CN113871703A - 一种石榴石型固体电解质及其制备和应用 - Google Patents

一种石榴石型固体电解质及其制备和应用 Download PDF

Info

Publication number
CN113871703A
CN113871703A CN202111120252.4A CN202111120252A CN113871703A CN 113871703 A CN113871703 A CN 113871703A CN 202111120252 A CN202111120252 A CN 202111120252A CN 113871703 A CN113871703 A CN 113871703A
Authority
CN
China
Prior art keywords
solid electrolyte
garnet
type solid
single crystal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111120252.4A
Other languages
English (en)
Inventor
刘张波
赵嫣然
嵇书伟
胡康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Innovation Co Ltd
Original Assignee
China Automotive Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Innovation Co Ltd filed Critical China Automotive Innovation Co Ltd
Priority to CN202111120252.4A priority Critical patent/CN113871703A/zh
Publication of CN113871703A publication Critical patent/CN113871703A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5346Dry etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种石榴石型固体电解质,所述石榴石型固体电解质为立方相,其特征在于,所述立方相石榴石型固体电解质为多晶陶瓷或单晶体,表面包括激光刻蚀形成的微孔。所述微孔的孔径为5~1000μm,深度为5~500μm。本发明通过激光刻蚀技术对固体电解质表面进行修饰处理,进一步通过制备石榴石型固体电解质单晶提高其离子电导率,改善了固体电解质与电极,特别是正极的固固界面问题,降低其界面电阻,提高固态电池的循环性能和倍率性能。

