mm at the center, and the three-point bending strength was measured for Example 1 and Comparative Example 1.
- FIG. 4 is a schematic diagram showing a method for measuring the three-point bending strength of a garnet-type lithium solid electrolyte material. Both ends of the sample 11 are supported by the support 12 arranged on the lower side of the sample 11, and the sample 11 is sandwiched by the support 13 arranged in the upper center of the sample 11. The support 12 is arranged on the pedestal 14, and the support 13 is loaded downward by the support fixing portion 15, and the load is measured by the load cell.
- the diameter of the lower support 12 is set to 2 mm
- the diameter of the upper support 13 is set to 3 mm
- the distance D between the centers of the support 12 is set. It was set to 4 mm.
- FIG. 5 is a table showing the measurement results of the three-point bending strength of Example 1. It was measured with 10 samples. As shown in FIG. 5, in the single crystal garnet-type lithium solid electrolyte material of Example 1, the three-point bending strength was in the range of 47.5 MPa or more and 155.5 MPa or less, and the average was 104.2 MPa. .. On the other hand, in the garnet-type lithium solid electrolyte material of the sintered body, which is Comparative Example 1, the average of the three-point bending strength was 46.5 MPa as measured by the number of samples 14. Therefore, it was confirmed that the single crystal example had an average three-point bending strength more than twice that of the sintered body comparative example.
- the measurement range of the single crystal garnet-type lithium solid electrolyte material of Example 1 and the sintered garnet-type lithium solid electrolyte material of Comparative Example 1 was set to about 300 ⁇ m ⁇ 200 ⁇ m, and the surface roughness was roughened. Ra was measured.
- a laser microscope (VK-X260) manufactured by KEYENCE Corporation was used for the measurement.
- the measurement result of the surface roughness Ra was in the range of 0.1 nm or more and 10 nm or less in Example 1 which is a single crystal, and the average was 6 nm.
- Comparative Example 1 of the sintered body the range was 600 nm or more and 1000 nm or less, and the average was 790 nm.
- the single crystal garnet type lithium solid electrolyte material has a good surface roughness Ra of 0.1 nm or more and 10 nm or less, whereas the sintered body cannot have a surface roughness Ra of 10 nm or less due to the influence of voids. It was.
- FIG. 6 is a graph showing the relationship between the surface roughness of the garnet-type lithium solid electrolyte material and the three-point bending strength.
- the points plotted in the figure show the measurement results of the sintered body, and are plotted with x marks. Indicates the value of a single crystal.
- the horizontal axis represents the surface roughness Sa ( ⁇ m), and the vertical axis represents the numerical value of the three-point bending strength (MPa).
- Sa ( ⁇ m) on the horizontal axis is an extension of the measurement of surface roughness Ra from one-dimensional measurement to two-dimensional measurement. As shown in FIG.
- the surface roughness Sa was 0.6 ⁇ m (600 nm) to 1.0 ⁇ m (1000 nm), which was much larger than that of Example 1 of the single crystal, and 3 It can be seen that the point bending strength is also less than half that of the examples.
- the relationship between the surface roughness Ra, the lithium ion conductivity, and the internal short-circuit critical current density was measured.
- a single crystal of the garnet type lithium solid electrolyte material 1 was sliced, ground and polished to form a wafer shape having a diameter of 7 mm and a thickness of 1 mm, and gold was produced on the front surface and the back surface by a sputtering method. A sample was obtained by filming.
- the polishing step using an abrasive was not carried out, only the surface was ground using a grinding device, and the surface roughness Ra was 400 nm.
- Example 2 a polishing (rough polishing) step was carried out using abrasive grains having a particle size of 1 to 2 ⁇ m, and the surface roughness Ra was 10 nm.
- the polishing step was carried out using abrasive grains having a particle size of 0.5 ⁇ m or less, and the surface roughness Ra was 5 nm.
- FIG. 7 is a table showing the relationship between the surface roughness of the garnet-type lithium solid electrolyte material, the lithium ion conductivity, and the internal short-circuit critical current density.
- the lithium ion conductivity is as good as 0.8 mS / cm or more, and it does not depend on the surface roughness Ra.
- the internal short-circuit critical current density can be 0.5 mA / cm 2 or more.
- the garnet-type lithium solid electrolyte material 1 is made of a single crystal, and the surface roughness Ra of the front surface and the back surface is in the range of 0.1 nm or more and 10 nm or less, thereby suppressing the interfacial resistance.
