WO2021106236A1 - ダイオード、ダイオードの製造方法および電気機器 - Google Patents

ダイオード、ダイオードの製造方法および電気機器 Download PDF

Info

Publication number
WO2021106236A1
WO2021106236A1 PCT/JP2020/009283 JP2020009283W WO2021106236A1 WO 2021106236 A1 WO2021106236 A1 WO 2021106236A1 JP 2020009283 W JP2020009283 W JP 2020009283W WO 2021106236 A1 WO2021106236 A1 WO 2021106236A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gate electrode
gan layer
layer
gate
Prior art date
Application number
PCT/JP2020/009283
Other languages
English (en)
French (fr)
Inventor
弘治 河合
八木 修一
武尊 齊藤
中村 文彦
成井 啓修
Original Assignee
株式会社パウデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パウデック filed Critical 株式会社パウデック
Priority to CN202080037000.2A priority Critical patent/CN113875015A/zh
Priority to US17/615,462 priority patent/US20220238728A1/en
Publication of WO2021106236A1 publication Critical patent/WO2021106236A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66219Diodes with a heterojunction, e.g. resonant tunneling diodes [RTD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a diode, a method for manufacturing a diode, and an electric device, and in particular, a diode composed of a double-gate Polarization Super Junction (PSJ) field effect transistor using a gallium nitride (GaN) -based semiconductor and a diode thereof.
  • PSJ Polarization Super Junction
  • GaN gallium nitride
  • the present invention relates to a manufacturing method and an electric device using this diode.
  • PSJ-GaN-based diodes are known as high withstand voltage power diodes (see Patent Documents 1 and 2).
  • This PSJ-GaN-based diode is composed of a 3-terminal PSJ-GaN-based field effect transistor (FET).
  • FET field effect transistor
  • the PSJ-GaN-based FET is typically provided in a PSJ region including a sequentially laminated undoped GaN layer, an Al x Ga 1-x N layer and an undoped GaN layer, and adjacent to the PSJ region. It has a contact region composed of an undoped GaN layer, an Al x Ga 1-x N layer, an undoped GaN layer, and a p-type GaN layer that are sequentially laminated.
  • a gate electrode is provided on the p-type GaN layer in the contact region, and a source electrode and a drain electrode are provided on the Al x Ga 1-x N layers on both sides of the PSJ region and the contact region.
  • the electrode and the gate electrode are connected to each other.
  • the source electrode and the gate electrode form an anode electrode
  • the drain electrode constitutes a cathode electrode.
  • Japanese Patent No. 5828435 (particularly paragraph 0069, see FIG. 23).
  • Japanese Patent No. 5669119 (see paragraph 0117, FIG. 34 in particular).
  • the problem to be solved by the present invention is that it can be used as a high withstand voltage power diode capable of performing high power switching at high speed, and the on-voltage is lowered as compared with a conventional GaN-based Schottky diode. It is an object of the present invention to provide a diode capable of reducing energy loss and a method for manufacturing the same.
  • Another problem to be solved by this invention is to provide a high-performance electric device using the above diode.
  • Double-gate polarized superjunction GaN-based field effect transistor The double-gate polarized superjunction GaN-based field effect transistor The first GaN layer and The Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) on the first GaN layer and An undoped second GaN layer having a first island-like shape on the Al x Ga 1-x N layer, A p-type GaN layer having a second island-like shape on the second GaN layer, A source electrode and a drain electrode provided on the Al x Ga 1-x N layer so as to sandwich the second GaN layer, The first gate electrode electrically connected to the p-type GaN layer and With the second gate electrode provided on the gate insulating film provided inside the groove provided in the Al x Ga 1-x N layer in the portion between the source electrode and the second GaN layer.
  • the threshold voltage of the second gate electrode is 0 V or more, and the threshold voltage is 0 V or more.
  • the source electrode, the first gate electrode, and the second gate electrode are electrically connected to each other, or the source electrode and the second gate electrode are electrically connected to each other, and the second gate electrode is connected to each other.
  • a positive voltage is applied to the source electrode and the second gate electrode of 1 gate electrode, It is a diode in which an anode electrode is formed by the source electrode, the first gate electrode and the second gate electrode, or the source electrode and the second gate electrode, and the cathode electrode is formed by the drain electrode.
  • the thickness, conductivity type, composition, etc. of the first GaN layer, the Al x Ga 1-x N layer, and the second GaN layer constituting the polarization superjunction region are described in Patent Documents 1 and 2, for example. Determined according to what is stated.
  • the first GaN layer and the Al x Ga 1-x N layer are typically undoped, but may be doped with p-type impurities or n-type impurities at a low concentration, if necessary.
  • the Al composition x of the Al x Ga 1-x N layer is also determined based on, for example, those described in Patent Documents 1 and 2.
  • the first gate electrode electrically connected to the p-type GaN layer is typically provided on the p-type GaN layer. In this case, the concentration of p-type impurities on the surface of the p-type GaN layer with which the first gate electrode contacts is preferably set to a high concentration in order to reduce the contact resistance.
  • two-dimensional hole gas (2DHG) is applied to the second GaN layer in the vicinity of the hetero interface between the Al x Ga 1-x N layer and the second GaN layer.
  • Two-dimensional electron gas (2DEG) is formed in the first GaN layer in the vicinity of the hetero interface between the first GaN layer and the Al x Ga 1-x N layer.
  • the control by the first gate electrode is a normally-on type
  • the control by the second gate electrode is a normally-off type. Since the control by the first gate electrode is a normally-on type and the control by the second gate electrode is a normally-off type, the second gate electrode is in a state where a voltage equal to or higher than the threshold voltage V th is not applied.
  • the diode is turned off by interrupting the 2DEG directly under the gate electrode of 2, but when a voltage equal to or higher than the threshold voltage V th is applied to the second gate electrode, the source electrode and the drain electrode are connected so as to be connected. A channel consisting of 2DEG is formed and the diode is turned on.
  • the source electrode, the first gate electrode, and the second gate electrode are covered with each other. Electrodes are provided. Further, in order to electrically connect the source electrode and the second gate electrode to each other, an electrode is typically provided so as to cover the source electrode and the second gate electrode.
  • the thickness of the Al x Ga 1-x N layer of Al x Ga 1-x N layer portion of the groove provided in the portion between the source electrode and the second GaN layer is generally 3nm or 100nm Hereinafter, it is typically 3 nm or more and 30 nm or less.
  • the gate insulating film is made of a p-type semiconductor or an insulator.
  • the p-type semiconductor is, for example, p-type GaN, p-type InGaN, NiO x, and the like, but is not limited thereto. Since this p-type semiconductor is a thin film, it can be regarded as an insulator because it is depleted. However, being p-like is effective because it has the effect of increasing the electron barrier of the channel and is considered to reduce the leakage current.
  • the insulator is, for example, an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or the like, and specific examples thereof include Al 2 O 3 , SiO 2 , AlN, SiN x , SiON, and the like. It is not limited to.
  • the above diode can be manufactured by various methods, but preferably, it can be manufactured by the following method.
  • the present invention Double-gate polarized superjunction GaN-based field effect transistor
  • the double-gate polarized superjunction GaN-based field effect transistor The first GaN layer and The Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) on the first GaN layer and An undoped second GaN layer having a first island-like shape on the Al x Ga 1-x N layer, A p-type GaN layer having a second island-like shape on the second GaN layer, A source electrode and a drain electrode provided on the Al x Ga 1-x N layer so as to sandwich the second GaN layer,
  • the first gate electrode electrically connected to the p-type GaN layer and With the second gate electrode provided on the gate insulating film provided inside the groove provided in the Al x Ga 1-x N layer in the portion between the source electrode and the second GaN layer.
  • the threshold voltage of the second gate electrode is 0 V or more, and the threshold voltage is 0 V or more.
  • the source electrode, the first gate electrode, and the second gate electrode are electrically connected to each other, or the source electrode and the second gate electrode are electrically connected to each other, and the second gate electrode is connected to each other.
  • a positive voltage is applied to the source electrode and the second gate electrode of 1 gate electrode,
