WO2020001280A1 - 移动终端天线和移动终端 - Google Patents

移动终端天线和移动终端 Download PDF

Info

Publication number
WO2020001280A1
WO2020001280A1 PCT/CN2019/091055 CN2019091055W WO2020001280A1 WO 2020001280 A1 WO2020001280 A1 WO 2020001280A1 CN 2019091055 W CN2019091055 W CN 2019091055W WO 2020001280 A1 WO2020001280 A1 WO 2020001280A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
coupling
branch
transmission line
Prior art date
Application number
PCT/CN2019/091055
Other languages
English (en)
French (fr)
Inventor
张鹏
胡伟
张飞飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020001280A1 publication Critical patent/WO2020001280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • This application relates to, but is not limited to, the field of antennas, for example, to a mobile terminal antenna and a mobile terminal.
  • the transmission of mobile broadband data depends on the antenna.
  • the quality of the antenna design directly affects the wireless communication performance and battery life of the mobile phone.
  • the first generation of mobile phones used a whip antenna, which was bulky and inconvenient to use; the second generation
  • the mobile phone uses a small helical antenna and a built-in planar F-shaped antenna (PIFA), which can reduce the size of the antenna and achieve multi-band coverage.
  • the third-generation mobile phone uses a patch antenna to simplify the antenna design process and reduce antenna costs. .
  • the antenna In addition to the frequency bands commonly used by the third-generation mobile communication technology, the Global System for Mobile Communication (GSM) 850, GSM900, Digital Cellular System (DCS) 1800, and personal communication systems (Personal Communication System (PCS) 1900, Universal Mobile Telecommunications System (UMTS)), the antenna also needs to cover new communication frequency bands, such as Long Term Evolution (LTE) 700, LTE 2300, LTE 2600, etc. Therefore, when designing a mobile terminal antenna, the multi-band and ultra-wideband characteristics of the antenna must be met. In addition, for mobile phones, there are more and more internal sensors, and the design space left for the antenna is also getting smaller.
  • GSM Global System for Mobile Communication
  • DCS Digital Cellular System
  • PCS Personal communication systems
  • UMTS Universal Mobile Telecommunications System
  • Embodiments of the present invention provide a mobile terminal antenna and a mobile terminal to cover multiple frequency bands and meet the volume requirements of the mobile terminal antenna.
  • An embodiment of the present invention provides a mobile terminal antenna, which includes a dielectric substrate and a floor located on one side of the dielectric substrate, and further includes one or more antenna modules disposed on the other side of the dielectric substrate, wherein
  • the antenna module includes a first layer and a second layer.
  • the first layer is disposed on a surface of the dielectric substrate and includes a first transmission line.
  • the second layer includes a first coupling unit and a second coupling unit.
  • the second coupling unit is coupled, equivalent to a left-handed capacitor; the second coupling unit is coupled to the floor, equivalent to a right-handed capacitor; the first layer and the second layer are connected through an intermediate member, and the
  • the middle part includes a patch unit and a second transmission line, and the patch unit and the first coupling unit are equivalent to a right-handed inductor; one end of the first transmission line is connected to the floor, and the other end is connected to the second transmission line.
  • the first transmission line and the second transmission line are equivalent to left-handed inductors; the first transmission line, the first coupling unit, the second coupling unit, the patch unit, and the second transmission line form a composite left-handed transmission line structure.
  • An embodiment of the present invention further provides a mobile terminal, including the foregoing mobile terminal antenna.
  • FIG. 1 is a schematic diagram of a circuit model of an ideal composite left-right transmission line.
  • FIG. 2 is a schematic diagram of dispersion relationship of a composite left-right transmission line.
  • FIG. 3 is a schematic diagram of the overall structure of a mobile terminal antenna according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a mobile terminal antenna according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the antenna structure of the mobile terminal in the embodiment of FIG. 4.
  • FIG. 6 is a schematic diagram of the overall structure of a mobile terminal antenna according to another embodiment of the present application.
  • FIG. 7 is an exploded view of a mobile terminal antenna structure according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit model of the composite left-right transmission line in the embodiment of FIG. 4.
  • FIG. 9 is a schematic diagram of S11 parameters of the mobile terminal antenna in the embodiment of FIG. 4.
  • FIG. 10 is a schematic diagram of the radiation efficiency of the mobile terminal antenna in the low-frequency operating frequency band (690MHz-960MHz) in the embodiment of FIG. 4.