- the lithium ion conductivity can be improved, internal short circuits can be suppressed, and the surface processing process can be simplified.
- a battery having high lithium ion conductivity and a large internal short-circuit critical current density can be obtained, and a high-output all-solid-state battery can be realized.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Description
本発明は、ガーネット型リチウム固体電解質材料および電池に関する。
従来から、スマートフォン向けのバッテリーや電気自動車向けのバッテリー等にリチウムイオン電池が採用されている。従来のリチウムイオン電池では、Li(リチウム)イオンが移動可能な電解質として電解液を用いていた。しかし、電解液を用いたリチウムイオン電池では、さらなる高容量化、高電圧化、高エネルギー密度化、及び急速充電性能を図ることが困難になってきている。そこで、これらの各種要求を満たすリチウムイオン電池として、電解液の代わりに固体電解質を用いる全固体電池の開発が進められている。全固体のリチウムイオン電池に用いられる固体電解質としては、硫化物系及び酸化物系のリチウムイオン結晶が挙げられる。
硫化物系固体電解質は、Liイオン伝導度が高くエネルギー密度を重視した電池に適している。しかし固体電解質の結晶構造が高温により壊れた場合、有害物質(硫化水素(H2S))が放出されるという課題がある。そこで有害な物質が放出されず、より安全性と安定性が求められる用途向けに、酸化物系固体電解質の開発が進められている。
一方で酸化物系固体電解質は、硫化物系固体電解質と比べてLiイオン伝導度が低いという課題がある。バルク型全固体電池へ応用する為には、室温に於ける導電率で10-3(S/cm)以上を示す酸化物系固体電解質が望ましい。10-3(S/cm)程度の導電率を示す酸化物系固体電解質として、例えばペロブスカイト型のLa0.51Li0.34TiO2.94等のガーネット型リチウム固体電解質材料が知られている(例えば、非特許文献1参照)。
化学、平成24年7月1日発行、インターネット<URL: http://www2.chem.osakafu-u.ac.jp/ohka/ohka2/research/battery_li.pdf>
従来から提案されているリチウム含有酸化物を用いた固体電解質としては、焼結法により作製されたガーネット型リチウム固体電解質の焼結体が知られている。しかし焼結体では、内部にボイドが含まれやすく表面状態も粗くなるため、得られる焼結体の緻密化は困難であった。また、焼結体のガーネット型リチウム固体電解質では、ボイドや粗い表面状態に起因して機械的強度も弱く、加工時やハンドリング時の破損を招きやすいという問題があった。また、機械的強度を確保するためには厚さが必要なため、薄型化が困難であった。
また、焼結体のガーネット型リチウム固体電解質では結晶の粒界が存在するため、リチウムイオンが粒界を通る際の界面抵抗が大きく、リチウムイオン伝導率を向上させることが困難であった。また、結晶体において内部短絡を引き起こすとの問題もあった。
本発明は上記課題に鑑みてなされたものであり、リチウムイオン伝導率を向上させると共に、内部短絡臨界電流密度を大きく出来るガーネット型リチウム固体電解質材料の提供を目的とする。また、そのガーネット型リチウム固体電解質材料の少なくとも一部を備える電池の提供も目的とする。
上記課題を解決するために、本発明のガーネット型リチウム固体電解質材料は、単結晶からなり、表面および裏面の表面粗さRaが0.1nm以上10nm以下の範囲であることを特徴とする。
このような本発明のガーネット型リチウム固体電解質材料では、内部に結晶粒界が存在しないため、リチウムイオン伝導率を向上させると共に、内部短絡臨界電流密度を大きく出来る。
また本発明の一態様では、3点曲げ強度が47.5MPa以上155.5MPa以下の範囲である。
また本発明の一態様では、前記単結晶が、厚さを有する自立した一つの結晶である。
また本発明の一態様では、前記厚さが、20μm以上1mm以下の範囲である。
また本発明の一態様では、前記厚さが、30μm以上0.5mm以下の範囲である。
また本発明の一態様では、平面形状が円形状またはオリエンテーションフラット面が形成された円形状であり、直径が30mm以上である。
また本発明の一態様では、平面形状が方形であり、前記方形の面積が730mm2以上である。
また上記課題を解決するために、本発明の電池は、上記何れか一つに記載のガーネット型リチウム固体電解質材料の少なくとも一部を用いることを特徴とする。