  • the step of forming the groove by A step of growing a p-type GaN layer for forming a gate insulating film on the p-type GaN layer so as to fill the groove, and A step of patterning the p-type GaN layer for forming the gate insulating film and the p-type GaN layer by etching to form the second island-like shape and forming the gate insulating film.
  • Double-gate polarized superjunction GaN-based field effect transistor The double-gate polarized superjunction GaN-based field effect transistor The first GaN layer and The Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) on the first GaN layer and An undoped second GaN layer having a first island-like shape on the Al x Ga 1-x N layer, A p-type GaN layer having a second island-like shape on the second GaN layer, A source electrode and a drain electrode provided on the Al x Ga 1-x N layer so as to sandwich the second GaN layer, The first gate electrode electrically connected to the p-type GaN layer and With the second gate electrode provided on the gate insulating film provided inside the groove provided in the Al x Ga 1-x N layer in the portion between the source electrode and the second GaN layer.
  • the threshold voltage of the second gate electrode is 0 V or more, and the threshold voltage is 0 V or more.
  • the source electrode, the first gate electrode, and the second gate electrode are electrically connected to each other, or the source electrode and the second gate electrode are electrically connected to each other, and the second gate electrode is connected to each other.
  • a positive voltage is applied to the source electrode and the second gate electrode of 1 gate electrode,
  • Double-gate polarized superjunction GaN-based field effect transistor The double-gate polarized superjunction GaN-based field effect transistor The first GaN layer and The Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) on the first GaN layer and An undoped second GaN layer having a first island-like shape on the Al x Ga 1-x N layer, A p-type GaN layer having a second island-like shape on the second GaN layer, A source electrode and a drain electrode provided on the Al x Ga 1-x N layer so as to sandwich the second GaN layer, The first gate electrode electrically connected to the p-type GaN layer and With the second gate electrode provided on the gate insulating film provided inside the groove provided in the Al x Ga 1-x N layer in the portion between the source electrode and the second GaN layer.
  • the threshold voltage of the second gate electrode is 0 V or more, and the threshold voltage is 0 V or more.
  • the source electrode, the first gate electrode, and the second gate electrode are electrically connected to each other, or the source electrode and the second gate electrode are electrically connected to each other, and the second gate electrode is connected to each other.
  • a positive voltage is applied to the source electrode and the second gate electrode of 1 gate electrode,
  • a step of sequentially growing the first GaN layer, the first Al x Ga 1-x N layer, and a p-type GaN layer for forming a gate insulating film on the entire surface of the base substrate A step of forming a first mask made of an inorganic insulator having the same shape as the groove on the p-type GaN layer for forming the gate insulating film, and A step of forming the gate insulating film by patterning the p-type GaN layer for forming the gate insulating film by etching using the first mask as an etching mask.
  • the second Al x Ga 1-x N layer on the first Al x Ga 1-x N layer using the first mask in growth mask, the second GaN layer and the p-type GaN layer The process of growing sequentially and A step of forming a second mask made of an inorganic insulator having the same shape as the second island shape on the p-type GaN layer, and A step of patterning the p-type GaN layer by etching using the second mask as an etching mask, and A step of forming a third mask made of an inorganic insulator having the same shape as the first island shape so as to cover the second mask.
  • this invention Have at least one diode
  • the diode Double-gate polarized superjunction GaN-based field effect transistor The double-gate polarized superjunction GaN-based field effect transistor The first GaN layer and The Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) on the first GaN layer and An undoped second GaN layer having a first island-like shape on the Al x Ga 1-x N layer, A p-type GaN layer having a second island-like shape on the second GaN layer, A source electrode and a drain electrode provided on the Al x Ga 1-x N layer so as to sandwich the second GaN layer, The first gate electrode electrically connected to the p-type GaN layer and With the second gate electrode provided on the gate insulating film provided inside the groove provided in the Al x Ga 1-x N layer in the portion between the source electrode and the second GaN layer.
  • the threshold voltage of the second gate electrode is 0 V or more, and the threshold voltage is 0 V or more.
  • the source electrode, the first gate electrode, and the second gate electrode are electrically connected to each other, or the source electrode and the second gate electrode are electrically connected to each other, and the second gate electrode is connected to each other.
  • a positive voltage is applied to the source electrode and the second gate electrode of 1 gate electrode, Electricity, which is a diode in which an anode electrode is formed by the source electrode, the first gate electrode and the second gate electrode, or the source electrode and the second gate electrode, and the cathode electrode is formed by the drain electrode. It is a device.
  • the electric equipment includes almost all equipment that uses electricity, regardless of the use, function, size, etc., but is, for example, an electronic equipment, a mobile body, a power unit, a construction machine, a machine tool, or the like.
  • Electronic devices include robots, computers, game devices, in-vehicle devices, household electrical products (air conditioners, etc.), industrial products, mobile phones, mobile devices, IT devices (servers, etc.), power conditioners used in photovoltaic power generation systems, and power transmission.
  • System etc. Mobile objects include railroad vehicles, automobiles (electric vehicles, etc.), motorcycles, aircraft, rockets, spacecraft, and the like.
  • the diode since the diode is composed of a double gate polarization superjunction GaN field effect transistor, it can be used as a high withstand voltage power diode capable of performing high power switching at high speed, and moreover, the diode.
  • the threshold voltage V th of the second gate electrode which is the on-voltage, can be easily lowered as compared with the conventional GaN-based Schottky diode, and therefore the energy loss can be reduced. Then, a high-performance electric device can be realized by using this excellent diode.
  • FIG. 5 is a cross-sectional view showing a PSJ-GaN-based diode according to an embodiment of the present invention using the wiring method shown in FIG.
  • FIG. 3 is a cross-sectional view showing a PSJ-GaN-based diode according to an embodiment of the present invention using the wiring method shown in FIG.
  • FIG. 1 It is a schematic diagram for demonstrating the operation principle of the PSJ-GaN-based diode according to one Embodiment of this invention. It is a schematic diagram for demonstrating the operation principle of the PSJ-GaN-based diode according to one Embodiment of this invention. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1. FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1. FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1. FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1. FIG.
  • FIG. 1 It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1.
  • FIG. 2 is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 1.
  • FIG. 1 It is a schematic diagram showing the I D -V D characteristic of the double-gate PSJ-GaN-based FET constituting the PSJ-GaN based diode manufactured by the method of PSJ-GaN based diode according to Example 1. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by the modification of Example 1.
  • FIG. 1 It is a schematic diagram which shows the double gate PSJ-GaN-based FET which comprises the PSJ-GaN-based diode manufactured by the manufacturing method of the PSJ-GaN-based diode by the modification of Example 1.
  • FIG. 1 It is a schematic diagram which shows the current-voltage characteristic of the PSJ-GaN system diode manufactured by the manufacturing method of the PSJ-GaN system diode by the modification of Example 1.
  • FIG. 2 is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 2.
  • FIG. 2 It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode according to Example 2.
  • FIG. 1 shows the manufacturing method of the PSJ-GaN-based diode according to Example 2.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the PSJ-GaN-based diode by Example 3.
  • FIG. It is sectional drawing which shows the manufacturing method of the
  • PSJ-GaN-based diode A PSJ-GaN-based diode according to an embodiment will be described. The basic structure of this PSJ-GaN-based diode is shown in FIG. This PSJ-GaN-based diode is composed of a double-gate PSJ-GaN-based FET.
  • a GaN layer 11, an undoped Al x Ga 1-x N layer 12, an undoped GaN layer 13 and a Mg-doped p-type GaN layer 14 are sequentially laminated.
  • the GaN layer 11 may be undoped or may be doped with p-type or n-type impurities at a low concentration.
  • the Al composition x of the undoped Al x Ga 1-x N layer 12 is, for example, 0.17 ⁇ x ⁇ 0.35, but is not limited thereto.
  • the undoped GaN layer 13 has a predetermined island-shaped planar shape.