Description

一种石榴石型固体电解质及其制备和应用
技术领域
本发明属于固态电池技术领域,涉及一种石榴石型固体电解质、制备方法及其在固态电池中的应用。
背景技术
锂离子电池作已被广泛应用于各种3C产品和电动车,随着人们对锂离子电池的性能要求愈高,提高其能量密度以及解决传统液态锂离子电池易燃甚至爆炸的安全问题迫在眉睫,使用固体电解质取代液体电解质开发全固态锂离子电池的研究自然而然成为全球热点。固体电解质是全固态锂离子电池的关键材料,而氧化物固体电解质具有离子电导率较高,环境稳定性好,电位窗口宽等优点。其中石榴石型固体电解质(LLZO)是目前氧化物固体电解质中综合性能最好的电解质,LLZO对金属锂稳定,且具有近60GPa的剪切模量和0.1mS/cm~1mS/cm的室温离子电导率。
与传统电解液相比,LLZO电解质离子电导率仍旧偏低,只有极个别的文献报导其通过Li位Ga掺杂,将室温离子电导率提高至1mS/cm水平。通过提拉法等单晶制备方法制备LLZO单晶,能够消除多晶材料的晶界,得到高致密度、均一的材料,而且有望将Zr位掺杂体系的室温离子电导率提高至1mS/cm水平。但将LLZO应用于固态锂电池时,固体电解质与电极界面难以充分接触,导致高接触电阻,造成全固态锂离子电池内阻增大、电池循环性能变差,是制约其应用于固态锂离子电池的关键因素。
近些年来,有研究者通过在固体电解质表面引入修饰层以及采用锂金属合金化等手段,将金属锂和固体电解质的界面电阻降至几欧姆的水平。与负极界面相比,固体电解质与正极界面的改善进展缓慢。通常的方法是在固固界面上滴加电解液、离子液体或者凝胶电解质,但终究是治标不治本。还有一种技术构思是从增大正极活性材料与固体电解质接触面积的思路出发,以此降低界面电阻。
例如,申请公布号为CN112952041A,申请人为横店集团东磁股份有限公司的中国专利申请公开了“一种石榴石型固态电解质复合正极及其制备方法与应用”,该发明专利通过在石榴石型固态电解质多晶片的一侧进行酸蚀处理,再利用超临界流体的特性,将正极活性物质前驱体粉末带入酸蚀处理后电解质多晶片的孔道中,最后通过煅烧得到复合正极,从而降低了石榴石型固态电解质与正极活性物质的界面电阻。该发明采用的酸蚀方法确实可以对固体电解质陶瓷片体进行表面造孔,但该方法对孔道的尺寸和形貌定是不可控的且不均匀的,正极活性材料的分布也会随之分布不均;另一方面,酸蚀对固体电解质的致密度影响未可知,可能影响其离子电导率。从而对固态电池的循环性能和倍率性可能会产生一定的影响。
发明内容
本发明的目的在于提供一种石榴石型固体电解质(LLZO)及其制备方法,解决LLZO与电极界面接触的技术问题,采用激光刻蚀技术对其表面进行修饰处理,进一步通过制备石榴石型固体电解质单晶显著提高其离子电导率,从而改善固体电解质与电极,特别是正极活性材料直接接触的固固界面问题,降低其界面电阻,提高固态电池的循环性能和倍率性能。
本发明的另一目的还在于提供一种包含LLZO的复合电极及其在固态电池中的应用。
本发明的石榴石型固体电解质,系立方相石榴石型固体电解质(c-LLZO)的多晶陶瓷或单晶体,表面包括激光刻蚀形成的微孔。优选地,所述的c-LLZO为单晶体。石榴石型固体电解质(Li7La3Zr2O12,LLZO)室温下为四方相结构,离子电导率较低,立方相石榴石型固体电解质通过高价阳离子掺杂来稳定。所述的石榴石型固体电解质c-LLZO为阳离子掺杂的立方相Li7La3Zr2O12,化学式为Li7-3x-y+zAxLa3Zr2-yByO12+z/2或Li7-3x-2k+zAxLa3Zr2-kCkO12+z/2,其中A为三价金属元素,B为五价金属元素,C为六价金属元素,0≤x≤0.4,0≤y≤1,0≤k≤0.7,0≤z≤1.4。优选地,A为Al和/或Ga,B为Ta和/或Nb,C为W和/或Te。
本发明所述c-LLZO为多晶陶瓷或单晶体,单晶由多晶通过单晶生长法制备,通过激光刻蚀技术对其表面进行修饰处理,得到所需要的微孔结构,优选排列有序的微孔阵列。
本发明的石榴石型固体电解质的制备方法,包括如下步骤:
1)将c-LLZO多晶粉末烧结制得多晶陶瓷;或将c-LLZO多晶粉末加热至熔化,采用单晶生长法制得c-LLZO单晶,使用切割装置将所述c-LLZO单晶切割成单晶片;
2)采用激光刻蚀对所述多晶陶瓷片或单晶片表面进行修饰,表面刻蚀形成微孔,制得石榴石型固体电解质。
所述c-LLZO多晶的合成,是将包含各金属元素的原料根据c-LLZO的化学计量比进行混合,将混合物料通过烧结制得多晶粉末。
所述单晶生长法选自提拉法、区熔法、温度梯度法、助熔剂晶体生长法、泡生法、坩埚下降法、热交换法、顶部籽晶法或微下拉法;优选提拉法或区熔法。
优选地,所述的微孔在多晶陶瓷或单晶表面呈阵列分布。
优选地,所述微孔的孔径为5~1000μm,深度为5~500μm。
将本发明所述石榴石型固体电解质用于固态电池中,可以改善固体电解质与电极,特别是正极的固固界面问题,降低其界面电阻。