本発明によれば、リチウムイオン伝導率を向上させると共に、内部短絡臨界電流密度を大きく出来るガーネット型リチウム固体電解質材料を提供することができる。また、そのガーネット型リチウム固体電解質材料の少なくとも一部を備える電池を提供することができる。
本実施の形態の第一の特徴は、ガーネット型リチウム固体電解質材料が単結晶からなり、表面および裏面の表面粗さRaが0.1nm以上10nm以下の範囲と云うことである。
この構成に依れば、結晶粒界による界面抵抗を抑制してリチウムイオン伝導率を向上させるとともに、内部短絡を抑制することができる。また、表面粗さが0.1nm以上であることで、表面加工工程を簡略化することができる。
第二の特徴は、3点曲げ強度が47.5MPa以上155.5MPa以下の範囲と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料の加工やハンドリング時における破損を抑制することができる。
第三の特徴は、前記単結晶が、厚さを有する自立した一つの結晶と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料がバルク形状を保持するため、機械的なハンドリングや加工が容易となる。
第四の特徴は、前記厚さが、20μm以上1mm以下の範囲と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料の表裏面に電極を形成して電池用途に用いることができ、ハンドリングや加工も容易である。
第五の特徴は、前記厚さが、30μm以上0.5mm以下の範囲と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料の表裏面に電極を形成して電池用途に用いることができ、さらに機械的強度を確保して破損を抑制し、抵抗値を低減することができる。
第六の特徴は、平面形状が円形状またはオリエンテーションフラット面が形成された円形状であり、直径が30mm以上と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料を大型化して、電池に用いた場合での全固体電池の大容量化と大出力化を図ることが可能となる。
第七の特徴は、平面形状が方形であり、前記方形の面積が730mm2以上と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料を大型化して、電池に用いた場合での全固体電池の大容量化と大出力化を図ることが可能となる。
第八の特徴は、上記何れか一つに記載のガーネット型リチウム固体電解質材料の少なくとも一部を用いる電池と云うことである。
この構成に依れば、ガーネット型リチウム固体電解質材料を用いることで、リチウムイオン伝導率が高く、内部短絡臨界電流密度が大きな電池を得ることができ、大出力な全固体電池を実現できる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。
本実施形態のガーネット型リチウム固体電解質材料は、立方晶系のガーネット型構造を有しており、少なくとも4つの金属原子を含み、4つの金属原子のうちの3つはLi,La,Zrであり、もう1つの金属原子はNb,Ta,Gaの何れかである。ガーネット型リチウム固体電解質材料の例としては、一般式Li7-x-yLa3Zr2-x-yNbxTayO12(0.2≦x+y≦1.0、0≦x≦1.0、0≦y≦1.0)で表されるもの、またはLi7-3xGaxLa3Zr2O12(0.08≦x≦0.5)が挙げられる。
本実施形態において単結晶とは、ガーネット型リチウム固体電解質材料の結晶面方位が揃っていることであり、一例としてCuKα線を用いたX線回折スペクトルの測定結果で(400)および(800)の面方位による明瞭なピークが見られること等で確認できる。ガーネット型リチウム固体電解質材料が単結晶であることで結晶粒界が存在せず、界面抵抗の低減や内部短絡臨界電流密度の向上、高い曲げ強度を得ることができる。
本実施形態においてガーネット型リチウム固体電解質材料が自立するとは、他の部材によって支持されなくともバルクのガーネット型リチウム固体電解質材料が形状を保持することを意味している。したがって、単結晶であっても他の基板上にエピタキシャル成長された薄膜や積層構造は自立には含まれない。また、自立したガーネット型リチウム固体電解質材料は、加工装置や治具によって保持して移動させることができる。
本実施形態においてガーネット型リチウム固体電解質材料は、JIS規格R1601に準拠する方法で3点曲げ強度を測定することが望ましい。しかし、得られるガーネット型リチウム固体電解質材料のサイズが上記規格で必要とされる大きさを満たしていない場合には、上記規格におけるサイズを変更して測定し換算するとしてもよい。
図1は、本実施形態に係るガーネット型リチウム固体電解質材料1を用いた電池10の構造を示す説明図である。図1に示すように電池10は、ガーネット型リチウム固体電解質材料1と、正極2と、負極3を備えている。