  • the p-type GaN layer 14 has an island-like planar shape smaller than the undoped GaN layer 13.
  • a p + type GaN layer in which Mg is doped at a higher concentration than the p-type GaN layer 14 is provided on the surface of the p-type GaN layer 14.
  • the p + type GaN layer is included in the p type GaN layer 14.
  • the GaN layer 11, the undoped Al x Ga 1-x N layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 are, for example, the same as the PSJ-GaN-based FETs described in Patent Documents 1 and 2.
  • a first gate electrode 15 is provided on the p-type GaN layer 14 in ohmic contact with the p-type GaN layer 14.
  • the first gate electrode 15 may be basically any one as long as it makes ohmic contact with the p-type GaN layer 14, but it is made of, for example, a Ni film or a Ni / Au laminated film.
  • a groove 16 is provided in the undoped Al x Ga 1-x N layer 12 on one side of the undoped GaN layer 13, and a gate insulating film 17 made of a p-type semiconductor or an insulator is embedded in the groove 16.
  • a second gate electrode 18 is provided on the gate insulating film 17.
  • the second gate electrode 18 is made of, for example, a film made of at least one metal selected from the group consisting of Ti, Ni, Au, Pt, Pd, Mo and W.
  • the thickness of the undoped Al x Ga 1-x N layer 12 in the groove 16 portion is generally 3 nm or more and 100 nm or less, and typically 3 nm or more and 30 nm or less.
  • the thickness of the gate insulating film 17 is generally 3 nm or more and 100 nm or less, and typically 3 nm or more and 30 nm or less.
  • a source electrode 19 and a drain electrode 20 are provided on the undoped Al x Ga 1-x N layer 12 so as to sandwich the undoped GaN layer 13.
  • the source electrode 19 is provided on a portion opposite to the undoped GaN layer 13 with respect to the second gate electrode 18.
  • the GaN layer 11 and the undoped Al x Ga 1-x N layer 12 form a PSJ region, and the p-type GaN layer 14 and the GaN layer 11 immediately below it, the undoped Al x Ga 1-x N layer 12 and the undoped GaN layer 13 Consists of the gate electrode contact area.
  • the control by the first gate electrode 15 is a normally-on type
  • the control by the second gate electrode 18 is a normally-off type.
  • the threshold voltage of the second gate electrode 18 is typically 0 V or more and 0.9 V or less.
  • FIG. 2 shows one connection method, in which the source electrode 19, the first gate electrode 15, and the second gate electrode 18 are electrically connected to each other.
  • FIG. 3 shows another wiring method in which the source electrode 19 and the second gate electrode 18 are electrically connected to each other, and the first gate electrode 15 is connected to the source electrode 19 and the second gate electrode 18. It is a method of applying a positive constant voltage to.
  • the connection method shown in FIG. 3 has an advantage that the number of carriers of the 2DEG channel increases and the channel conductivity increases by applying a positive constant voltage to the first gate electrode 15.
  • the source electrode 19, the first gate electrode 15 and the second gate electrode 18 form an anode electrode, and the drain electrode 20 constitutes a cathode electrode.
  • the source electrode 19 and the second gate electrode 18 form an anode electrode, and the drain electrode 20 constitutes a cathode electrode.
  • This PSJ-GaN-based diode includes a source electrode 19 constituting an anode electrode, a first gate electrode 15 and a second gate electrode 18, or a source electrode 19 and a second gate electrode 18 and a drain electrode 20 constituting a cathode electrode. It can be operated as a diode by applying a voltage between and.
  • an electrode 21 made of Au or the like is formed so as to cover the source electrode 19, the first gate electrode 15, and the second gate electrode 18 as shown in FIG.
  • an electrode 22 made of Au or the like is formed so as to cover the source electrode 19 and the second gate electrode 18 as shown in FIG.
  • FIG. 6 shows the current-voltage characteristics of the PSJ-GaN-based diode composed of the double-gate PSJ-GaN-based FET.
  • the rising voltage that is, the on-voltage is the threshold voltage V th of the second gate electrode 18.
  • FIG. 6 also shows the current-voltage characteristics of a normal GaN-based Schottky diode for comparison. While the threshold voltage of a normal GaN-based Schottky diode is about 0.9V, the threshold voltage Vth of this PSJ-GaN-based diode is at least less than, typically much higher, for the reasons described below. Can be lowered.
  • FIG. 7 schematically shows a general MESFET type 3-terminal FET.
  • a gate electrode 102, a source electrode 103, and a drain electrode 104 are provided on the channel layer 101.
  • a gate voltage V g is applied to the gate electrode 102
  • a drain voltage V d is applied to the drain electrode 104.
  • the source electrode 103 is grounded.
  • the threshold voltage of this 3-terminal FET be V th .
  • the drain current (Id ) -drain voltage (V d ) characteristics when the drain voltage V d is changed from 0 V to the positive side in this 3-terminal FET are in the first quadrant of FIG. Will be shown in.
  • I d flows when V g > V th.
  • V d When V d is changed to the negative side, since V d ⁇ 0, the current flows to the drain electrode 104 side, and at this time, the I d ⁇ V d characteristic appears in the third quadrant of FIG.
  • V g 0 V is a case where the voltages of the source electrode 103 and the gate electrode 102 are equal as shown in FIG.
  • the FET shown in FIG. 9 is equivalent to the diode shown in FIG. 12 having a rising voltage V th having the diode characteristics shown in FIG.
  • this PSJ-GaN-based diode has the characteristics shown in FIG.
  • MOCVD Metalorganic Vapor Deposition
  • the undoped GaN layer 13 and the p-type GaN layer 14 are sequentially grown.
  • a general substrate conventionally used for growing the GaN layer for example, a C-plane sapphire substrate, a Si substrate, a SiC substrate, or the like can be used.
  • the undoped GaN layer 13 and the p-type GaN layer 14 are patterned, the groove 16 is formed in the undoped Al x Ga 1-x N layer 12, the gate insulating film 17 is embedded in the groove 16, and the first gate electrode 15 is formed.
  • the second gate electrode 18, the source electrode 19, and the drain electrode 20 are formed to manufacture the PSJ-GaN-based diode shown in FIG.
  • the groove 16 is formed in the undoped Al x Ga 1-x N layer 12 by etching, if necessary, the depth of the undoped Al x Ga 1-x N layer 12 in the thickness direction may be increased, for example.
  • An etching stop layer made of In (Al) GaN or the like is inserted.
  • an electrode 21 connecting the source electrode 19, the first gate electrode 15, and the second gate electrode 18 is formed as shown in FIG.
  • the electrode 22 connecting the source electrode 19 and the second gate electrode 18 is formed as shown in FIG.
  • a PSJ-GaN-based diode was manufactured as follows.
  • the entire surface of the base substrate 10 is subjected to TMG (trimethylgallium) as a Ga raw material, TMA (trimethylaluminum) as an Al raw material, NH 3 (ammonia) as a nitrogen raw material, and a carrier gas by the MOCVD method.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • NH 3 ammonia
  • a carrier gas by the MOCVD method.
  • the growth temperature was raised to 1100 ° C., GaN layer 11, undoped Al x Ga.
  • the 1-x N layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 were sequentially grown.
  • a C-plane sapphire substrate was used as the base substrate 10.
  • the thickness of the GaN layer 11 is 1.0 ⁇ m
  • the thickness of the undoped Al x Ga 1-x N layer 12 is 40 nm
  • x 0.25
  • the thickness of the undoped GaN layer 13 is 60 nm
  • the thickness is 60 nm
  • the Mg concentration is 5 ⁇ 10 18 cm -3
  • the thickness of the p + type GaN layer on the surface of the p-type GaN layer 14 is 3 nm
  • the Mg concentration is 5 ⁇ 10 19 cm -3 .
  • a groove 16 was formed in the undoped Al x Ga 1-x N layer 12 by a conventionally known photolithography technique and an ICP (inductively coupled plasma) etching technique using a Cl-based gas. That is, after forming a resist pattern (not shown) having an opening in a portion corresponding to the region where the groove 16 is formed on the p-type GaN layer 14, the p-type GaN layer 14 and the undoped GaN layer are used as a mask. 13 and the undoped Al x Ga 1-x N layer 12 were etched to a depth in the middle of the undoped Al x Ga 1-x N layer 12 in the thickness direction to form a groove 16.
  • ICP inductively coupled plasma
  • the thickness of the undoped Al x Ga 1-x N layer 12 in the groove 16 was set to about 10 nm.
  • a p-type GaN layer 23 having a thickness of about 30 nm was grown over the entire surface by the MOCVD method.
  • the p-type GaN layer 23 serves as a gate insulating film 17.
  • the GaN layer 11, the undoped Al x Ga 1-x N layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 in the portion corresponding to the element separation region (not shown) are arranged in the thickness direction of the GaN layer 11. Etch to a depth in the middle.
  • the surfaces of the second gate electrode 18, the PSJ region, and the region forming the first gate electrode 15 are masked with a resist pattern (not shown) having a predetermined shape to form p-type GaN.
  • the surface of the undoped GaN layer 13 was exposed by sequentially etching the layer 23 and the p-type GaN layer 14.