基于所述石榴石型固体电解质可制备一种固态电池复合电极,所述复合电极可以是正极或负极,将包含电极活性物质的电极层涂覆在所述石榴石型固体电解质修饰的表面即可得到所述复合电极。特别地,本发明涉及一种固态电池复合正极,能够增大固体电解质与电极活性物质的接触面积,同时固体电解质层与电极层接触均匀,降低正极的界面电阻。
所述的固态电池复合正极包括所述的石榴石型固体电解质,包含正极活性物质的电极层涂覆在所述石榴石型固体电解质含微孔的表面。所述电极层包含正极活性物质、粘结剂和导电剂,优选地还包含c-LLZO,将上述组分加入溶剂中混合均匀,得到正极浆料,将所述正极浆料涂覆在所述石榴石型固体电解质含微孔的表面,加热烘干溶剂,得到的所述的复合正极。
进一步,本发明还涉及一种固态电池,包含所述的固态电池复合正极。
有益效果:根据本发明的石榴石型固体电解质(LLZO),采用激光刻蚀技术对c-LLZO表面进行修饰,在其表面形成排列有序的微孔,大大增加了电极与固体电解质的接触面积,降低了其界面电阻;进一步通过制备石榴石型固体电解质单晶显著提高其离子电导率。所述的石榴石型固体电解质应用于全固态电池中,可改善固体电解质与电极,特别是正极接触的固固界面问题,提高固态电池的循环性能和倍率性能。
附图说明
图1为表面修饰的石榴石型固体电解质单晶片;其中(a)正视图,(b)沿直径的剖视图;
图2为包含复合正极的全固态锂电池的结构示意图;其中,1为正极层,2为经表面修饰的固体电解质单晶层,3为负极层;
图3为石榴石型电解质多晶粉末的X射线衍射(XRD)图;
图4为石榴石型电解质单晶的X射线衍射(XRD)图;
图5为石榴石型电解质单晶扫描电子显微镜(SEM)图;
图6为石榴石型电解质单晶的电化学阻抗谱(EIS)图。
具体实施方式
本发明的具体实施包括石榴石型固体电解质的制备,复合电极及固态电池的制备和组装等。
具体和详细地,本发明的石榴石型固体电解质的制备方法为:
步骤1)多晶粉末的配料:
根据c-LLZO的化学式Li7-3x-y+zAxLa3Zr2-yByO12+z/2或Li7-3x-2k+zAxLa3Zr2-kCkO12+z/2中各组分的化学计量比称量各原料后混合,将混合物装入混料设备进行充分混合。
所述步骤1)中的原料包括:含Li元素原料、含A元素原料、含La元素原料、含Zr元素原料、含B元素原料和含C元素原料。优选其中A为Al和/或Ga元素,B为Ta和/或Nb元素,C为W和/或Te元素。
含Li元素原料选自LiOH、Li2CO3、LiHCO3、LiNO3、CH3COOLi、CHOOLi等含Li物质或其水合物中的至少一种;含La元素原料选自La(OH)3、La2O3、La2(SO4)3、La(CH3COO)3、LaCl3、La(NO3)3等或其水合物中的至少一种;含Zr元素原料选自ZrO2、ZrCl4、ZrO(NO3)2、ZrH2、Zr(OH)2CO3·ZrO2、锆粉等或其水合物中的至少一种;含Al元素原料选自Al(OH)3、Al2O3、AlPO4、Al(H2PO4)3、Al(PO3)3、Al(NO3)3、AlCl3、Al2(SO4)3等或其水合物中的至少一种;含Ga元素原料选自Ga2O3、Ga(NO3)3、GaCl3、Ga2(SO4)3等或其水合物中的至少一种;含Nb元素原料选自Nb2O5、NbCl5、Nb(CH3CH2O)5、铌粉等或其水合物中的至少一种;含Ta元素原料选自Ta2O5、TaCl5、Ta(CH3CH2O)5、钽粉等或其水合物中的至少一种;含W元素原料选自WO2、WO3、WCl6、钨粉等或其水合物中的至少一种;含Te元素原料选自TeO2、碲粉等或其水合物中的至少一种。
步骤2)多晶粉末的合成:
将步骤l)中将所制得的混料进行热处理,升温至800~1000℃,预烧4~24h,降温,将预烧得到的c-LLZO破碎后进行微纳米化处理,筛分得到多晶粉末。
步骤3)多晶陶瓷和单晶制备:
将所述多晶粉末压制成胚,在空气气氛下进一步烧结,烧结温度1000~1400℃,时间10min~360min,得到多晶陶瓷片。
将供晶体生长的多晶粉末加热至熔化,采用晶体生长法制得所述石榴石型固体电解质单晶。
熔体法进行单晶生长时,具体方法包括提拉法、区熔法、温度梯度法、助熔剂晶体生长法、泡生法、坩埚下降法、热交换法、顶部籽晶法或微下拉法中一种。优选的,晶体生长采用提拉法或区熔法。
所述步骤3)采用提拉法进行晶体生长时,优选地,晶体生长温度为1100~1300℃,晶体生长时转速为1-10rpm,拉速为0.2~2mm/h,降温速率为0.4~0.8℃/h。晶体生长气氛为空气、惰性气体或含氧惰性气体,优选晶体生长在空气、氮气、氩气、氪气、含氧1-10at.%的氮气、含氧1-10at.%的氩气和含氧1-10at.%的氪气的气氛中进行。
