WO2021148004A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021148004A1
WO2021148004A1 PCT/CN2021/073326 CN2021073326W WO2021148004A1 WO 2021148004 A1 WO2021148004 A1 WO 2021148004A1 CN 2021073326 W CN2021073326 W CN 2021073326W WO 2021148004 A1 WO2021148004 A1 WO 2021148004A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
antenna
feeding point
electronic device
groove
Prior art date
Application number
PCT/CN2021/073326
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
王汉阳
余冬
李建铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21744693.9A priority Critical patent/EP4087056A4/en
Priority to US17/759,203 priority patent/US20230048914A1/en
Publication of WO2021148004A1 publication Critical patent/WO2021148004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to the field of antenna technology, and in particular to an antenna device used in electronic equipment.
  • Multi-input multi-output (MIMO) technology plays a very important role in the 5th generation (5G) wireless communication system.
  • 5G 5th generation
  • mobile terminals such as mobile phones
  • the embodiment of the present invention provides an electronic device that simultaneously excites a differential mode slot antenna and a common mode slot antenna on the same slot antenna radiator, which can realize MIMO antenna characteristics with high isolation and low ECC.
  • an embodiment of the present application provides an electronic device, which includes a PCB, a metal frame, and an antenna device.
  • the antenna device may include: a slot, a first feeding point, a second feeding point, and a bridge structure; wherein,
  • the slot can be opened between the PCB and the first section of the metal frame. Both ends of the slot can be grounded.
  • the groove may include a first side edge and a second side edge, the first side edge may be formed by one side edge of the PCB, and the second side edge may be formed by the first section of the metal frame.
  • a gap can be opened on the second side.
  • the second side edge may include a first part and a second part, the first part may be located on one side of the gap, and the second part may be located on the other side of the gap.
  • the first feeding point may be located on the first part of the second side, and the second feeding point may be located on the second part of the second side.
  • the first feeding point can be connected to the positive pole of the feed source of the antenna device, and the second feeding point can be connected to the negative pole of the feed source of the antenna device.
  • the bridge structure may include a first end and a second end, the first end may be connected to the first part, or extend beyond the first side edge to the groove, and the second end may be connected to the second part, or extend beyond the first side edge to the groove.
  • a third feed point can be provided on the bridge structure, and the third feed point can be connected to the positive pole of the feed source.
  • the feeding structure formed by the first feeding point and the second feeding point can excite the slot to generate a CM slot antenna mode.
  • This feeding structure is the anti-symmetric feeding mentioned in the subsequent embodiments.
  • the current and electric field distribution of the CM slot antenna mode has the following characteristics: the current is distributed in the same direction on both sides of the slot, but the electric field is distributed in reverse on both sides of the slot.
  • the current and electric field of the CM slot antenna mode can be generated by the slots on both sides of the slot working in the 1/4 wavelength mode.
  • the antenna design scheme adopted by the electronic device provided in the first aspect uses the metal frame of the electronic device and the PCB floor to form a slot, and through symmetrical feeding and antisymmetric feeding, the slot can be excited to produce two slot antennas Mode: CM slot antenna mode and DM slot antenna mode, can achieve high isolation and low ECC MIMO antenna characteristics in a wide frequency band. Moreover, the two slot antenna modes share the same slot antenna radiator, which can save antenna design space.
  • the gap may be set at the middle position of the second side edge, or may be set deviating from the middle position.
  • the groove may be an L-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to one side of the metal frame, and may be an L-shaped groove located on the left or right side of the bottom of the electronic device.
  • the groove can also be an L-shaped groove on the top of the electronic device.
  • the layout position of the antenna device in the electronic device may be one or more of the following: the bottom of the electronic device, the top of the electronic device, or the side of the electronic device.
  • the electronic device may include a plurality of the antenna devices, and the plurality of antenna devices may be arranged at multiple positions on the top, bottom, or sides of the electronic device. For example, if the electronic device includes two such antenna devices, the two antenna devices may be respectively arranged on the top and bottom of the electronic device.
  • the first feeding point and the second feeding point may be respectively connected to the positive and negative electrodes of the feed through a coaxial transmission line, and the first feeding point is specifically connected to the center conductor of the coaxial transmission line, The second feeding point is specifically connected to the outer conductor of the coaxial transmission line.
  • the first feeding point and the second feeding point may be located close to the gap, or may be located close to the two ends of the slot, respectively.
  • the size of the bridge structure is relatively large, and some lumped devices (such as lumped inductors) can be added to reduce the size, that is, the bridge structure is a lumped device.
  • the bridge structure can also be formed by hollowing out the PCB floor.
  • the slot can be opened between the PCB and the first section of the metal frame.
  • the first section of the metal frame includes a first end and a second end; both ends of the slot can be grounded.
  • the groove may include a first side edge and a second side edge, the first side edge may be formed by one side edge of the PCB, and the second side edge may be formed by the first section of the metal frame.
  • a plurality of slits can be opened on the second side.
  • the second side may include a first part, a second part, and a third part. The first part may be located on one side of the third part, and the second part may be located on the other side of the third part.
  • the third part may include a first slit, a second slit, and a floating section located between the first slit and the second slit.
  • the first feeding point may be located on the first part of the second side, and the second feeding point may be located on the second part of the second side.
  • the first feeding point can be connected to the positive pole of the feed source of the antenna device, and the second feeding point can be connected to the negative pole of the feed source of the antenna device.
  • the groove may be an L-shaped groove.
  • the groove may extend from the bottom edge of the metal frame to one side of the metal frame, and may be an L-shaped groove located on the left or right side of the bottom of the electronic device.
  • the groove can also be an L-shaped groove on the top of the electronic device.
  • the first feeding point and the second feeding point may be located close to the gap, or may be located close to both ends of the slot, respectively.
  • the bridge structure can also be formed by hollowing out the PCB floor.
  • FIG. 1 is a schematic diagram of the structure of an electronic device on which the antenna design solution provided by the present application is based;
  • Fig. 2A is a schematic diagram of a MIMO antenna design scheme in the prior art
  • Fig. 2B is a schematic structural diagram of the antenna design scheme shown in Fig. 2A;
  • Fig. 3B is an efficiency simulation diagram of the antenna design scheme shown in Fig. 2A;
  • Fig. 3C is a radiation pattern of the antenna design scheme shown in Fig. 2A;
  • 4A is a schematic diagram of the CM slot antenna involved in this application.
  • 4B is a schematic diagram of the distribution of current, electric field, and magnetic current in the CM slot antenna mode
  • 6D is a schematic diagram of the rear structure of the antenna device provided in the first embodiment
  • FIG. 9A is an S11 simulation diagram of the antenna device provided in the first embodiment.
  • FIG. 11A is a front view of an antenna device provided by an extended solution according to the first embodiment
  • FIG. 11B is a schematic diagram of the front structure of the antenna device provided by the extended solution according to the first embodiment
  • FIG. 11D is a schematic diagram of the back structure of the antenna device provided by the extended solution of the first embodiment
  • FIG. 12A is an S11 simulation diagram of the antenna device provided by the extended solution of the first embodiment
  • FIG. 12B is an efficiency simulation diagram of the antenna device provided by the extended solution of the first embodiment
  • FIG. 12C is a radiation pattern of the antenna device provided by the extended solution of the first embodiment
  • FIG. 13A is a schematic diagram of the current and electric field distribution of the CM slot antenna mode of the antenna device shown in FIG. 11A;
  • FIG. 13B is a schematic diagram of the current and electric field distribution of the DM slot antenna mode of the antenna device shown in FIG. 11A;
  • Fig. 14 is a radiation pattern of the antenna device shown in Fig. 11A;
  • 15A is a front view of the antenna device provided in the second embodiment
  • 15B is a schematic diagram of the front structure of the antenna device provided in the second embodiment.
  • 15C shows a back view of the antenna device provided in the second embodiment
  • 15D is a schematic diagram of the rear structure of the antenna device provided in the second embodiment.
  • 16A is an S11 simulation diagram of the antenna device provided in the second embodiment
  • 16B is an efficiency simulation diagram of the antenna device provided in the second embodiment
  • 16C is a radiation pattern of the antenna device provided in the second embodiment
  • 17A is a schematic diagram of the current and electric field distribution of the CM slot antenna mode of the antenna device provided in the second embodiment
  • 17B is a schematic diagram of the current and electric field distribution of the DM slot antenna mode of the antenna device provided in the second embodiment
  • Fig. 18 is a radiation pattern of the antenna device provided in the second embodiment
  • FIG. 19 is a "bridge" structure extension implementation manner provided by an embodiment of this application.
  • FIG. 20 is a schematic diagram of a 4 ⁇ 4 MIIMO antenna provided by an embodiment of the application.
  • 21A is a front view of the antenna device provided in the second embodiment
  • FIG. 21B shows a back view of the antenna device provided in the second embodiment.
  • the technical solution provided in this application is applicable to electronic devices that use one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity (wireless fidelity, Wi -Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology , 5G communication technology, SUB-6G communication technology and other future communication technologies.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (PDA), etc.
  • Fig. 1 exemplarily shows the internal environment of the electronic device on which the antenna design solution provided in this application is based.
  • the electronic device 10 may include: a glass cover 13, a display screen 15, a printed circuit board PCB 17, a housing 19 and a back cover 21.
  • the glass cover 13 can be arranged close to the display screen 15 and can be mainly used to protect the display screen 15 from dust.
  • the printed circuit board PCB17 can be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is a code name for the grade of flame-resistant materials
  • Rogers dielectric board is a high-frequency board.
  • a metal layer may be provided on the side of the printed circuit board PCB17 close to the housing 19, and the metal layer may be formed by etching metal on the surface of the PCB17.
  • the metal layer can be used to ground the electronic components carried on the printed circuit board PCB17 to prevent users from getting electric shock or equipment damage.
  • This metal layer can be called a PCB floor.
  • the side with the PCB floor may be referred to as the front side of the PCB, and the other side (without the PCB floor) may be referred to as the back side of the PCB.
  • the housing 19 may include a metal frame 11, and the metal frame 11 may be formed of a conductive material such as metal.
  • the metal frame 11 can extend around the periphery of the PCB 17 and the display screen 15 to help fix the display screen 15.
  • the metal frame 11 made of a metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of the metal frame, which is suitable for a metal ID.
  • the outer surface of the metal frame 11 may also be provided with a non-metal frame, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
  • the metal frame 11 can be divided into 4 parts, which can be named as the bottom edge, the top edge and the two sides according to their respective positions in the electronic device.
  • the top edge can be arranged on the top of the electronic device 10, and the bottom edge can be arranged on the bottom of the electronic device 10.
  • the two sides can be respectively arranged on both sides of the electronic device 10.
  • the top of the electronic device 10 may be provided with a front camera (not shown), an earpiece (not shown), a proximity light sensor (not shown) and other devices.
  • the bottom of the electronic device 10 may be provided with a USB charging port (not shown), a microphone (not shown), and the like.
  • the side of the electronic device 10 may be provided with a volume adjustment button (not shown) and a power button (not shown).
  • the back cover 21 may be a back cover made of a non-metallic material, such as a glass back cover, a plastic back cover, etc., or a back cover made of a metal material.
  • FIG. 1 only schematically shows some components included in the electronic device 10, and the actual shape, actual size, and actual structure of these components are not limited by FIG. 1.
  • the electronic device 10 may adopt a full-screen industrial design (ID).
  • ID means a huge screen-to-body ratio (usually above 90%).
  • the frame width of the full screen is greatly reduced, and the internal components of the electronic device 10, such as the front camera, receiver, fingerprint reader, antenna, etc., need to be re-arranged.
  • antenna design the headroom area is reduced, and the antenna space is further compressed.
  • Fig. 2A exemplarily shows a simulation model using the prior art.
  • Fig. 2B is a schematic structural diagram of the model shown in Fig. 2A. As shown in Figure 2A-2B, the parameters of the whole machine are set as: length 158mm, width 78mm.
  • the slot 21 between the metal frame 11 and the PCB floor can be used to form two slot antenna radiators of 1/4 wavelength mode with one end open and one end grounded: low-frequency slot antenna LB1 and low-frequency slot antenna LB2.
  • the two slot antennas are respectively distributed on both sides of the bottom of the electronic device 10.
  • the ground terminal GND1 of the low-frequency slot antenna LB1 and the ground terminal GND2 of the low-frequency slot antenna LB2 are adjacent to each other, and the distance between GND1 and GND2 is set to 40 mm.
  • Fig. 3A shows an S parameter simulation of the antenna structure exemplarily shown in Fig. 2A.
  • S11 and S22 respectively represent the S parameter curves of the slot antennas LB1 and LB2
  • S21 represents the isolation between the slot antennas LB1 and LB2.
  • FIG. 3B shows the radiation efficiency and system efficiency of the antenna structure exemplarily shown in FIG. 2A.
  • the curves LB1 and LB2 respectively represent the efficiency curves of the slot antennas LB1 and LB2.
  • FIG. 3C shows the radiation direction of the antenna structure exemplarily shown in FIG. 2A.
  • This application provides a MIMO antenna design scheme. Through symmetric feeding and anti-symmetric feeding, a differential mode slot antenna and a common mode slot antenna are separately excited on the same slot antenna radiator, which can achieve high isolation and low ECC. MIMO antenna characteristics.
  • CM slot antenna mode 1. Common mode (CM) slot antenna mode
  • the slot antenna 101 may include a slot 103, a feeding point 107, and a feeding point 109.
  • the slot 103 can be opened on the PCB floor.
  • An opening 105 is provided on one side of the groove 103, and the opening 105 can be specifically opened in the middle of the side.
  • the feeding point 107 and the feeding point 109 may be respectively arranged on both sides of the opening 105.
  • the feeding point 107 and the feeding point 109 can be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 101.
  • the center conductor (transmission line center conductor) of the coaxial transmission line can be connected to the feed point 107 through the transmission line, and the outer conductor (transmission line outer conductor) of the coaxial transmission line can pass through The transmission line is connected to the feeding point 109.
  • the outer conductor of the coaxial transmission line is grounded.
  • the slot antenna 101 can be fed at the opening 105, and the opening 105 can also be referred to as a feeding place.
  • the positive pole of the feed source can be connected to one side of the opening 105, and the negative pole of the feed source can be connected to the other side of the opening 105.
  • FIG. 4B shows the current, electric field, and magnetic current distribution of the slot antenna 101.
  • the current is distributed in the same direction on both sides of the middle position of the slot antenna 101, but the electric field and magnetic current are distributed in opposite directions on both sides of the middle position of the slot antenna 101.
  • the feed structure shown in FIG. 4A may be referred to as an anti-symmetric feed structure.
  • the slot antenna pattern shown in FIG. 4B can be referred to as a CM slot antenna pattern.
  • the electric field, current, and magnetic current shown in FIG. 4B can be respectively referred to as the electric field, current, and magnetic current of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slots on both sides of the middle position of the slot antenna 101 working in the 1/4 wavelength mode: the current is weak at the middle position of the slot antenna 101 and strong at both ends of the slot antenna 101.
  • the electric field is strong at the middle position of the slot antenna 101 and weak at both ends of the slot antenna 101.
  • the slot antenna 110 may include a slot 113, a feeding point 117, and a feeding point 115.
  • the slot 113 can be opened on the PCB floor.
  • the feeding point 117 and the feeding point 115 may be respectively arranged in the middle positions of the two sides of the slot 113.
  • the feeding point 117 and the feeding point 115 may be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 110.
  • the center conductor of the coaxial transmission line can be connected to the feed point 117 through the transmission line
  • the outer conductor of the coaxial transmission line can be connected to the feed point 115 through the transmission line.
  • the outer conductor of the coaxial transmission line is grounded.
  • the middle position 112 of the slot antenna 110 is connected to the feed source, and the middle position 112 may also be referred to as the feed point.
  • the positive pole of the feed source can be connected to one side of the slot 113, and the negative pole of the feed source can be connected to the other side of the slot 113.
  • FIG. 5B shows the current, electric field, and magnetic current distribution of the slot antenna 110.
  • the current is distributed in the opposite direction on both sides of the middle position 112 of the slot antenna 110, but the electric field and magnetic current are distributed in the same direction on both sides of the middle position 112 of the slot antenna 110.
  • the feeding structure shown in FIG. 5A may be referred to as a symmetric feeding structure.
  • the slot antenna pattern shown in FIG. 5B can be referred to as a DM slot antenna pattern.
  • the electric field, current, and magnetic current shown in Fig. 5B can be distributed called the electric field, current, and magnetic current of the DM slot antenna mode.
  • the current and electric field of the DM slot antenna mode are generated by the entire slot 21110 working in the 1/2 wavelength mode: the current is weak at the middle position of the slot antenna 110 and strong at both ends of the slot antenna 110.
  • the electric field is strong at the middle position of the slot antenna 110 and weak at both ends of the slot antenna 110.
  • the antenna simulation is based on the following environment: the width of the whole machine is 78mm, and the length of the whole machine is 158mm.
  • the metal frame 11 has a thickness of 4 mm and a width of 3 mm, and the antenna clearance in the Z-projection area is 1 mm.
  • the width of the slit (such as the gap 25) on the metal frame 11 is 1 mm to 2 mm.
  • the dielectric constant of the material filled in the slot (such as slot 21) formed between the metal frame 11 and the PCB floor, the gap 25 on the metal frame 11, and the gap between the bridge structure 29 and the PCB floor is 3.0, and the loss angle Is 0.01.
  • the metal frame 11 and the PCB floor are used to form a slot, and the slot is excited to generate two low-frequency (working frequency bands near LTE B5) antenna modes: CM slot antenna mode and DM via symmetrical feeding and anti-symmetric feeding. Slot antenna pattern.
  • FIG. 6A-6D show the MIMO antenna device provided in Embodiment 1.
  • FIG. 6A shows a front-side view of the MIMO antenna device
  • FIG. 6B is a schematic diagram of the front-side structure of the MIMO antenna device
  • FIG. 6C shows a back-side view of the MIMO antenna device
  • FIG. 6D is a schematic diagram of the back-side view of the MIMO antenna device.
  • the front side refers to the front side of the PCB 17 and the back side refers to the back side of the PCB 17.
  • the front view shows the anti-symmetric feed design for the antenna structure
  • the back view shows the symmetric feed design for the antenna structure.
  • the MIMO antenna device provided in Embodiment 1 may include: a slot 21, a feeding point M, a feeding point N, and a bridge structure 29. in,
  • the slot 21 may be opened between the PCB 17 and the first section of the metal frame 11.
  • One side 23-1 of the slot 21 is formed by one side 17-1 of the PCB 17, and the other side 23-2 is formed by the first section of the metal frame 11.
  • the first section of the metal frame 11 may be a section of the metal frame between the position 11-1 and the position 11-3.
  • the side 23-1 may be referred to as a first side
  • the side 23-2 may be referred to as a second side.
  • the first section of the metal frame 11 may specifically be the bottom edge of the metal frame, that is, the groove 21 may be opened between the PCB 17 and the bottom edge of the metal frame.
  • the groove 21 may extend from the bottom edge of the metal frame 11 to the side edge of the metal frame 11, and may be a U-shaped groove with a symmetrical structure at the bottom of the electronic device 10.
  • Both ends of the slot 21 may be grounded, and the two ends may include one end 21-1 and the other end 21-3.
  • a gap 25 can be opened on one side 23-2 of the groove 21 formed by the metal frame 11.
  • the gap 25 can connect the groove 21 to the external free space.
  • the side 23-2 may have one slit 25 or multiple slits 25.
  • the side 23-2 may include two parts: a first part and a second part.
  • the first part is located on one side of the gap 25 and the second part is located on the other side of the gap 25.
  • the plurality of slits 25 may divide the side 23-2 to form a suspended section.
  • the side 23-2 may include three parts: a first part, a second part, and a third part.
  • the first part is located on one side of the third part, and the first part is located on one side of the third part.
  • the second part is located on the other side of the third part, and the third part may include the plurality of gaps 25 and the floating section between the plurality of gaps 25.
  • the side 23-2 may include three parts: a first part, a second part, and a third part.
  • the first part is located on one side of the third part
  • the second part is located on the other side of the third part.
  • the third part may include the two gaps 25 and the suspension section between the two gaps 25.
  • the slit 25 may be set at the middle position of the side, or may be set deviated from the middle position. If the slit 25 is a plurality of slits, the slit 25 is arranged in the middle position of the side edge, which may mean that the plurality of slits are located in the middle position of the side edge 23-2 as a whole.
  • the feeding point M and the feeding point N may be located on the side 23-2 of the slot 21 formed by the metal frame 11, and specifically may be respectively arranged on both sides of the gap 25. That is, the feeding point M is located on the first part of the side 23-2, and the feeding point N is located on the second part of the side 23-2.
  • the bridge structure 29 may be a metal frame of laser direct structuring (LDS), and may be erected on the back of the PCB 17.
  • LDS laser direct structuring
  • the erection height of the bridge structure 29 on the back of the PCB 17 may be 2.3 mm. It is not limited to this, and the height can also be other values, which is not limited in this application.
  • the bridge structure 29 can be referred to as a "bridge" structure of the slots on both sides of the slot 25, which can optimize impedance matching.
  • the two ends of the bridge structure 29 can be connected to the groove 21, and specifically can be respectively connected to the grooves on both sides of the gap.
  • Both ends of the bridge structure 29 include a first end 26-2 and a second end 26-1.
  • the first end 26-2 may be connected to the first part of the side 23-2, or extend beyond the first side to the groove
  • the second end 26-1 may be connected to the second part of the side 23-2, or beyond the first side
  • the edge extends to the groove.
  • the groove 21 is a U-shaped groove extending to the side of the metal frame 11
  • the first end 26-2 and the second end 26-1 can be connected to the two sides of the metal frame 11 respectively.
  • the size of the antenna device provided in Embodiment 1 may be as shown in FIG. 6A or FIG. 6B, and the width of the slot 21 is 1 mm.
  • the closed end (grounding end) of the groove 21, that is, the two ends of the side edge of the metal frame 11, is at a distance of 15 mm from the bottom edge of the metal frame 11.
  • the width of the two gaps at the bottom of the metal frame 11 is 1mm, and the distance between the two gaps is 8mm; the distance between the left gap and the left side of the metal frame 11 is 34.5mm, and the right gap to the metal frame 11 The distance on the right side is 34.5mm.
  • the antenna device provided in Embodiment 1 may have two feed structures: an antisymmetric feed structure and a symmetric feed structure.
  • the feed point M and the feed point N can be used to connect the positive pole and the negative pole of the feed source, respectively.
  • a coaxial transmission line can be used to connect the feed source
  • the center conductor of the coaxial transmission line (connected to the positive electrode of the feed source) can be connected to the feed point M through the transmission line
  • the outer conductor (ground) of the coaxial transmission line can be connected to the feed point through the transmission line N.
  • the feeding point M may also be called a positive feeding point
  • the feeding point N may also be called a negative feeding point.
  • the feeding network connected to the feeding point M and the feeding point N can be specifically realized by hollowing out the PCB 17, so as to make full use of the PCB floor on the front of the PCB 17 to realize the feeding network and save design space.
  • a partial area at the bottom center of the PCB 17 can be hollowed out to form a feeder network for the slot antenna: two parallel wires 27-1 and 27-2 extending from the PCB floor are symmetric
  • the positive electrode C and the negative electrode D of the feed are formed between 27-1 and the lead 27-2.
  • the connection points between the feeding network and the tank 21 are the feeding point M and the feeding point N.
  • the connection point is a connection point where the feed network indirectly connects the slot 21 through the matching network.
  • the equivalent circuit of the feeder network can be shown in Figure 8.
  • connection points between the matching network 28 and the feeding network are connection point E, connection point F, connection point J, and connection point K.
  • 6A-6B only exemplarily show an implementation of the matching network, and the matching network may also be different, which is not limited in this application.
  • the feed structure shown in FIGS. 6A-6B can excite the slot 21 to generate a CM slot antenna mode.
  • the feeding structure of the inverse symmetric feeding is not limited to the form of using parallel double wires (wires 27-1, 27-2), and other feeding forms of the balun structure may also be adopted, which is not limited in this application.
  • the bridge structure 29 may be provided with a feeding point S, and the feeding point S may be connected to the feeding terminal (positive electrode) of the feeding source (signal source).
  • the bridge structure 29 shown in FIGS. 6C-6D can be connected to the slot 21, specifically can be connected to the side 23-2 of the slot 21 formed by the metal frame 11, and excite the slot 21 to generate a DM slot antenna pattern.
  • the CM slot antenna mode and the DM slot antenna mode can be separately excited on the same slot antenna, which can achieve high isolation and low ECC MIMO antenna characteristics. .
  • 9A-9C respectively show the reflection coefficient, isolation, and antenna efficiency of the MIMO antenna device.
  • FIG. 9A shows a set of reflection coefficient curves simulated by the MIMO antenna device.
  • “1” and “2” represent different resonances.
  • the MIMO antenna device can generate resonance “1” around 0.84GHz, and can also generate resonance “2" around 0.84GHz.
  • Resonance “1” is the resonance of the CM slot antenna mode
  • resonance “2” is the resonance of the DM slot antenna mode.
  • the resonance "1” can be generated by the slots on both sides of the slot 25 each working in the 1/4 wavelength mode.
  • the resonance "2" can be generated by the entire slot 21 operating in the 1/2 wavelength mode.
  • the slot 21 generates the wavelength mode of resonance "1", and the resonance "1" can also be generated by the three-quarter wavelength mode of the slots on both sides of the slot 25 or the like.
  • the wavelength mode of the resonance "2" is not limited to the slot 21, and the resonance "2" can also be generated by the one-time wavelength mode, the three-half wavelength mode and the like of the slot 21.
  • the antenna device provided in Embodiment 1 can also generate resonance in other low frequency frequency bands, which can be specifically set by adjusting the size of the slot 21.
  • FIG. 9B shows the isolation between the two slot antenna modes of the MIMO antenna device. It can be seen that the isolation between these two slot antenna modes can be as high as 30dB or more.
  • FIG. 9C shows the radiation efficiency and system efficiency of the two slot antenna modes of the MIMO antenna device. It can be seen that these two slot antenna modes have excellent radiation efficiency and system efficiency near the resonance frequency of 0.84 GHz.
  • 10A-10B show the simulated current and electric field distributions of the antenna device provided in Embodiment 1.
  • FIG. 10A shows the current and electric field distribution of the CM slot sky mode of the MIMO antenna device. It can be seen from FIG. 10A that the current is distributed in the same direction on both sides of the gap 25, but the electric field is distributed in reverse on both sides of the gap 25.
  • the electric field and current shown in FIG. 10A can be respectively referred to as the electric field and current of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slots on both sides of the slot 25 working in the 1/4 wavelength mode: the current is weak at the slot 25 of the slot 21 and strong at both ends of the slot 21.
  • the electric field is strong at the gap 25 of the groove 21 and weak at both ends of the groove 21.
  • FIG. 10B shows the current and electric field distribution of the DM slot mode of the MIMO antenna device. It can be seen from FIG. 10B that the current is distributed in the opposite direction on both sides of the gap 25, but the electric field is distributed in the same direction on both sides of the gap 25.
  • the electric field and current shown in FIG. 10B can be distributed as the electric field and current of the DM slot antenna mode.
  • the current and electric field of the DM slot antenna mode are generated by the entire slot 21 working in the 1/2 wavelength mode: the current is weak at the slot 25 of the slot 21 and strong at both ends of the slot 21.
  • the electric field is strong at the gap 25 of the groove 21 and weak at both ends of the groove 21.
  • the antenna design solution provided in Example 1 uses the metal frame 11 and the PCB floor to form a slot, and through symmetrical and anti-symmetric feeding, the slot is excited to generate two low-frequency slots (the working frequency band is near LTE B5).
  • Antenna mode CM slot antenna mode and DM slot antenna mode.
  • CM slot antenna mode and DM slot antenna mode.
  • Embodiment 1 can adopt the form of common body feeding, that is, two slot antenna modes share the same slot antenna radiator, which can save antenna design space.
  • the bridge structure 29 can be a T-shaped structure: while connecting the grooves on both sides of the gap 25, it also connects the floating metal frame 11a in the middle of the gap 25.
  • the T-shaped structure may include horizontal branches and vertical branches.
  • the two ends of the transverse branch ie, the first end 26-2 and the second end 26-1) can be connected to the grooves on both sides of the gap 25 respectively.
  • the first end 26-2 is connected to the first part of the side 23-2
  • the second end 26-1 can be connected to the second part of the side 23-2.
  • the vertical branches can be connected to the suspended metal frame 11a. It is not limited to the suspended metal frame 11a between the two gaps 25, and the gap 25 may also include more gaps 25 to divide more suspended metal frames.
  • the matching device in the antisymmetric feed structure of the CM slot antenna mode can be adjusted, and the dual resonance of the CM slot antenna mode can be realized.
  • this deformation can optimize the "bridge" structure used in the DM slot antenna mode, and can also realize the dual resonance of the DM slot antenna mode.
  • FIG. 12A shows a set of reflection coefficient curves simulated by the MIMO antenna device.
  • the MIMO antenna device can generate resonance “1” and resonance “3” around 0.82 GHz, and can also generate resonance “2" and resonance “4" around 0.87 GHz.
  • Resonance "1” and resonance “2” are the resonance of the CM slot antenna mode
  • resonance "3” and resonance “4" are the resonance of the DM slot antenna mode.
  • the MIMO antenna device can also generate dual resonance in other frequency bands, which can be specifically set by adjusting the size of the slot 21.
  • FIG. 12B shows the isolation between the dual-resonance CM slot antenna mode and the dual-resonance DM slot antenna mode of the MIMO antenna device. It can be seen that the isolation between these two slot antenna modes can be as high as 30dB or more.
  • Fig. 14 shows the simulated radiation pattern of the slot antenna shown in Figs. 11A-11D.
  • ECC is calculated according to the radiation pattern shown in Figure 14.
  • the ECC of the dual-resonant CM slot antenna mode and the dual-resonant DM slot antenna mode at resonance "1" (0.82GHz) is as low as 0.01
  • the ECC of the antenna mode at resonance "2" (0.87GHz) is as low as 0.03.
  • the dual-resonant CM slot antenna mode and the dual-resonant DM slot antenna mode can be realized by deforming the bridge structure 29, further increasing the frequency bandwidth and achieving high isolation , Low ECC.
  • the MIMO antenna device provided by this embodiment can excite one slot to generate two mid-to-high frequency (working frequency band near Wi-Fi 2.4GHz) slot antenna modes: CM slot antenna mode and DM via symmetric feeding and anti-symmetric feeding. Slot antenna pattern.
  • FIG. 15A-15D show the MIMO antenna device provided by the second embodiment.
  • FIG. 15A shows a front-side view of the MIMO antenna device
  • FIG. 15B is a schematic diagram of the front-side structure of the MIMO antenna device
  • FIG. 15C shows a back-side view of the MIMO antenna device
  • FIG. 15D is a schematic diagram of the back-side view of the MIMO antenna device.
  • the front side refers to the front side of the PCB 17 and the back side refers to the back side of the PCB 17.
  • the front view shows the anti-symmetric feed design for the antenna structure
  • the back view shows the symmetric feed design for the antenna structure.
  • the slot 21 may be opened between the PCB 17 and the first section of the metal frame 11.
  • the difference from Embodiment 1 is that the slot 21 in Embodiment 2 is shorter to form a slot radiator with a smaller size and generate mid-to-high frequency resonance.
  • the length of the groove 21 may be less than the first length (for example, 50 mm).
  • the groove 21 may be a strip-shaped groove located at the bottom of the electronic device 10, the length of which is 46 mm.
  • the bridge structure 29 in Embodiment 2 can be a U-shaped structure, and the two ends of the bridge structure 29 can be connected to the grooves on both sides of the gap 25 respectively.
  • the first end 26-1 and the second end 26-2 of the bridge structure 29 can be specifically connected to the bottom edge of the metal frame 11.
  • the size of the antenna device provided in Embodiment 2 may be as shown in FIG. 15A or FIG. 15B, and the width of the slot 21 is 1 mm.
  • the width of a gap 25 opened at the bottom of the metal frame 11 is 2 mm, and the length of the slots on both sides of the gap 25 is 22 mm.
  • Embodiment 2 can adopt the same antisymmetric feed structure and symmetric feed structure as described in Embodiment 1. For details, please refer to Embodiment 1, which will not be repeated here.
  • the slit 25 in the second embodiment may also include two slits 25.
  • the bridge structure 29 may also be the bridge structure 29 described in the extension scheme of Embodiment 1.
  • 16A-16C respectively show the reflection coefficient, isolation, and antenna efficiency of the MIMO antenna device.
  • FIG. 16A shows a set of reflection coefficient curves simulated by the MIMO antenna device.
  • “1” and “2” represent different resonances.
  • the MIMO antenna device can generate resonance “1” near 2.47GHz, and can also generate resonance “2" near 2.47GHz.
  • Resonance “1” is the resonance of the CM slot antenna mode
  • resonance “2” is the resonance of the DM slot antenna mode.
  • the resonance "1” can be generated by the slots on both sides of the slot 25 each working in the 1/4 wavelength mode.
  • the resonance "2" can be generated by the entire slot 21 operating in the 1/2 wavelength mode.
  • the groove 21 is not restricted to the wavelength mode of resonance "1", and the resonance "1" can also be generated by the three-quarter wavelength mode of the grooves on both sides of the slot 25, or the like.
  • the wavelength mode of the resonance "2" generated by the slot 21 is not restricted, and the resonance "2" can also be generated by the slot 21 operating in the one-time wavelength mode, the three-half wavelength mode, and the like.
  • the antenna device provided in Embodiment 2 can also generate resonance in other middle and high frequency bands, which can be specifically set by adjusting the size of the slot 21.
  • FIG. 16B shows the isolation between the two slot antenna modes of the MIMO antenna device. It can be seen that the isolation between these two slot antenna modes can be as high as 21dB or more.
  • FIG. 16C shows the radiation efficiency and system efficiency of the two slot antenna modes of the MIMO antenna device. It can be seen that these two slot antenna modes have excellent radiation efficiency and system efficiency near the resonance frequency of 2.47 GHz.
  • 17A-17B show the simulated current and electric field distributions of the antenna device provided in Embodiment 2.
  • FIG. 17A shows the current and electric field distribution of the CM slot sky mode of the MIMO antenna device. It can be seen from FIG. 17A that the current is distributed in the same direction on both sides of the gap 25, but the electric field is distributed in reverse on both sides of the gap 25.
  • the electric field and current shown in FIG. 17A can be respectively referred to as the electric field and current of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slots on both sides of the slot 25 working in the 1/4 wavelength mode: the current is weak at the slot 25 of the slot 21 and strong at both ends of the slot 21.
  • the electric field is strong at the gap 25 of the groove 21 and weak at both ends of the groove 21.
  • FIG. 17B shows the current and electric field distribution of the DM slot sky mode of the MIMO antenna device. It can be seen from FIG. 17B that the current is distributed in the opposite direction on both sides of the gap 25, but the electric field is distributed in the same direction on both sides of the gap 25.
  • the electric field and current shown in FIG. 17B can be distributed as the electric field and current of the DM slot antenna mode.
  • the current and electric field of the DM slot antenna mode are generated by the entire slot 21 working in the 1/2 wavelength mode: the current is weak at the slot 25 of the slot 21 and strong at both ends of the slot 21.
  • the electric field is strong at the gap 25 of the groove 21 and weak at both ends of the groove 21.
  • Fig. 18 shows the simulated radiation pattern of the slot antenna shown in Figs. 15A-15D. According to the radiation pattern shown in Figure 18, the ECC is calculated.
  • the ECC of the CM slot antenna pattern and the DM slot antenna pattern around 2.47 GHz can be as low as 0.04.
  • the antenna design scheme provided in Example 2 can separately excite two medium and high frequencies on a short slot antenna radiator through symmetrical feeding and antisymmetrical feeding (the working frequency band is in Wi-Fi 2.4GHz).
  • Antenna CM slot antenna and DM slot antenna, achieve high isolation and low ECC MIMO antenna characteristics in the medium and high frequency bands.
  • Embodiment 2 can adopt the form of common body feeding, that is, two slot antenna modes share the same slot antenna radiator, which can save antenna design space.
  • the feeding point M and the feeding point N may be referred to as the first feeding point and the second feeding point, respectively.
  • the feeding point S on the bridge structure 29 may be referred to as a third feeding point.
  • the feeding point M and the feeding point N are not limited to be located close to the gap.
  • the feeding point M and the feeding point N may also be located near the two ends of the slot 21 respectively, as shown in FIG. 21A-FIG. 21B Show.
  • the size of the “bridge” structure is relatively large, and some lumped devices (such as lumped inductors) can be added to reduce the size, as shown in FIG. 19. It is not limited to the realization of the "bridge” structure by the bridge structure 29, and the "bridge” structure can also be formed by hollowing out the PCB floor.
  • the antenna design solutions provided in the above embodiments are not limited to be implemented in electronic devices with a metal frame ID.
  • the slot 21 mentioned in the above embodiments can also be formed by a metal middle frame and the PCB 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

一种天线设计方案,利用电子设备的金属边框和PCB地板形成一个槽,通过对称馈电和反对称馈电,可激励该槽产生两个槽天线模式:CM槽天线模式和DM槽天线模式,可在宽频段内实现高隔离度和低ECC的MIMO天线特性。而且,两种槽天线模式共用同一个槽天线辐射体,可节约天线设计空间。

Description

天线装置及电子设备
本申请要求于2020年01月22日提交中国专利局、申请号为202010075833.X、申请名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,特别涉及应用在电子设备中的天线装置。
背景技术
多输入多输出(multi-input multi-output,MIMO)技术在第五代(5th generation,5G)无线通信系统中起着非常重要的作用。但是,移动终端,如手机,要获得良好的MIMO性能仍是一个很大的挑战。其中一个原因在于,移动终端内部的十分有限的空间限制了MIMO天线能够覆盖的频段以及高性能。
发明内容
本发明实施例提供了一种电子设备,在同一个槽天线辐射体上同时激励出差模槽天线和共模槽天线,可实现高隔离度、低ECC的MIMO天线特性。
第一方面,本申请实施例提供了一种电子设备,该电子设备包括PCB、金属边框和天线装置。该天线装置可包括:槽、第一馈电点、第二馈电点以及桥结构;其中,
该槽可以开设在该PCB与该金属边框的第一段之间。该槽的两端可接地。该槽可包括第一侧边和第二侧边,第一侧边可由该PCB的一侧边构成,第二侧边可由该金属边框的第一段构成。第二侧边上可开设有一个缝隙。第二侧边可包括第一部分和第二部分,第一部分可位于该缝隙的一侧,第二部分可位于该缝隙的另一侧。
第一馈电点可位于第二侧边的第一部分上,第二馈电点可位于第二侧边的第二部分上。第一馈电点可连接该天线装置的馈源的正极,第二馈电点可连接该天线装置的馈源的负极。
该桥结构可包括第一端和第二端,第一端可连接第一部分,或者越过第一侧边延伸到槽,第二端可连接第二部分,或者越过第一侧边延伸到槽。桥结构上可设有第三馈电点,第三馈电点可连接馈源的正极。
第一方面中,第一馈电点、第二馈电点形成的馈电结构可激励槽产生CM槽天线模式。这种馈电结构即后续实施例中提及的反对称馈电。CM槽天线模式的电流、电场分布呈如下特点:电流在缝隙两侧呈现同向分布,但电场在缝隙两侧呈现反向分布。CM槽天线模式的电流、电场可以是缝隙两侧的槽各自工作在1/4波长模式产生的。
第一方面中,桥结构以及设置在桥结构上的第三馈电点形成的馈电结构可激励槽产生DM槽天线模式。这种馈电结构即后续实施例中提及的对称馈电。DM槽天线模式的电流、电场分布呈如下特点:电流在缝隙两侧呈现反向分布,但电场在缝隙两侧呈现同向分布。DM槽天线模式的电流、电场可以是整个槽工作在1/2波长模式产生的。
可以看出,第一方面提供的电子设备所采用的天线设计方案,利用电子设备的金属边 框和PCB地板形成一个槽,通过对称馈电和反对称馈电,可激励该槽产生两个槽天线模式:CM槽天线模式和DM槽天线模式,可在宽频段内实现高隔离度和低ECC的MIMO天线特性。而且,两种槽天线模式共用同一个槽天线辐射体,可节约天线设计空间。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可连接馈源的馈电网络,馈电网络可包括镂空PCB的地板所形成的、从地板延伸出来的两条对称的平行导线。
结合第一方面,在一些实施例中,桥结构可以是激光直接成型LDS的金属支架,可架设在PCB17背面的上方。桥结构可优化阻抗匹配。其中,在PCB17的两面中,设置有PCB地板的那一面可以称为PCB正面,另一面(未设置PCB地板)可以称为PCB背面。
结合第一方面,在一些实施例中,该缝隙可以设置在第二侧边的中间位置,也可以偏离该中间位置设置。
结合第一方面,在一些实施例中,槽可以是U型槽。例如,槽可以从金属边框的底边延伸至金属边框的两个侧边,可以是位于电子设备底部的U型槽。类似的,槽也可以是位于电子设备顶部的U型槽,或者是电子设备侧边的U型槽。
结合第一方面,在一些实施例中,槽可以是L型槽。例如,槽可以从金属边框的底边延伸至金属边框的一个侧边,可以是位于电子设备底部左侧或右侧的L型槽。类似的,槽也可以是位于电子设备顶部的L型槽。
结合第一方面,在一些实施例中,该天线装置在电子设备中的布局位置可以为以下一项或多项:电子设备的底部、电子设备的顶部或电子设备的侧边。
结合第一方面,在一些实施例中,电子设备可以包括多个该天线装置,这多个天线装置可以布局在电子设备的顶部、底部或侧边中的多个位置。例如,如果电子设备包括2个该天线装置,则这2个天线装置可以分别布局在电子设备的顶部、底部。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可以通过同轴传输线分别连接馈源的正极、负极,第一馈电点具体连接同轴传输线的中心导体,第二馈电点具体连接同轴传输线的外导体。
结合第一方面,在一些实施例中,第一馈电点、第二馈电点可以靠近缝隙而设,也可以分别靠近槽的两端而设。
结合第一方面,在一些实施例中,桥结构的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,即桥结构的部分为集总器件。
结合第一方面,在一些实施例中,不限于架设在PCB背面的LDS金属支架,桥结构也可以通过镂空PCB地板来形成。
第二方面,本申请实施例提供了一种电子设备,该电子设备包括PCB、金属边框和天线装置。该天线装置可包括:槽、第一馈电点、第二馈电点以及桥结构;其中,
该槽可以开设在该PCB与该金属边框的第一段之间,该金属边框的第一段包括第一端和第二端;该槽的两端可接地。该槽可包括第一侧边和第二侧边,第一侧边可由该PCB的一侧边构成,第二侧边可由该金属边框的第一段构成。第二侧边上可开设有多个缝隙。第二侧边可包括第一部分、第二部分和第三部分,第一部分可位于第三部分的一侧,第二部分可位于第三部分的另一侧。第三部分可以包括第一缝隙、第二缝隙、和位于第一缝隙和第二缝隙之间的悬浮段。
第一馈电点可位于第二侧边的第一部分上,第二馈电点可位于第二侧边的第二部分上。第一馈电点可连接该天线装置的馈源的正极,第二馈电点可连接该天线装置的馈源的负极。
该桥结构可包括第一端和第二端,第一端可连接第一部分,或者越过第一侧边延伸到槽,第二端可连接第二部分,或者越过第一侧边延伸到槽,桥结构上可设有第三馈电点,第三馈电点可连接馈源的正极。
可以看出,第二方面和第一方面不同的是,第二方面中的第二侧边上有两个缝隙:第一缝隙、第二缝隙。不限于两个缝隙,第三部分可包括三个或三个以上缝隙,以及这些缝隙之间的悬浮段。
结合第二方面,在一些实施例中,该桥结构还可连接第三部分中的悬浮段。
结合第二方面,在一些实施例中,桥结构可以包括一个T型结构:在连接缝隙两侧的槽的同时,还连接缝隙中间的悬浮金属边框。具体的,该T型结构可包括横向枝节和竖向枝节,该横向枝节的两端分别为前述第一端、前述第二端,分别连接第二侧边的第一部分、第二侧边的第二部分,该竖向枝节连接该悬浮段。
结合第二方面,在一些实施例中,桥结构可以是激光直接成型LDS的金属支架,可架设在PCB背面的上方。桥结构可优化阻抗匹配。其中,在PCB的两面中,设置有PCB地板的那一面可以称为PCB正面,另一面(未设置PCB地板)可以称为PCB背面。
结合第二方面,在一些实施例中,该缝隙可以设置在第二侧边的中间位置,也可以偏离该中间位置设置。
结合第二方面,在一些实施例中,槽可以是U型槽。例如,槽可以从金属边框的底边延伸至金属边框的两个侧边,可以是位于电子设备底部的U型槽。类似的,槽也可以是位于电子设备顶部的U型槽,或者是电子设备侧边的U型槽。
结合第二方面,在一些实施例中,槽可以是L型槽。例如,槽可以从金属边框的底边延伸至金属边框的一个侧边,可以是位于电子设备底部左侧或右侧的L型槽。类似的,槽也可以是位于电子设备顶部的L型槽。
结合第二方面,在一些实施例中,该天线装置在电子设备中的布局位置可以为以下一项或多项:电子设备的底部、电子设备的顶部或电子设备的侧边。
结合第二方面,在一些实施例中,电子设备可以包括多个该天线装置,这多个天线装置可以布局在电子设备的顶部、底部或侧边中的多个位置。例如,如果电子设备包括2个该天线装置,则这2个天线装置可以分别布局在电子设备的顶部、底部。
结合第二方面,在一些实施例中,第一馈电点、第二馈电点可以通过同轴传输线分别连接馈源的正极、负极,第一馈电点具体连接同轴传输线的中心导体,第二馈电点具体连接同轴传输线的外导体。
结合第二方面,在一些实施例中,第一馈电点、第二馈电点可以靠近缝隙而设,也可以分别靠近槽的两端而设。
结合第二方面,在一些实施例中,桥结构的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,即桥结构的部分为集总器件。
结合第二方面,在一些实施例中,不限于架设在PCB背面的LDS金属支架,桥结构也可以通过镂空PCB地板来形成。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请提供的天线设计方案所基于的电子设备的结构示意图;
图2A为现有技术中的一种MIMO天线设计方案的示意图;
图2B为图2A所示的天线设计方案的原理结构图;
图3A为图2A所示的天线设计方案的S11仿真图;
图3B为图2A所示的天线设计方案的效率仿真图;
图3C为图2A所示的天线设计方案的辐射方向图;
图4A为本申请涉及的CM槽天线的示意图;
图4B为CM槽天线模式的电流、电场、磁流的分布的示意图;
图5A为本申请涉及的DM槽天线的示意图;
图5B为DM槽天线模式的电流、电场、磁流的分布的示意图;
图6A为实施例一提供的天线装置的正面视图;
图6B为实施例一提供的天线装置的正面结构简图;
图6C示出了实施例一提供的天线装置的背面视图;
图6D为实施例一提供的天线装置的背面结构简图;
图7为“桥”结构架设在PCB上的示意图;
图8为反对称馈电结构的原理图;
图9A为实施例一提供的天线装置的S11仿真图;
图9B为实施例一提供的天线装置的效率仿真图;
图9C为实施例一提供的天线装置的辐射方向图;
图10A为实施例一提供的天线装置的CM槽天线模式的电流、电场分布的示意图;
图10B为实施例一提供的天线装置的DM槽天线模式的电流、电场分布的示意图;
图11A为实施例一扩展方案提供的天线装置的正面视图;
图11B为实施例一扩展方案提供的天线装置的正面结构简图;
图11C示出了实施例一扩展方案提供的天线装置的背面视图;
图11D为实施例一扩展方案提供的天线装置的背面结构简图;
图12A为实施例一扩展方案提供的天线装置的S11仿真图;
图12B为实施例一扩展方案提供的天线装置的效率仿真图;
图12C为实施例一扩展方案提供的天线装置的辐射方向图;
图13A为图11A所示天线装置的CM槽天线模式的电流、电场分布的示意图;
图13B为图11A所示天线装置的DM槽天线模式的电流、电场分布的示意图;
图14为图11A所示天线装置的辐射方向图;
图15A为实施例二提供的天线装置的正面视图;
图15B为实施例二提供的天线装置的正面结构简图;
图15C示出了实施例二提供的天线装置的背面视图;
图15D为实施例二提供的天线装置的背面结构简图;
图16A为实施例二提供的天线装置的S11仿真图;
图16B为实施例二提供的天线装置的效率仿真图;
图16C为实施例二提供的天线装置的辐射方向图;
图17A为实施例二提供的天线装置的CM槽天线模式的电流、电场分布的示意图;
图17B为实施例二提供的天线装置的DM槽天线模式的电流、电场分布的示意图;
图18为实施例二提供的天线装置的辐射方向图;
图19为本申请实施例提供的一种“桥”结构扩展实现方式;
图20为本申请实施例提供的一种4×4MIIMO天线的示意图;
图21A为实施例二提供的天线装置的正面视图;
图21B示出了实施例二提供的天线装置的背面视图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wirelessfidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。本申请中,电子设备可以是手机、平板电脑、个人数码助理(personal digital assistant,PDA)等等。
图1示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境。如图1所示,电子设备10可包括:玻璃盖板13、显示屏15、印刷电路板PCB17、壳体19和后盖21。
其中,玻璃盖板13可以紧贴显示屏15设置,可主要用于对显示屏15起到保护防尘作用。
其中,印刷电路板PCB17可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。印刷电路板PCB17靠近壳体19的一侧可以设置一金属层,该金属层可以通过在PCB17的表面蚀刻金属形成。该金属层可用于印刷电路板PCB17上承载的电子元件接地,以防止用户触电或设备损坏。该金属层可以称为PCB地板。本申请中,在PCB17的两面中,设置有PCB地板的那一面可以称为PCB正面(front side),另一面(未设置PCB地板)可以称为PCB背面(back side)。
其中,壳体19主要起整机的支撑作用。壳体19可以包括金属边框11,金属边框11可以由金属等传导性材料形成。金属边框11可以绕PCB17、显示屏15的外围延伸,帮助固定显示屏15。在一种实现中,金属材料制成的金属边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属ID。在另一种实现中,金属边框11的外表面还可以设置非金属边框,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
金属边框11可以划分为4个部分,这4个部分根据各自在电子设备中的位置不一样而可以命名为:底边,顶边以及两个侧边。顶边可设置于电子设备10的顶部,底边可设置于电子设备10的底部。两个侧边可分别设置于电子设备10的两侧。电子设备10顶部可设置有前置摄像头(未示出)、听筒(未示出)、接近光传感器(未示出)等器件。电子设备10底部可设置有USB充电接口(未示出)、麦克风(未示出)等。电子设备10侧边可设置有音量调节按键(未示出)、电源键(未示出)。
其中,后盖21可以是非金属材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖,也可以是金属材料制成的后盖。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
为了给用户带来更为舒适的视觉感受,电子设备10可以采用全面屏工业设计(industry design,ID)。全面屏意味着极大的屏占比(通常在90%以上)。全面屏的边框宽度大幅缩减,需要对电子设备10的内部器件,如前置摄像头、受话器、指纹识别器、天线等,进行重新布局。尤其对于天线设计来说,净空区域缩减,天线空间进一步被压缩。
现有技术中,在天线设计空间进一步缩减的情况下,在金属边框、玻璃后盖这种常见ID的手机上,往往在整机四周布局多个不同的辐射体来实现MIMO天线。但是,这多个不同的辐射体需要在天线形式、接地、馈电等方面符合较高要求,才能实现较高的天线隔离度以及较低的包络相关系数(envelopeIcorrelation coefficient,ECC)。下面举例说明。
图2A示例性示出了采用该现有技术的一种仿真模型。图2B是图2A所示模型的原理结构图。如图2A-图2B所示,整机参数设置为:长度158mm、宽度78mm。利用金属边框11和PCB地板之间的槽21可形成一端开放、一端接地的1/4波长模式的两个槽天线辐射体:低频槽天线LB1、低频槽天线LB2。这两个槽天线分别分布在电子设备10底部的两侧。低频槽天线LB1的接地端GND1、低频槽天线LB2的接地端GND2相邻,GND1与GND2之间的距离设置为40mm。
图3A示出了图2A示例性所示的天线结构的S参数仿真。其中,S11、S22分别表示槽天线LB1、LB2的S参数曲线,S21表示槽天线LB1、LB2之间的隔离度。图3B示出了图2A示例性所示的天线结构的辐射效率和系统效率。其中,曲线LB1、LB2分别表示槽天线LB1、LB2的效率曲线。图3C示出了图2A示例性所示的天线结构的辐射方向。可以看出,采用在整机四周布局多个不同的辐射体来实现MIMO天线的传统方案,尽管槽天线LB1、LB2各自的接地端相距较远(达到40mm),但槽天线LB1、LB2之间的隔离度却不理想(10dB),ECC也高达0.4。
本申请提供了一种MIMO天线的设计方案,通过对称馈电和反对称馈电,在同一个槽天线辐射体上分别激励出差模槽天线和共模槽天线,可实现高隔离度、低ECC的MIMO天线特性。
首先,介绍本申请将涉及两个天线模式。
1.共模(common mode,CM)槽天线模式
如图4A所示,槽天线101可包括:槽103、馈电点107以及馈电点109。其中,槽103可开设在PCB地板上。槽103的一侧设有开口105,开口105可具体开设在该侧的中间位置。馈电点107以及馈电点109可分别设置在开口105的两侧。馈电点107、馈电点109可分别用于连接槽天线101的馈源的正极、负极。例如,采用同轴传输线对槽天线101进行馈电,同轴传输线的中心导体(transmission line center conductor)可通过传输线连接至馈电点107,同轴传输线的外导体(transmission line outer conductor)可通过传输线连接至馈电点109。同轴传输线的外导体是接地的。
也即是说,槽天线101可在开口105处馈电,开口105又可以称为馈电处。馈源的正极可连接在开口105的一侧,馈源的负极可连接在开口105的另一侧。
图4B示出了槽天线101的电流、电场、磁流分布。如图4B所示,电流在槽天线101的中间位置两侧呈现同向分布,但电场、磁流在槽天线101的中间位置两侧呈现反向分布。图4A中示出的这种馈电结构可以称为反对称馈电结构。图4B所示的这种槽天线模式可以称为CM槽天线模式。图4B所示的电场、电流、磁流可分别称为CM槽天线模式的电场、电流、磁流。
CM槽天线模式的电流、电场是槽天线101的中间位置两侧的槽各自工作在1/4波长模式产生的:电流在槽天线101的中间位置处弱,在槽天线101的两端强。电场在槽天线101的中间位置处强,在槽天线101的两端弱。
2.差模(differential mode,DM)槽天线模式
如图5A所示,槽天线110可包括:槽113、馈电点117以及馈电点115。其中,槽113可开设在PCB地板上。馈电点117、馈电点115可分别设置在槽113的两个侧边的中间位置。馈电点117、馈电点115可分别用于连接槽天线110的馈源的正极、负极。例如,采用同轴传输线对槽天线110进行馈电,同轴传输线的中心导体可通过传输线连接至馈电点117,同轴传输线的外导体可通过传输线连接至馈电点115。同轴传输线的外导体是接地的。
也即是说,槽天线110的中间位置112处连接馈源,中间位置112又可以称为馈电处。馈源的正极可连接槽113的一侧边,馈源的负极可连接槽113的另一侧边。
图5B示出了槽天线110的电流、电场、磁流分布。如图5B所示,电流在槽天线110的中间位置112两侧呈现反向分布,但电场、磁流在槽天线110的中间位置112两侧呈现同向分布。图5A中示出的这种馈电结构可以称为对称馈电结构。图5B所示的这种槽天线模式可以称为DM槽天线模式。图5B所示的电场、电流、磁流可分布称为DM槽天线模式的电场、电流、磁流。
DM槽天线模式的电流、电场是整个槽21110工作在1/2波长模式产生:电流在槽天线110的中间位置处弱,在槽天线110的两端强。电场在槽天线110的中间位置处强,在槽天线110的两端弱。
下面结合附图详细说明本申请提供的多个实施例。以下实施例中,天线仿真均基于如下的环境:整机宽度为78mm、整机长度为158mm。金属边框11的厚度为4mm、宽度为3mm,Z向投影区域的天线净空均为1mm。金属边框11上的开缝(如缝隙25)的宽度均为1mm至2mm。金属边框11和PCB地板之间形成的槽(如槽21)内部、金属边框11上 的缝隙25内部、桥结构29和PCB地板之间的空隙内填充的材料的介电常数为3.0,损耗角为0.01。
实施例1
本实施例中,利用金属边框11和PCB地板形成一个槽,通过对称馈电和反对称馈电,激励该槽产生两个低频(工作频段在LTE B5附近)天线模式:CM槽天线模式和DM槽天线模式。
图6A-图6D示出了实施1提供的MIMO天线装置。其中,图6A示出了该MIMO天线装置的正面视图(front-side view),图6B为该MIMO天线装置的正面结构简图。图6C示出了该MIMO天线装置的背面视图(back-side view),图6D为该MIMO天线装置的背面结构简图。这里,正面是指PCB17的正面,背面是指PCB17的背面。正面视图示出了针对该天线结构的反对称馈电设计,背面视图示出了针对该天线结构的对称馈电设计。
如图6A-图6D所示,实施1提供的MIMO天线装置可包括:槽21、馈电点M、馈电点N以及桥结构29。其中,
槽21可开设在PCB17与金属边框11的第一段之间。槽21的一侧边23-1由PCB17的一侧边17-1构成,另一侧边23-2由金属边框11的第一段构成。金属边框11的第一段可以为位置11-1至位置11-3之间的一段金属边框。侧边23-1可以称为第一侧边,侧边23-2可以称为第二侧边。金属边框11的第一段可具体为金属边框的底边,即槽21可开设在PCB17与金属边框的底边之间。例如,如图6A所示,槽21可以从金属边框11的底边延伸至金属边框11的侧边,可以是位于电子设备10底部的一个结构对称的U型槽。
槽21的两端可接地,这两端可包括一端21-1、另一端21-3。
槽21的由金属边框11构成的一侧边23-2上可开设有缝隙25。缝隙25可连接槽21至外部自由空间。侧边23-2上可具有一个缝隙25,也可以具有多个缝隙25。
当侧边23-2上具有一个缝隙25时,侧边23-2可以包括两部分:第一部分和第二部分,第一部分位于缝隙25的一侧,第二部分位于缝隙25的另一侧。
当侧边23-2上可具有多个缝隙25时,这多个缝隙25可分割侧边23-2形成悬浮段。具体的,当侧边23-2上具有多个缝隙25时,侧边23-2可以包括三个部分:第一部分、第二部分和第三部分,第一部分位于第三部分的一侧,第二部分位于第三部分的另一侧,第三部分可包括这多个缝隙25以及这多个缝隙25之间的悬浮段。例如,当侧边23-2上具有两个缝隙25(可分别称为第一缝隙、第二缝隙)时,侧边23-2可以包括三个部分:第一部分、第二部分和第三部分,第一部分位于第三部分的一侧,第二部分位于第三部分的另一侧,第三部分可包括这两个缝隙25以及两个缝隙25之间的悬浮段。
缝隙25可以设置在该侧边的中间位置,也可以偏离该中间位置设置。如果缝隙25为多个缝隙,则缝隙25设置在该侧边的中间位置,可以是指,这多个缝隙为整体位于侧边23-2的中间位置。
馈电点M、馈电点N可位于槽21的由金属边框11构成的侧边23-2上,具体可分别设置在缝隙25的两侧。即,馈电点M位于侧边23-2的第一部分上、馈电点N位于侧边23-2的第二部分上。
桥结构29可以是激光直接成型(laser direct structuring,LDS)的金属支架,可架设在 PCB17背面的上方。例如,如图7所示,桥结构29在PCB17背面上的架设高度可以为2.3mm。不限于此,该高度还可以为其他值,本申请对此不作限制。桥结构29可称为缝隙25两侧的槽的“桥”结构,可优化阻抗匹配。桥结构29的两端可连接槽21,具体可分别连接缝隙两侧的槽。
桥结构29的两端包括第一端26-2和第二端26-1。第一端26-2可连接侧边23-2的第一部分,或者越过第一侧边延伸到槽,第二端26-1可连接侧边23-2的第二部分,或者越过第一侧边延伸到槽。当槽21是延伸至金属边框11的侧边的U型槽时,第一端26-2和第二端26-1具体可分别连接金属边框11的两侧边。
实施例1提供的天线装置的尺寸可如图6A或图6B所示,槽21的宽度为1mm。槽21的闭合端(接地端),即延伸至金属边框11的侧边的两端,到金属边框11的底边的距离为15mm。金属边框11底部开设的两个缝隙的宽度为1mm,这两个缝隙之间的距离为8mm;左侧缝隙到金属边框11的左侧之间的距离为34.5mm,右侧缝隙到金属边框11的右侧的距离为34.5mm。
实施例1提供的天线装置可具有两种馈电结构:反对称馈电结构和对称馈电结构。
1.反对称馈电结构
馈电点M、馈电点N可分别用于连接馈源的正极和负极。例如,可采用同轴传输线连接馈源,同轴传输线的中心导体(接馈源正极)可通过传输线连接至馈电点M,同轴传输线的外导体(接地)可通过传输线连接至馈电点N。馈电点M又可以称为正极馈电点(positive feeding point),馈电点N又可以称为负极馈电点(negative feeding point)。
如图6A-图6B所示,馈电点M、馈电点N连接的馈电网络具体可通过镂空PCB17来实现,以充分利用PCB17正面的PCB地板实现馈电网络,节约设计空间。例如,如图6A所示,可以镂空PCB17的底部中央的局部区域来形成槽天线的馈电网络:从PCB地板延伸出的左右对称的两段平行导线27-1和27-2,并在导线27-1和导线27-2之间形成馈源的正极C和负极D。该馈电网络与槽21的连接点即馈电点M、馈电点N。在配置了匹配网络的情况下,该连接点是馈电网络通过匹配网络间接连接槽21的连接点。该馈电网络的等效电路可如图8所示。
另外,通过镂空PCB17还可以进一步形成馈电网络的匹配网络28。匹配网络28与馈电网络的连接点为连接点E、连接点F、连接点J和连接点K。图6A-图6B仅仅示例性示出了一种匹配网络的实现方式,匹配网络还可以不同,本申请对此不作限制。
图6A-图6B所示的这种馈电结构可激励槽21产生CM槽天线模式。反对称馈电的馈电结构不限于使用平行双导线(导线27-1、27-2)的形式,其他巴伦结构的馈电形式也可采用,本申请对此不作限制。
2.对称馈电结构
如图6C-图6D所示,桥结构29上可设有馈电点S,馈电点S可连接馈源(信号源)的馈电端(正极)。图6C-图6D所示的桥结构29可连接槽21,具体可连接槽21的由金属边框11构成的侧边23-2,并激励槽21产生DM槽天线模式。
可以看出,通过上述对称馈电结构和上述反对称馈电结构,可以在同一个槽天线上分别激励出CM槽天线模式和DM槽天线模式,可实现高隔离度、低ECC的MIMO天线特 性。
下面结合附图说明实施例1提供的天线装置的仿真。
图9A-图9C分别示出了该MIMO天线装置的反射系数、隔离度、天线效率。
其中,图9A示出了该MIMO天线装置仿真的一组反射系数曲线。其中,“1”、“2”代表不同的谐振。该MIMO天线装置可在0.84GHz附近产生谐振“1”,还可在0.84GHz附近产生谐振“2”。谐振“1”是CM槽天线模式的谐振,谐振“2”是DM槽天线模式的谐振。具体的:谐振“1”可由缝隙25两侧的槽各自工作在1/4波长模式产生。谐振“2”可由整个槽21工作在1/2波长模式产生。不限制槽21产生谐振“1”的波长模式,谐振“1”也可由缝隙25两侧的槽的四分之三波长模式等产生。不限制槽21产生谐振“2”的波长模式,谐振“2”也可由槽21的一倍波长模式、二分之三波长模式等产生。除了图9A中示出的0.84GHz频段,实施例1提供的天线装置还可以产生其他低频频段的谐振,具体可通过调整槽21的尺寸来设置。
其中,图9B示出了该MIMO天线装置所具有的两种槽天线模式之间的隔离度。可以看出,这两种槽天线模式之间的隔离度可高达30dB以上。
其中,图9C示出了该MIMO天线装置所具有的两种槽天线模式的辐射效率和系统效率。可以看出,这两种槽天线模式在谐振频率0.84GHz附近均具有优良的辐射效率和系统效率。
图10A-图10B示出了实施例1提供的天线装置仿真的电流、电场分布。
其中,图10A示出了该MIMO天线装置的CM槽天模式的电流、电场分布。从图10A可以看出,电流在缝隙25两侧呈现同向分布,但电场在缝隙25两侧呈现反向分布。图10A所示的电场、电流可分别称为CM槽天线模式的电场、电流。CM槽天线模式的电流、电场是缝隙25两侧的槽各自工作在1/4波长模式产生的:电流在槽21的缝隙25处弱,在槽21的两端强。电场在槽21的缝隙25处强,在槽21的两端弱。
其中,图10B示出了该MIMO天线装置的DM槽天模式的电流、电场分布。从图10B可以看出,电流在缝隙25两侧呈现反向分布,但电场在缝隙25两侧呈现同向分布。图10B所示的电场、电流可分布称为DM槽天线模式的电场、电流。DM槽天线模式的电流、电场是整个槽21工作在1/2波长模式产生:电流在槽21的缝隙25处弱,在槽21的两端强。电场在槽21的缝隙25处强,在槽21的两端弱。
可以看出,实施例1提供的天线设计方案,利用金属边框11和PCB地板形成一个槽,通过对称馈电和反对称馈电,激励该槽产生两个低频(工作频段在LTE B5附近)槽天线模式:CM槽天线模式和DM槽天线模式。这样,可实现CM槽天线模式和DM槽天线模式的双谐振,在低频宽频段内实现高隔离度和低ECC的MIMO天线特性。而且,实施例1可通过共体馈电的形式,即两种槽天线模式共用同一个槽天线辐射体,可节约天线设计空间。
实施例1的扩展方案
如图11A-图11D所示,桥结构29可以为一个T型结构:在连接缝隙25两侧的槽的同时,还连接缝隙25中间的悬浮金属边框11a。具体的,该T型结构可包括横向枝节和竖向 枝节。横向枝节的两端(即第一端26-2、第二端26-1)可分别连接缝隙25两侧的槽。具体的,第一端26-2连接侧边23-2的第一部分,第二端26-1可连接侧边23-2的第二部分。竖向枝节可连接悬浮金属边框11a。不限于两个缝隙25之间的悬浮金属边框11a,缝隙25还可以包括更多缝隙25,分割出更多悬浮金属边框。
这样,可以调整CM槽天线模式的反对称馈电结构中的匹配器件,可实现CM槽天线模式的双谐振。而且,该变形可优化DM槽天线模式所使用的“桥”结构,也可实现DM槽天线模式的双谐振。
下面结合附图说明图11A-图11D所示槽天线的仿真。
图12A-图12C分别示出了该MIMO天线装置的反射系数、隔离度、天线效率。
其中,图12A示出了该MIMO天线装置仿真的一组反射系数曲线。其中,“1”、“2”、“3”、“4”代表不同的谐振。该MIMO天线装置可在0.82GHz附近产生谐振“1”和谐振“3”,还可在0.87GHz附近产生谐振“2”和谐振“4”。谐振“1”、谐振“2”是CM槽天线模式的谐振,谐振“3”、谐振“4”是DM槽天线模式的谐振。除了图12A中示出的0.82GHz、0.87GHz频段,该MIMO天线装置还可以产生其他频段的双谐振,具体可通过调整槽21的尺寸来设置。
其中,图12B示出了该MIMO天线装置所具有的双谐振CM槽天线模式、双谐振DM槽天线模式之间的隔离度。可以看出,这两种槽天线模式之间的隔离度可高达30dB以上。
其中,图12C示出了该MIMO天线装置所具有的两种槽天线模式的辐射效率和系统效率。可以看出,图11A-图11D所示的天线装置的带宽比图6A-图6D所示的天线装置的带宽更大,双谐振CM槽天线模式、双谐振DM槽天线模式均具有优良的辐射效率和系统效率。
图13A-图13B示出了图11A-图11D所示槽天线仿真的电流、电场分布。
其中,图13A示出了该MIMO天线装置的双谐振CM槽天模式的电流、电场分布。如图13A所示,双谐振CM槽天模式的电流包括谐振“1”(0.82GHz)的电流、谐振“2”(0.87GHz)的电流。双谐振CM槽天模式的电场包括谐振“1”(0.82GHz)的电场、谐振“2”(0.87GHz)的电场。从图13A可以看出,谐振“1”、谐振“2”的电流在缝隙25两侧呈现同向分布,但谐振“1”、谐振“2”的电场在缝隙25两侧呈现反向分布。
其中,图13B示出了该MIMO天线装置的双谐振DM槽天模式的电流、电场分布。如图13B所示,双谐振CM槽天模式的电流包括谐振“3”(0.82GHz)的电流、谐振“4”(0.87GHz)的电流。双谐振CM槽天模式的电场包括谐振“3”(0.82GHz)的电场、谐振“4”(0.87GHz)的电场。从图13B可以看出,谐振“3”、谐振“4”的电流在缝隙25两侧呈现反向分布,但谐振“3”、谐振“4”的电场在缝隙25两侧呈现同向分布。
图14示出了图11A-图11D所示槽天线仿真的辐射方向图。根据图14所示辐射方向图计算ECC,双谐振CM槽天线模式和双谐振DM槽天线模式在谐振“1”(0.82GHz)的ECC低至0.01,双谐振CM槽天线模式和双谐振DM槽天线模式在谐振“2”(0.87GHz)的ECC低至0.03。
可以看出,图11A-图11D所示槽天线中,通过变形桥结构29,可实现双谐振的CM槽天线模式和双谐振的DM槽天线模式,进一步增加频带宽,而且可实现高隔离度、低ECC。
实施例2
本实施例提供的MIMO天线装置,通过对称馈电和反对称馈电,可激励一个槽产生两个中高频(工作频段在Wi-Fi2.4GHz附近)的槽天线模式:CM槽天线模式和DM槽天线模式。
图15A-图15D示出了实施2提供的MIMO天线装置。其中,图15A示出了该MIMO天线装置的正面视图(front-side view),图15B为该MIMO天线装置的正面结构简图。图15C示出了该MIMO天线装置的背面视图(back-side view),图15D为该MIMO天线装置的背面结构简图。这里,正面是指PCB17的正面,背面是指PCB17的背面。正面视图示出了针对该天线结构的反对称馈电设计,背面视图示出了针对该天线结构的对称馈电设计。
如图15A-图15D所示,实施2提供的MIMO天线装置可包括:槽21、馈电点M、馈电点N以及桥结构29。其中,
槽21可开设在PCB17与金属边框11的第一段之间。与实施例1不同的是,实施例2中的槽21更短,以形成尺寸更小的槽辐射体,产生中高频谐振。槽21的长度可小于第一长度(如50mm)。例如,如图15A所示,槽21可以是位于电子设备10底部的一条型槽,其长度为46mm。
槽21的由金属边框11构成的一侧边23-2上可开设有缝隙25。侧边23-2上可具有一个缝隙25,也可以具有多个缝隙25。例如,如图15A所示,缝隙25可以为1个缝隙25。缝隙25可以设置在该侧边的中间位置,也可以偏离该中间位置设置。
馈电点M、馈电点N可位于槽21的由金属边框11构成的侧边23-2上,具体可分别设置在缝隙25的两侧。即,馈电点M位于侧边23-2的第一部分上、馈电点N位于侧边23-2的第二部分上。
与实施例1不同的是,实施例2中的桥结构29可以是U型结构,桥结构29的两端可分别连接缝隙25两侧的槽。桥结构29的第一端26-1、第二端26-2具体可连接金属边框11的底边。
实施例2提供的天线装置的尺寸可如图15A或图15B所示,槽21的宽度为1mm。金属边框11底部开设的1个缝隙25的宽度为2mm,这个缝隙25两侧的槽的长度均为22mm。
实施例2中可采用同于实施例1中描述的反对称馈电结构和对称馈电结构,具体可参考实施例1,这里不再赘述。
同于实施例1,实施例2中的缝隙25也可以包括两个缝隙25。桥结构29也可以为实施例1的扩展方案中描述的桥结构29。
下面结合附图说明实施例2提供的天线装置的仿真。
图16A-图16C分别示出了该MIMO天线装置的反射系数、隔离度、天线效率。
其中,图16A示出了该MIMO天线装置仿真的一组反射系数曲线。其中,“1”、“2”代表不同的谐振。该MIMO天线装置可在2.47GHz附近产生谐振“1”,还可在2.47GHz附近产生谐振“2”。谐振“1”是CM槽天线模式的谐振,谐振“2”是DM槽天线模式的谐振。具体的:谐振“1”可由缝隙25两侧的槽各自工作在1/4波长模式产生。谐振“2”可由整个槽21工作在1/2波长模式产生。不限制槽21产生谐振“1”的波长模式,谐振“1” 也可由缝隙25两侧的槽的四分之三波长模式等产生。不限制槽21产生谐振“2”的波长模式,谐振“2”也可由槽21工作在一倍波长模式、二分之三波长模式等产生。除了图16A中示出的2.47GHz频段,实施例2提供的天线装置还可以产生其他中高频频段的谐振,具体可通过调整槽21的尺寸来设置。
其中,图16B示出了该MIMO天线装置所具有的两种槽天线模式之间的隔离度。可以看出,这两种槽天线模式之间的隔离度可高达21dB以上。
其中,图16C示出了该MIMO天线装置所具有的两种槽天线模式的辐射效率和系统效率。可以看出,这两种槽天线模式在谐振频率2.47GHz附近均具有优良的辐射效率和系统效率。
图17A-图17B示出了实施例2提供的天线装置仿真的电流、电场分布。
其中,图17A示出了该MIMO天线装置的CM槽天模式的电流、电场分布。从图17A可以看出,电流在缝隙25两侧呈现同向分布,但电场在缝隙25两侧呈现反向分布。图17A所示的电场、电流可分别称为CM槽天线模式的电场、电流。CM槽天线模式的电流、电场是缝隙25两侧的槽各自工作在1/4波长模式产生的:电流在槽21的缝隙25处弱,在槽21的两端强。电场在槽21的缝隙25处强,在槽21的两端弱。
其中,图17B示出了该MIMO天线装置的DM槽天模式的电流、电场分布。从图17B可以看出,电流在缝隙25两侧呈现反向分布,但电场在缝隙25两侧呈现同向分布。图17B所示的电场、电流可分布称为DM槽天线模式的电场、电流。DM槽天线模式的电流、电场是整个槽21工作在1/2波长模式产生:电流在槽21的缝隙25处弱,在槽21的两端强。电场在槽21的缝隙25处强,在槽21的两端弱。
图18示出了图15A-图15D所示槽天线仿真的辐射方向图。根据图18所示辐射方向图计算ECC,CM槽天线模式和DM槽天线模式在2.47GHz附近的ECC可低至0.04。
可以看出,实施例2提供的天线设计方案,通过对称馈电和反对称馈电,在一个较短的槽天线辐射体上可分别激励出两个中高频(工作频段在Wi-Fi 2.4GHz附近)天线:CM槽天线和DM槽天线,在中高频宽频段内实现高隔离度和低ECC的MIMO天线特性。而且,实施例2可通过共体馈电的形式,即两种槽天线模式共用同一个槽天线辐射体,可节约天线设计空间。
以上实施例中,馈电点M、馈电点N可以分别称为第一馈电点、第二馈电点。桥结构29上的馈电点S可以称为第三馈电点。
以上实施例中,不限于馈电点M、馈电点N靠近缝隙而设,馈电点M、馈电点N也可以分别靠近槽21的两端而设,可如图21A-图21B所示。
以上实施例中的馈电结构中,“桥”结构(即桥结构29)的尺寸较大,可以增加一些集总器件(如集总电感)来缩小尺寸,可如图19所示。不限于通过桥结构29实现“桥”结构,也可以通过镂空PCB地板来形成该“桥”结构。
以上实施例提供的MIMO天线装置不限于布局在电子设备10的底部,还可布局在电子设备10的顶部或侧边,可如图20所示。可以看出,通过本申请实施例提供的这种共体馈电的槽天线,可以在实现4*4MIMO天线时,相比传统MIMO天线节约不少空间。
以上实施例提供的天线设计方案不限于在金属边框ID的电子设备中实施,以上实施例中提及的槽21也可通过金属中框与PCB17形成。
实际应用中,电子设备的结构一般难以完全对称,可以调整匹配网络、“桥”结构的连接位置等来补偿这种结构上的不平衡。
本申请中,天线的某种波长模式(如二分之一波长模式、四分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,天线的二分之一波长模式可产生2.4GHz频段的谐振,其中二分之一波长模式中的波长是指天线辐射2.4GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:
Figure PCTCN2021073326-appb-000001
其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种电子设备,所述电子设备包括电路印刷板PCB、金属边框和天线装置,其特征在于,所述天线装置包括槽、第一馈电点、第二馈电点以及桥结构;其中,
    所述槽开设在所述PCB与所述金属边框的第一段之间;所述槽的两端均接地;所述槽包括第一侧边和第二侧边,所述第一侧边由所述PCB的一侧边构成,所述第二侧边由所述金属边框的第一段构成;所述第二侧边上开设有一个缝隙;所述第二侧边包括第一部分和第二部分,所述第一部分位于所述缝隙的一侧,所述第二部分位于所述缝隙的另一侧;
    所述第一馈电点位于所述第一部分上,所述第二馈电点位于所述第二部分上;所述第一馈电点、所述第二馈电点分别连接所述天线装置的馈源的正极、负极;
    所述桥结构包括第一端和第二端,所述第一端连接所述第一部分,所述第二端连接所述第二部分,所述桥结构上设有第三馈电点,所述第三馈电点连接所述馈源的正极。
  2. 如权利要求1所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点连接馈电网络,所述馈电网络包括镂空所述PCB的地板所形成的、从所述地板延伸出来的两条对称的平行导线。
  3. 如权利要求1或2所述的电子设备,其特征在于,所述槽为U型槽;或者,所述槽为条形槽;或者,所述槽为L型槽。
  4. 如权利要求1-3中任一项所述的电子设备,其特征在于,所述天线装置在所述电子设备中的布局位置为以下一项或多项:所述电子设备的底部、所述电子设备的顶部或所述电子设备的侧边。
  5. 如权利要求1-4中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点通过同轴传输线分别连接所述馈源的正极、负极,所述第一馈电点具体连接所述同轴传输线的中心导体,所述第二馈电点具体连接所述同轴传输线的外导体。
  6. 一种电子设备,所述电子设备包括电路印刷板PCB、金属边框和天线装置,其特征在于,所述天线装置包括槽、第一馈电点、第二馈电点以及桥结构;其中,
    所述槽开设在所述PCB与所述金属边框的第一段之间,所述金属边框的第一段包括第一端和第二端;所述槽的两端接地;所述槽包括第一侧边和第二侧边,所述第一侧边由所述PCB的一侧边构成,所述第二侧边由所述金属边框的第一段构成;所述第二侧边包括第一部分、第二部分和第三部分,所述第一部分位于所述第三部分的一侧,所述第二部分位于所述第三部分的另一侧,所述第三部分包括第一缝隙、第二缝隙、和位于所述第一缝隙和所述第二缝隙之间的悬浮段;
    所述第一馈电点位于所述第一部分上,所述第二馈电点位于所述第二部分上;所述第一馈电点、所述第二馈电点分别连接所述天线装置的馈源的正极、负极;
    所述桥结构包括第一端和第二端,所述第一端连接所述第一部分,所述第二端连接所述第二部分,所述桥结构上设有第三馈电点,所述第三馈电点连接所述馈源的正极。
  7. 如权利要求6所述的电子设备,其特征在于,所述桥结构还连接所述悬浮段。
  8. 如权利要求7所述的电子设备,其特征在于,所述桥结构包括一个T型结构,所述T型结构包括横向枝节和竖向枝节,所述横向枝节的两端分别为所述第一端、所述第二端,分别连接所述第一部分、所述第二部分,所述竖向枝节连接所述悬浮段。
  9. 如权利要求6-8中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点连接馈电网络,所述馈电网络包括镂空所述PCB的地板所形成的、从所述地板延伸出来的两条对称的平行导线。
  10. 如权利要求6-9中任一项所述的电子设备,其特征在于,所述槽为U型槽;或者,所述槽为条形槽;或者,所述槽为L型槽。
  11. 如权利要求6-10中任一项所述的电子设备,其特征在于,所述天线装置在所述电子设备中的布局位置为以下一项或多项:所述电子设备的底部、所述电子设备的顶部或所述电子设备的侧边。
  12. 如权利要求6-11中任一项所述的电子设备,其特征在于,所述第一馈电点、所述第二馈电点通过同轴传输线分别连接所述馈源的正极、负极,所述第一馈电点具体连接所述同轴传输线的中心导体,所述第二馈电点具体连接所述同轴传输线的外导体。
PCT/CN2021/073326 2020-01-22 2021-01-22 天线装置及电子设备 WO2021148004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21744693.9A EP4087056A4 (en) 2020-01-22 2021-01-22 Antenna apparatus and electronic device
US17/759,203 US20230048914A1 (en) 2020-01-22 2021-01-22 Antenna Apparatus and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010075833.XA CN113161721B (zh) 2020-01-22 2020-01-22 天线装置及电子设备
CN202010075833.X 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021148004A1 true WO2021148004A1 (zh) 2021-07-29

Family

ID=76882042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073326 WO2021148004A1 (zh) 2020-01-22 2021-01-22 天线装置及电子设备

Country Status (4)

Country Link
US (1) US20230048914A1 (zh)
EP (1) EP4087056A4 (zh)
CN (1) CN113161721B (zh)
WO (1) WO2021148004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020426A1 (zh) * 2021-08-17 2023-02-23 华为技术有限公司 一种天线组件及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471665B (zh) * 2020-03-31 2022-09-16 华为技术有限公司 一种天线及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882664A (zh) * 2014-02-28 2015-09-02 维沃移动通信有限公司 一种交叉耦合的多天线装置
CN106532228A (zh) * 2016-11-25 2017-03-22 维沃移动通信有限公司 一种金属环境下的天线结构及移动终端
CN109449595A (zh) * 2018-12-05 2019-03-08 深圳市信维通信股份有限公司 一种mimo天线
US20190260116A1 (en) * 2016-12-14 2019-08-22 Fitbit, Inc. Methods for slot antenna design for wearable electronic devices and conductive housings

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013588B1 (ko) * 2012-09-19 2019-08-23 엘지전자 주식회사 이동 단말기
WO2014192268A1 (ja) * 2013-05-28 2014-12-04 日本電気株式会社 Mimoアンテナ装置
CN105789844A (zh) * 2016-04-12 2016-07-20 深圳市中易腾达科技股份有限公司 一种一体化金属边框天线
KR102573516B1 (ko) * 2016-11-28 2023-09-01 삼성전자 주식회사 안테나를 포함하는 전자 장치
US10476167B2 (en) * 2017-07-20 2019-11-12 Apple Inc. Adjustable multiple-input and multiple-output antenna structures
EP3682507B1 (en) * 2017-10-05 2023-10-04 Huawei Technologies Co., Ltd. Antenna system for a wireless communication device
US10193597B1 (en) * 2018-02-20 2019-01-29 Apple Inc. Electronic device having slots for handling near-field communications and non-near-field communications
US10916832B2 (en) * 2018-02-20 2021-02-09 Apple Inc. Electronic device slot antennas
CN110137664B (zh) * 2019-05-08 2020-06-23 清华大学 一种双天线集成的宽带5g mimo终端天线
CN110165373B (zh) * 2019-05-14 2021-09-24 荣耀终端有限公司 天线装置及电子设备
US11575209B2 (en) * 2020-06-18 2023-02-07 Apple Inc. Electronic devices having antennas for covering multiple frequency bands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882664A (zh) * 2014-02-28 2015-09-02 维沃移动通信有限公司 一种交叉耦合的多天线装置
CN106532228A (zh) * 2016-11-25 2017-03-22 维沃移动通信有限公司 一种金属环境下的天线结构及移动终端
US20190260116A1 (en) * 2016-12-14 2019-08-22 Fitbit, Inc. Methods for slot antenna design for wearable electronic devices and conductive housings
CN109449595A (zh) * 2018-12-05 2019-03-08 深圳市信维通信股份有限公司 一种mimo天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087056A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020426A1 (zh) * 2021-08-17 2023-02-23 华为技术有限公司 一种天线组件及电子设备

Also Published As

Publication number Publication date
EP4087056A1 (en) 2022-11-09
CN113161721B (zh) 2023-11-28
EP4087056A4 (en) 2023-06-28
CN113161721A (zh) 2021-07-23
US20230048914A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
TWI514666B (zh) 行動裝置
TWI556506B (zh) 行動裝置
WO2021238347A1 (zh) 天线和电子设备
WO2021083362A1 (zh) 天线装置及电子设备
TW201537829A (zh) 天線結構
WO2021148004A1 (zh) 天线装置及电子设备
JP2013098974A (ja) スロットアンテナ
WO2021169700A1 (zh) 电子设备
US20230318180A1 (en) Antenna Structure and Electronic Device
WO2023071478A1 (zh) 一种终端天线及电子设备
WO2023130904A1 (zh) 一种终端天线
WO2021197399A1 (zh) 一种天线及终端
JP2009206847A (ja) 携帯端末用アンテナ
WO2021104447A1 (zh) 天线装置及电子设备
CN106058461A (zh) 具有天线的电子装置
TW201843877A (zh) 行動裝置和天線結構
WO2022143320A1 (zh) 一种电子设备
WO2022042306A1 (zh) 天线单元和电子设备
TW201834311A (zh) 天線結構
CN104183912A (zh) 一种基于超材料单元的小型化双频带单极子天线
EP3916907A1 (en) Antenna apparatus and electronic device
WO2022017220A1 (zh) 一种电子设备
WO2024055868A1 (zh) 一种可穿戴设备
TW201427171A (zh) 行動裝置
CN210351234U (zh) 一种应用于智能终端的无线设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021744693

Country of ref document: EP

Effective date: 20220801

NENP Non-entry into the national phase

Ref country code: DE