  • the surface of the region forming the source electrode 19 and the drain electrode 20 is masked with a resist pattern (not shown) having a predetermined shape, and the undoped GaN layer 13 is etched to etch the undoped Al x Ga 1-x N layer 12. The surface of the was exposed.
  • a resist pattern (not shown) having an opening in a portion corresponding to the region forming the source electrode 19 and the drain electrode 20 is formed, and then a Ti film (5 nm) and an Al film are formed on the entire surface of the substrate by a vacuum deposition method.
  • the resist pattern was removed together with the Ti / Al / Ni / Au laminated film formed on the film (lift-off), and is shown in FIG.
  • the source electrode 19 and the drain electrode 20 were formed on the undoped Al x Ga 1-x N layer 12.
  • rapid heat treatment RTA was performed at 800 ° C. for 60 seconds in a nitrogen (N 2 ) gas atmosphere, and the source electrode 19 and the drain electrode 20 were ohmic to the undoped Al x Ga 1-x N layer 12. Made contact.
  • a resist pattern (not shown) having an opening in a portion corresponding to a region forming the first gate electrode 15 and the second gate electrode 18 is formed, and then the entire surface of the substrate is formed.
  • the resist pattern was removed together with the Ni / Au laminated film formed on the Ni film (30 nm), and the first gate electrode 15 and the second gate electrode 15 and the second The gate electrode 18 was formed.
  • 500 ° C. in an N 2 gas atmosphere subjected to heat treatment for three minutes, the first gate electrode 15 and the second gate electrode 18 to the p-type GaN layer 14, 23 respectively by ohmic contact.
  • a resist pattern (not shown) having an opening in a portion corresponding to a region straddling the second gate electrode 18 and the first gate electrode 15 is formed, and then the entire surface of the substrate is formed.
  • the resist pattern is removed together with the Au film formed on the Au film, and the second gate electrode 18 and the first gate electrode 15 are electrically connected.
  • the electrode 24 was formed.
  • the target PSJ-GaN-based diode was manufactured.
  • FIG. 19 shows an equivalent circuit of a double-gate PSJ-GaN-based FET constituting the PSJ-GaN-based diode manufactured as described above.
  • S, D, G1 and G2 indicate a source electrode 19, a drain electrode 20, a first gate electrode 15 and a second gate electrode 18, respectively, and G indicates a group of G1 and G2.
  • the diode characteristic shown in FIG. 21 measures the I D -V D characteristic as two-terminal device by connecting the source electrode 19 and the first gate electrode 15 and the second gate electrode 18 outside the element
  • the source electrode 19 and the first gate are formed by forming the electrode 21 so as to cover the source electrode 19, the first gate electrode 15, and the second gate electrode 18.
  • the electrode 15 and the second gate electrode 18 can be connected inside the element.
  • the source electrode 19 (S), the first gate electrode 15 (G1) and the second gate electrode 18 (G2) at this time are used as the anode electrode, and the drain electrode 20 (D) is used as the cathode electrode.
  • the anode voltage VA is taken on the + axis, the polarity of the current is inverted from that shown in FIG. 21 to obtain a normal diode expression.
  • a PSJ-GaN-based diode was manufactured as follows.
  • a GaN layer 11, an undoped Al x Ga 1-x N layer 12, an undoped GaN layer 13 and a p-type GaN layer 14 were sequentially grown on the entire surface of the base substrate 10.
  • the GaN layer 11, the undoped Al x Ga 1-x N layer 12, the undoped GaN layer 13 and the p-type GaN layer 14 in the portion corresponding to the element separation region (not shown) are arranged in the thickness direction of the GaN layer 11. Etched to a depth in the middle.
  • the undoped Al x by patterning the undoped GaN layer 13 into a predetermined shape by etching The Ga 1-x N layer 12 was exposed.
  • the groove 16 was formed by etching the 1-x N layer 12. At this time, the thickness of the undoped Al x Ga 1-x N layer 12 in the groove 16 was set to about 10 nm.
  • the resist pattern was left as it was, and a NiO film (20 nm) and a TiN film (10 nm) were sequentially formed on the entire surface of the substrate by a sputtering method, and then the resist pattern was removed together with the NiO / TiN laminated film formed on the resist pattern. ..
  • the total thickness of the NiO film and the TiN film is substantially the same as the depth of the groove 16.
  • heat treatment was performed in an N 2 gas atmosphere to stabilize the NiO film 25.
  • the TiN film 26 is a cap layer for preventing oxygen (O) from being released from the NiO film 25 during heat treatment.
  • a resist pattern (not shown) having an opening in a portion corresponding to a region forming the first gate electrode 15 and the second gate electrode 18 is formed, and then the entire surface of the substrate is formed.
  • the resist pattern was removed together with the Ni / Au laminated film formed on the Ni film (50 nm), and the first gate electrode 15 and the second gate electrode 15 and the second The gate electrode 18 was formed. After that, heat treatment was performed at 500 ° C.
  • the first gate electrode 15 and the second gate electrode 18 were brought into ohmic contact with the p-type GaN layer 14 and the NiO film 25, respectively.
  • a resist pattern (not shown) having an opening is formed in a portion corresponding to the region where the electrode 22 is formed, and then an Au film (200 nm) is formed on the entire surface of the substrate by a vacuum vapor deposition method, and then the resist pattern is formed. It was removed together with the Au film formed on the source electrode 19 to form an electrode 22 covering the source electrode 19 and the second gate electrode 18.
  • the target PSJ-GaN-based diode was manufactured.
  • a PSJ-GaN-based diode was manufactured as follows.
  • the GaN layer 11, the undoped Al x Ga 1-x N layer 12, and the p-type GaN layer 23 were sequentially grown on the entire surface of the base substrate 10 by the MOCVD method.
  • the thickness of the GaN layer 11 is 1.0 ⁇ m
  • the thickness of the undoped Al x Ga 1-x N layer 12 is 10 nm
  • x 0.25
  • the thickness of the p-type GaN layer 23 is 60 nm
  • the Mg concentration is 5 ⁇ 10. It is 18 cm -3 .
  • the p-type GaN layer 23 finally becomes the gate insulating film 17.
  • the p-type GaN layer 23 is etched and patterned using the SiO 2 film 27 thus patterned as a mask until the undoped Al x Ga 1-x N layer 12 is exposed.
  • the undoped GaN layer 13 has a thickness of 65 nm
  • the p-type GaN layer 14 has a thickness of 65 nm
  • the Mg concentration is 5 ⁇ 10 18
  • the thickness of the p + type GaN layer on the surface of the cm -3 , p-type GaN layer 14 is 3 nm
  • the Mg concentration is 5 ⁇ 10 19 cm -3 .
  • these undoped Al x Ga 1-x N layers 28, the undoped GaN layer 13 and the p-type GaN layer 14 do not grow on the SiO 2 film 27.
  • the entire undoped Al x Ga 1-x N layer 12 and the undoped Al x Ga 1-x N layer 28 on the undoped Al x Ga 1-x N layer 28 correspond to the undoped Al x Ga 1-x N layer 12 shown in FIG.
  • the SiO 2 film 29 having a thickness of 0.2 ⁇ m is further formed on the entire surface while leaving the SiO 2 films 27 and 28, and then the SiO 2 film 29 is finally formed.
  • the undoped GaN layer 13 was patterned into a shape corresponding to the undoped GaN layer 13, and the undoped GaN layer 13 was etched and patterned until the undoped Al x Ga 1-x N layer 28 was exposed, using the SiO 2 film 29 patterned in this manner as a mask.
  • the source electrode 19 and the drain electrode 20 are formed on the undoped Al x Ga 1-x N layer 28 in the same manner as in Example 1, and the source electrode 19 and the drain electrode 20 are formed at 800 ° C. and 60 in an N 2 gas atmosphere. By performing RTA for seconds, the source electrode 19 and the drain electrode 20 were brought into ohmic contact with the undoped Al x Ga 1-x N layer 28.
  • the first gate electrode 15 and the second gate electrode 18 are p-type, respectively, in the same manner as in Example 2. It was formed on the GaN layer 14 and the p-type GaN layer 23 and brought into ohmic contact.
  • a resist pattern (not shown) having an opening in a portion corresponding to a region straddling the source electrode 19 and the second gate electrode 18 is formed, and then vacuum deposition is performed on the entire surface of the substrate.
  • the resist pattern is removed together with the Ti / Au laminated film formed on the resist pattern, and the source electrode 19 and the second gate electrode 18 are electrically connected.
  • the electrodes 22 to be connected to each other were formed.
  • the target PSJ-GaN-based diode was manufactured.
  • the PSJ-GaN-based diode is composed of the double-gate PSJ-GaN-based FET, the high withstand voltage power capable of performing high-power switching at high speed can be performed. It can be used as a diode, and the threshold voltage V th of the second gate electrode 18, which is the on-voltage of the diode, is 0 V or more and 0.9 V or less, for example 0.3 V, which is lower than that of the conventional GaN-based Schottky diode. Therefore, energy loss can be reduced.
  • the present invention is not limited to the above-described embodiments and examples, and various types based on the technical idea of the present invention. It can be transformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Thermistors And Varistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

ダイオードはダブルゲートPSJ-GaN系FETにより構成される。このFETは、GaN層11、Alx Ga1-x N層12、アンドープGaN層13およびp型GaN層14を有する。Alx Ga1-x N層12上にソース電極19およびドレイン電極20が、p型GaN層14上に第1のゲート電極15が、ソース電極19とアンドープGaN層13との間の部分のAlx Ga1-x N層12に設けられた溝16の内部に設けられたゲート絶縁膜17上に第2のゲート電極18が、それぞれ設けられている。ソース電極19と第1のゲート電極15と第2のゲート電極18とが互いに接続され、または、ソース電極19と第2のゲート電極18とが互いに接続され、かつ第1のゲート電極15にソース電極19および第2のゲート電極18に対して正の電圧が印加される。

Description

ダイオード、ダイオードの製造方法および電気機器
 この発明は、ダイオード、ダイオードの製造方法および電気機器に関し、特に、窒化ガリウム(GaN)系半導体を用いたダブルゲートの分極超接合(Polarization Super Junction;PSJ)電界効果トランジスタにより構成されたダイオードおよびその製造方法ならびにこのダイオードを用いた電気機器に関する。
 従来、高耐圧パワーダイオードとしてPSJ-GaN系ダイオードが知られている(特許文献1、2参照)。このPSJ-GaN系ダイオードは、3端子のPSJ-GaN系電界効果トランジスタ(FET)により構成される。このPSJ-GaN系FETは、典型的には、順次積層されたアンドープGaN層、AlGa1-x N層およびアンドープGaN層を含むPSJ領域と、このPSJ領域に隣接して設けられた、順次積層されたアンドープGaN層、AlGa1-x N層、アンドープGaN層およびp型GaN層からなるコンタクト領域とを有する。そして、コンタクト領域のp型GaN層上にゲート電極が設けられ、PSJ領域およびコンタクト領域を挟んでその両側の部分のAlGa1-x N層上にソース電極およびドレイン電極が設けられ、ソース電極とゲート電極とが互いに結線される。このPSJ-GaN系FETにより構成されるPSJ-GaN系ダイオードでは、ソース電極およびゲート電極がアノード電極を構成し、ドレイン電極がカソード電極を構成する。
特許第5828435号明細書(特に段落0069、図23参照) 特許第5669119号明細書(特に段落0117、図34参照)
 しかしながら、上述の従来のPSJ-GaN系ダイオードは、大電力のスイッチングを高速で行うことができるものの、オン電圧が従来の一般的なGaN系ショットキーダイオードと同等以上であるため、エネルギー損失の点で改善の余地があった。
 そこで、この発明が解決しようとする課題は、大電力のスイッチングを高速で行うことができる高耐圧パワーダイオードとして用いることができ、しかも従来のGaN系ショットキーダイオードに比べてオン電圧を低くすることができ、エネルギー損失の低減を図ることができるダイオードおよびその製造方法を提供することである。
 この発明が解決しようとする他の課題は、上記のダイオードを用いた高性能の電気機器を提供することである。
 上記課題を解決するために、この発明は、
 ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
 前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
 第1のGaN層と、
 前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
 前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
 前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
 前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
 前記p型GaN層に電気的に接続された第1のゲート電極と、
 前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
 前記第2のゲート電極の閾値電圧が0V以上であり、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
 前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードである。
 このダイオードにおいて、分極超接合領域を構成する第1のGaN層、AlGa1-x N層および第2のGaN層の厚さ、導電型、組成などは、例えば、特許文献1、2に記載されたものに準拠して決められる。例えば、第1のGaN層およびAlGa1-x N層は、典型的にはアンドープであるが、必要に応じて、p型不純物またはn型不純物が低濃度にドープされていてもよい。AlGa1-x N層のAl組成xも、例えば、特許文献1、2に記載されたものに準拠して決められる。p型GaN層に電気的に接続される第1のゲート電極は、典型的には、p型GaN層上に設けられる。この場合、第1のゲート電極がコンタクトするp型GaN層の表面のp型不純物濃度は、コンタクト抵抗低減のために、好適には高濃度に設定される。
 このダイオードにおいては、非動作時において、AlGa1-x N層と第2のGaN層との間のヘテロ界面の近傍の部分における第2のGaN層に2次元正孔ガス(2DHG)が形成され、かつ、第1のGaN層とAlGa1-x N層との間のヘテロ界面の近傍の部分における第1のGaN層に2次元電子ガス(2DEG)が形成される。このダイオードにおいて、第1のゲート電極による制御はノーマリーオン型、第2のゲート電極による制御はノーマリーオフ型である。第1のゲート電極による制御がノーマリーオン型、第2のゲート電極による制御がノーマリーオフ型であることにより、第2のゲート電極に閾値電圧Vth以上の電圧が印加されない状態では、第2のゲート電極の直下の2DEGが途絶することによりダイオードはオフであるが、第2のゲート電極に閾値電圧Vth以上の電圧が印加されると、ソース電極とドレイン電極とを接続するように2DEGからなるチャネルが形成され、ダイオードはオンとなる。
 ソース電極と第1のゲート電極と第2のゲート電極とを互いに電気的に接続するためには、典型的には、ソース電極と第1のゲート電極と第2のゲート電極とを覆うように電極が設けられる。また、ソース電極と第2のゲート電極とを互いに電気的に接続するためには、典型的には、ソース電極と第2のゲート電極とを覆うように電極が設けられる。
 ソース電極と第2のGaN層との間の部分におけるAlGa1-x N層に設けられた溝の部分のAlGa1-x N層の厚さは、一般的には3nm以上100nm以下、典型的には3nm以上30nm以下である。
 ゲート絶縁膜はp型半導体または絶縁体からなる。このp型半導体は、例えば、p型GaN、p型InGaN、NiOなどであるが、これに限定されるものではない。このp型半導体は薄膜であるため空乏化しているので絶縁体とみなせるが、pライクであることはチャネルの電子障壁を高める効果があり、リーク電流が少なくなると考えられるので有効である。絶縁体は、例えば、無機酸化物、無機窒化物、無機酸窒化物などであり、具体的には、例えば、Al、SiO、AlN、SiN、SiONなどが挙げられるが、これに限定されるものではない。
 上記のダイオードは種々の方法によって製造することができるが、好適には、次のような方法によって製造することができる。
 すなわち、この発明は、
 ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
 前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
 第1のGaN層と、
 前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
 前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
 前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
 前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
 前記p型GaN層に電気的に接続された第1のゲート電極と、
 前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
 前記第2のゲート電極の閾値電圧が0V以上であり、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
 前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
 ベース基板の全面に前記第1のGaN層、前記AlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
 前記溝の形成領域に対応する部分の前記p型GaN層、前記第2のGaN層および前記AlGa1-x N層を前記AlGa1-x N層の途中の深さまでエッチングすることにより前記溝を形成する工程と、
 前記溝を埋めるように前記p型GaN層上にゲート絶縁膜形成用p型GaN層を成長させる工程と、
 前記ゲート絶縁膜形成用p型GaN層および前記p型GaN層をエッチングによりパターニングして前記第2の島状の形状を形成するとともに前記ゲート絶縁膜を形成する工程と、
 前記AlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
 前記第2の島状の形状に形成された前記ゲート絶縁膜形成用p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
を有することを特徴とするダイオードの製造方法である。
 また、この発明は、
 ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
 前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
 第1のGaN層と、
 前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
 前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
 前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
 前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
 前記p型GaN層に電気的に接続された第1のゲート電極と、
 前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
 前記第2のゲート電極の閾値電圧が0V以上であり、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
 前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
 ベース基板の全面に前記第1のGaN層、前記AlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
 前記p型GaN層および前記第2のGaN層をエッチングによりそれぞれ前記第2の島状の形状および前記第1の島状の形状にパターニングする工程と、
 前記AlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
 前記溝の形成領域に対応する部分の前記AlGa1-x N層をその途中の深さまでエッチングすることにより前記溝を形成する工程と、
 前記溝の内部に前記ゲート絶縁膜を形成する工程と、
 前記p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
を有することを特徴とするダイオードの製造方法である。
 また、この発明は、
 ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
 前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
 第1のGaN層と、
 前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
 前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
 前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
 前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
 前記p型GaN層に電気的に接続された第1のゲート電極と、
 前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
 前記第2のゲート電極の閾値電圧が0V以上であり、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
 前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
 ベース基板の全面に前記第1のGaN層、第1のAlGa1-x N層およびゲート絶縁膜形成用p型GaN層を順次成長させる工程と、
 前記ゲート絶縁膜形成用p型GaN層上に前記溝と同一形状を有する無機絶縁体からなる第1のマスクを形成する工程と、
 前記第1のマスクをエッチングマスクに用いて前記ゲート絶縁膜形成用p型GaN層をエッチングによりパターニングして前記ゲート絶縁膜を形成する工程と、
 前記第1のマスクを成長マスクに用いて前記第1のAlGa1-x N層上に第2のAlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
 前記p型GaN層上に前記第2の島状の形状と同一形状を有する無機絶縁体からなる第2のマスクを形成する工程と、
 前記第2のマスクをエッチングマスクに用いて前記p型GaN層をエッチングによりパターニングする工程と、
 前記第2のマスクを覆うように前記第1の島状の形状と同一形状を有する無機絶縁体からなる第3のマスクを形成する工程と、
 前記第3のマスクをエッチングマスクに用いて前記第2のGaN層をエッチングによりパターニングする工程と、
 前記第2のAlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
 前記p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
を有することを特徴とするダイオードの製造方法である。
 また、この発明は、
 少なくとも一つのダイオードを有し、
 前記ダイオードが、
 ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
 前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
 第1のGaN層と、
 前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
 前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
 前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
 前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
 前記p型GaN層に電気的に接続された第1のゲート電極と、
 前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
 前記第2のゲート電極の閾値電圧が0V以上であり、
 前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
 前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードである電気機器である。
 ここで、電気機器は、およそ電気を用いるもの全てを含み、用途、機能、大きさなどを問わないが、例えば、電子機器、移動体、動力装置、建設機械、工作機械などである。電子機器は、ロボット、コンピュータ、ゲーム機器、車載機器、家庭電気製品(エアコンディショナーなど)、工業製品、携帯電話、モバイル機器、IT機器(サーバーなど)、太陽光発電システムで使用するパワーコンディショナー、送電システムなどである。移動体は、鉄道車両、自動車(電動車両など)、二輪車、航空機、ロケット、宇宙船などである。
 この電気機器の発明においては、上記以外のことは、上記のダイオードの発明に関連して説明したことが成立する。
 この発明によれば、ダブルゲート分極超接合GaN系電界効果トランジスタによりダイオードが構成されていることにより、大電力のスイッチングを高速で行うことができる高耐圧パワーダイオードとして用いることができ、しかもダイオードのオン電圧である第2のゲート電極の閾値電圧Vthは従来のGaN系ショットキーダイオードに比べて容易に低くすることができ、従ってエネルギー損失の低減を図ることができる。そして、この優れたダイオードを用いて高性能の電気機器を実現することができる。
この発明の一実施の形態によるPSJ-GaN系ダイオードを示す断面図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの電極間の一つの結線方式を示す略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの電極間のもう一つの結線方式を示す略線図である。 図2に示す結線方式を用いたこの発明の一実施の形態によるPSJ-GaN系ダイオードを示す断面図である。 図3に示す結線方式を用いたこの発明の一実施の形態によるPSJ-GaN系ダイオードを示す断面図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの電流-電圧特性を示す略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 この発明の一実施の形態によるPSJ-GaN系ダイオードの動作原理を説明するための略線図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1によるPSJ-GaN系ダイオードの製造方法により製造されたPSJ-GaN系ダイオードを構成するダブルゲートPSJ-GaN系FETを示す略線図である。 実施例1によるPSJ-GaN系ダイオードの製造方法により製造されたPSJ-GaN系ダイオードを構成するダブルゲートPSJ-GaN系FETのI-V特性を示す略線図である。 実施例1によるPSJ-GaN系ダイオードの製造方法により製造されたPSJ-GaN系ダイオードを構成するダブルゲートPSJ-GaN系FETのI-V特性を示す略線図である。 実施例1の変形例によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例1の変形例によるPSJ-GaN系ダイオードの製造方法により製造されたPSJ-GaN系ダイオードを構成するダブルゲートPSJ-GaN系FETを示す略線図である。 実施例1の変形例によるPSJ-GaN系ダイオードの製造方法により製造されたPSJ-GaN系ダイオードの電流-電圧特性を示す略線図である。 実施例2によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例2によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例2によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例2によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。 実施例3によるPSJ-GaN系ダイオードの製造方法を示す断面図である。
 以下、発明を実施するための形態(以下、実施の形態と言う。)について説明する。
〈一実施の形態〉
[PSJ-GaN系ダイオード]
 一実施の形態によるPSJ-GaN系ダイオードについて説明する。このPSJ-GaN系ダイオードの基本構造を図1に示す。このPSJ-GaN系ダイオードは、ダブルゲートPSJ-GaN系FETにより構成されたものである。
 図1に示すように、このPSJ-GaN系ダイオードにおいては、GaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびMgがドープされたp型GaN層14が順次積層されている。GaN層11は、アンドープであっても、p型もしくはn型の不純物が低濃度にドープされていてもよい。アンドープAlGa1-x N層12のAl組成xは例えば0.17≦x≦0.35であるが、これに限定されるものではない。アンドープGaN層13は所定の島状の平面形状を有する。p型GaN層14はアンドープGaN層13より小さい島状の平面形状を有する。図示は省略するが、p型GaN層14の表面にはこのp型GaN層14よりMgが高濃度にドープされたp型GaN層が設けられている。以下においては、p型GaN層はp型GaN層14に含まれるものとする。これらのGaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14は、例えば、特許文献1、2に記載されたPSJ-GaN系FETと同様である。
 p型GaN層14上には第1のゲート電極15がp型GaN層14とオーミック接触して設けられている。第1のゲート電極15は、p型GaN層14とオーミック接触するものであれば基本的にはどのようなものであってもよいが、例えば、Ni膜やNi/Au積層膜などからなる。アンドープGaN層13の片側の部分のアンドープAlGa1-x N層12には溝16が設けられ、この溝16の内部にp型半導体または絶縁体からなるゲート絶縁膜17が埋め込まれ、このゲート絶縁膜17上に第2のゲート電極18が設けられている。第2のゲート電極18は、例えば、Ti、Ni、Au、Pt、Pd、MoおよびWからなる群より選ばれた少なくとも一種の金属からなる膜からなる。溝16の部分のアンドープAlGa1-x N層12の厚さは、一般的には3nm以上100nm以下、典型的には3nm以上30nm以下である。また、ゲート絶縁膜17の厚さは、一般的には3nm以上100nm以下、典型的には3nm以上30nm以下である。アンドープGaN層13を挟むようにアンドープAlGa1-x N層12上にソース電極19およびドレイン電極20が設けられている。ソース電極19は第2のゲート電極18に関してアンドープGaN層13と反対側の部分に設けられている。
 このPSJ-GaN系ダイオードにおいては、アンドープGaN層13のうちp型GaN層14のドレイン電極20側の端部からアンドープGaN層13のドレイン電極20側の端部までの間の部分とその直下のGaN層11およびアンドープAlGa1-x N層12とがPSJ領域を構成し、p型GaN層14とその直下のGaN層11、アンドープAlGa1-x N層12およびアンドープGaN層13とがゲート電極コンタクト領域を構成する。
 このPSJ-GaN系ダイオードにおいては、非動作時(熱平衡時)において、ピエゾ分極および自発分極により、アンドープAlGa1-x N層12とアンドープGaN層13との間のヘテロ界面の近傍の部分におけるアンドープGaN層13に2DHGが形成され、かつ、GaN層11とアンドープAlGa1-x N層12との間のヘテロ界面の近傍の部分におけるGaN層11に2DEGが形成されている。
 このPSJ-GaN系ダイオードにおいては、第1のゲート電極15による制御はノーマリーオン型、第2のゲート電極18による制御はノーマリーオフ型となっている。第2のゲート電極18の閾値電圧は典型的には0V以上0.9V以下である。
 このPSJ-GaN系ダイオードにおけるソース電極19、第1のゲート電極15および第2のゲート電極18の結線の方式は二通りある。図2は一つの結線方式を示し、ソース電極19、第1のゲート電極15および第2のゲート電極18を互いに電気的に接続する方式である。図3はもう一つの結線方式を示し、ソース電極19および第2のゲート電極18を互いに電気的に接続し、これらのソース電極19および第2のゲート電極18に対して第1のゲート電極15に正の一定電圧を印加する方式である。図3に示す結線方式では、第1のゲート電極15に正の一定電圧が印加されることにより、2DEGチャネルのキャリア数が増加し、チャネル伝導度が増加する利点がある。
 このPSJ-GaN系ダイオードにおいては、図2に示す結線方式では、ソース電極19、第1のゲート電極15および第2のゲート電極18がアノード電極を構成し、ドレイン電極20がカソード電極を構成し、図3に示す結線方式では、ソース電極19および第2のゲート電極18がアノード電極を構成し、ドレイン電極20がカソード電極を構成する。このPSJ-GaN系ダイオードは、アノード電極を構成するソース電極19、第1のゲート電極15および第2のゲート電極18あるいはソース電極19および第2のゲート電極18とカソード電極を構成するドレイン電極20との間に電圧を印加することによりダイオードとして動作させることができる。
 図2に示す結線を行うためには、図4に示すようにソース電極19、第1のゲート電極15および第2のゲート電極18を覆うようにAuなどからなる電極21を形成する。図3に示す結線を行うためには、図5に示すようにソース電極19および第2のゲート電極18を覆うようにAuなどからなる電極22を形成する。
[PSJ-GaN系ダイオードの動作]
 ダブルゲートPSJ-GaN系FETにより構成されたPSJ-GaN系ダイオードの動作について説明する。
 ダブルゲートPSJ-GaN系FETにより構成されたPSJ-GaN系ダイオードの電流-電圧特性を図6に示す。図6に示すように、立ち上がり電圧、すなわちオン電圧は第2のゲート電極18の閾値電圧Vthである。図6には、比較のために、通常のGaN系ショットキーダイオードの電流-電圧特性を併せて示す。通常のGaN系ショットキーダイオードの閾値電圧は約0.9Vであるのに対し、以下に説明する理由によりこのPSJ-GaN系ダイオードの閾値電圧Vthは少なくともそれ以下、典型的にはそれよりずっと低くすることができる。
 図7にMESFET型の一般的な3端子FETを模式的に示す。図7に示すように、チャネル層101上にゲート電極102、ソース電極103およびドレイン電極104が設けられている。ゲート電極102にはゲート電圧Vが印加され、ドレイン電極104にはドレイン電圧Vが印加される。ソース電極103は接地される。この3端子FETの閾値電圧をVthとする。この3端子FETにおいてドレイン電圧Vを0Vから正の側に変化させたときのドレイン電流(I)-ドレイン電圧(V)特性は、良く知られているように図8の第1象限に示すようになる。ここで、V>VthのときにIが流れる。Vを負側に変化させたときには、V<0であるので、電流はドレイン電極104側に流れ、このときI-V特性は図8の第3象限に現れる。さて、ソース電極103とドレイン電極104との間に電流が流れるためにはV-V>Vthでなければならない。さらに、V=0Vのときには、V<-Vthのときに電流が流れる。V=0Vというのは、図9に示すように、ソース電極103とゲート電極102との電圧が等しい場合である。図8からV=0VのI-V特性だけを取り出すと図10に示すようになる。図10を見ると、このI-V特性は、オン電圧=Vthのダイオード特性であることが分かる。言い換えると、図9に示すFETは、図11に示すダイオード特性を有する、立ち上がり電圧Vthの図12に示すダイオードと等価である。その結果、このPSJ-GaN系ダイオードは図6に示すような特性を有する。
[PSJ-GaN系ダイオードの製造方法]
 PSJ-GaN系ダイオードの製造方法の一例を説明する。
 ベース基板(図示せず)の全面に、従来公知のMOCVD(有機金属化学気相成長)法などにより、アンドープまたは低濃度にドープされたGaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14を順次成長させる。ベース基板としては、GaN層の成長に従来より用いられている一般的な基板、例えばC面サファイア基板、Si基板、SiC基板などを用いることができる。次に、アンドープGaN層13およびp型GaN層14のパターニング、アンドープAlGa1-x N層12への溝16の形成、溝16へのゲート絶縁膜17の埋め込み、第1のゲート電極15、第2のゲート電極18、ソース電極19およびドレイン電極20の形成を行って図1に示すPSJ-GaN系ダイオードを製造する。なお、アンドープAlGa1-x N層12にエッチングにより溝16を形成する場合は、必要に応じて、アンドープAlGa1-x N層12の厚さ方向の途中の深さに、例えばIn(Al)GaNなどからなるエッチングストップ層を挿入する。図2に示す結線方式を用いる場合には、図4に示すようにソース電極19、第1のゲート電極15および第2のゲート電極18を接続する電極21を形成する。図3に示す結線方式を用いる場合には、図5に示すようにソース電極19および第2のゲート電極18を接続する電極22を形成する。