所述步骤3)采用区熔法进行晶体生长时,优选地,晶体生长温度为1100~1300℃,转速为30-60rpm,移动速度6-12mm/h。晶体生长气氛为空气、惰性气体或含氧惰性气体,优选晶体生长在空气、氮气、氩气、氪气、含氧1-10at.%的氮气、含氧1-10at.%的氩气或含氧1-10at.%的氪气的气氛中进行。
步骤4)石榴石型固体电解质的制备:
将制得的多晶陶瓷片进行抛光,石榴石型固体电解质单晶使用切割设备进行切片,磨片;采用激光刻蚀对多晶陶瓷片或单晶片表面进行修饰,在多晶陶瓷片或单晶片表面刻蚀出微孔,优选排列有序的微孔阵列,清洗,得到所述的石榴石型固体电解质。
所述的微孔阵列包括但不限于微孔矩阵、部分矩阵(如矩阵内圆形或其它形状切割得到的部分)或矩阵的组合,或微孔在单晶片表面均匀分布的其它微孔阵列(微孔的密度相同)。
一个修饰后的石榴石型固体电解质单晶片如图1所示,为单晶圆片,上表面包括激光刻蚀形成的微孔阵列。微孔的孔径与深度可随电极活性物质的尺寸进行调节。
通常微孔的孔径为5~1000μm,深度为5~500μm;相邻微孔间的距离为20~500μm。优选地,微孔的孔径为60~300μm,深度为60~200μm,距离为50~200μm。
所述单晶片表面的修饰可以单面进行,也可以在双面进行。
优选的,所述步骤4)中单晶片的切割采用内圆切割机、线切割机或激光切割器进行切割。
优选的,所述步骤4)采用紫外激光刻蚀和红外激光刻蚀中的一种或多种进行激光刻蚀。
刻蚀后可采用乙醇、异丙醇中的一种或多种进行清洗。
所述石榴石型固体电解质用于固态电池中,或制备成复合电极,可以降低固体电解质与电极固固界面电阻。
所述的石榴石型固体电解质既可用于固态电池的正极,也可以用于固态电池的负极。具体实施例中采用经过表面修饰的固体电解质涂覆正极层,以金属锂为负极,组装成全固态锂电池(负极侧同样可以激光刻蚀进行修饰),如图2所示。
以固态电池复合正极为例,包括所述的石榴石型固体电解质和正极层,所述正极层涂覆在所述石榴石型固体电解质含微孔阵列的表面。
所述复合正极的制备可以按照现有技术中的湿法工艺制备。所述正极层包含正极活性物质、粘结剂和导电剂,优选地还包含c-LLZO(粉末),将上述组分加入溶剂中混合均匀,得到正极浆料,将所述正极浆料涂覆在所述石榴石型固体电解质含微孔阵列的表面,加热烘干溶剂,得到的所述的复合正极。
本领域技术人员可以根据现有技术选择,如所述正极活性物质包括锰酸锂、钴酸锂、镍钴锂、磷酸铁锂、镍酸锂以及三元正极材料等中的一种或几种;所述粘结剂包括聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、丁苯橡胶(SBR)、羟甲基纤维素(CMC)、聚丙烯酸(PAA)、聚丙烯腈(PAN)或聚丙烯酸酯中的一种;所述导电剂包括活性炭、乙炔黑、导电碳黑(Super-P)、石墨烯、碳纳米管和科琴黑中的一种或几种。
将所述复合正极装配负极,或与固体电解质和负极装配,即得到全固态电池。
下面结合具体实施例对本发明进行详细描述。本发明的保护范围并不以具体实施方式为限,而是由权利要求加以限定。
实施例1
按化学式Li6.5La3Zr1.5Nb0.5O12(B=Nb,y=0.5)制备石榴石型固体电解质(c-LLZO)单晶,修饰其表面并进行复合正极的制备及固态电池组装,具体步骤如下:
步骤1)按化学式中各组分的化学计量比称量LiOH·H2O(纯度为99%)26.18g、La(OH)3(纯度为99.9%)45.62g、ZrO2(99.9%)14.80g、Nb2O5(纯度为99.9%)5.32g,其中含Li元素原料在按化学计量比称量时过量20%(在高温处理过程中会有部分锂挥发,需要在制备过程中进行补锂),将各原料混合均匀,过筛(100目),得到混料;
步骤2)将制得的混料置于铂金坩埚中,放入马弗炉中,升温至900℃,预烧12h,降温,将烧结产物破碎,过筛(100目)。将粉末进行行星式球磨,转速200rpm,时间4h,再进行过筛(100目);
步骤3)采用提拉法进行单晶制备,将烧结后的供晶体生长的多晶粉末置于铂金坩埚中,将加热至熔化,以铱金丝为籽晶,晶体生长温度为1150℃,晶体生长时转速为1rpm,拉速为1.6mm/h,降温速率为0.6℃/h。在空气气氛中经过1天的生长,可生长出直径约为7mm,长度可达30mm左右的石榴石型固体电解质单晶棒。
步骤4)电解质单晶片的制备及修饰:
将制得的石榴石型固体电解质单晶棒使用线切割机进行切片,厚度为700μm,使用248nm的KrF准分子激光器(紫外激光器)进行表面刻蚀,刻蚀直径100μm,深度100μm的微孔矩阵,均匀分布,共100个微孔,并使用异丙醇清洗。
步骤5)正极的制备:将LiNi0.5Co0.2Mn0.3O2(NCM523)(D50=4μm)、导电炭黑、PVDF(聚偏氟乙烯)、c-LLZO加入到NMP(N-甲基吡咯烷酮)溶剂中混合搅拌4h,得到复合正极浆料。其中,NCM523:导电炭黑:PVDF:c-LLZO的质量比为:83:5:6:6;将正极浆料涂覆于单晶电解质片,放入烘箱中于110℃下干燥8h。
步骤6)全固态电池组装:以金属锂为负极,在氩气氛下现将熔融态金属锂滴加在单晶电解质片表面,将其装配得到全固态电池。
实施例2
按化学式Li6.4Al0.05Ga0.15La3Zr2O12(A=Al和Ga,x=分别为0.05和0.15)制备石榴石型固体电解质单晶,修饰其表面并进行复合正极的制备及固态电池组装,具体步骤如下:
步骤1)按化学式中各组分的化学计量比称量LiOH·H2O(纯度为99%)26.04g、Al2O3(纯度为99.99%)0.20g、Ga2O3(纯度为99.8%)1.13g、La2O3(纯度为99.9%)39.14g、ZrO2(99.9%)19.73g,其中含Li元素原料在按化学计量比称量时过量20%,将各原料混合均匀,过筛,得到混料;
步骤2)将制得的混料放置于铂金坩埚中,放入马弗炉中,升温至900℃,预烧24h,降温,将烧结产物破碎,过筛。将粉末进行行星式球磨,转速300rpm,时间5h,再进行过筛;
步骤3)采用提拉法进行单晶制备,将烧结后的供晶体生长的多晶粉末置于铱金坩埚中,将加热至熔化,以铱金丝为籽晶,晶体生长温度为1250℃,晶体生长时转速为1rpm,拉速为2mm/h,降温速率为0.8℃/h。在含氧5at.%的氩气气氛中经过1天的生长,可生长出直径约为8mm,长度可达30mm左右的石榴石型固体电解质单晶棒。
步骤4)电解质单晶片的制备及修饰:
将制得的石榴石型固体电解质单晶棒使用内圆切割机进行切片,厚度为100μm,使用248nm的KrF准分子激光器(紫外激光器)进行表面刻蚀,刻蚀了直径80μm,深度60μm的微孔矩阵,均匀分布,共500个微孔,并使用异丙醇清洗。
步骤5)正极的制备:将LiNi0.5Co0.2Mn0.3O2(NCM523)(D50=2μm)、导电炭黑、PVDF、c-LLZO加入到NMP溶剂中混合搅拌6h,得到复合正极浆料。其中,NCM523:导电炭黑:PVDF:c-LLZO的质量比为:83:4:6:7;将正极浆料涂覆于单晶电解质片,放入烘箱中于150℃下干燥5h。
步骤6)全固态电池组装:以金属锂为负极,在氩气氛下现将熔融态金属锂滴加于单晶电解质片另一侧,将其装配得到全固态电池。
实施例3
按化学式Li6.15Al0.2La3Zr1.75Ta0.25O12(A=Al,x=0.2;B=Ta,y=0.25)制备石榴石型固体电解质单晶,修饰其表面并进行复合正极的制备及固态电池组装,具体步骤如下:
步骤1)按化学式中各组分的化学计量比称量LiOH·H2O(纯度为99%)22.94g、Al(OH)3(纯度为99.99%)1.25g、La(OH)3(纯度为99.9%)45.62g、ZrO2(99.9%)17.27g、Ta2O5(纯度为99.9%)4.42g,其中含Li元素原料在按化学计量比称量时过量10%,将各原料混合均匀,过筛,得到混料;
步骤2)将制得的混料置于刚玉坩埚中,放入马弗炉中,升温至900℃,预烧8h,降温,将烧结产物破碎,过筛。将粉末进行行星式球磨,转速200rpm,时间2h,再进行过筛;
步骤3)采用提拉法进行单晶制备,将烧结后的供晶体生长的多晶粉末置于铂金坩埚中,将加热至熔化,以铂金丝为籽晶,晶体生长温度为1100℃,晶体生长时转速为10rpm,拉速为1.5mm/h,降温速率为0.8℃/h。在氪气气氛中经过1天的生长,可生长出直径约为8mm,长度可达30mm左右的石榴石型固体电解质单晶棒。
步骤4)电解质单晶片的制备及修饰:
将制得的石榴石型固体电解质单晶棒使用内圆切割机进行切片,厚度为300μm,使用248nm的KrF准分子激光器(紫外激光器)进行表面刻蚀,刻蚀了直径80μm,深度80μm的微孔矩阵,均匀分布,共50个微孔,并使用异丙醇清洗。
步骤5)正极的制备:将LiNi0.5Co0.2Mn0.3O2(NCM523)(D50=5μm)、导电炭黑、PVDF、c-LLZO加入到NMP溶剂中混合搅拌5h,得到复合正极浆料。其中,NCM523:导电炭黑:PVDF:c-LLZO的质量比为:83:5:6:6;将正极浆料涂覆于单晶电解质片,放入烘箱中于110℃下干燥6h。
步骤6)全固态电池组装:以金属锂为负极,在氩气氛下现将金属锂片贴于单晶电解质片另一侧,将其装配得到全固态电池。
实施例4
按化学式Li6.1Al0.3La3Zr2O12(A=Al,x=0.3)制备石榴石型固态电解质单晶,修饰其表面并进行复合正极的制备及固态电池组装,具体步骤如下:
1)按化学式中各组分的化学计量比称量LiOH·H2O(纯度为99%)24.82g、Al2O3(纯度为99.99%)1.22g、La2O3(纯度为99.9%)39.14g、ZrO2(99.9%)19.73g,其中含Li元素原料在按化学计量比称量时过量20%,将各原料混合均匀,过筛,得到混料;
2)将制得的混料在10MPa下压制成圆柱体,竖直放置于氧化镁坩埚中,放入马弗炉中,升温至950℃,预烧12h,降温,将烧结产物破碎,过筛。将粉末进行行星式球磨,转速300rpm,时间8h,再进行过筛;
3)采用提拉法进行单晶制备,将烧结后的供晶体生长的多晶粉末置于铂金坩埚中,将加热至熔化,以铱金丝为籽晶,晶体生长温度为1150℃,晶体生长时转速为2rpm,拉速为0.5mm/h,降温速率为0.8℃/h。在氩气气氛中经过3天的生长,可生长出直径约为7mm,长度可达30mm左右的石榴石型固态电解质单晶棒。
步骤4)电解质单晶片的制备及修饰:
将制得的石榴石型固体电解质单晶棒使用内圆切割机进行切片,厚度为100μm,使用248nm的KrF准分子激光器(紫外激光器)进行表面刻蚀,刻蚀了直径40μm,深度20μm的微孔矩阵,均匀分布,共100个微孔,并使用乙醇快速清洗,并烘干。
步骤5)正极的制备:将LiNi0.5Co0.2Mn0.3O2(NCM523)(D50=6μm)、导电炭黑、PVDF、c-LLZO加入到NMP溶剂中混合搅拌8h,得到复合正极浆料。其中,NCM523:导电炭黑:PVDF:c-LLZO的质量比为:82.5:4:5:8.5;将正极浆料涂覆于单晶电解质片,放入烘箱中于120℃下干燥12h。
步骤6)全固态电池组装:以金属锂为负极,在氩气氛下现将熔融态金属锂滴加于单晶电解质片另一侧,将其装配得到全固态电池。
实施例5
按化学式Li6.5La3Zr1.5Nb0.5O12(B=Nb,y=0.5)制备石榴石型固体电解质多晶陶瓷,修饰其表面并进行复合正极的制备及固态电池组装,具体步骤如下:
步骤1)按化学式中各组分的化学计量比称量LiOH·H2O(纯度为99%)24.25g、La(OH)3(纯度为99.9%)45.62g、ZrO2(99.9%)14.80g、Nb2O5(纯度为99.9%)5.32g,其中含Li元素原料在按化学计量比称量时过量10%,将各原料混合均匀,过筛,得到混料;
步骤2)将制得的混料置于氧化镁坩埚中,放入马弗炉中,升温至900℃,预烧12h,将烧结产物破碎,过筛。将粉末进行行星式球磨,转速200rpm,时间4h,再进行过筛,压制直径10mm,厚度2-3mm的生胚;
步骤3)将生胚置于铂金坩埚中,在空气气氛下进一步烧结,烧结温度1200℃,保温60min。将烧结得到的多晶电解质片进行抛光,得到直径7.88mm,厚度2mm的多晶电解质片。
步骤4)使用248nm的KrF准分子激光器(紫外激光器)进行表面刻蚀,刻蚀了直径100μm,深度100μm的微孔矩阵,均匀分布,共130个微孔,并使用异丙醇清洗。
步骤5)正极的制备:将LiNi0.5Co0.2Mn0.3O2(NCM523)(D50=4μm)、导电炭黑、PVDF、c-LLZO加入到NMP溶剂中混合搅拌4h,得到复合正极浆料。其中,NCM523:导电炭黑:PVDF:c-LLZO的质量比为:83:5:6:6;将正极浆料涂覆于多晶电解质片,放入烘箱中于110℃下干燥8h。
步骤6)全固态电池组装:以金属锂为负极,在氩气氛下现将熔融态金属锂滴加在多晶电解质片表面,将其装配得到全固态电池。
对比例1
将实施例1中的单晶固体电解质片的厚度切割成700μm,不进行激光刻蚀,其它步骤与实施例1相同。
对比例2
将实施例5中的多晶固体电解质片,不进行激光刻蚀,其它步骤与实施例5相同。
检测例
选取实施例1中的单晶样品,与对比例1的多晶样品进行测试,结果如下:
图3和图4为石榴石型电解质多晶粉末和单晶片体的X射线衍射(XRD)图,多晶样品的主要衍射峰与石榴石型Li5La3Nb2O12的标准PDF#80-0457卡片吻合,说明合成的固体电解质多晶材料具备石榴石结构,且未观察到明显杂相;而制备的单晶样品只剩两个峰,可以看出晶体的生长方向是{332}。
图5是石榴石型电解质单晶扫描电子显微镜(SEM)图,从图中可以看到单晶打磨后的痕迹,看不到明显的孔洞和晶界。
图6是石榴石型电解质单晶室温下的电化学阻抗谱(EIS)图,通过计算可以得到石榴石型固体电解质单晶与多晶的离子电导率,其对比如表1。单晶的室温离子电导率明显高于该体系下多晶的室温离子电导率。
表1石榴石型固体电解质单晶与多晶的离子电导率对比
Figure BDA0003276829220000111
对实施例1-5和对比例1-2中的全固态锂电池进行电化学性能测试。测试方法为:电池充放电区间为3.0-4.2V,恒电流充放电电流密度为0.1C,测试温度为25℃,所得结果如表2所示。
表2
Figure BDA0003276829220000112
综上,本发明成功制备出的石榴石型固体电解质单晶,其离子电导率远高于该材料体系的多晶陶瓷,达到了1mS/cm以上的水平。同时将激光刻蚀技术应用于固体电解质材料的表面修饰,能够在石榴石型固体电解质表面刻蚀出排列有序的微孔矩阵,且微孔的直径与深度可根据电极活性物质的尺寸进行调控,改善固体电解质与正极活性材料直接的固固界面问题,降低其界面电阻,提高了固态电池的循环性能和倍率性能。