ガーネット型リチウム固体電解質材料1は、立方晶系のガーネット型構造を有しており、Li7-x-yLa3Zr2-x-yNbxTayO12(0.2≦x+y≦1.0、0≦x≦1.0、0≦y≦1.0)、またはLi7-3xGaxLa3Zr2O12(0.08≦x≦0.5)の自立する単結晶で構成されている。図1ではガーネット型リチウム固体電解質材料1として平坦な板形状のものを示しているが、形状は限定されず直方体形状や角柱形状、円柱形状、多角錐形状、円錐形状、多角錐台形状、円錐台形状等であってもよい。また、ガーネット型リチウム固体電解質材料1は表面および裏面を備え、表面に正極2が形成され裏面に負極3が形成されている。更には、図示しないが正極2,負極3のそれぞれ外側にAlやAuなどの集電体と云った膜もしくは箔が有る。
ガーネット型リチウム固体電解質材料1は、後述するように表面および裏面の表面粗さRaが0.1nm以上10nm以下の範囲であることが好ましい。ガーネット型リチウム固体電解質材料1を単結晶で表面粗さRaが0.1nm以上10nm以下の範囲とすることにより、界面抵抗を抑制してリチウムイオン伝導率を向上させるとともに、内部短絡を抑制し、表面加工工程を簡略化することができる。また、後述するようにガーネット型リチウム固体電解質材料1は、3点曲げ強度が47.5MPa以上155.5MPa以下の範囲であることが好ましい。ガーネット型リチウム固体電解質材料1がこの範囲の3点曲げ強度を備えていることで、加工やハンドリング時における破損を抑制することができる。
ガーネット型リチウム固体電解質材料1の厚さは、20μm以上1mm以下の範囲とすることが好ましい。厚さがこの範囲であると、ガーネット型リチウム固体電解質材料1の表裏面に正極2および負極3を形成して電池用途に用いることができ、ハンドリングや加工も容易である。より好ましい厚さは、30μm以上0.5mm以下の範囲である。この厚さの範囲とすることで、さらに機械的強度を確保して破損を抑制し、抵抗値を低減することができる。
ガーネット型リチウム固体電解質材料1のサイズは、平面形状が円形状またはオリエンテーションフラット面が形成された円形状である場合には、直径が30mm以上であることが好ましい。また、平面形状が方形である場合には、面積が730mm2以上であることが好ましい。これにより、ガーネット型リチウム固体電解質材料1を大型化して、電池10に用いた場合での全固体電池の大容量化と大出力化を図ることが可能となる。
正極2は、ガーネット型リチウム固体電解質材料1の表面に形成された電極膜であり、例えばLiNi0.8Co0.15Al0.05O2(NCA)等を用いることができる。負極3は、ガーネット型リチウム固体電解質材料1の裏面に形成された電極膜であり、例えばLi等を用いることができる。正極2および負極3の形成方法としては、圧着や焼結等の公知の方法を用いることができる。
次に、本実施形態のガーネット型リチウム固体電解質材料の製造方法について説明する。はじめに、原料準備工程としてガーネット型リチウム固体電解質材料の各種原料を準備し、粉砕したうえ所定比率で混合して原料を粉末状に加工する。粉砕および混合の方法は限定されず、公知の方法を用いることができる。その後に、成形工程で粉末状の原料を加圧成形して焼成し、原料焼結体を得る。加圧成形および焼成の方法は限定されず、公知の方法を用いることができる。
ガーネット型リチウム固体電解質材料の原料としては、リチウム化合物、ランタン化合物、ジルコニウム化合物、タンタル化合物、ニオブ化合物を用いることができる。リチウム化合物としては、例えばLi2OやLi2CO3などが挙げられる。ランタン化合物としては、例えばLa2O3やLa(OH)3などが挙げられる。ジルコニウム化合物としては、例えばZrO2、ZrCl4、La2Zr2O7、Li2ZrO3などが挙げられる。タンタル化合物としては、例えばTa2O5やTaCl5などが挙げられる。ニオブ化合物としては、例えばNb2O5、LiNbO3、LaNbO4などが挙げられる。
次に、溶融部形成工程で原料焼結体の少なくとも一部を溶融して溶融部を形成し、成長工程で溶融部を冷却してガーネット型リチウム固体電解質材料を成長させる。溶融部形成工程および成長工程の方法は限定されず、公知の各種溶融法を用いて結晶成長することができ、例えばFZ(Floating Zone)法、ブリッジマン法、キロポーラス法、TSSG(Top Seeded Solution Growth)法、LPE(Liquid Phase Epitaxy)法、CZ(Czochralski)法、EFG(Edge-defined Film-fed Growth)法が挙げられる。ガーネット型リチウム固体電解質材料の大型化を図るためには、CZ法又はEFG法を用いることが好ましい。坩堝を用いる成長方法の場合には、原料メルトと反応しないIrを坩堝の材料として用いることが好ましい。成長工程において用いる雰囲気はN2またはAr、ドライエアーが好適である。
次に、成長工程で得られたガーネット型リチウム固体電解質材料の単結晶の加工方法について説明する。図2は、本実施形態に係るガーネット型リチウム固体電解質材料1の加工工程を模式的に示す工程図である。図2(a)に示すように、成長工程によりAs-grownの単結晶インゴットを成長形成する。次に図2(b)に示すように、成長工程後のAs-grownの単結晶インゴットを外径研削して、単結晶のガーネット型リチウム固体電解質材料を略円柱形状に加工する。次に図2(c)に示すように、略円柱形状の単結晶をスライスして板形状に加工する。スライスには、公知のダイヤモンドスライサー装置やワイヤーソー装置を用いることができる。次に図2(d)に示すように、板形状の単結晶の表面側において外周を面取り加工する。最後に、図2(e)に示すように表面と裏面の研削および研磨を実施し、単結晶のガーネット型リチウム固体電解質材料1を得る。
ガーネット型リチウム固体電解質材料の研削および研磨では、溶媒として水や油を用い、砥粒としてダイヤモンド粒子やアルミナ粒子、SiC粒子等を分散させた研磨剤を用いることができる。また、研磨板としては、鋳鉄や銅、不織布等を用いることができる。ガーネット型リチウム固体電解質材料の研磨に際しては、研磨剤に含まれる砥粒の粒径を小さくすることで、表面および裏面の表面粗さRaを調整して表面粗さRaを0.1nm以上10nm以下の範囲とすることができる。表面粗さRaの測定方法は限定されず、レーザ顕微鏡を用いた測定や、原子間力顕微鏡(AFM:Atomic Force Microscope)による測定等を用いることができる。
図3は、ガーネット型リチウム固体電解質材料の3点曲げ強度を測定するための試料の一例を示す写真である。図3に示した試料は本実施形態における実施例1であり、直径7mm(図3の横方向)で厚さ0.63mmのガーネット型リチウム固体電解質材料1の単結晶から幅4mm(図3の寸法A)で切り出したものである。幅4mmで切り出された直線部分の長さは約6mmであった。また、表面と裏面および両端面は粒径が0.5μm以下の砥粒を用いて研磨しており、表面側の外周は面取り加工を施している。またガーネット型リチウム固体電解質材料の焼結体を上記実施例と同形状に加工して比較例1を用意した。
<3点曲げ強度の測定>
図3に示した形状に加工したガーネット型リチウム固体電解質材料の試料について、島津製作所社製EZ-Testを用いて3点曲げ強度の測定を行った。3点曲げ強度の測定方法としては、ファインセラミックスの室温曲げ強度試験方法であるJIS R1601規格に準拠して測定することが好ましい。JIS R1601規格は、試料形状が幅4mm、厚さ3mm、長さ36mm以上であり、面取り加工有り、試料数量N≧10、支点間距離30mmまたは40mm、支持具先端形状の半径2~3mm、クロスヘッド速度0.5mm/分である。
図3に示した形状に加工したガーネット型リチウム固体電解質材料の試料について、島津製作所社製EZ-Testを用いて3点曲げ強度の測定を行った。3点曲げ強度の測定方法としては、ファインセラミックスの室温曲げ強度試験方法であるJIS R1601規格に準拠して測定することが好ましい。JIS R1601規格は、試料形状が幅4mm、厚さ3mm、長さ36mm以上であり、面取り加工有り、試料数量N≧10、支点間距離30mmまたは40mm、支持具先端形状の半径2~3mm、クロスヘッド速度0.5mm/分である。
しかし、得られたガーネット型リチウム固体電解質材料1の単結晶は、JIS R1601での支点間距離よりも大幅に小さく、当該規格をそのまま用いることができない。したがって、支点間距離を4mmとし、支持具の先端形状半径を両端で1mm、中央で1.5mmに変更して、実施例1および比較例1について3点曲げ強度の測定を行った。
図4は、ガーネット型リチウム固体電解質材料の3点曲げ強度の測定方法を示す模式図である。試料11の下側に配置された支持具12で試料11の両端を支え、試料11の上側中央に配置された支持具13で試料11を挟む。支持具12は台座14上に配置されており、支持具13は支持具固定部15によって下側に荷重をかけられ、その荷重をロードセルで測定する。本実施形態では、試料11のサイズがJIS R1601規格よりも小さいため、下側の支持具12の直径を2mmとし、上側の支持具13の直径を3mmとし、支持具12の中心間距離Dは4mmとした。
図5は、実施例1の3点曲げ強度の測定結果を示す表である。試料数10で測定した。図5に示したように、実施例1である単結晶のガーネット型リチウム固体電解質材料では、3点曲げ強度は47.5MPa以上155.5MPa以下の範囲であり、平均が104.2MPaであった。それに対して比較例1である焼結体のガーネット型リチウム固体電解質材料では、試料数14で測定したところ3点曲げ強度の平均は46.5MPaであった。よって単結晶の実施例は、3点曲げ強度平均で焼結体の比較例の2倍以上の強度であることが確認された。
<表面粗さRa測定>
次に、実施例1である単結晶のガーネット型リチウム固体電解質材料と、比較例1である焼結体のガーネット型リチウム固体電解質材料について、測定範囲を約300μm×200μmに設定して、表面粗さRaの測定を行った。測定には、キーエンス社製のレーザ顕微鏡(VK-X260)を用いた。表面粗さRaの測定結果は、単結晶である実施例1では0.1nm以上10nm以下の範囲であり、平均6nmであった。それに対し焼結体の比較例1では、600nm以上1000nm以下の範囲であり、平均790nmであった。単結晶のガーネット型リチウム固体電解質材料では表面粗さRaが0.1nm以上10nm以下と良好であるのに対し、焼結体ではボイドの影響により表面粗さRaを10nm以下とすることはできなかった。
次に、実施例1である単結晶のガーネット型リチウム固体電解質材料と、比較例1である焼結体のガーネット型リチウム固体電解質材料について、測定範囲を約300μm×200μmに設定して、表面粗さRaの測定を行った。測定には、キーエンス社製のレーザ顕微鏡(VK-X260)を用いた。表面粗さRaの測定結果は、単結晶である実施例1では0.1nm以上10nm以下の範囲であり、平均6nmであった。それに対し焼結体の比較例1では、600nm以上1000nm以下の範囲であり、平均790nmであった。単結晶のガーネット型リチウム固体電解質材料では表面粗さRaが0.1nm以上10nm以下と良好であるのに対し、焼結体ではボイドの影響により表面粗さRaを10nm以下とすることはできなかった。
図6は、ガーネット型リチウム固体電解質材料の表面粗さと3点曲げ強度の関係を示すグラフであり、図中に点でプロットしたものは焼結体の測定結果を示し、×印でプロットしたものは単結晶の値を示している。横軸は、表面粗さSa(μm)、縦軸は3点曲げ強度(MPa)の数値を、それぞれ表している。ここで、横軸のSa(μm)は、表面粗さRaの測定を1次元から2次元測定に拡張したものである。図6に示したように、焼結体の比較例1では表面粗さSaが0.6μm(600nm)~1.0μm(1000nm)であり、単結晶の実施例1よりも非常に大きく、3点曲げ強度も実施例の半分以下であることがわかる。
次に、単結晶のガーネット型リチウム固体電解質材料について、表面粗さRaとリチウムイオン伝導率、内部短絡臨界電流密度の関係を測定した。比較例2および実施例2,3として、ガーネット型リチウム固体電解質材料1の単結晶をスライスおよび研削・研磨し、直径7mm、厚さ1mmのウェハ形状とし、表面および裏面にスパッタ法で金を製膜して試料を得た。比較例2では、研磨剤を用いた研磨工程は実施せず、研削装置を用いた表面研削をしたのみであり、表面粗さRaは400nmであった。実施例2では、粒径1~2μmの砥粒を用いて研磨(粗研磨)工程を実施し、表面粗さRaは10nmであった。実施例3では、粒径0.5μ以下の砥粒を用いて研磨工程を実施し、表面粗さRaは5nmであった。
<リチウムイオン伝導率の測定・算出>
得られた比較例2と実施例2,3についてインピーダンス測定を行った。測定にはSolartron Analytical社製のインピーダンスアナライザー1260を用い、測定温度は室温であり、測定周波数は1Hz~32MHzであり、印加電圧は100mVとした。得られたインピーダンスの測定値をNyquistプロットし、現れる半円の径によりリチウムイオン伝導率を算出した。イオン伝導率(リチウムイオン伝導率)の測定結果は、比較例2、実施例2,3でそれぞれ0.85mS/cm、0.83mS/cm、0.83mS/cmであった。比較例2、実施例2,3は、いずれも単結晶であることから、リチウムイオン伝導率は0.8mS/cm以上と良好であり、表面粗さRaには依存しないことがわかった。
得られた比較例2と実施例2,3についてインピーダンス測定を行った。測定にはSolartron Analytical社製のインピーダンスアナライザー1260を用い、測定温度は室温であり、測定周波数は1Hz~32MHzであり、印加電圧は100mVとした。得られたインピーダンスの測定値をNyquistプロットし、現れる半円の径によりリチウムイオン伝導率を算出した。イオン伝導率(リチウムイオン伝導率)の測定結果は、比較例2、実施例2,3でそれぞれ0.85mS/cm、0.83mS/cm、0.83mS/cmであった。比較例2、実施例2,3は、いずれも単結晶であることから、リチウムイオン伝導率は0.8mS/cm以上と良好であり、表面粗さRaには依存しないことがわかった。
<内部短絡臨界電流密度の測定>
次に、比較例2と実施例2,3と同様の加工を施した試料にLi箔を貼り付けて比較例3および実施例4,5を得て、直流通電試験で内部短絡臨界電流密度の測定を行った。測定には、Solartron Analytical社製 Modulabを用い、測定温度は室温であり、電極をLi箔に押し付けて0.1mA/cm2の間隔で電流値を増加させ、各測定において直流電流を30分間印加し、短絡が発生する電流密度を測定した。比較例3では0.2mA/cm2で短絡が発生したが、実施例4,5では0.5mA/cm2以上でも短絡は発生しなかった。したがって、単結晶のガーネット型リチウム固体電解質材料では表面粗さRaを10nm以下とすることで、内部短絡臨界電流密度を0.5mA/cm2以上にできることがわかった。
次に、比較例2と実施例2,3と同様の加工を施した試料にLi箔を貼り付けて比較例3および実施例4,5を得て、直流通電試験で内部短絡臨界電流密度の測定を行った。測定には、Solartron Analytical社製 Modulabを用い、測定温度は室温であり、電極をLi箔に押し付けて0.1mA/cm2の間隔で電流値を増加させ、各測定において直流電流を30分間印加し、短絡が発生する電流密度を測定した。比較例3では0.2mA/cm2で短絡が発生したが、実施例4,5では0.5mA/cm2以上でも短絡は発生しなかった。したがって、単結晶のガーネット型リチウム固体電解質材料では表面粗さRaを10nm以下とすることで、内部短絡臨界電流密度を0.5mA/cm2以上にできることがわかった。
図7は、ガーネット型リチウム固体電解質材料の表面粗さとリチウムイオン伝導率、内部短絡臨界電流密度の関係を示す表である。上述したように、単結晶のガーネット型リチウム固体電解質材料では、リチウムイオン伝導率は0.8mS/cm以上と良好であり、表面粗さRaには依存しない。また、表面粗さRaを10nm以下では、内部短絡臨界電流密度を0.5mA/cm2以上にできる。
上述したように本実施形態では、ガーネット型リチウム固体電解質材料1が単結晶からなり、表面および裏面の表面粗さRaが0.1nm以上10nm以下の範囲であることにより、界面抵抗を抑制してリチウムイオン伝導率を向上させるとともに、内部短絡を抑制することができ、表面加工工程を簡略化することができる。また、ガーネット型リチウム固体電解質材料の少なくとも一部を電池に用いることで、リチウムイオン伝導率が高く、内部短絡臨界電流密度が大きな電池を得ることができ、大出力な全固体電池を実現できる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1…ガーネット型リチウム固体電解質材料
2…正極
3…負極
10…電池
11…試料
12,13…支持具
14…台座
15…支持具固定部
2…正極
3…負極
10…電池
11…試料
12,13…支持具
14…台座
15…支持具固定部
Claims (8)
- 単結晶からなり、表面および裏面の表面粗さRaが0.1nm以上10nm以下の範囲であることを特徴とするガーネット型リチウム固体電解質材料。
- 請求項1に記載のガーネット型リチウム固体電解質材料であって、
3点曲げ強度が47.5MPa以上155.5MPa以下の範囲であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項2に記載のガーネット型リチウム固体電解質材料であって、
前記単結晶が、厚さを有する自立した一つの結晶であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項3に記載のガーネット型リチウム固体電解質材料であって、
前記厚さが、20μm以上1mm以下の範囲であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項4に記載のガーネット型リチウム固体電解質材料であって、
前記厚さが、30μm以上0.5mm以下の範囲であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項1から5の何れか一つに記載のガーネット型リチウム固体電解質材料であって、
平面形状が円形状またはオリエンテーションフラット面が形成された円形状であり、直径が30mm以上であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項1から5の何れか一つに記載のガーネット型リチウム固体電解質材料であって、
平面形状が方形であり、前記方形の面積が730mm2以上であることを特徴とするガーネット型リチウム固体電解質材料。 - 請求項1から7の何れか一つに記載のガーネット型リチウム固体電解質材料の少なくとも一部を用いることを特徴とする電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021561377A JPWO2021106775A1 (ja) | 2019-11-28 | 2020-11-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019215705 | 2019-11-28 | ||
JP2019-215705 | 2019-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021106775A2 true WO2021106775A2 (ja) | 2021-06-03 |
Family
ID=76130753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/043353 WO2021106775A2 (ja) | 2019-11-28 | 2020-11-20 | ガーネット型リチウム固体電解質材料および電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021106775A1 (ja) |
WO (1) | WO2021106775A2 (ja) |
-
2020
- 2020-11-20 WO PCT/JP2020/043353 patent/WO2021106775A2/ja active Application Filing