[実施例1]
 次のようにしてPSJ-GaN系ダイオードを製造した。
 まず、図13に示すように、ベース基板10の全面に、MOCVD法により、Ga原料としてTMG(トリメチルガリウム)、Al原料としてTMA(トリメチルアルミニウム)、窒素原料としてNH(アンモニア)、キャリアガスとしてNガスおよびHガスを用いて、低温成長(530℃)GaNバッファ層(図示せず)を厚さ30nm積層した後、成長温度を1100℃に上昇させ、GaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14を順次成長させた。ベース基板10としてはC面サファイア基板を用いた。GaN層11の厚さは1.0μm、アンドープAlGa1-x N層12は厚さが40nm、x=0.25、アンドープGaN層13の厚さは60nm、p型GaN層14の厚さは60nm、Mg濃度は5×1018cm-3、p型GaN層14の表面のp型GaN層の厚さは3nm、Mg濃度は5×1019cm-3である。
 次に、図14に示すように、従来公知のフォトリソグラフィー技術およびCl系ガスによるICP(誘導結合プラズマ)エッチング技術により、アンドープAlGa1-x N層12に溝16を形成した。すなわち、p型GaN層14上に溝16を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成した後、このレジストパターンをマスクとしてp型GaN層14、アンドープGaN層13およびアンドープAlGa1-x N層12をアンドープAlGa1-x N層12の厚さ方向の途中の深さまでエッチングして溝16を形成した。このとき、溝16の部分のアンドープAlGa1-x N層12の厚さは約10nmとした。次に、MOCVD法により全面に厚さ約30nmのp型GaN層23を成長させた。p型GaN層23はゲート絶縁膜17となるものである。
 次に、素子分離領域(図示せず)に対応する部分のGaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14をGaN層11の厚さ方向の途中の深さまでエッチングする。次に、図15に示すように、第2のゲート電極18、PSJ領域および第1のゲート電極15を形成する領域の表面を所定形状のレジストパターン(図示せず)でマスクしてp型GaN層23およびp型GaN層14を順次エッチングすることによりアンドープGaN層13の表面を露出させた。次に、ソース電極19およびドレイン電極20を形成する領域の表面を所定形状のレジストパターン(図示せず)でマスクしてアンドープGaN層13をエッチングすることによりアンドープAlGa1-x N層12の表面を露出させた。
 次に、ソース電極19およびドレイン電極20を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりTi膜(5nm)、Al膜(50nm)、Ni膜(10nm)およびAu膜(150nm)を順次形成した後、レジストパターンをその上に形成されたTi/Al/Ni/Au積層膜とともに除去し(リフトオフ)、図16に示すように、アンドープAlGa1-x N層12上にソース電極19およびドレイン電極20を形成した。この後、窒素(N)ガス雰囲気中で800℃、60秒の急速熱処理(Rapid Thermal Annealing;RTA)を行い、ソース電極19およびドレイン電極20をアンドープAlGa1-x N層12にオーミック接触させた。
 次に、図17に示すように、第1のゲート電極15および第2のゲート電極18を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりNi膜(30nm)およびAu膜(200nm)を順次形成した後、レジストパターンをその上に形成されたNi/Au積層膜とともに除去し、第1のゲート電極15および第2のゲート電極18を形成した。この後、Nガス雰囲気中で500℃、3分の熱処理を行い、第1のゲート電極15および第2のゲート電極18をそれぞれp型GaN層14、23にオーミック接触させた。
 次に、図18に示すように、第2のゲート電極18と第1のゲート電極15とを跨ぐ領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりAu膜(300nm)を形成した後、レジストパターンをその上に形成されたAu膜とともに除去し、第2のゲート電極18と第1のゲート電極15とを電気的に接続する電極24を形成した。
 以上により、目的とするPSJ-GaN系ダイオードを製造した。
 以上のようにして製造されたPSJ-GaN系ダイオードを構成するダブルゲートPSJ-GaN系FETの等価回路を図19に示す。図19中、S、D、G1、G2はそれぞれソース電極19、ドレイン電極20、第1のゲート電極15、第2のゲート電極18を示し、GはG1、G2をまとめたものを示す。この3端子FETとしてのダブルゲートPSJ-GaN系FETのI-V特性を測定した結果を図20に示す。この測定は、V=-5V~+10Vまで、V=-1Vから+2Vまで行った。図20から分かるように、Vthは概ね0Vであった。
 図20からV=0VのI-V特性のみを取り出したものを図21に示す。V=0Vであるから、このときのI-V特性は、図19中のGとSとを接続した2端子素子の特性である。図21から分かるように、立ち上がり電圧、すなわちオン電圧Von=約0.3Vのダイオード特性が得られた。
 なお、図21に示すダイオード特性は、ソース電極19と第1のゲート電極15および第2のゲート電極18とを素子の外部で接続することにより2端子素子としてI-V特性を測定することにより得られたが、図22に示すように、ソース電極19、第1のゲート電極15および第2のゲート電極18を覆うように電極21を形成することによりソース電極19と第1のゲート電極15および第2のゲート電極18とを素子内部で接続することができる。図23に示すように、このときのソース電極19(S)、第1のゲート電極15(G1)および第2のゲート電極18(G2)をアノード電極、ドレイン電極20(D)をカソード電極とする。図24に示すように、このとき、アノード電圧Vを+軸に取ると、電流の極性が図21に示すものから反転して通常のダイオード表現となる。
[実施例2]
 次のようにしてPSJ-GaN系ダイオードを製造した。
 まず、実施例1と同様に、ベース基板10の全面にGaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14を順次成長させた。
 次に、素子分離領域(図示せず)に対応する部分のGaN層11、アンドープAlGa1-x N層12、アンドープGaN層13およびp型GaN層14をGaN層11の厚さ方向の途中の深さまでエッチングした。次に、図25に示すように、p型GaN層14をエッチングにより所定形状にパターニングしてアンドープGaN層13を露出させた後、アンドープGaN層13をエッチングにより所定形状にパターニングしてアンドープAlGa1-x N層12を露出させた。
 次に、図26に示すように、実施例1と同様にして、アンドープAlGa1-x N層12上にソース電極19およびドレイン電極20を形成した後、Nガス雰囲気中で800℃、60秒のRTAを行い、ソース電極19およびドレイン電極20をアンドープAlGa1-x N層12にオーミック接触させた。
 次に、図27に示すように、第2のゲート電極18を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成した後、このレジストパターンをマスクとしてアンドープAlGa1-x N層12をエッチングすることにより溝16を形成した。このとき、溝16の部分のアンドープAlGa1-x N層12の厚さは約10nmとした。次に、レジストパターンをそのままにして、基板全面にスパッタリング法によりNiO膜(20nm)およびTiN膜(10nm)を順次形成した後、レジストパターンをその上に形成されたNiO/TiN積層膜とともに除去した。NiO膜およびTiN膜の合計の厚さは溝16の深さとほぼ同一である。こうして、溝16の部分にゲート絶縁膜17に対応するNiO膜25およびその上のTiN膜26を形成した後、NiO膜25の安定化のためにNガス雰囲気中で熱処理を行った。ここで、TiN膜26は熱処理時にNiO膜25から酸素(O)が抜けるのを防止するためのキャップ層である。
 次に、図28に示すように、第1のゲート電極15および第2のゲート電極18を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりNi膜(50nm)およびAu膜(150nm)を順次形成した後、レジストパターンをその上に形成されたNi/Au積層膜とともに除去し、第1のゲート電極15および第2のゲート電極18を形成した。この後、Nガス雰囲気中で500℃、1分の熱処理を行い、第1のゲート電極15および第2のゲート電極18をそれぞれp型GaN層14およびNiO膜25にオーミック接触させた。この後、電極22を形成する領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりAu膜(200nm)を形成した後、レジストパターンをその上に形成されたAu膜とともに除去し、ソース電極19および第2のゲート電極18を覆う電極22を形成した。
 以上により、目的とするPSJ-GaN系ダイオードを製造した。
[実施例3]
 次のようにしてPSJ-GaN系ダイオードを製造した。
 まず、図29に示すように、ベース基板10の全面にMOCVD法によりGaN層11、アンドープAlGa1-x N層12およびp型GaN層23を順次成長させた。GaN層11の厚さは1.0μm、アンドープAlGa1-x N層12は厚さが10nm、x=0.25、p型GaN層23の厚さは60nm、Mg濃度は5×1018cm-3である。p型GaN層23は最終的にゲート絶縁膜17となるものである。次に、p型GaN層23上に真空蒸着法により厚さ0.35μmのSiO膜27を形成した後、このSiO膜27をエッチングによりゲート絶縁膜17に対応する所定形状にパターニングした。
 次に、図30に示すように、こうしてパターニングされたSiO膜27をマスクとしてp型GaN層23をアンドープAlGa1-x N層12が露出するまでエッチングしてパターニングする。
 次に、図31に示すように、MOCVD法により全面にアンドープAlGa1-x N層28、アンドープGaN層13およびp型GaN層14を順次成長させた。アンドープAlGa1-x N層28は厚さが30nm、x=0.25、アンドープGaN層13の厚さは65nm、p型GaN層14の厚さは65nm、Mg濃度は5×1018cm-3、p型GaN層14の表面のp型GaN層の厚さは3nm、Mg濃度は5×1019cm-3である。この際、これらのアンドープAlGa1-x N層28、アンドープGaN層13およびp型GaN層14はSiO膜27上には成長しない。この場合、アンドープAlGa1-x N層12とその上のアンドープAlGa1-x N層28との全体が図1に示すアンドープAlGa1-x N層12に対応する。
 次に、図32に示すように、SiO膜27を残したまま、全面に厚さ0.2μmのSiO膜28を形成した後、このSiO膜28を最終的に形成するp型GaN層14に対応する形状にパターニングし、こうしてパターニングされたSiO膜28をマスクとしてp型GaN層14をアンドープGaN層13が露出するまでエッチングしてパターニングする。
 次に、図33に示すように、SiO膜27、28を残したまま、さらに全面に厚さ0.2μmのSiO膜29を形成した後、このSiO膜29を最終的に形成するアンドープGaN層13に対応する形状にパターニングし、こうしてパターニングされたSiO膜29をマスクとしてアンドープGaN層13をアンドープAlGa1-x N層28が露出するまでエッチングしてパターニングした。
 次に、図34に示すように、実施例1と同様にしてアンドープAlGa1-x N層28上にソース電極19およびドレイン電極20を形成し、Nガス雰囲気中で800℃、60秒のRTAを行うことにより、ソース電極19およびドレイン電極20をアンドープAlGa1-x N層28にオーミック接触させた。
 次に、図35に示すように、SiO膜27、28、29をエッチングにより除去した後、実施例2と同様にして、第1のゲート電極15および第2のゲート電極18をそれぞれp型GaN層14およびp型GaN層23上に形成し、オーミック接触させた。
 次に、図36に示すように、ソース電極19と第2のゲート電極18とを跨ぐ領域に対応する部分に開口を有するレジストパターン(図示せず)を形成し、続いて基板全面に真空蒸着法によりTi膜(5nm)およびAu膜(200nm)を順次形成した後、レジストパターンをその上に形成されたTi/Au積層膜とともに除去し、ソース電極19と第2のゲート電極18とを電気的に接続する電極22を形成した。
 以上により、目的とするPSJ-GaN系ダイオードを製造した。
 以上のように、この一実施の形態によれば、PSJ-GaN系ダイオードは、ダブルゲートPSJ-GaN系FETにより構成されていることにより、大電力のスイッチングを高速で行うことができる高耐圧パワーダイオードとして用いることができ、しかもダイオードのオン電圧である第2のゲート電極18の閾値電圧Vthを0V以上0.9V以下、例えば0.3Vと従来のGaN系ショットキーダイオードに比べて低くすることができ、従ってエネルギー損失の低減を図ることができる。こうしてエネルギー損失の低減を図ることができることにより、低消費電力および低発熱のPSJ-GaN系ダイオードを得ることができ、それによってPSJ-GaN系ダイオードの小型化を図ることができる。そして、この優れたPSJ-GaN系ダイオードを用いて高性能の電気機器を実現することができる。
 以上、この発明の一実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態および実施例において挙げた数値、構造、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料などを用いてもよい。
 10 ベース基板
 11 GaN層
 12 アンドープAlGa1-x N層
 13 アンドープGaN層
 14 p型GaN層
 15 第1のゲート電極
 16 溝
 17 ゲート絶縁膜
 18 第2のゲート電極
 19 ソース電極
 20 ドレイン電極

Claims (14)

  1.  ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
     前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
     第1のGaN層と、
     前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
     前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
     前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
     前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
     前記p型GaN層に電気的に接続された第1のゲート電極と、
     前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
     前記第2のゲート電極の閾値電圧が0V以上であり、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
     前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオード。
  2.  前記第1のゲート電極による制御はノーマリーオン型、前記第2のゲート電極による制御はノーマリーオフ型である請求項1記載のダイオード。
  3.  前記第2のゲート電極の閾値電圧が0V以上0.9V以下である請求項1記載のダイオード。
  4.  前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆うように電極が設けられていることにより前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続されている請求項1記載のダイオード。
  5.  前記ソース電極と前記第2のゲート電極とを覆うように電極が設けられていることにより前記ソース電極と前記第2のゲート電極とが互いに電気的に接続されている請求項1記載のダイオード。
  6.  前記溝の部分の前記AlGa1-x N層の厚さは3nm以上100nm以下である請求項1記載のダイオード。
  7.  前記ゲート絶縁膜はp型半導体または絶縁体からなる請求項1記載のダイオード。
  8.  前記p型半導体はp型GaN、p型InGaNまたはNiOである請求項7記載のダイオード。
  9.  前記絶縁体は無機酸化物、無機窒化物または無機酸窒化物である請求項7記載のダイオード。
  10.  前記絶縁体はAl、SiO、AlN、SiNまたはSiONである請求項7記載のダイオード。
  11.  ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
     前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
     第1のGaN層と、
     前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
     前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
     前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
     前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
     前記p型GaN層に電気的に接続された第1のゲート電極と、
     前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
     前記第2のゲート電極の閾値電圧が0V以上であり、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
     前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
     ベース基板の全面に前記第1のGaN層、前記AlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
     前記溝の形成領域に対応する部分の前記p型GaN層、前記第2のGaN層および前記AlGa1-x N層を前記AlGa1-x N層の途中の深さまでエッチングすることにより前記溝を形成する工程と、
     前記溝を埋めるように前記p型GaN層上にゲート絶縁膜形成用p型GaN層を成長させる工程と、
     前記ゲート絶縁膜形成用p型GaN層および前記p型GaN層をエッチングによりパターニングして前記第2の島状の形状を形成するとともに前記ゲート絶縁膜を形成する工程と、
     前記AlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
     前記第2の島状の形状に形成された前記ゲート絶縁膜形成用p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
    を有することを特徴とするダイオードの製造方法。
  12.  ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
     前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
     第1のGaN層と、
     前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
     前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
     前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
     前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
     前記p型GaN層に電気的に接続された第1のゲート電極と、
     前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
     前記第2のゲート電極の閾値電圧が0V以上であり、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
     前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
     ベース基板の全面に前記第1のGaN層、前記AlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
     前記p型GaN層および前記第2のGaN層をエッチングによりそれぞれ前記第2の島状の形状および前記第1の島状の形状にパターニングする工程と、
     前記AlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
     前記溝の形成領域に対応する部分の前記AlGa1-x N層をその途中の深さまでエッチングすることにより前記溝を形成する工程と、
     前記溝の内部に前記ゲート絶縁膜を形成する工程と、
     前記p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
    を有することを特徴とするダイオードの製造方法。
  13.  ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
     前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
     第1のGaN層と、
     前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
     前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
     前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
     前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
     前記p型GaN層に電気的に接続された第1のゲート電極と、
     前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
     前記第2のゲート電極の閾値電圧が0V以上であり、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
     前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードの製造方法であって、
     ベース基板の全面に前記第1のGaN層、第1のAlGa1-x N層およびゲート絶縁膜形成用p型GaN層を順次成長させる工程と、
     前記ゲート絶縁膜形成用p型GaN層上に前記溝と同一形状を有する無機絶縁体からなる第1のマスクを形成する工程と、
     前記第1のマスクをエッチングマスクに用いて前記ゲート絶縁膜形成用p型GaN層をエッチングによりパターニングして前記ゲート絶縁膜を形成する工程と、
     前記第1のマスクを成長マスクに用いて前記第1のAlGa1-x N層上に第2のAlGa1-x N層、前記第2のGaN層および前記p型GaN層を順次成長させる工程と、
     前記p型GaN層上に前記第2の島状の形状と同一形状を有する無機絶縁体からなる第2のマスクを形成する工程と、
     前記第2のマスクをエッチングマスクに用いて前記p型GaN層をエッチングによりパターニングする工程と、
     前記第2のマスクを覆うように前記第1の島状の形状と同一形状を有する無機絶縁体からなる第3のマスクを形成する工程と、
     前記第3のマスクをエッチングマスクに用いて前記第2のGaN層をエッチングによりパターニングする工程と、
     前記第2のAlGa1-x N層上に前記ソース電極および前記ドレイン電極を形成する工程と、
     前記p型GaN層および前記ゲート絶縁膜上にそれぞれ前記第1のゲート電極および前記第2のゲート電極を形成する工程と、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とを覆う電極または前記ソース電極と前記第2のゲート電極とを覆う電極を形成する工程と、
    を有することを特徴とするダイオードの製造方法。
  14.  少なくとも一つのダイオードを有し、
     前記ダイオードが、
     ダブルゲート分極超接合GaN系電界効果トランジスタにより構成され、
     前記ダブルゲート分極超接合GaN系電界効果トランジスタが、
     第1のGaN層と、
     前記第1のGaN層上のAlGa1-x N層(0<x<1)と、
     前記AlGa1-x N層上の、第1の島状の形状を有するアンドープの第2のGaN層と、
     前記第2のGaN層上の、第2の島状の形状を有するp型GaN層と、
     前記第2のGaN層を挟むように前記AlGa1-x N層上に設けられたソース電極およびドレイン電極と、
     前記p型GaN層に電気的に接続された第1のゲート電極と、
     前記ソース電極と前記第2のGaN層との間の部分における前記AlGa1-x N層に設けられた溝の内部に設けられたゲート絶縁膜上に設けられた第2のゲート電極とを有し、
     前記第2のゲート電極の閾値電圧が0V以上であり、
     前記ソース電極と前記第1のゲート電極と前記第2のゲート電極とが互いに電気的に接続され、または、前記ソース電極と前記第2のゲート電極とが互いに電気的に接続され、かつ前記第1のゲート電極に前記ソース電極および前記第2のゲート電極に対して正の電圧が印加され、
     前記ソース電極、前記第1のゲート電極および前記第2のゲート電極または前記ソース電極および前記第2のゲート電極によりアノード電極が構成され、前記ドレイン電極によりカソード電極が構成されているダイオードである電気機器。
PCT/JP2020/009283 2019-11-29 2020-03-05 ダイオード、ダイオードの製造方法および電気機器 WO2021106236A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080037000.2A CN113875015A (zh) 2019-11-29 2020-03-05 二极管、二极管的制造方法和电气设备
US17/615,462 US20220238728A1 (en) 2019-11-29 2020-03-05 Diode, method for producing diode, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215950 2019-11-29
JP2019215950A JP6679036B1 (ja) 2019-11-29 2019-11-29 ダイオード、ダイオードの製造方法および電気機器

Publications (1)

Publication Number Publication Date
WO2021106236A1 true WO2021106236A1 (ja) 2021-06-03

Family

ID=70166424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009283 WO2021106236A1 (ja) 2019-11-29 2020-03-05 ダイオード、ダイオードの製造方法および電気機器

Country Status (5)

Country Link
US (1) US20220238728A1 (ja)
JP (1) JP6679036B1 (ja)
CN (1) CN113875015A (ja)
TW (1) TWI803770B (ja)
WO (1) WO2021106236A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941904B1 (ja) * 2021-03-11 2021-09-29 株式会社パウデック ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363060A (ja) * 1991-01-08 1992-12-15 Toshiba Corp 電圧制御回路
JP2017212425A (ja) * 2016-05-24 2017-11-30 株式会社デンソー 半導体装置
JP2019145703A (ja) * 2018-02-22 2019-08-29 株式会社デンソー 半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084750A4 (en) * 2006-11-20 2010-12-22 Panasonic Corp SEMICONDUCTOR DEVICE AND ITS TRAINING METHOD
US7875907B2 (en) * 2007-09-12 2011-01-25 Transphorm Inc. III-nitride bidirectional switches
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US7999288B2 (en) * 2007-11-26 2011-08-16 International Rectifier Corporation High voltage durability III-nitride semiconductor device
WO2011100304A1 (en) * 2010-02-09 2011-08-18 Massachusetts Institute Of Technology Dual-gate normally-off nitride transistors
KR101821642B1 (ko) * 2010-06-24 2018-01-24 더 유니버시티 오브 셰필드 반도체 소자
GB2482308A (en) * 2010-07-28 2012-02-01 Univ Sheffield Super junction silicon devices
JP2013041986A (ja) * 2011-08-16 2013-02-28 Advanced Power Device Research Association GaN系半導体装置
WO2013071699A1 (zh) * 2011-11-18 2013-05-23 中国科学院苏州纳米技术与纳米仿生研究所 一种iii族氮化物hemt器件
US8723227B2 (en) * 2012-09-24 2014-05-13 Analog Devices, Inc. Heterojunction compound semiconductor protection clamps and methods of forming the same
KR101927411B1 (ko) * 2012-09-28 2018-12-10 삼성전자주식회사 2deg와 2dhg를 이용한 반도체 소자 및 제조방법
KR102065113B1 (ko) * 2013-05-01 2020-01-10 삼성전자주식회사 고전자이동도 트랜지스터 및 그 제조 방법
KR102333752B1 (ko) * 2014-11-18 2021-12-01 인텔 코포레이션 n-채널 및 p-채널 갈륨 질화물 트랜지스터들을 사용하는 CMOS 회로들
JP6646363B2 (ja) * 2015-06-02 2020-02-14 株式会社アドバンテスト 半導体装置
CN106981513A (zh) * 2017-04-24 2017-07-25 苏州能屋电子科技有限公司 基于高阻盖帽层的ⅲ族氮化物极化超结hemt器件及其制法
US10224924B1 (en) * 2017-08-22 2019-03-05 Infineon Technologies Austria Ag Bidirectional switch with passive electrical network for substrate potential stabilization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363060A (ja) * 1991-01-08 1992-12-15 Toshiba Corp 電圧制御回路
JP2017212425A (ja) * 2016-05-24 2017-11-30 株式会社デンソー 半導体装置
JP2019145703A (ja) * 2018-02-22 2019-08-29 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
TW202121543A (zh) 2021-06-01
US20220238728A1 (en) 2022-07-28
CN113875015A (zh) 2021-12-31
TWI803770B (zh) 2023-06-01
JP6679036B1 (ja) 2020-04-15
JP2021086965A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
EP2166575B1 (en) Compound semiconductor device
JP4755961B2 (ja) 窒化物半導体装置及びその製造方法
US8692292B2 (en) Semiconductor device including separated gate electrode and conductive layer
US8716756B2 (en) Semiconductor device
US20110012173A1 (en) Semiconductor device
KR101092467B1 (ko) 인헨스먼트 노말리 오프 질화물 반도체 소자 및 그 제조방법
JP2007035905A (ja) 窒化物半導体素子
JP7317936B2 (ja) 窒化物半導体装置
JP2010153493A (ja) 電界効果半導体装置及びその製造方法
JP4474292B2 (ja) 半導体装置
US9385001B1 (en) Self-aligned ITO gate electrode for GaN HEMT device
CN106206708A (zh) 半导体装置
CN106531789A (zh) 通过极性控制实现增强型hemt的方法及增强型hemt
WO2021106236A1 (ja) ダイオード、ダイオードの製造方法および電気機器
WO2022190414A1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
US20220359669A1 (en) Nitride semiconductor device and method of manufacturing the same
JP2013239735A (ja) 電界効果トランジスタ
JP7061779B1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
JP6941904B1 (ja) ノーマリーオフ型分極超接合GaN系電界効果トランジスタおよび電気機器
US20240014094A1 (en) Nitride semiconductor device
KR100985470B1 (ko) 고 전자 이동도 트랜지스터 및 그 제조방법
CN112310209A (zh) 一种场效应晶体管及其制备方法
US20140217416A1 (en) Nitrides based semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892222

Country of ref document: EP

Kind code of ref document: A1