Claims (10)

1.一种石榴石型固体电解质,所述石榴石型固体电解质为立方相,其特征在于,所述立方相石榴石型固体电解质为多晶陶瓷或单晶体,所述立方相石榴石型固体电解质表面包括激光刻蚀形成的微孔。
2.根据权利要求1所述的石榴石型固体电解质,其特征在于,所述微孔呈阵列分布。
3.根据权利要求1或2所述的石榴石型固体电解质,其特征在于,所述微孔的孔径为5~1000μm,深度为5~500μm。
4.根据权利要求1或2所述的石榴石型固体电解质,其特征在于,所述立方相石榴石型固体电解质的化学式为Li7-3x-y+zAxLa3Zr2-yByO12+z/2或Li7-3x-2k+zAxLa3Zr2-kCkO12+z/2,其中A为三价金属元素,B为五价金属元素,C为六价金属元素,0≤x≤0.4,0≤y≤1,0≤k≤0.7,0≤z≤1.4。
5.一种石榴石型固体电解质的制备方法,包括如下步骤:
将立方相石榴石型固体电解质多晶粉末烧结制得多晶陶瓷片;或将立方相石榴石型固体电解质多晶粉末加热至熔化,采用单晶生长法制得立方相石榴石型固体电解质单晶,将所述单晶切割成单晶片;
采用激光刻蚀对所述多晶陶瓷片或单晶片表面进行修饰,表面刻蚀形成微孔,制得石榴石型固体电解质。
6.根据权利要求5所述的石榴石型固体电解质的制备方法,其特征在于,所述单晶生长法选自提拉法、区熔法、温度梯度法、助熔剂晶体生长法、泡生法、坩埚下降法、热交换法、顶部籽晶法或微下拉法。
7.根据权利要求6所述的石榴石型固体电解质的制备方法,其特征在于,所述单晶生长方法为提拉法或区熔法,晶体生长气氛为空气、惰性气体或含氧惰性气体;
优选地,采用提拉法进行晶体生长时,晶体生长温度为1100~1300℃,晶体生长时转速为1-10rpm,拉速为0.2~2mm/h,降温速率为0.4~0.8℃/h;
优选地,采用区熔法进行晶体生长时,晶体生长温度为1100~1300℃,转速为30-60rpm,移动速度6-12mm/h。
8.一种固态电池复合正极,其特征在于,包括权利要求1所述的石榴石型固体电解质,包含正极活性物质的电极层涂覆在所述石榴石型固体电解质含微孔的表面。
9.根据权利要求8所述的固态电池复合正极,其特征在于,所述电极层包含正极活性物质、粘结剂、导电剂和立方相石榴石型固体电解质。
10.一种固态电池,其特征在于,包含权利要求8所述的固态电池复合正极。
CN202111120252.4A 2021-09-24 2021-09-24 一种石榴石型固体电解质及其制备和应用 Pending CN113871703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111120252.4A CN113871703A (zh) 2021-09-24 2021-09-24 一种石榴石型固体电解质及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111120252.4A CN113871703A (zh) 2021-09-24 2021-09-24 一种石榴石型固体电解质及其制备和应用