  • FIG. 11 is a schematic diagram of the radiation efficiency of the mobile terminal antenna in the high-frequency operating frequency band (1710MHz-2690MHz) in the embodiment of FIG. 4.
  • FIG. 12 is a far-field radiation pattern of the mobile terminal antenna of the embodiment of FIG. 4 at 690 MHz.
  • FIG. 13 is a far-field radiation pattern of the mobile terminal antenna of the embodiment of FIG. 4 at 800 MHz.
  • FIG. 14 is a far-field radiation pattern of the mobile terminal antenna in the embodiment of FIG. 4 at 960 MHz.
  • FIG. 15 is a far-field radiation pattern of the mobile terminal antenna of the embodiment of FIG. 4 at 1710 MHz.
  • FIG. 16 is a far-field radiation pattern of the mobile terminal antenna in the embodiment of FIG. 4 at 2200 MHz.
  • FIG. 17 is a far-field radiation pattern of the mobile terminal antenna of the embodiment of FIG. 4 at 2690 MHz.
  • FIG. 18 is a schematic diagram of the gain of the mobile terminal antenna in the low-frequency operating frequency band (690MHz-960MHz) in the embodiment of FIG. 4.
  • FIG. 19 is a schematic diagram of the gain of the mobile terminal antenna in the high-frequency operating frequency band (1710MHz-2690MHz) in the embodiment of FIG. 4.
  • FIG. 20 is a schematic structural diagram of joint simulation of a mobile terminal antenna and two speakers according to an embodiment of the present invention.
  • FIG. 21 is a schematic diagram of S11 parameters of a mobile terminal antenna and two speakers jointly simulated according to an embodiment of the present invention.
  • 22 is a schematic structural diagram of a joint simulation of a mobile terminal antenna, a battery, and a speaker according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of S11 parameters of a mobile terminal antenna, battery and speaker joint simulation according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of parameters of the mobile terminal antenna S11 in the embodiment of FIG. 6.
  • FIG. 25 is a schematic structural diagram of a MIMO dual antenna based on a composite left-right transmission line according to an embodiment of the present invention.
  • FIG. 26 is a schematic diagram of the S-parameters of the MIMO dual antenna in the embodiment of FIG. 25.
  • FIG. 27 is a schematic diagram of a conventional monopole MIMO dual antenna structure.
  • FIG. 28 is a schematic diagram of S parameters of a conventional monopole MIMO dual antenna.
  • FIG. 29 is a schematic structural diagram of a MIMO four antenna based on a composite left and right hand transmission line according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of the S-parameters of the MIMO four antenna in the embodiment of FIG. 29.
  • FIG. 31 is a schematic structural diagram of a MIMO six-antenna based on a composite left-right transmission line according to an embodiment of the present invention.
  • FIG. 32 is a schematic diagram of the MIMO six-antenna S-parameters of the embodiment of FIG. 31.
  • FIG. 33 is a schematic diagram of a MIMO six-antenna structure with a decoupling structure according to an embodiment of the present invention.
  • PIFA, monopole antennas and the like are commonly used in mobile terminal antenna design schemes.
  • PIFA antennas are small in size and difficult to process, but PIFA antennas have narrow bandwidths and it is not easy to achieve low-profile designs.
  • the monopole antenna has a wider bandwidth, but the overall size of the antenna is large, and certain processing needs to be done on the system floor. The use scenario is strongly restricted, and the working state of the monopole antenna is easily affected by environmental factors.
  • the use of reconfigurable technology to achieve a wide-band mobile phone antenna has increased the complexity and processing difficulty of the antenna, and the introduction of other components has increased the processing difficulty, and the antenna gain and efficiency have been deteriorated.
  • the embodiment of the present invention is based on a conventional patch antenna structure, and proposes a mobile terminal antenna that uses a composite left and right-handed transmission line to respectively widen the high and low frequency bandwidth, covering multiple working frequency bands of mobile communication, and the antenna volume is small.
  • the maximum bandwidth that an electric small antenna can achieve is directly proportional to the space occupied by the antenna. To obtain a large bandwidth, you must ensure that sufficient space is reserved for the electric small antenna.
  • the direction of the Poynting vector S is the direction of electromagnetic wave propagation, that is, the direction of electromagnetic energy transmission. E, H, and S form a right-handed spiral relationship perpendicular to each other.
  • a unit length transmission line can be equivalent to a series distributed inductance and a parallel distributed capacitance.