- 2020-11-20 JP JP2021561377A patent/JPWO2021106775A1/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPWO2021106775A1 (ja) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240006667A1 (en) | Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same | |
JP6878302B2 (ja) | 固体電解質製造用のセッタープレート及びこれを用いて高密度固体電解質を製造するための方法 | |
EP3496183B1 (en) | Ion-conducting composite electrolyte comprising particles | |
US11158880B2 (en) | Translucent and transparent separators | |
JP5587052B2 (ja) | リチウム二次電池の正極及びリチウム二次電池 | |
EP3104436B1 (en) | Electrode composite body, method of manufacturing electrode composite body, and lithium battery | |
US10319985B2 (en) | Lithium lanthanum zirconium tantalum oxide garnet crystal and all-solid-state lithium ion secondary battery | |
KR102325924B1 (ko) | 전고체 리튬 전지 및 그 제조 방법 | |
JP6667182B2 (ja) | 低対称ガーネット関連型構造固体電解質およびリチウムイオン二次電池 | |
JP2012099405A (ja) | 焼結体、当該焼結体を含む配向性電極、及び当該配向性電極を備える電池 | |
KR101982422B1 (ko) | 리튬 이온 전도성 결정체 및 전고체 리튬 이온 이차 전지 | |
WO2021106775A2 (ja) | ガーネット型リチウム固体電解質材料および電池 | |
JPWO2019116857A1 (ja) | 全固体リチウム電池及びその製造方法 | |
JP2019192609A (ja) | 全固体リチウム電池及びその製造方法 | |
CN111056839A (zh) | 一种掺杂硼化合物的锂镧锆氧固体电解质及其制备方法 | |
WO2011162251A1 (ja) | リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池 | |
CN111542650A (zh) | 降低石榴石结构离子导体的热压温度的方法 | |
JP7470700B2 (ja) | ナノ粒子炭化ケイ素及びナノ粒子炭化ケイ素を含む電極 | |
JPWO2018147248A1 (ja) | リチウム複合酸化物焼結体板及びリチウム二次電池 | |
CN113299899A (zh) | 一种锂固态电池负极及其制备方法和应用 | |
JP2020017535A (ja) | 電極複合体の製造方法 | |
Mori et al. | Grain boundary modification of Li3PO4 and Li3BO3 in garnet-type solid electrolyte for suppressing li dendrite growth | |
WO2022107687A1 (ja) | リチウム複合酸化物単結晶、リチウム複合酸化物多結晶、リチウム複合酸化物材料、固体電解質材料、全固体リチウムイオン二次電池、および固体電解質材料の製造方法 | |
Sarker et al. | Growth and characterization of Li7La3Zr2O12 single crystals by using floating zone method for use as fast Li-ion conductor | |
Zhang et al. | Fusing Ta-doped Li 7 La 3 Zr 2 O 12 grains using nanoscale Y 2 O 3 sintering aids for high-performance solid-state lithium batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20893800 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2021561377 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20893800 Country of ref document: EP Kind code of ref document: A2 |