Publications (1)

Publication Number Publication Date
CN113871703A true CN113871703A (zh) 2021-12-31

Family

ID=78993711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111120252.4A Pending CN113871703A (zh) 2021-09-24 2021-09-24 一种石榴石型固体电解质及其制备和应用

Country Status (1)

Country Link
CN (1) CN113871703A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081512A1 (en) * 2007-09-25 2009-03-26 William Cortez Blanchard Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
FR2997026A1 (fr) * 2012-10-23 2014-04-25 Commissariat Energie Atomique Systeme microfluidique 3d a zones emboitees et reservoir integre, son procede de preparation et ses utilisations
WO2018139373A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 全固体リチウム電池用電極積層体の製造方法、全固体リチウム電池用電極複合体及びその製造方法
CN110931848A (zh) * 2019-12-30 2020-03-27 华南师范大学 全固态电解质电池的制备方法和全固态电解质电池
CN112573905A (zh) * 2020-12-24 2021-03-30 中国科学院上海硅酸盐研究所 一种阴离子掺杂石榴石闪烁体及其制备方法与应用
CN112670561A (zh) * 2020-12-09 2021-04-16 上海空间电源研究所 一种固态电解质表面缺陷改良方法及复合固态电解质膜制备方法
CN112952041A (zh) * 2021-02-25 2021-06-11 横店集团东磁股份有限公司 一种石榴石型固态电解质复合正极及其制备方法与应用
US20210245296A1 (en) * 2020-02-06 2021-08-12 Lawrence Livermore National Security, Llc Systems and methods for laser processing of solid-state batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081512A1 (en) * 2007-09-25 2009-03-26 William Cortez Blanchard Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices
FR2997026A1 (fr) * 2012-10-23 2014-04-25 Commissariat Energie Atomique Systeme microfluidique 3d a zones emboitees et reservoir integre, son procede de preparation et ses utilisations
WO2018139373A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 全固体リチウム電池用電極積層体の製造方法、全固体リチウム電池用電極複合体及びその製造方法
CN110931848A (zh) * 2019-12-30 2020-03-27 华南师范大学 全固态电解质电池的制备方法和全固态电解质电池
US20210245296A1 (en) * 2020-02-06 2021-08-12 Lawrence Livermore National Security, Llc Systems and methods for laser processing of solid-state batteries
CN112670561A (zh) * 2020-12-09 2021-04-16 上海空间电源研究所 一种固态电解质表面缺陷改良方法及复合固态电解质膜制备方法
CN112573905A (zh) * 2020-12-24 2021-03-30 中国科学院上海硅酸盐研究所 一种阴离子掺杂石榴石闪烁体及其制备方法与应用
CN112952041A (zh) * 2021-02-25 2021-06-11 横店集团东磁股份有限公司 一种石榴石型固态电解质复合正极及其制备方法与应用

Similar Documents

Publication Publication Date Title
JP6278433B2 (ja) リチウム含有ガーネット結晶体および全固体リチウムイオン二次電池
KR102585092B1 (ko) 고체 전해질 제조를 위한 리튬 함유 가넷 세터 플레이트
EP3214044B1 (en) Lithium-containing garnet crystal and all-solid-state lithium ion secondary battery
US10763544B1 (en) Solid electrolyte with low-symmetry garnet-related structure and lithium-ion secondary battery
WO2021053923A1 (ja) ガリウム置換型固体電解質材料および全固体リチウムイオン二次電池
CN106796825B (zh) 锂离子传导性晶体及全固体锂离子二次电池
TW202225122A (zh) 鋰金屬氧化物/石榴石複合薄膜及其製造方法
CN115413273B (zh) 陶瓷粉末材料、烧结体及电池
CN113871703A (zh) 一种石榴石型固体电解质及其制备和应用
WO2022074959A1 (ja) 新規結晶構造を備える複合酸化物と、この複合酸化物を固体電解質とする全固体リチウムイオン二次電池
CN116547240A (zh) 锂复合氧化物单晶、锂复合氧化物多晶、锂复合氧化物材料、固体电解质材料、全固态锂离子二次电池、以及固体电解质材料的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211231