  • phase propagation constant is negative, and the phase velocity and the group velocity are reversed.
  • the left-handed material is artificially constructed using the right-handed material existing in nature, so it is impossible to obtain a simple left-handed transmission line. Both exist simultaneously, that is, a composite left-handed transmission line.
  • both left-handed mode and left-handed mode are available.
  • the propagation constant is a pure real number, it is the transmission forbidden band.
  • This situation is an unbalanced state of the composite left-right transmission line, and the series resonance point and the parallel resonance point are different. If the series resonance and the parallel resonance are the same, an equilibrium state is obtained. At this time, there is no stopband between the left-hand characteristic frequency region and the right-hand characteristic frequency region. In this case, there is no necessary constraint relationship between the resonance frequency and the physical size.
  • the resonance center frequency of the zero-order resonance point can be changed. This can be used to achieve miniaturization of the antenna.
  • FIG. 1 it is an ideal composite left-handed transmission line circuit model, consisting of four parts: (a) right-hand inductor L ′ R , (b) right-hand capacitor C ′ R , (c) left-hand inductor L ′ L, and (d) left-hand Capacitance C ′ L.
  • (A) and (d) form the series part of the equivalent circuit, (b) and (c) form the parallel part of the equivalent circuit; (a) and (c) form the inductance of the equivalent circuit Part, (b) and (d) constitute the capacitive part in the equivalent circuit; (a) and (b) constitute the right-hand part in the equivalent circuit, and (b) and (d) constitute the Left hand part.
  • various electrical parameters in the equivalent circuit can be changed by adjusting the physical structure corresponding to the left-handed capacitor inductor and the right-handed capacitor inductor, so that the composite left-handed and right-handed transmission line works in a balanced state.
  • the composite left-handed transmission line reaches equilibrium.
  • the composite left-handed transmission line has no stopband.
  • the embodiment of the present invention implements a composite left and right-handed transmission line structure through the physical structure of the antenna, so as to meet the wide-band requirements of a mobile terminal antenna.
  • LC networks can be formed by distributed components such as microstrip lines, strip lines, and coplanar waveguides.
  • a mobile terminal antenna includes a dielectric substrate 1 and a floor 2 on one side of the dielectric substrate 1, and one or more antenna modules provided on the other side of the dielectric substrate 1. 3.
  • the antenna module 3 includes at least two layers.
  • the first layer is provided on the surface of the dielectric substrate and includes a first transmission line 7.
  • the second layer includes a first coupling unit 4 and a second coupling unit 6.
  • the first coupling unit 4 and the second coupling unit 6 are coupled, which is equivalent to a left-handed capacitor, and the second coupling unit 6 is coupled to the floor 2, which is equivalent to a right-handed capacitor;
  • the first layer and The second layer is connected by an intermediate component, which includes a patch unit 5 and a second transmission line 8, the patch unit 5 and the first coupling unit 4 are equivalent to a right-handed inductor;
  • the first transmission line One end of 7 is connected to the floor 2 and the other end is connected to the second transmission line 8.
  • the first transmission line 7 and the second transmission line 8 are equivalent to left-hand inductors;
  • the first transmission line, the first coupling unit, the first The two coupling units, the patch unit and the second transmission line constitute a composite left and right hand transmission line structure.
  • the first coupling unit 4 and the second coupling unit 6 are coupled in a capacitive form, which is equivalent to a left-handed capacitor C L in series, and the first coupling unit 4 and the patch unit 5 are equivalent to being connected in series.
  • the second coupling unit 6 is equivalent to the parallel right-handed capacitor C R to the ground, and the second transmission line 8 and the first transmission line 7 connected to it are equivalent to the left-handed inductor L L in parallel;
  • No equivalent capacitance or inductance is formed between the coupling unit 4 and the first transmission line 7, between the second coupling unit 6 and the patch unit 5, and between the patch unit 5 and the first transmission line 7.
  • the embodiment of the present invention proposes to use a composite left-handed transmission line to widen the bandwidth of a traditional patch antenna.
  • a variety of equivalent circuits are implemented by using a composite left-handed transmission line structure, and different equivalent circuits are used to extend the height Frequency and low-frequency bandwidth, can cover multiple frequency bands, has a wider operating frequency band, and uses a two-layer structure, so it is compact and meets the overall requirements of current mobile terminals for antennas.
  • the first coupling unit 4 and the second coupling unit 6 have a planar structure.
  • a gap is provided between the first coupling unit 4 and the second coupling unit 6, and the gap is equivalent to a left-hand capacitor.
  • the size of the left-hand capacitor can be adjusted.
  • the first coupling unit 4 and the second coupling unit 6 are parallel to the dielectric substrate 1.
  • the second coupling unit 6 includes a first coupling sub-unit 61 and a second coupling sub-unit 62.
  • the right-handed capacitor includes a first right-handed capacitor and a second right-handed capacitor; the first coupling subunit 61 and the second coupling subunit 62 are respectively coupled to the floor 2, which is equivalent to the first right-hand capacitor and the first right-hand capacitor. Two right-handed capacitors.
  • first coupling sub-unit 61 and the second coupling sub-unit 62 are symmetrical.
  • first coupling subunit 61 and the second coupling subunit 62 may also be asymmetric, that is, the shapes and sizes are different.
  • the first coupling unit 4, the first coupling sub-unit 61 and the second coupling sub-unit 62 are all rectangular.
  • the first coupling unit 4, the first coupling sub-unit 61, and the second coupling sub-unit 62 may have other shapes, and are not limited to regular geometric shapes such as a rectangle and a circle.
  • the first coupling unit 4, the first coupling sub-unit 61, and the second coupling sub-unit 62 are irregularly shaped, and the first coupling unit 4 faces the first coupling sub.
  • One side of the unit 61 and the second coupling sub-unit 62 is arc-shaped, and the side of the first coupling sub-unit 61 and the second coupling sub-unit 62 facing the first coupling unit 4 is the same as that of the first coupling unit 4. Arcs with matching curved edges.
  • the first transmission line 7 may be a thin metal winding.
  • the first transmission line 7 may be obtained by etching a metal layer on the surface of the dielectric substrate 1.
  • the first transmission line 7 includes a first branch 71 and a second branch 72
  • the second transmission line 8 includes a third branch 81 and a fourth branch 82.
  • the left-hand inductor includes a first left-hand inductor and a second left-hand inductor.
  • the first branch 71 and the third branch 81 are connected, which is equivalent to a first left-handed inductor
  • the second branch 72 and the fourth branch 82 are connected, which is equivalent to a second left-handed inductor.
  • the first branch 71 is symmetrical to the second branch 72, and the third branch 81 is symmetrical to the fourth branch 82.
  • the first branch 71 may be disproportionate to the second branch 72, and the third branch 81 is disproportionate to the fourth branch 82.
  • first branch 71 and the second branch 72 are serpentine lines, and the corners of the serpentine lines are both right angles.
  • first branch 71 and the second branch 72 may also have other shapes.
  • first branch 71 and the second branch 72 each include a straight line and one or more L-shaped lines, each L-shaped line is connected to the straight line of the corresponding branch.
  • the third branch 81 and the fourth branch 82 may be U-shaped lines. In other embodiments, the third branch 81 and the fourth branch 82 may also be straight lines or lines of other shapes.
  • first branch 71 and the third branch 81 are equivalent to the first left-hand inductor
  • second branch 72 and the fourth branch 82 are equivalent to the second left-hand inductor
  • the length, width, and shape of the branch 72, the third branch 81, and the fourth branch 82 change the size of the left-hand inductor accordingly.
  • the patch unit 5 may be a thin metal sheet 5 that is perpendicular to the surface of the dielectric substrate 1 and includes a first rectangular sub-unit 51, a cross-shaped sub-unit 52, and A second rectangular sub-unit 53, the cross-shaped sub-unit 52 is perpendicular to the first rectangular sub-unit 51 and the second rectangular sub-unit 53, respectively, and the first rectangular sub-unit 51 is parallel to the second rectangular sub-unit 53.
  • the cross-shaped sub-unit 52 is connected to the feeding point 15.
  • the size of the floor 2 is 120 mm ⁇ 65 mm
  • the dielectric substrate 1 is an FR4 substrate
  • the volume is 145 mm ⁇ 65 mm ⁇ 1 mm.
  • the size of the antenna module is 25mm ⁇ 25mm ⁇ 5mm.
  • the size of the first coupling unit 4 is 25mm ⁇ 8.5mm
  • the first rectangular subunit 51 and the second rectangular subunit 53 are respectively 13.2mm ⁇ 2mm
  • the gap width between the first coupling unit 4 and the second coupling unit 6 is 0.5mm
  • the first coupling subunit 61 and the second coupling subunit 62 are 16mm ