WO2021104447A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021104447A1
WO2021104447A1 PCT/CN2020/132206 CN2020132206W WO2021104447A1 WO 2021104447 A1 WO2021104447 A1 WO 2021104447A1 CN 2020132206 W CN2020132206 W CN 2020132206W WO 2021104447 A1 WO2021104447 A1 WO 2021104447A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
feeding point
slot antenna
groove
antenna
Prior art date
Application number
PCT/CN2020/132206
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
王汉阳
余冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/780,857 priority Critical patent/US20230006333A1/en
Priority to EP20893164.2A priority patent/EP4050730A4/en
Publication of WO2021104447A1 publication Critical patent/WO2021104447A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to the field of antenna technology, and in particular to an antenna device used in electronic equipment.
  • Multi-input multi-output (MIMO) technology plays a very important role in the 5th generation (5G) wireless communication system.
  • 5G 5th generation
  • electronic devices such as mobile phones
  • MIMO performance is still a big challenge for electronic devices, such as mobile phones, to obtain good MIMO performance.
  • electronic devices such as mobile phones
  • the embodiment of the present invention provides an antenna device, which can realize a wideband antenna design in which both resonance modes of the slot antenna are common mode, the radiation pattern is the same, the left and right hand holding performance are the same, and the SAR values of the two modes are the same.
  • an embodiment of the present application provides an electronic device, which includes a PCB, a metal frame, and an antenna device.
  • the antenna device may include: a slot, a first feeding point, a second feeding point, and a bridge structure; wherein,
  • the slot can be opened between the PCB and the first section of the metal frame. Both ends of the slot can be grounded.
  • the groove may include a first side edge and a second side edge, the first side edge may be formed by one side edge of the PCB, and the second side edge may be formed by the first section of the metal frame.
  • a gap can be opened on the second side.
  • the second side edge may include a first part and a second part, the first part may be located on one side of the gap, and the second part may be located on the other side of the gap.
  • the first feeding point may be located on the first part of the second side, and the second feeding point may be located on the second part of the second side.
  • the first feeding point can be connected to the positive pole of the feed source of the antenna device, and the second feeding point can be connected to the negative pole of the feed source of the antenna device.
  • the bridge structure may include a first end and a second end, the first end may be connected to the first part, or extend beyond the first side edge to the groove, and the second end may be connected to the second part, or extend beyond the first side edge to the groove.
  • the feeding structure formed by the first feeding point and the second feeding point can excite the slot to generate a CM slot antenna mode.
  • This feeding structure is the anti-symmetric feeding mentioned in the subsequent embodiments.
  • the current and electric field distribution of the CM slot antenna mode has the following characteristics: the current is distributed in the same direction on both sides of the slot, but the electric field is distributed in reverse on both sides of the slot.
  • the current and electric field of the CM slot antenna mode can be generated by the slots on both sides of the slot working in the 1/4 wavelength mode.
  • the antenna design scheme adopted by the electronic device provided in the first aspect can achieve basically the same left and right hand holding efficiency in the vertical screen holding scene.
  • the first feeding point and the second feeding point may be connected to the feeder network of the feed source, and the feeder network may include two holes formed by the hollowed-out PCB floor and extending from the floor. Symmetrical parallel wires.
  • the bridge structure may be a metal bracket for direct laser forming of LDS, which may be erected above the back of the PCB 17.
  • the bridge structure can optimize impedance matching.
  • the side where the PCB floor is provided may be referred to as the front side of the PCB, and the other side (the PCB floor is not provided) may be referred to as the back side of the PCB.
  • the gap may be set at the middle position of the second side edge, or may be set deviating from the middle position.
  • the groove may be a U-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to two sides of the metal frame, and may be a U-shaped groove located at the bottom of the electronic device.
  • the groove can also be a U-shaped groove on the top of the electronic device, or a U-shaped groove on the side of the electronic device.
  • the groove may be an L-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to one side of the metal frame, and may be an L-shaped groove located on the left or right side of the bottom of the electronic device.
  • the groove can also be an L-shaped groove on the top of the electronic device.
  • the layout position of the antenna device in the electronic device may be one or more of the following: the bottom of the electronic device, the top of the electronic device, or the side of the electronic device.
  • the electronic device may include a plurality of the antenna devices, and the plurality of antenna devices may be arranged at multiple positions on the top, bottom, or sides of the electronic device. For example, if the electronic device includes two such antenna devices, the two antenna devices may be respectively arranged on the top and bottom of the electronic device.
  • the first feeding point and the second feeding point may be respectively connected to the positive and negative electrodes of the feed through a coaxial transmission line, and the first feeding point is specifically connected to the center conductor of the coaxial transmission line, The second feeding point is specifically connected to the outer conductor of the coaxial transmission line.
  • the first feeding point and the second feeding point may be located close to the gap, or may be located close to the two ends of the slot, respectively.
  • the size of the bridge structure is relatively large, and some lumped devices (such as lumped inductors) can be added to reduce the size, that is, the bridge structure is a lumped device.
  • the bridge structure can also be formed by hollowing out the PCB floor.
  • an embodiment of the present application provides an electronic device, which includes a PCB, a metal frame, and an antenna device.
  • the antenna device may include: a slot, a first feeding point, a second feeding point, and a bridge structure; wherein,
  • the slot can be opened between the PCB and the first section of the metal frame.
  • the first section of the metal frame includes a first end and a second end; both ends of the slot can be grounded.
  • the groove may include a first side edge and a second side edge, the first side edge may be formed by one side edge of the PCB, and the second side edge may be formed by the first section of the metal frame.
  • a plurality of slits can be opened on the second side.
  • the second side may include a first part, a second part, and a third part. The first part may be located on one side of the third part, and the second part may be located on the other side of the third part.
  • the third part may include a first slit, a second slit, and a floating section located between the first slit and the second slit.
  • the first feeding point may be located on the first part of the second side, and the second feeding point may be located on the second part of the second side.
  • the first feeding point can be connected to the positive pole of the feed source of the antenna device, and the second feeding point can be connected to the negative pole of the feed source of the antenna device.
  • the bridge structure may include a first end and a second end, the first end may be connected to the first part, or extend beyond the first side edge to the groove, and the second end may be connected to the second part, or extend beyond the first side edge to the groove.
  • the second aspect is different from the first aspect in that there are two gaps on the second side in the second aspect: the first gap and the second gap. It is not limited to two gaps, and the third part may include three or more gaps, and a floating section between these gaps.
  • the bridge structure can also connect the suspension section in the third part.
  • the bridge structure may include a T-shaped structure: while connecting the grooves on both sides of the gap, it also connects the floating metal frame in the middle of the gap.
  • the T-shaped structure may include a horizontal stub and a vertical stub. The two ends of the horizontal stub are the aforementioned first end and the aforementioned second end, respectively, which are respectively connected to the first part of the second side and the first part of the second side.
  • the vertical branch connects the suspended section.
  • the bridge structure may be a metal bracket for direct laser forming of LDS, which may be erected above the back of the PCB.
  • the bridge structure can optimize impedance matching.
  • the side where the PCB floor is provided may be referred to as the front side of the PCB, and the other side (without the PCB floor) may be referred to as the back side of the PCB.
  • the gap may be set at the middle position of the second side, or may be set deviating from the middle position.
  • the groove may be a U-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to two sides of the metal frame, and may be a U-shaped groove located at the bottom of the electronic device.
  • the groove can also be a U-shaped groove on the top of the electronic device, or a U-shaped groove on the side of the electronic device.
  • the groove may be an L-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to one side of the metal frame, and may be an L-shaped groove located on the left or right side of the bottom of the electronic device.
  • the groove can also be an L-shaped groove on the top of the electronic device.
  • the layout position of the antenna device in the electronic device may be one or more of the following: the bottom of the electronic device, the top of the electronic device, or the side of the electronic device.
  • the electronic device may include a plurality of the antenna devices, and the plurality of antenna devices may be arranged at multiple positions on the top, bottom, or sides of the electronic device. For example, if the electronic device includes two such antenna devices, the two antenna devices may be respectively arranged on the top and bottom of the electronic device.
  • the first feeding point and the second feeding point may be respectively connected to the positive and negative electrodes of the feed through a coaxial transmission line, and the first feeding point is specifically connected to the center conductor of the coaxial transmission line, The second feeding point is specifically connected to the outer conductor of the coaxial transmission line.
  • the first feeding point and the second feeding point may be located close to the gap, or may be located close to both ends of the slot, respectively.
  • the size of the bridge structure is larger, and some lumped devices (such as lumped inductors) can be added to reduce the size, that is, the bridge structure is a lumped device.
  • some lumped devices such as lumped inductors
  • the bridge structure can also be formed by hollowing out the PCB floor.
  • FIG. 1 is a schematic diagram of the structure of an electronic device on which the antenna design solution provided by the present application is based;
  • Fig. 2A is a schematic diagram of a MIMO antenna design scheme in the prior art
  • Fig. 2B is a schematic structural diagram of the antenna design scheme shown in Fig. 2A;
  • Fig. 3A is an S11 simulation diagram of the antenna design scheme shown in Fig. 2A;
  • Fig. 3B is a schematic diagram of current and electric field of the antenna design scheme shown in Fig. 2A;
  • Fig. 3C is a radiation pattern of the antenna design scheme shown in Fig. 2A;
  • Fig. 3D is an efficiency simulation diagram of the antenna design scheme shown in Fig. 2A;
  • 4A is a schematic diagram of the CM slot antenna involved in this application.
  • 4B is a schematic diagram of the distribution of current, electric field, and magnetic current in the CM slot antenna mode
  • FIG. 5A is a schematic diagram of the DM slot antenna involved in this application.
  • 5B is a schematic diagram of the current, electric field, and magnetic current distribution of the DM slot antenna mode
  • Fig. 6A is a front view of the slot antenna provided in the first embodiment
  • 6B is a schematic diagram of the front structure of the slot antenna provided in the first embodiment
  • Fig. 6C shows a back view of the slot antenna provided in the first embodiment
  • 6D is a schematic diagram of the backside structure of the slot antenna provided in the first embodiment
  • Figure 7 is a schematic diagram of the anti-symmetric feed structure
  • Figure 8 is a schematic diagram of the "bridge" structure erected on the PCB
  • Fig. 9A is a front view of a slot antenna provided by an extended solution of the first embodiment
  • FIG. 9B shows a back view of the slot antenna provided by the extended solution of the first embodiment
  • 10A is an S11 simulation diagram of the slot antenna provided in the first embodiment
  • 10B is a radiation pattern of the slot antenna provided in the first embodiment
  • 10C is a simulation diagram of the efficiency of the slot antenna provided in the first embodiment
  • FIG. 11 is a schematic diagram of the current and electric field distributions of two resonances of the slot antenna provided in the first embodiment
  • FIG. 12A is a front view of the slot antenna provided in the second embodiment
  • 12B is a schematic diagram of the front structure of the slot antenna provided in the second embodiment
  • 12C is a back view of the slot antenna provided in the second embodiment
  • 12D is a schematic diagram of the back structure of the slot antenna provided in the second embodiment.
  • FIG. 13A is an S11 simulation diagram of the slot antenna provided in the second embodiment
  • FIG. 13B is a radiation pattern of the slot antenna provided in the second embodiment
  • 13C is a simulation diagram of the efficiency of the slot antenna provided in the second embodiment
  • FIG. 14 is a schematic diagram of the current and electric field distributions of two resonances of the slot antenna provided in the second embodiment
  • FIG. 15 is a "bridge" structure extension implementation manner provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of a 4*4 MIIMO antenna provided by an embodiment of this application.
  • FIG. 17A is a front view of another slot antenna provided by an embodiment of this application.
  • FIG. 17B is a back view of another slot antenna provided by an embodiment of the application.
  • the technical solution provided in this application is applicable to electronic devices that use one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity (wireless fidelity, Wi -Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology , 5G communication technology, SUB-6G communication technology and other future communication technologies.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (PDA), etc.
  • Fig. 1 exemplarily shows the internal environment of the electronic device on which the antenna design solution provided in this application is based.
  • the electronic device 10 may include: a glass cover 13, a display screen 15, a printed circuit board PCB 17, a housing 19 and a back cover 21.
  • the glass cover 13 can be arranged close to the display screen 15 and can be mainly used to protect the display screen 15 from dust.
  • the printed circuit board PCB17 can be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is a code name for the grade of flame-resistant materials
  • Rogers dielectric board is a high-frequency board.
  • a metal layer may be provided on the side of the printed circuit board PCB17 close to the housing 19, and the metal layer may be formed by etching metal on the surface of the PCB17.
  • the metal layer can be used to ground the electronic components carried on the printed circuit board PCB17 to prevent users from getting electric shock or equipment damage.
  • This metal layer can be called a PCB floor.
  • the side with the PCB floor may be referred to as the front side of the PCB, and the other side (without the PCB floor) may be referred to as the back side of the PCB.
  • the housing 19 may include a metal frame 11, and the metal frame 11 may be formed of a conductive material such as metal.
  • the metal frame 11 can extend around the periphery of the PCB 17 and the display screen 15 to help fix the display screen 15.
  • the metal frame 11 made of a metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of the metal frame, which is suitable for a metal ID.
  • the outer surface of the metal frame 11 may also be provided with a non-metal frame, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
  • the metal frame 11 can be divided into 4 parts, which can be named as the bottom edge, the top edge and the two sides according to their respective positions in the electronic device.
  • the top edge can be arranged on the top of the electronic device 10, and the bottom edge can be arranged on the bottom of the electronic device 10.
  • the two sides can be respectively arranged on both sides of the electronic device 10.
  • the top of the electronic device 10 may be provided with a front camera (not shown), an earpiece (not shown), a proximity light sensor (not shown) and other devices.
  • the bottom of the electronic device 10 may be provided with a USB charging port (not shown), a microphone (not shown), and the like.
  • the side of the electronic device 10 may be provided with a volume adjustment button (not shown) and a power button (not shown).
  • the back cover 21 may be a back cover made of a non-metallic material, such as a glass back cover, a plastic back cover, etc., or a back cover made of a metal material.
  • FIG. 1 only schematically shows some components included in the electronic device 10, and the actual shape, actual size, and actual structure of these components are not limited by FIG. 1.
  • the electronic device 10 may adopt a full-screen industrial design (ID).
  • ID means a huge screen-to-body ratio (usually above 90%).
  • the frame width of the full screen is greatly reduced, and the internal components of the electronic device 10, such as the front camera, receiver, fingerprint reader, antenna, etc., need to be re-arranged.
  • antenna design the headroom area is reduced, and the antenna space is further compressed.
  • FIG. 2A is a schematic structural diagram of the model shown in Fig. 2A.
  • the metal frame 11 and the PCB floor are used to form a groove 21, and a gap 25 is opened in the middle of the bottom edge of the metal frame 11.
  • the metal frame 11 on one side of the slot 25 is fed with power, and the metal frame 11 on the other side is loaded with devices (such as capacitors), which can simultaneously excite the common mode slot antenna mode and the differential mode slot antenna mode to form a dual resonance to cover relatively Wide frequency band.
  • devices such as capacitors
  • Fig. 3A shows the S11 curve of the antenna structure exemplarily shown in Fig. 2A designed in a low frequency band. Among them, the resonance "1" is near 0.84GHz, and the resonance "2" is near 0.91GHz.
  • Figure 3B shows the current and electric field distributions of the antenna structure exemplarily shown in Figure 2A around 0.84GHz and 0.91GHz, corresponding to the common mode slot antenna mode (low resonance) and differential mode slot antenna mode (high resonance) respectively .
  • Fig. 3C shows a radiation pattern of the antenna structure exemplarily shown in Fig. 2A at two frequencies of 0.84 GHz and 0.91 GHz.
  • FIG. 3A shows the S11 curve of the antenna structure exemplarily shown in Fig. 2A designed in a low frequency band. Among them, the resonance "1" is near 0.84GHz, and the resonance "2" is near 0.91GHz.
  • Figure 3B shows the current and electric field distributions of the antenna structure exemplarily shown in Figure 2A around 0.84GHz and 0.91GHz,
  • 3D shows the efficiency curves of the left and right hand grip compared with free space in the vertical screen hand grip scene of the antenna structure exemplarily shown in FIG. 2A. It can be seen that the performance of the left-handed and right-handed antennas is quite different, and the difference in system efficiency and radiation efficiency is as high as 1.5dB. This is because the radiation performance of the common mode slot antenna mode and the differential mode slot antenna mode are different.
  • This application provides an antenna design scheme.
  • a wideband antenna design in which the two resonance modes of the slot antenna are both common-mode slot antenna modes is realized.
  • the radiation patterns of the two resonances are the same, and the left and right hands hold The performance is the same, and the specific absorption ratio (SAR) values of the two modes are the same.
  • SAR specific absorption ratio
  • CM slot antenna mode 1. Common mode (CM) slot antenna mode
  • the slot antenna 101 may include a slot 103, a feeding point 107, and a feeding point 109.
  • the slot 103 can be opened on the PCB floor.
  • An opening 105 is provided on one side of the groove 103, and the opening 105 can be specifically opened in the middle of the side.
  • the feeding point 107 and the feeding point 109 may be respectively arranged on both sides of the opening 105.
  • the feeding point 107 and the feeding point 109 can be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 101.
  • the center conductor (transmission line center conductor) of the coaxial transmission line can be connected to the feed point 107 through the transmission line, and the outer conductor (transmission line outer conductor) of the coaxial transmission line can pass through The transmission line is connected to the feeding point 109.
  • the outer conductor of the coaxial transmission line is grounded.
  • the slot antenna 101 can be fed at the opening 105, and the opening 105 can also be referred to as a feeding place.
  • the positive pole of the feed source can be connected to one side of the opening 105, and the negative pole of the feed source can be connected to the other side of the opening 105.
  • FIG. 4B shows the current, electric field, and magnetic current distribution of the slot antenna 101.
  • the current is distributed in the same direction on both sides of the middle position of the slot antenna 101, but the electric field and magnetic current are distributed in opposite directions on both sides of the middle position of the slot antenna 101.
  • the feed structure shown in FIG. 4A may be referred to as an anti-symmetric feed structure.
  • the slot antenna pattern shown in FIG. 4B can be referred to as a CM slot antenna pattern.
  • the electric field, current, and magnetic current shown in FIG. 4B can be respectively referred to as the electric field, current, and magnetic current of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slots on both sides of the middle position of the slot antenna 101 operating in the 1/4 wavelength mode: the current is weak at the middle position of the slot antenna 101 and strong at both ends of the slot antenna 101.
  • the electric field is strong at the middle position of the slot antenna 101 and weak at both ends of the slot antenna 101.
  • the slot antenna 110 may include a slot 113, a feeding point 117, and a feeding point 115.
  • the slot 113 can be opened on the PCB floor.
  • the feeding point 117 and the feeding point 115 may be respectively arranged in the middle positions of the two sides of the slot 113.
  • the feeding point 117 and the feeding point 115 may be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 110.
  • the center conductor of the coaxial transmission line can be connected to the feed point 117 through the transmission line
  • the outer conductor of the coaxial transmission line can be connected to the feed point 115 through the transmission line.
  • the outer conductor of the coaxial transmission line is grounded.
  • the middle position 112 of the slot antenna 110 is connected to the feed source, and the middle position 112 may also be referred to as the feed point.
  • the positive pole of the feed source can be connected to one side of the slot 113, and the negative pole of the feed source can be connected to the other side of the slot 113.
  • FIG. 5B shows the current, electric field, and magnetic current distribution of the slot antenna 110.
  • the current is distributed in the opposite direction on both sides of the middle position 112 of the slot antenna 110, but the electric field and magnetic current are distributed in the same direction on both sides of the middle position 112 of the slot antenna 110.
  • the feeding structure shown in FIG. 5A may be referred to as a symmetric feeding structure.
  • the slot antenna pattern shown in FIG. 5B can be referred to as a DM slot antenna pattern.
  • the electric field, current, and magnetic current shown in Fig. 5B can be distributed called the electric field, current, and magnetic current of the DM slot antenna mode.
  • the current and electric field of the DM slot antenna mode are generated by the entire slot 21110 working in the 1/2 wavelength mode: the current is weak at the middle position of the slot antenna 110 and strong at both ends of the slot antenna 110.
  • the electric field is strong at the middle position of the slot antenna 110 and weak at both ends of the slot antenna 110.
  • the antenna simulation is based on the following environment: the width of the whole machine is 78mm, and the length of the whole machine is 158mm.
  • the metal frame 11 has a thickness of 4 mm and a width of 3 mm, and the antenna clearance in the Z-projection area is 1 mm.
  • the width of the slit (such as the gap 25) on the metal frame 11 is 1 mm to 2 mm.
  • the dielectric constant of the material filled in the slot (such as slot 21) formed between the metal frame 11 and the PCB floor, the gap 25 on the metal frame 11, and the gap between the bridge structure 29 and the PCB floor is 3.0, and the loss angle Is 0.01.
  • the metal frame 11 and the PCB floor are used to form a slot antenna radiator.
  • two low-frequency (working frequency bands near LTE B5) CM slot antennas are excited on the slot antenna radiator. mode.
  • FIG. 6A-6D show the slot antenna provided by Embodiment 1.
  • FIG. 6A shows a front-side view of the slot antenna
  • FIG. 6B is a schematic diagram of the front-side structure of the slot antenna
  • Fig. 6C shows a back-side view of the slot antenna
  • Fig. 6D is a schematic diagram of the back-side view of the slot antenna.
  • the front side refers to the front side of the PCB 17 and the back side refers to the back side of the PCB 17.
  • the front view shows the anti-symmetric feed design for the antenna structure
  • the back view shows the symmetric feed design for the antenna structure.
  • the slot antenna provided by Embodiment 1 may include: a slot 21, a feeding point M, and a feeding point N. among them,
  • the slot 21 may be opened between the PCB 17 and the first section of the metal frame 11.
  • One side 23-1 of the slot 21 is formed by one side 17-1 of the PCB 17, and the other side 23-2 is formed by the first section of the metal frame 11.
  • the first section of the metal frame 11 may be a section of the metal frame between the position 11-1 and the position 11-3.
  • the side 23-1 may be referred to as a first side
  • the side 23-2 may be referred to as a second side.
  • the first section of the metal frame 11 may specifically be the bottom edge of the metal frame, that is, the groove 21 may be opened between the PCB 17 and the bottom edge of the metal frame.
  • the groove 21 may extend from the bottom edge of the metal frame 11 to the side edge of the metal frame 11, and may be a U-shaped groove with a symmetrical structure at the bottom of the electronic device 10.
  • Both ends of the slot 21 may be grounded, and the two ends may include one end 21-1 and the other end 21-3.
  • a gap 25 can be opened on one side 23-2 of the groove 21 formed by the metal frame 11.
  • the gap 25 can connect the groove 21 to the external free space.
  • the side 23-2 may have one slit 25 or multiple slits 25.
  • the side 23-2 may include two parts: a first part and a second part.
  • the first part is located on one side of the gap 25 and the second part is located on the other side of the gap 25.
  • the plurality of slits 25 may divide the side 23-2 to form a suspended section.
  • the side 23-2 may include three parts: a first part, a second part, and a third part.
  • the first part is located on one side of the third part, and the first part is located on one side of the third part.
  • the second part is located on the other side of the third part, and the third part may include the plurality of gaps 25 and the floating section between the plurality of gaps 25.
  • the side 23-2 may include three parts: a first part, a second part, and a third part.
  • the first part is located on one side of the third part
  • the second part is located on the other side of the third part.
  • the third part may include the two gaps 25 and the suspension section between the two gaps 25.
  • the slit 25 may be set at the middle position of the side, or may be set deviated from the middle position. If the slit 25 is a plurality of slits, the slit 25 is arranged in the middle position of the side edge, which may mean that the plurality of slits are located in the middle position of the side edge 23-2 as a whole.
  • the feeding point M and the feeding point N may be located on the side 23-2 of the slot 21 formed by the metal frame 11, and specifically may be respectively arranged on both sides of the gap 25. That is, the feeding point M is located on the first part of the side 23-2, and the feeding point N is located on the second part of the side 23-2.
  • the slot antenna provided in Embodiment 1 may have an anti-symmetric feed structure. That is, the feed point M and the feed point N can be used to connect the positive and negative poles of the feed source, respectively.
  • a coaxial transmission line can be used to feed the slot antenna
  • the center conductor of the coaxial transmission line (connected to the positive electrode of the feed source) can be connected to the feed point M through the transmission line
  • the outer conductor (ground) of the coaxial transmission line can be connected through the transmission line To feed point N.
  • the feeding point M and the feeding point N can be specifically arranged symmetrically on both sides of the middle position of the side 23-2.
  • the feeding network connected to the feeding point M and the feeding point N can be specifically realized by hollowing out the PCB 17, so as to make full use of the PCB floor on the front of the PCB 17 to realize the feeding network and save design space.
  • the partial area at the bottom center of the PCB 17 can be hollowed out to form a feeder network for the slot antenna: two symmetrical parallel wires 27-1 and 27-2 extending from the PCB floor
  • the positive electrode C and the negative electrode D of the feed are formed between 27-1 and the lead 27-2.
  • the connection points between the feeding network and the slot antenna are feeding point M and feeding point N.
  • the connection point is the connection point where the feed network indirectly connects the slot antenna through the matching network.
  • the equivalent circuit of the feeder network can be shown in Figure 7.
  • the matching network 28 of the feed network can be further formed by hollowing out the PCB 17.
  • the connection points between the matching network 28 and the feeding network are the connection point E, the connection point F, the connection point J, and the connection point K. 6A-6B only exemplarily show an implementation of the matching network, and the matching network may also be different, which is not limited in this application.
  • the feed structure shown in FIGS. 6A-6B can excite the slot antenna to generate a CM slot antenna mode.
  • the feeding structure of the inverse symmetric feeding is not limited to the form of using parallel double wires (wires 27-1, 27-2), and other feeding forms of the balun structure can also be adopted, which is not limited in this application.
  • the slot antenna provided in Embodiment 1 may further include: a bridge structure 29.
  • the bridge structure 29 may be a metal bracket of laser direct structuring (LDS), and may be erected on the back of the PCB 17.
  • LDS laser direct structuring
  • the erection height of the bridge structure 29 on the back of the PCB 17 may be 2.3 mm. It is not limited to this, and the height can also be other values, which is not limited in this application.
  • the bridge structure 29 can be referred to as a "bridge" structure of the slots on both sides of the slot 25, which can optimize impedance matching.
  • the two ends of the bridge structure 29 can be connected to the groove 21, and specifically can be respectively connected to the grooves on both sides of the gap.
  • Both ends of the bridge structure 29 include a first end 26-2 and a second end 26-1.
  • the first end 26-2 may be connected to the first part of the side 23-2, or extend beyond the first side to the groove
  • the second end 26-1 may be connected to the second part of the side 23-2, or beyond the first side
  • the edge extends to the groove.
  • the groove 21 is a U-shaped groove extending to the side of the metal frame 11
  • the first end 26-2 and the second end 26-1 can be connected to the two sides of the metal frame 11 respectively.
  • the bridge structure 29 may also be deformed.
  • the suspension metal frame 11a in the middle of the gap 25 of the suspension metal frame 11 is also connected.
  • the T-shaped structure may include horizontal branches and vertical branches.
  • the two ends of the transverse branch (that is, the fifth end 26-2 and the sixth end 26-1) can be connected to the grooves on both sides of the gap 25, respectively.
  • the fifth end 26-2 is connected to the first part of the side 23-2
  • the sixth end 26-1 can be connected to the second part of the side 23-2.
  • the vertical branches can be connected to the suspended metal frame 11a. It is not limited to the suspended metal frame 11a between the two gaps 25, and the gap 25 may also include more gaps 25 to divide more suspended metal frames. In this way, the matching device in the antisymmetric feed structure of the CM slot antenna pattern can be adjusted.
  • the size of the slot antenna provided in Embodiment 1 may be as follows: the width of the slot 21 is 1 mm.
  • the closed end (negative electrode) of the groove 21, that is, the two ends of the side edge of the metal frame 11, the distance from the bottom edge of the metal frame 11 is 15 mm.
  • the width of the two gaps at the bottom of the metal frame 11 is 1mm, and the distance between the two gaps is 8mm; the distance between the left gap and the left side of the metal frame 11 is 34.5mm, and the right gap to the metal frame 11 The distance on the right side is 34.5mm.
  • 10A to 10C respectively show the reflection coefficient, radiation direction coefficient, and antenna efficiency of the slot antenna provided in Embodiment 1.
  • FIG. 10A shows a set of reflection coefficient curves of the slot antenna simulation provided in Embodiment 1.
  • resonance “1” (0.82 GHz) and resonance “2” (0.87 GHz) represent two resonances generated by the slot antenna provided in Embodiment 1.
  • Resonance "1” and resonance “2” are both produced by the CM slot antenna mode of the slot antenna provided in Embodiment 1.
  • Figure 10A also shows a comparison of two resonances produced by the slot antenna shown in Figure 2A: resonance "3" and resonance "4".
  • the slot provided in Example 1 The antenna can also generate resonance in other low frequency bands, which can be set by adjusting the size of the slot antenna.
  • the 10B is a radiation pattern of two resonances of the slot antenna provided in Embodiment 1.
  • the radiation pattern of resonance "1" (0.82GHz) is basically the same as that of resonance "2" (0.87GHz).
  • the slot antenna provided in Embodiment 1 has a very low directivity coefficient in a low frequency band, and the pattern coverage is wider.
  • FIG. 10C shows the efficiency curve of the slot antenna provided in Embodiment 1 compared with the free space of the left and right hand grips in the vertical screen hand grip scenario.
  • Fig. 10C also shows a comparison of the efficiency curves of the slot antenna shown in Fig. 2A in the left and right hand grip compared with the free space in the vertical screen hand grip scene. It can be seen that, compared with the slot antenna shown in Figure 2A, the slot antenna provided in Example 1 has basically the same left and right hand holding efficiency in the vertical screen hand holding scene, and its efficiency value is approximately the same as that of the slot antenna shown in Figure 2A.
  • the left-hand grip efficiency and the right-hand grip efficiency are the middle.
  • FIG. 11 shows the current and electric field distributions of two resonances of the slot antenna provided in Embodiment 1: resonance "1" (0.82GHz) and resonance “2" (0.87GHz). It can be seen from Figure 11 that the current of resonance “1” (0.82GHz) is distributed on the metal frame 11 around the bridge structure 29 and slot 21, and the current of resonance "2" (0.87GHz) is distributed on the metal frame around the slot 21 11 on.
  • the currents of resonance "1" (0.82GHz) and resonance “2" (0.87GHz) are distributed in the same direction on both sides of the middle position of the slot antenna, but the electric field is distributed in opposite directions on both sides of the middle position of the slot antenna .
  • the two resonant currents are both the currents of the CM slot antenna mode, and the two resonant electric fields are both the electric field of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slot antenna radiators on both sides of the middle position of the slot antenna working in the 1/4 wavelength mode: the current is weak at the middle position of the slot antenna, and the current is weak at the two sides of the slot antenna. Strong end.
  • the electric field is strong at the middle of the slot antenna and weak at both ends of the slot antenna.
  • Table 1 shows the SAR of the electronic device 10 using the slot antenna provided in Embodiment 1
  • Table 2 shows the SAR of the electronic device 10 using the slot antenna shown in FIG. 2A.
  • Table 1 and Table 2 compare the performance of these two antenna designs in terms of low SAR. The comparison is based on the premise that the slot antenna provided in Embodiment 1 and the slot antenna shown in FIG. 2A are both arranged on the bottom of the electronic device 10.
  • Table 1 and Table 2 show the 10g standard SAR. It can be seen that when the output power is 24 dB, the SAR (back SAR, bottom SAR) of the electronic device 10 using the slot antenna provided in Embodiment 1 is lower overall. When the efficiency is normalized to -5dB, the advantage of the slot antenna provided by Embodiment 1 in terms of low SAR is more obvious.
  • the back SAR is measured when the human tissue is 5mm from the back of the electronic device, and the bottom SAR is measured when the human tissue is 5mm from the bottom of the electronic device.
  • the antenna design solution provided by Embodiment 1 uses the metal frame 11 and the PCB floor to form a slot antenna radiator, and through symmetric feeding, two low frequencies are excited on the slot antenna radiator (the working frequency band is in the LTE Near B5) CM slot antenna mode, while achieving dual resonance and wide frequency coverage, it can also achieve the same level of left and right hand grip performance, and the SAR values of the two modes are equivalent.
  • CM slot antenna modes can be excited on the slot antenna respectively.
  • FIG. 12A-12D show the slot antenna provided in the second embodiment.
  • FIG. 12A shows a front-side view of the slot antenna
  • FIG. 12B is a schematic diagram of the front-side structure of the slot antenna
  • FIG. 12C shows a back-side view of the slot antenna
  • FIG. 12D is a schematic diagram of the back-side view of the slot antenna.
  • the front side refers to the front side of the PCB 17 and the back side refers to the back side of the PCB 17.
  • the front view shows the anti-symmetric feed design for the antenna structure
  • the back view shows the symmetric feed design for the antenna structure.
  • the slot antenna provided by implementation 2 may include: slot 21, feeding point M, and feeding point N. among them,
  • the slot 21 may be opened between the PCB 17 and the first section of the metal frame 11.
  • the difference from Embodiment 1 is that the slot 21 in Embodiment 2 is shorter to form a slot radiator with a smaller size and generate mid-to-high frequency resonance.
  • the length of the groove 21 may be less than the first length (for example, 50 mm).
  • the groove 21 may be a strip-shaped groove located at the bottom of the electronic device 10 and its length is 46 mm.
  • a gap 25 can be opened on one side 23-2 of the groove 21 formed by the metal frame 11.
  • the side 23-2 may have one slit 25 or multiple slits 25.
  • the slit 25 may be one slit 25.
  • the slit 25 may be set at the middle position of the side, or may be set deviated from the middle position.
  • the feeding point M and the feeding point N may be located on the side 23-2 of the slot 21 formed by the metal frame 11, and specifically may be respectively arranged on both sides of the gap 25. That is, the feeding point M is located on the first part of the side 23-2, and the feeding point N is located on the second part of the side 23-2.
  • the slot antenna provided by the second embodiment may further include: a bridge structure 29.
  • the bridge structure 29 in Embodiment 2 can be a U-shaped structure, and the two ends of the bridge structure 29 can be connected to the grooves on both sides of the gap 25 respectively.
  • the first end 26-1 and the second end 26-2 of the bridge structure 29 can be specifically connected to the bottom edge of the metal frame 11.
  • Embodiment 2 can adopt the same anti-symmetric feed structure as described in Embodiment 1.
  • the size of the slot antenna provided in Embodiment 2 may be as follows: the width of the slot 21 is 1 mm.
  • the width of a slit opened at the bottom of the metal frame 11 is 2 mm, and the length of the slot radiator on both sides of the slit is 22 mm.
  • 13A to 13C respectively show the reflection coefficient, radiation direction coefficient, and antenna efficiency of the slot antenna provided in Embodiment 2.
  • FIG. 13A shows a set of reflection coefficient curves of the slot antenna simulation provided in Embodiment 2.
  • resonance "1" (1.78GHz) and resonance “2" (2.46GHz) represent two resonances generated by the slot antenna provided in the second embodiment.
  • Resonance "1" and resonance "2" are both produced by the CM slot antenna mode of the slot antenna provided in Embodiment 2.
  • Figure 13A also shows a comparison of the two resonances produced by the slot antenna shown in Figure 2A: resonance "3, resonance "4".
  • embodiment 2 provides The slot antenna can also generate resonance in other mid- and high-frequency bands, which can be set by adjusting the size of the slot antenna.
  • FIG. 13B is a radiation pattern of two resonances of the slot antenna provided in the second embodiment.
  • the radiation pattern of resonance "1" (1.78GHz) is basically the same as that of resonance "2" (2.46GHz).
  • the slot antenna provided in Embodiment 2 has a very low directivity coefficient in a low frequency band, and the pattern coverage is wider.
  • FIG. 13C shows the efficiency curve of the slot antenna provided in Embodiment 2 compared with the free space of the left and right hand grips in the vertical screen hand grip scenario.
  • FIG. 13C also shows a comparison of the efficiency curves of the slot antenna shown in FIG. 2A in the left and right hand grip compared with the free space in the vertical screen hand grip scene.
  • the slot antenna provided in Embodiment 2 has basically the same left and right hand grip efficiency in the vertical screen hand holding scene, and its efficiency value is approximately the same as that of the slot antenna shown in FIG. 2A
  • the left-hand grip efficiency and the right-hand grip efficiency are the middle.
  • Fig. 14 shows the current and electric field distributions of two resonances of the slot antenna provided by the second embodiment: resonance “1” (1.78GHz) and resonance “2" (2.46GHz). It can be seen from Figure 14 that the current of resonance “1” (1.78GHz) is distributed on the metal frame 11 around the bridge structure 29 and slot 21, and the current of resonance "2" (2.46GHz) is distributed on the metal frame around the slot 21 11 on.
  • the currents of resonance "1" (0.82GHz) and resonance “2" (0.87GHz) are distributed in the same direction on both sides of the middle position of the slot antenna, but the electric field is distributed in opposite directions on both sides of the middle position of the slot antenna.
  • the two resonant currents are both the currents of the CM slot antenna mode, and the two resonant electric fields are both the electric field of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slot antenna radiators on both sides of the middle position of the slot antenna working in the 1/4 wavelength mode: the current is weak at the middle position of the slot antenna, and the current is weak at the two sides of the slot antenna. Strong end.
  • the electric field is strong at the middle of the slot antenna and weak at both ends of the slot antenna.
  • Table 3 shows the SAR of the electronic device 10 using the slot antenna provided in Embodiment 2
  • Table 4 shows the SAR of the electronic device 10 using the slot antenna shown in FIG. 2A.
  • Table 3 and Table 4 compare the performance of these two antenna designs in terms of low SAR. The comparison is based on the premise that the slot antenna provided in Embodiment 2 and the slot antenna shown in FIG. 2A are both arranged on the bottom of the electronic device 10.
  • Table 3 and Table 4 show the 10g standard SAR. It can be seen that when the output power is all 24 dB, the SAR (back SAR, bottom SAR) of the electronic device 10 using the slot antenna provided in Embodiment 2 is lower overall. When the efficiency is normalized to -5dB, the advantage of the slot antenna provided by Embodiment 2 in terms of low SAR is more obvious.
  • the back SAR is measured when the human tissue is 5mm from the back of the electronic device, and the bottom SAR is measured when the human tissue is 5mm from the bottom of the electronic device.
  • Example 2 can separately excite two medium and high frequencies on a short slot antenna radiator through symmetric feeding and antisymmetric feeding (the working frequency band is in Wi-Fi 2.4GHz). Nearby) CM slot antenna mode, while achieving dual resonance and wide frequency coverage, it can also achieve the same level of left and right hand holding performance, and the SAR values of the two modes are equivalent.
  • the feeding point M and the feeding point N may be referred to as the first feeding point and the second feeding point, respectively.
  • the feeding point M and the feeding point N being located close to the gap.
  • the feeding point M and the feeding point N can also be located close to the two ends of the slot 21 respectively, as shown in FIG. 17A-FIG. 17B Show.
  • the size of the “bridge” structure is relatively large, and some lumped devices (such as lumped inductors) can be added to reduce the size, as shown in FIG. 15. It is not limited to the realization of the "bridge” structure by the bridge structure 29, and the "bridge” structure can also be formed by hollowing out the PCB floor.
  • the slot antenna provided in the above embodiments is not limited to being arranged on the bottom of the electronic device 10, but can also be arranged on the top or side of the electronic device 10, as shown in FIG. 16. It can be seen that the common body-fed slot antenna provided by the embodiment of the present application can save a lot of space when implementing a 4*4 MIMO antenna compared to a traditional MIMO antenna.
  • the antenna design solutions provided in the above embodiments are not limited to be implemented in electronic devices with a metal frame ID.
  • the metal frame is only a name.
  • Other conductive structures surrounding the PCB 17, such as a metal middle frame, can also be used as the metal mentioned in the above embodiments. frame.
  • the groove 21 can also be formed by a metal middle frame and the PCB 17.
  • connection position of the matching network and the "bridge" structure can be adjusted to compensate for this structural imbalance.
  • the wavelength in a certain wavelength mode of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • the half-wavelength mode of the antenna can generate resonance in the 2.4 GHz band, where the wavelength in the half-wavelength mode refers to the wavelength of the antenna radiating signals in the 2.4 GHz band.
  • the wavelength of the radiation signal in the medium can be calculated as follows: Among them, ⁇ is the relative permittivity of the medium, and frequency is the frequency of the radiation signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线设计方案,利用电子设备的金属边框和印刷电路板PCB形成一个槽天线辐射体,通过反对称馈电,在该槽天线辐射体上激励出两个共模槽天线模式,在实现双谐振、宽频覆盖的同时,还可实现左右手握性能持平,同时两个共模槽天线模式的SAR值相当。

Description

天线装置及电子设备
本申请要求于2019年11月28日提交中国专利局、申请号为201911192854.3、申请名称为“一种左右手握性能均衡的低SAR宽频天线设计”和于2020年1月22日提交中国专利局、申请号为202010075891.2、申请名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,特别涉及应用在电子设备中的天线装置。
背景技术
多输入多输出(multi-input multi-output,MIMO)技术在第五代(5th generation,5G)无线通信系统中起着非常重要的作用。但是,电子设备,如手机,要获得良好的MIMO性能仍是一个很大的挑战。其中一个原因在于,电子设备内部的十分有限的空间限制了MIMO天线能够覆盖的频段以及高性能。
另外,随着移动互联网发展,电子设备的用户使用场景也开始增多,如通话场景、横竖屏游戏场景、横屏影音场景、竖屏上网场景等。在不同的用户使用场景中,用户握持手机等电子设备的姿势千变万化。在不同用户使用场景下,平衡左、右手握持下的天线性能也是一个重要问题。
发明内容
本发明实施例提供了一种天线装置,可实现槽天线的两个谐振模式都是共模的宽频天线设计,辐射方向图一致,左右手握性能持平,同时两个模式的SAR值相当。
第一方面,本申请实施例提供了一种电子设备,该电子设备包括PCB、金属边框和天线装置。该天线装置可包括:槽、第一馈电点、第二馈电点以及桥结构;其中,
该槽可以开设在该PCB与该金属边框的第一段之间。该槽的两端可接地。该槽可包括第一侧边和第二侧边,第一侧边可由该PCB的一侧边构成,第二侧边可由该金属边框的第一段构成。第二侧边上可开设有一个缝隙。第二侧边可包括第一部分和第二部分,第一部分可位于该缝隙的一侧,第二部分可位于该缝隙的另一侧。
第一馈电点可位于第二侧边的第一部分上,第二馈电点可位于第二侧边的第二部分上。第一馈电点可连接该天线装置的馈源的正极,第二馈电点可连接该天线装置的馈源的负极。
该桥结构可包括第一端和第二端,第一端可连接第一部分,或者越过第一侧边延伸到槽,第二端可连接第二部分,或者越过第一侧边延伸到槽。
第一方面中,第一馈电点、第二馈电点形成的馈电结构可激励槽产生CM槽天线模式。这种馈电结构即后续实施例中提及的反对称馈电。CM槽天线模式的电流、电场分布呈如下特点:电流在缝隙两侧呈现同向分布,但电场在缝隙两侧呈现反向分布。CM槽天线模式的电流、电场可以是缝隙两侧的槽各自工作在1/4波长模式产生的。
第一方面提供的电子设备所采用的天线设计方案,与采用传统馈电方式的槽天线相比, 可实现在竖屏手握场景下的左、右手握效率基本一致。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可连接馈源的馈电网络,馈电网络可包括镂空PCB的地板所形成的、从地板延伸出来的两条对称的平行导线。
结合第一方面,在一些实施例中,桥结构可以是激光直接成型LDS的金属支架,可架设在PCB17背面的上方。桥结构可优化阻抗匹配。其中,在PCB17的两面中,设置有PCB地板的那一面可以称为PCB正面,另一面(未设置PCB地板)可以称为PCB背面。
结合第一方面,在一些实施例中,该缝隙可以设置在第二侧边的中间位置,也可以偏离该中间位置设置。
结合第一方面,在一些实施例中,槽可以是U型槽。例如,槽可以从金属边框的底边延伸至金属边框的两个侧边,可以是位于电子设备底部的U型槽。类似的,槽也可以是位于电子设备顶部的U型槽,或者是电子设备侧边的U型槽。
结合第一方面,在一些实施例中,槽可以是L型槽。例如,槽可以从金属边框的底边延伸至金属边框的一个侧边,可以是位于电子设备底部左侧或右侧的L型槽。类似的,槽也可以是位于电子设备顶部的L型槽。
结合第一方面,在一些实施例中,该天线装置在电子设备中的布局位置可以为以下一项或多项:电子设备的底部、电子设备的顶部或电子设备的侧边。
结合第一方面,在一些实施例中,电子设备可以包括多个该天线装置,这多个天线装置可以布局在电子设备的顶部、底部或侧边中的多个位置。例如,如果电子设备包括2个该天线装置,则这2个天线装置可以分别布局在电子设备的顶部、底部。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可以通过同轴传输线分别连接馈源的正极、负极,第一馈电点具体连接同轴传输线的中心导体,第二馈电点具体连接同轴传输线的外导体。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可以靠近缝隙而设,也可以分别靠近槽的两端而设。
结合第一方面,在一些实施例中,桥结构的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,即桥结构的部分为集总器件。
结合第一方面,在一些实施例中,不限于架设在PCB背面的LDS金属支架,桥结构也可以通过镂空PCB地板来形成。
第二方面,本申请实施例提供了一种电子设备,该电子设备包括PCB、金属边框和天线装置。该天线装置可包括:槽、第一馈电点、第二馈电点以及桥结构;其中,
该槽可以开设在该PCB与该金属边框的第一段之间,该金属边框的第一段包括第一端和第二端;该槽的两端可接地。该槽可包括第一侧边和第二侧边,第一侧边可由该PCB的一侧边构成,第二侧边可由该金属边框的第一段构成。第二侧边上可开设有多个缝隙。第二侧边可包括第一部分、第二部分和第三部分,第一部分可位于第三部分的一侧,第二部分可位于第三部分的另一侧。第三部分可以包括第一缝隙、第二缝隙、和位于第一缝隙和第二缝隙之间的悬浮段。
第一馈电点可位于第二侧边的第一部分上,第二馈电点可位于第二侧边的第二部分上。第一馈电点可连接该天线装置的馈源的正极,第二馈电点可连接该天线装置的馈源的负极。
该桥结构可包括第一端和第二端,第一端可连接第一部分,或者越过第一侧边延伸到槽,第二端可连接第二部分,或者越过第一侧边延伸到槽。
可以看出,第二方面和第一方面不同的是,第二方面中的第二侧边上有两个缝隙:第一缝隙、第二缝隙。不限于两个缝隙,第三部分可包括三个或三个以上缝隙,以及这些缝隙之间的悬浮段。
结合第二方面,在一些实施例中,该桥结构还可连接第三部分中的悬浮段。
结合第二方面,在一些实施例中,桥结构可以包括一个T型结构:在连接缝隙两侧的槽的同时,还连接缝隙中间的悬浮金属边框。具体的,该T型结构可包括横向枝节和竖向枝节,该横向枝节的两端分别为前述第一端、前述第二端,分别连接第二侧边的第一部分、第二侧边的第二部分,该竖向枝节连接该悬浮段。
结合第二方面,在一些实施例中,桥结构可以是激光直接成型LDS的金属支架,可架设在PCB背面的上方。桥结构可优化阻抗匹配。其中,在PCB的两面中,设置有PCB地板的那一面可以称为PCB正面,另一面(未设置PCB地板)可以称为PCB背面。
结合第二方面,在一些实施例中,该缝隙可以设置在第二侧边的中间位置,也可以偏离该中间位置设置。
结合第二方面,在一些实施例中,槽可以是U型槽。例如,槽可以从金属边框的底边延伸至金属边框的两个侧边,可以是位于电子设备底部的U型槽。类似的,槽也可以是位于电子设备顶部的U型槽,或者是电子设备侧边的U型槽。
结合第二方面,在一些实施例中,槽可以是L型槽。例如,槽可以从金属边框的底边延伸至金属边框的一个侧边,可以是位于电子设备底部左侧或右侧的L型槽。类似的,槽也可以是位于电子设备顶部的L型槽。
结合第二方面,在一些实施例中,该天线装置在电子设备中的布局位置可以为以下一项或多项:电子设备的底部、电子设备的顶部或电子设备的侧边。
结合第二方面,在一些实施例中,电子设备可以包括多个该天线装置,这多个天线装置可以布局在电子设备的顶部、底部或侧边中的多个位置。例如,如果电子设备包括2个该天线装置,则这2个天线装置可以分别布局在电子设备的顶部、底部。
结合第二方面,在一些实施例中,第一馈电点、第二馈电点可以通过同轴传输线分别连接馈源的正极、负极,第一馈电点具体连接同轴传输线的中心导体,第二馈电点具体连接同轴传输线的外导体。
结合第二方面,在一些实施例中,第一馈电点、第二馈电点可以靠近缝隙而设,也可以分别靠近槽的两端而设。
结合第二方面,在一些实施例中,桥结构的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,即桥结构的部分为集总器件。
结合第二方面,在一些实施例中,不限于架设在PCB背面的LDS金属支架,桥结构也可以通过镂空PCB地板来形成。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用 的附图进行说明。
图1是本申请提供的天线设计方案所基于的电子设备的结构示意图;
图2A为现有技术中的一种MIMO天线设计方案的示意图;
图2B为图2A所示的天线设计方案的原理结构图;
图3A为图2A所示的天线设计方案的S11仿真图;
图3B为图2A所示的天线设计方案的电流、电场示意图;
图3C为图2A所示的天线设计方案的辐射方向图;
图3D为图2A所示的天线设计方案的效率仿真图;
图4A为本申请涉及的CM槽天线的示意图;
图4B为CM槽天线模式的电流、电场、磁流的分布的示意图;
图5A为本申请涉及的DM槽天线的示意图;
图5B为DM槽天线模式的电流、电场、磁流的分布的示意图;
图6A为实施例一提供的槽天线的正面视图;
图6B为实施例一提供的槽天线的正面结构简图;
图6C示出了实施例一提供的槽天线的背面视图;
图6D为实施例一提供的槽天线的背面结构简图;
图7为反对称馈电结构的原理图;
图8为“桥”结构架设在PCB上的示意图;
图9A为实施例一扩展方案提供的槽天线的正面视图;
图9B示出了实施例一扩展方案提供的槽天线的背面视图;
图10A为实施例一提供的槽天线的S11仿真图;
图10B为实施例一提供的槽天线的辐射方向图;
图10C为实施例一提供的槽天线的效率仿真图;
图11为实施例一提供的槽天线的两个谐振的电流、电场分布的示意图;
图12A为实施例二提供的槽天线的正面视图;
图12B为实施例二提供的槽天线的正面结构简图;
图12C为实施例二提供的槽天线的背面视图;
图12D为实施例二提供的槽天线的背面结构简图;
图13A为实施例二提供的槽天线的S11仿真图;
图13B为实施例二提供的槽天线的辐射方向图;
图13C为实施例二提供的槽天线的效率仿真图;
图14为实施例二提供的槽天线的两个谐振的电流、电场分布的示意图;
图15为本申请实施例提供的一种“桥”结构扩展实现方式;
图16为本申请实施例提供的一种4*4MIIMO天线的示意图;
图17A为本申请实施例提供的另一种槽天线的正面视图;
图17B为本申请实施例提供的另一种槽天线的背面视图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wirelessfidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。本申请中,电子设备可以是手机、平板电脑、个人数码助理(personal digital assistant,PDA)等等。
图1示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境。如图1所示,电子设备10可包括:玻璃盖板13、显示屏15、印刷电路板PCB17、壳体19和后盖21。
其中,玻璃盖板13可以紧贴显示屏15设置,可主要用于对显示屏15起到保护防尘作用。
其中,印刷电路板PCB17可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。印刷电路板PCB17靠近壳体19的一侧可以设置一金属层,该金属层可以通过在PCB17的表面蚀刻金属形成。该金属层可用于印刷电路板PCB17上承载的电子元件接地,以防止用户触电或设备损坏。该金属层可以称为PCB地板。本申请中,在PCB17的两面中,设置有PCB地板的那一面可以称为PCB正面(front side),另一面(未设置PCB地板)可以称为PCB背面(back side)。
其中,壳体19主要起整机的支撑作用。壳体19可以包括金属边框11,金属边框11可以由金属等传导性材料形成。金属边框11可以绕PCB17、显示屏15的外围延伸,帮助固定显示屏15。在一种实现中,金属材料制成的金属边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属ID。在另一种实现中,金属边框11的外表面还可以设置非金属边框,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
金属边框11可以划分为4个部分,这4个部分根据各自在电子设备中的位置不一样而可以命名为:底边,顶边以及两个侧边。顶边可设置于电子设备10的顶部,底边可设置于电子设备10的底部。两个侧边可分别设置于电子设备10的两侧。电子设备10顶部可设置有前置摄像头(未示出)、听筒(未示出)、接近光传感器(未示出)等器件。电子设备10底部可设置有USB充电接口(未示出)、麦克风(未示出)等。电子设备10侧边可设置有音量调节按键(未示出)、电源键(未示出)。
其中,后盖21可以是非金属材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖,也可以是金属材料制成的后盖。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
为了给用户带来更为舒适的视觉感受,电子设备10可以采用全面屏工业设计(industry design,ID)。全面屏意味着极大的屏占比(通常在90%以上)。全面屏的边框宽度大幅缩 减,需要对电子设备10的内部器件,如前置摄像头、受话器、指纹识别器、天线等,进行重新布局。尤其对于天线设计来说,净空区域缩减,天线空间进一步被压缩。
现有技术中,在天线设计空间进一步缩减的情况下,在金属边框、玻璃后盖这种常见ID的手机上,为实现低SAR的宽带天线,往往采用图2A所示的天线设计方案。图2B是图2A所示模型的原理结构图。
如图2A-图2B所示,利用金属边框11和PCB地板形成槽21,在金属边框11的底边中间开设缝隙25。缝隙25一侧的金属边框11上馈电,另一侧的金属边框11上加载器件(如电容),可同时激励出共模槽天线模式和差模槽天线模式,形成双谐振,以覆盖较宽频段。后面内容中会介绍共模槽天线模式和差模槽天线模式,这里先不展开。
图3A示出了图2A示例性所示的天线结构设计在低频段的S11曲线。其中,谐振“1”在0.84GHz附近,谐振“2”在0.91GHz附近。图3B示出了图2A示例性所示的天线结构在0.84GHz、0.91GHz附近的电流、电场分布,分别对应共模槽天线模式(偏低谐振)、差模槽天线模式(偏高谐振)。图3C示出了图2A示例性所示的天线结构在0.84GHz、0.91GHz两个频率下的辐射方向图。图3D示出了图2A示例性所示的天线结构在竖屏手握场景下的左、右手握和自由空间相比的效率曲线。可以看出,左手握、右手握的天线性能差异较大,在系统效率和辐射效率上的差距高达1.5dB。这是因为共模槽天线模式和差模槽天线模式的辐射性能不同。
本申请提供了一种天线设计方案,通过一种反对称馈电结构,实现槽天线的两个谐振模式都是共模槽天线模式的宽频天线设计,两个谐振的辐射方向图一致,左右手握性能持平,同时两个模式的特定吸收比(specific absorption ratio,SAR)值相当。
首先,介绍本申请涉及两个天线模式。
1.共模(common mode,CM)槽天线模式
如图4A所示,槽天线101可包括:槽103、馈电点107以及馈电点109。其中,槽103可开设在PCB地板上。槽103的一侧设有开口105,开口105可具体开设在该侧的中间位置。馈电点107以及馈电点109可分别设置在开口105的两侧。馈电点107、馈电点109可分别用于连接槽天线101的馈源的正极、负极。例如,采用同轴传输线对槽天线101进行馈电,同轴传输线的中心导体(transmission line center conductor)可通过传输线连接至馈电点107,同轴传输线的外导体(transmission line outer conductor)可通过传输线连接至馈电点109。同轴传输线的外导体是接地的。
也即是说,槽天线101可在开口105处馈电,开口105又可以称为馈电处。馈源的正极可连接在开口105的一侧,馈源的负极可连接在开口105的另一侧。
图4B示出了槽天线101的电流、电场、磁流分布。如图4B所示,电流在槽天线101的中间位置两侧呈现同向分布,但电场、磁流在槽天线101的中间位置两侧呈现反向分布。图4A中示出的这种馈电结构可以称为反对称馈电结构。图4B所示的这种槽天线模式可以称为CM槽天线模式。图4B所示的电场、电流、磁流可分别称为CM槽天线模式的电场、电流、磁流。
CM槽天线模式的电流、电场是槽天线101的中间位置两侧的槽各自工作在1/4波长模 式产生的:电流在槽天线101的中间位置处弱,在槽天线101的两端强。电场在槽天线101的中间位置处强,在槽天线101的两端弱。
2.差模(differential mode,DM)槽天线模式
如图5A所示,槽天线110可包括:槽113、馈电点117以及馈电点115。其中,槽113可开设在PCB地板上。馈电点117、馈电点115可分别设置在槽113的两个侧边的中间位置。馈电点117、馈电点115可分别用于连接槽天线110的馈源的正极、负极。例如,采用同轴传输线对槽天线110进行馈电,同轴传输线的中心导体可通过传输线连接至馈电点117,同轴传输线的外导体可通过传输线连接至馈电点115。同轴传输线的外导体是接地的。
也即是说,槽天线110的中间位置112处连接馈源,中间位置112又可以称为馈电处。馈源的正极可连接槽113的一侧边,馈源的负极可连接槽113的另一侧边。
图5B示出了槽天线110的电流、电场、磁流分布。如图5B所示,电流在槽天线110的中间位置112两侧呈现反向分布,但电场、磁流在槽天线110的中间位置112两侧呈现同向分布。图5A中示出的这种馈电结构可以称为对称馈电结构。图5B所示的这种槽天线模式可以称为DM槽天线模式。图5B所示的电场、电流、磁流可分布称为DM槽天线模式的电场、电流、磁流。
DM槽天线模式的电流、电场是整个槽21110工作在1/2波长模式产生:电流在槽天线110的中间位置处弱,在槽天线110的两端强。电场在槽天线110的中间位置处强,在槽天线110的两端弱。
下面结合附图详细说明本申请提供的多个实施例。以下实施例中,天线仿真均基于如下的环境:整机宽度为78mm、整机长度为158mm。金属边框11的厚度为4mm、宽度为3mm,Z向投影区域的天线净空均为1mm。金属边框11上的开缝(如缝隙25)的宽度均为1mm至2mm。金属边框11和PCB地板之间形成的槽(如槽21)内部、金属边框11上的缝隙25内部、桥结构29和PCB地板之间的空隙内填充的材料的介电常数为3.0,损耗角为0.01。
实施例1
本实施例中,利用金属边框11和PCB地板形成一个槽天线辐射体,通过反对称馈电,在该槽天线辐射体上分别激励出两个低频(工作频段在LTE B5附近)的CM槽天线模式。
图6A-图6D示出了实施1提供的槽天线。其中,图6A示出了该槽天线的正面视图(front-side view),图6B为该槽天线的正面结构简图。图6C示出了该槽天线的背面视图(back-side view),图6D为该槽天线的背面结构简图。这里,正面是指PCB17的正面,背面是指PCB17的背面。正面视图示出了针对该天线结构的反对称馈电设计,背面视图示出了针对该天线结构的对称馈电设计。
如图6A-图6D所示,实施1提供的槽天线可包括:槽21、馈电点M以及馈电点N。其中,
槽21可开设在PCB17与金属边框11的第一段之间。槽21的一侧边23-1由PCB17的一侧边17-1构成,另一侧边23-2由金属边框11的第一段构成。金属边框11的第一段可以为位置11-1至位置11-3之间的一段金属边框。侧边23-1可以称为第一侧边,侧边23-2可 以称为第二侧边。金属边框11的第一段可具体为金属边框的底边,即槽21可开设在PCB17与金属边框的底边之间。例如,如图6A所示,槽21可以从金属边框11的底边延伸至金属边框11的侧边,可以是位于电子设备10底部的一个结构对称的U型槽。
槽21的两端可接地,这两端可包括一端21-1、另一端21-3。
槽21的由金属边框11构成的一侧边23-2上可开设有缝隙25。缝隙25可连接槽21至外部自由空间。侧边23-2上可具有一个缝隙25,也可以具有多个缝隙25。
当侧边23-2上具有一个缝隙25时,侧边23-2可以包括两部分:第一部分和第二部分,第一部分位于缝隙25的一侧,第二部分位于缝隙25的另一侧。
当侧边23-2上可具有多个缝隙25时,这多个缝隙25可分割侧边23-2形成悬浮段。具体的,当侧边23-2上具有多个缝隙25时,侧边23-2可以包括三个部分:第一部分、第二部分和第三部分,第一部分位于第三部分的一侧,第二部分位于第三部分的另一侧,第三部分可包括这多个缝隙25以及这多个缝隙25之间的悬浮段。例如,当侧边23-2上具有两个缝隙25(可分别称为第一缝隙、第二缝隙)时,侧边23-2可以包括三个部分:第一部分、第二部分和第三部分,第一部分位于第三部分的一侧,第二部分位于第三部分的另一侧,第三部分可包括这两个缝隙25以及两个缝隙25之间的悬浮段。
缝隙25可以设置在该侧边的中间位置,也可以偏离该中间位置设置。如果缝隙25为多个缝隙,则缝隙25设置在该侧边的中间位置,可以是指,这多个缝隙为整体位于侧边23-2的中间位置。
馈电点M、馈电点N可位于槽21的由金属边框11构成的侧边23-2上,具体可分别设置在缝隙25的两侧。即,馈电点M位于侧边23-2的第一部分上、馈电点N位于侧边23-2的第二部分上。
实施例1提供的槽天线可具有反对称馈电结构。即:馈电点M、馈电点N可分别用于连接馈源的正极和负极。例如,可采用同轴传输线对该槽天线进行馈电,同轴传输线的中心导体(接馈源正极)可通过传输线连接至馈电点M,同轴传输线的外导体(接地)可通过传输线连接至馈电点N。在槽21的侧边23-2上,馈电点M、馈电点N具体可以对称的设置在侧边23-2的中间位置两侧。
如图6A-图6B所示,馈电点M、馈电点N连接的馈电网络具体可通过镂空PCB17来实现,以充分利用PCB17正面的PCB地板实现馈电网络,节约设计空间。例如,如图6A所示,可以镂空PCB17的底部中央的局部区域来形成槽天线的馈电网络:从PCB地板延伸出的左右对称的两段平行导线27-1和27-2,并在导线27-1和导线27-2之间形成馈源的正极C和负极D。该馈电网络与该槽天线的连接点即馈电点M、馈电点N。在配置了匹配网络的情况下,该连接点是馈电网络通过匹配网络间接连接该槽天线的连接点。该馈电网络的等效电路可如图7所示。
另外,通过镂空PCB17还可以进一步形成馈电网络的匹配网络28。匹配网络28与馈电网络的连接点为连接点E连接点F、连接点J和连接点K。图6A-图6B仅仅示例性示出了一种匹配网络的实现方式,匹配网络还可以不同,本申请对此不作限制。
图6A-图6B所示的这种馈电结构可激励该槽天线产生CM槽天线模式。反对称馈电的馈电结构不限于使用平行双导线(导线27-1、27-2)的形式,其他巴伦结构的馈电形式也 可采用,本申请对此不作限制。
进一步的,实施1提供的槽天线还可包括:桥结构29。桥结构29可以是激光直接成型(laser direct structuring,LDS)的金属支架,可架设在PCB17背面的上方。例如,如图8所示,桥结构29在PCB17背面上的架设高度可以为2.3mm。不限于此,该高度还可以为其他值,本申请对此不作限制。桥结构29可称为缝隙25两侧的槽的“桥”结构,可优化阻抗匹配。桥结构29的两端可连接槽21,具体可分别连接缝隙两侧的槽。
桥结构29的两端包括第一端26-2和第二端26-1。第一端26-2可连接侧边23-2的第一部分,或者越过第一侧边延伸到槽,第二端26-1可连接侧边23-2的第二部分,或者越过第一侧边延伸到槽。当槽21是延伸至金属边框11的侧边的U型槽时,第一端26-2和第二端26-1具体可分别连接金属边框11的两侧边。
不限于图6A所示,桥结构29还可以变形。例如,如图9A-图9B所示,在连接该槽天线在中间位置两侧的槽天线辐射体的同时,还连接悬浮金属边框11的缝隙25中间的悬浮金属边框11a。具体的,该T型结构可包括横向枝节和竖向枝节。横向枝节的两端(即第五端26-2、第六端26-1)可分别连接缝隙25两侧的槽。具体的,第五端26-2连接侧边23-2的第一部分,第六端26-1可连接侧边23-2的第二部分。竖向枝节可连接悬浮金属边框11a。不限于两个缝隙25之间的悬浮金属边框11a,缝隙25还可以包括更多缝隙25,分割出更多悬浮金属边框。这样,可以调整CM槽天线模式的反对称馈电结构中的匹配器件。
实施例1提供的槽天线的尺寸可如下:槽21的宽度为1mm。槽21的闭合端(负极),即延伸至金属边框11的侧边的两端,到金属边框11的底边的距离为15mm。金属边框11底部开设的两个缝隙的宽度为1mm,这两个缝隙之间的距离为8mm;左侧缝隙到金属边框11的左侧之间的距离为34.5mm,右侧缝隙到金属边框11的右侧的距离为34.5mm。
下面结合附图说明实施例1提供的槽天线的仿真。
图10A-图10C分别示出了实施例1提供的槽天线的反射系数、辐射方向系数、天线效率。
其中,图10A示出了实施例1提供的槽天线仿真的一组反射系数曲线。其中,谐振“1”(0.82GHz)、谐振“2”(0.87GHz)代表实施例1提供的槽天线产生的两个谐振。谐振“1”、谐振“2”都是实施例1提供的槽天线的CM槽天线模式产生的。图10A中还对比示出了图2A所示的槽天线产生的两个谐振:谐振“3、谐振“4”。除了图10A中示出的0.82GHz、0.87GHz频段,实施例1提供的槽天线还可以产生其他低频频段的谐振,具体可通过调整该槽天线的尺寸来设置。
其中,图10B为实施例1提供的槽天线的两个谐振的辐射方向图。其中,谐振“1”(0.82GHz)的辐射方向图和谐振“2”(0.87GHz)的辐射方向图基本一致。而且,实施例1提供的槽天线在低频段的方向性系数很低,方向图覆盖更广。
其中,图10C示出了实施例1提供的槽天线在竖屏手握场景下的左、右手握和自由空间相比的效率曲线。图10C中还对比示出了图2A所示的槽天线在竖屏手握场景下的左、右手握和自由空间相比的效率曲线。可以看出,与图2A所示的槽天线相比,实施例1提供的槽天线在竖屏手握场景下的左、右手握效率基本一致,其效率值大概位于图2A所示的槽天线的左手握效率和右手握效率的中间。
同样工作在低频,综合图10A-图10C所示的仿真结果可以看出,与图2A所示的槽天线相比,实施例1提供的槽天线在竖屏手握场景下的左右手握性能持平。
图11示出了实施例1提供的槽天线的两个谐振的电流、电场:谐振“1”(0.82GHz)、谐振“2”(0.87GHz)的电流、电场分布。从图11可以看出,谐振“1”(0.82GHz)的电流分布在桥结构29和槽21周围的金属边框11上,谐振“2”(0.87GHz)的电流分布在槽21周围的金属边框11上。谐振“1”(0.82GHz)、谐振“2”(0.87GHz)的电流在该槽天线的中间位置两侧都呈现同向分布,但电场在该槽天线的中间位置两侧都呈现反向分布。这两个谐振的电流都为CM槽天线模式的电流,这两个谐振的电场都为CM槽天线模式的电场。CM槽天线模式的电流、电场是该槽天线的中间位置两侧的槽天线辐射体各自工作在1/4波长模式产生的:电流在该槽天线的中间位置处弱,在该槽天线的两端强。电场在该槽天线的中间位置处强,在该槽天线的两端弱。
另外,表1示出了采用实施例1提供的槽天线的电子设备10的SAR,表2示出了采用图2A所示的槽天线的电子设备10的SAR。表1和表2对比了这两种天线设计在低SAR方面的表现。该比对以实施例1提供的槽天线、图2A所示的槽天线均布局在电子设备10的底部为前提。
Figure PCTCN2020132206-appb-000001
表1
Figure PCTCN2020132206-appb-000002
表2
表1和表2中示出的是10g标准的SAR。可以看出,在输出功率都为24dB时,采用实施例1提供的槽天线的电子设备10的SAR(背部SAR、底部SAR)整体较低。当效率归一化到-5dB时,实施例1提供的槽天线在低SAR方面的优势更明显。背部SAR是在人体组织距离电子设备背部5mm时测量到的,底部SAR是在人体组织距离电子设备底部5mm时测量到的。
可以看出,实施例1提供的天线设计方案,利用金属边框11和PCB地板形成一个槽天线辐射体,通过对称馈电,在该槽天线辐射体上分别激励出两个低频(工作频段在LTE B5附近)CM槽天线模式,在实现双谐振、宽频覆盖的同时,还可实现左右手握性能持平, 同时两个模式的SAR值相当。
实施例2
本实施例提供的槽天线,通过反对称馈电,可在该槽天线上分别激励出两个中高频(工作频段在Wi-Fi2.4GHz附近)CM槽天线模式。
图12A-图12D示出了实施2提供的槽天线。其中,图12A示出了该槽天线的正面视图(front-side view),图12B为该槽天线的正面结构简图。图12C示出了该槽天线的背面视图(back-side view),图12D为该槽天线的背面结构简图。这里,正面是指PCB17的正面,背面是指PCB17的背面。正面视图示出了针对该天线结构的反对称馈电设计,背面视图示出了针对该天线结构的对称馈电设计。
如图12A-图12D所示,实施2提供的槽天线可包括:槽21、馈电点M、馈电点N。其中,
槽21可开设在PCB17与金属边框11的第一段之间。与实施例1不同的是,实施例2中的槽21更短,以形成尺寸更小的槽辐射体,产生中高频谐振。槽21的长度可小于第一长度(如50mm)。例如,如图15所示,槽21可以是位于电子设备10底部的一条型槽,其长度为46mm。
槽21的由金属边框11构成的一侧边23-2上可开设有缝隙25。侧边23-2上可具有一个缝隙25,也可以具有多个缝隙25。例如,如图12A所示,缝隙25可以为1个缝隙25。缝隙25可以设置在该侧边的中间位置,也可以偏离该中间位置设置。
馈电点M、馈电点N可位于槽21的由金属边框11构成的侧边23-2上,具体可分别设置在缝隙25的两侧。即,馈电点M位于侧边23-2的第一部分上、馈电点N位于侧边23-2的第二部分上。
与实施例1相同的是,实施2提供的槽天线还可包括:桥结构29。与实施例1不同的是,实施例2中的桥结构29可以是U型结构,桥结构29的两端可分别连接缝隙25两侧的槽。桥结构29的第一端26-1、第二端26-2具体可连接金属边框11的底边。
实施例2中可采用同于实施例1中描述的反对称馈电结构,具体可参考实施例1,这里不再赘述。
实施例2提供的槽天线的尺寸可如下:槽21的宽度为1mm。金属边框11底部开设的1个缝隙的宽度为2mm,这个缝隙两侧的槽辐射体的长度均为22mm。
下面结合附图说明实施例2提供的槽天线的仿真。
图13A-图13C分别示出了实施例2提供的槽天线的反射系数、辐射方向系数、天线效率。
其中,图13A示出了实施例2提供的槽天线仿真的一组反射系数曲线。其中,谐振“1”(1.78GHz)、谐振“2”(2.46GHz)代表实施例2提供的槽天线产生的两个谐振。谐振“1”、谐振“2”都是实施例2提供的槽天线的CM槽天线模式产生的。图13A中还对比示出了图2A所示的槽天线产生的两个谐振:谐振“3、谐振“4”。除了图13A中示出的1.78GHz、2.46GHz)频段,实施例2提供的槽天线还可以产生其他中高频频段的谐振,具体可通过调整该槽天线的尺寸来设置。
其中,图13B为实施例2提供的槽天线的两个谐振的辐射方向图。其中,谐振“1”(1.78GHz)的辐射方向图和谐振“2”(2.46GHz)的辐射方向图基本一致。而且,实施例2提供的槽天线在低频段的方向性系数很低,方向图覆盖更广。
其中,图13C示出了实施例2提供的槽天线在竖屏手握场景下的左、右手握和自由空间相比的效率曲线。图13C中还对比示出了图2A所示的槽天线在竖屏手握场景下的左、右手握和自由空间相比的效率曲线。可以看出,与图2A所示的槽天线相比,实施例2提供的槽天线在竖屏手握场景下的左、右手握效率基本一致,其效率值大概位于图2A所示的槽天线的左手握效率和右手握效率的中间。
同样工作在中高频,综合图13A-图13C所示的仿真结果可以看出,与图2A所示的槽天线相比,实施例2提供的槽天线在竖屏手握场景下的左右手握性能持平。
图14示出了实施例2提供的槽天线的两个谐振的电流、电场:谐振“1”(1.78GHz)、谐振“2”(2.46GHz)的电流、电场分布。从图14可以看出,谐振“1”(1.78GHz)的电流分布在桥结构29和槽21周围的金属边框11上,谐振“2”(2.46GHz)的电流分布在槽21周围的金属边框11上。谐振“1”(0.82GHz)、谐振“2”(0.87GHz)的电流在该槽天线的中间位置两侧呈现同向分布,但电场在该槽天线的中间位置两侧呈现反向分布。这两个谐振的电流都为CM槽天线模式的电流,这两个谐振的电场都为CM槽天线模式的电场。CM槽天线模式的电流、电场是该槽天线的中间位置两侧的槽天线辐射体各自工作在1/4波长模式产生的:电流在该槽天线的中间位置处弱,在该槽天线的两端强。电场在该槽天线的中间位置处强,在该槽天线的两端弱。
另外,表3示出了采用实施例2提供的槽天线的电子设备10的SAR,表4示出了采用图2A所示的槽天线的电子设备10的SAR。表3和表4对比了这两种天线设计在低SAR方面的表现。该比对以实施例2提供的槽天线、图2A所示的槽天线均布局在电子设备10的底部为前提。
Figure PCTCN2020132206-appb-000003
表3
Figure PCTCN2020132206-appb-000004
表4
表3和表4中示出的是10g标准的SAR。可以看出,在输出功率都为24dB时,采用实施例2提供的槽天线的电子设备10的SAR(背部SAR、底部SAR)整体较低。当效率归一化到-5dB时,实施例2提供的槽天线在低SAR方面的优势更明显。背部SAR是在人体组织距离电子设备背部5mm时测量到的,底部SAR是在人体组织距离电子设备底部5mm时测量到的。
可以看出,实施例2提供的天线设计方案,通过对称馈电和反对称馈电,在一个较短的槽天线辐射体上可分别激励出两个中高频(工作频段在Wi-Fi 2.4GHz附近)CM槽天线模式,在实现双谐振、宽频覆盖的同时,还可实现左右手握性能持平,同时两个模式的SAR值相当。
以上实施例中,馈电点M、馈电点N可以分别称为第一馈电点、第二馈电点。
以上实施例中,不限于馈电点M、馈电点N靠近缝隙而设,馈电点M、馈电点N也可以分别靠近槽21的两端而设,可如图17A-图17B所示。
以上实施例中的馈电结构中,“桥”结构(即桥结构29)的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,可如图15所示。不限于通过桥结构29实现“桥”结构,也可以通过镂空PCB地板来形成该“桥”结构。
以上实施例提供的槽天线不限于布局在电子设备10的底部,还可布局在电子设备10的顶部或侧边,可如图16所示。可以看出,通过本申请实施例提供的这种共体馈电的槽天线,可以在实现4*4MIMO天线时,相比传统MIMO天线节约不少空间。
以上实施例提供的天线设计方案不限于在金属边框ID的电子设备中实施,金属边框仅仅是个命名,其他围绕PCB17的传导性结构,例如金属中框,也可以作为以上实施例中提及的金属边框。槽21也可通过金属中框与PCB17形成。
实际应用中,电子设备的结构一般难以完全对称,可以调整匹配网络、“桥”结构的连接位置等来补偿这种结构上的不平衡。
本申请中,天线的某种波长模式(如二分之一波长模式、四分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,天线的二分之一波长模式可产生2.4GHz频段的谐振,其中二分之一波长模式中的波长是指天线辐射2.4GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:
Figure PCTCN2020132206-appb-000005
其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种电子设备,所述电子设备包括电路印刷板PCB、金属边框和槽天线,其特征在于,所述槽天线包括槽、第一馈电点、第二馈电点和桥结构;其中,
    所述槽开设在所述PCB与所述金属边框的第一段之间;所述槽的两端均接地;所述槽包括第一侧边和第二侧边,所述第一侧边由所述PCB的一侧边构成,所述第二侧边由所述金属边框的第一段构成;所述第二侧边上开设有一个缝隙;所述第二侧边包括第一部分和第二部分,所述第一部分位于所述缝隙的一侧,所述第二部分位于所述缝隙的另一侧;
    所述第一馈电点位于所述第一部分上,所述第二馈电点位于所述第二部分上;所述第一馈电点、所述第二馈电点分别连接所述天线装置的馈源的正极、负极;
    所述桥结构包括第一端和第二端,所述第一端连接所述第一部分,所述第二端连接所述第二部分。
  2. 如权利要求1所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点连接馈电网络,所述馈电网络包括镂空所述PCB的地板所形成的、从所述地板延伸出来的两条对称的平行导线。
  3. 如权利要求1或2所述的电子设备,其特征在于,所述槽为U型槽;或者,所述槽为条形槽;或者,所述槽为L型槽。
  4. 如权利要求1-3中任一项所述的电子设备,其特征在于,所述天线装置在所述电子设备中的布局位置为以下一项或多项:所述电子设备的底部、所述电子设备的顶部或所述电子设备的侧边。
  5. 如权利要求1-4中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点通过同轴传输线分别连接所述馈源的正极、负极,所述第一馈电点具体连接所述同轴传输线的中心导体,所述第二馈电点具体连接所述同轴传输线的外导体。
  6. 一种电子设备,所述电子设备包括电路印刷板PCB、金属边框和天线装置,其特征在于,所述天线装置包括槽、第一馈电点、第二馈电点以及桥结构;其中,
    所述槽开设在所述PCB与所述金属边框的第一段之间,所述金属边框的第一段包括第一端和第二端;所述槽的两端接地;所述槽包括第一侧边和第二侧边,所述第一侧边由所述PCB的一侧边构成,所述第二侧边由所述金属边框的第一段构成;所述第二侧边包括第一部分、第二部分和第三部分,所述第一部分位于所述第三部分的一侧,所述第二部分位于所述第三部分的另一侧,所述第三部分包括第一缝隙、第二缝隙、和位于所述第一缝隙和所述第二缝隙之间的悬浮段;
    所述第一馈电点位于所述第一部分上,所述第二馈电点位于所述第二部分上;所述第一馈电点、所述第二馈电点分别连接所述天线装置的馈源的正极、负极;
    所述桥结构包括第一端和第二端,所述第一端连接所述第一部分,所述第二端连接所述第二部分。
  7. 如权利要求6所述的电子设备,其特征在于,所述桥结构还连接所述悬浮段。
  8. 如权利要求7所述的电子设备,其特征在于,所述桥结构包括一个T型结构,所述T型结构包括横向枝节和竖向枝节,所述横向枝节的两端分别为所述第一端、所述第二端,分别连接所述第一部分、所述第二部分,所述竖向枝节连接所述悬浮段。
  9. 如权利要求6-8中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点连接馈电网络,所述馈电网络包括镂空所述PCB的地板所形成的、从所述地板延伸出来的两条对称的平行导线。
  10. 如权利要求6-9中任一项所述的电子设备,其特征在于,所述槽为U型槽;或者,所述槽为条形槽;或者,所述槽为L型槽。
  11. 如权利要求6-10中任一项所述的电子设备,其特征在于,所述天线装置在所述电子设备中的布局位置为以下一项或多项:所述电子设备的底部、所述电子设备的顶部或所述电子设备的侧边。
  12. 如权利要求6-11中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点通过同轴传输线分别连接所述馈源的正极、负极,所述第一馈电点具体连接所述同轴传输线的中心导体,所述第二馈电点具体连接所述同轴传输线的外导体。
PCT/CN2020/132206 2019-11-28 2020-11-27 天线装置及电子设备 WO2021104447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/780,857 US20230006333A1 (en) 2019-11-28 2020-11-27 Antenna Apparatus and Electronic Device
EP20893164.2A EP4050730A4 (en) 2019-11-28 2020-11-27 ANTENNA APPARATUS AND ELECTRONIC DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911192854 2019-11-28
CN201911192854.3 2019-11-28
CN202010075891.2 2020-01-22
CN202010075891.2A CN112864583B (zh) 2019-11-28 2020-01-22 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021104447A1 true WO2021104447A1 (zh) 2021-06-03

Family

ID=75996083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132206 WO2021104447A1 (zh) 2019-11-28 2020-11-27 天线装置及电子设备

Country Status (4)

Country Link
US (1) US20230006333A1 (zh)
EP (1) EP4050730A4 (zh)
CN (1) CN112864583B (zh)
WO (1) WO2021104447A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678683A (zh) * 2022-03-28 2022-06-28 深圳市锐尔觅移动通信有限公司 电子设备
US20230387584A1 (en) * 2022-05-31 2023-11-30 Apple Inc. Electronic Devices with Interconnected Ground Structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170054200A1 (en) * 2012-09-19 2017-02-23 Lg Electronics Inc. Mobile terminal
CN107039766A (zh) * 2017-04-28 2017-08-11 维沃移动通信有限公司 一种天线装置及电子设备
CN110350294A (zh) * 2019-06-30 2019-10-18 RealMe重庆移动通信有限公司 穿戴式电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752822B (zh) * 2013-12-31 2019-11-22 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
US10096887B2 (en) * 2014-09-15 2018-10-09 Blackberry Limited Mobile device with tri-band antennas incorporated into a metal back side
CN106229624A (zh) * 2016-09-06 2016-12-14 北京小米移动软件有限公司 天线模块和电子设备
EP3293819A1 (en) * 2016-09-09 2018-03-14 Thomson Licensing Antenna feeder configured for feeding an antenna integrated within an electronic device
US10511083B2 (en) * 2016-09-22 2019-12-17 Apple Inc. Antennas having symmetrical switching architecture
CN106571516B (zh) * 2016-10-27 2019-03-29 瑞声科技(南京)有限公司 天线系统
WO2018171057A1 (zh) * 2017-03-20 2018-09-27 华为技术有限公司 一种移动终端的天线及移动终端
WO2020133111A1 (zh) * 2018-12-27 2020-07-02 华为技术有限公司 天线装置及终端
CN110137664B (zh) * 2019-05-08 2020-06-23 清华大学 一种双天线集成的宽带5g mimo终端天线
CN110165373B (zh) * 2019-05-14 2021-09-24 荣耀终端有限公司 天线装置及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170054200A1 (en) * 2012-09-19 2017-02-23 Lg Electronics Inc. Mobile terminal
CN107039766A (zh) * 2017-04-28 2017-08-11 维沃移动通信有限公司 一种天线装置及电子设备
CN110350294A (zh) * 2019-06-30 2019-10-18 RealMe重庆移动通信有限公司 穿戴式电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI JAEHYUN, HWANG WOONBONG, YOU CHISANG, JUNG BYUNGWOON, HONG WONBIN: "High-Efficiency Crossed-Loop 4G LTE Antenna for All Display Metal-Rimmed Smartphones", INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, vol. 2018, 28 August 2018 (2018-08-28), pages 1 - 7, XP055814900, ISSN: 1687-5869, DOI: 10.1155/2018/8070953 *
See also references of EP4050730A4

Also Published As

Publication number Publication date
US20230006333A1 (en) 2023-01-05
CN112864583A (zh) 2021-05-28
EP4050730A1 (en) 2022-08-31
EP4050730A4 (en) 2022-12-14
CN112864583B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US10446915B2 (en) Mobile device
TWI556506B (zh) 行動裝置
TWI514666B (zh) 行動裝置
JP6414910B2 (ja) ループ状アンテナおよびモバイル端末
WO2021238347A1 (zh) 天线和电子设备
TW201505263A (zh) 電容耦合迴圈天線及具有其之電子裝置
WO2021104447A1 (zh) 天线装置及电子设备
TW201537829A (zh) 天線結構
JP7381741B2 (ja) アンテナ装置及び電子デバイス
WO2021169700A1 (zh) 电子设备
WO2018170969A1 (zh) 一种金属外壳手持式多天线终端
CN114122712B (zh) 一种天线结构及电子设备
WO2021148004A1 (zh) 天线装置及电子设备
WO2023130904A1 (zh) 一种终端天线
WO2022143320A1 (zh) 一种电子设备
TW201834311A (zh) 天線結構
US20220140486A1 (en) Antenna Apparatus and Electronic Device
WO2022017220A1 (zh) 一种电子设备
WO2019227651A1 (zh) 便携式通信终端及其pifa天线
CN110212316A (zh) 一种基于复合左右手传输线的多频段天线
WO2022001740A1 (zh) 一种电子设备
WO2020001280A1 (zh) 移动终端天线和移动终端
CN103904418A (zh) 一种全向终端天线
WO2024055868A1 (zh) 一种可穿戴设备
WO2024067012A1 (zh) 天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020893164

Country of ref document: EP

Effective date: 20220527

NENP Non-entry into the national phase

Ref country code: DE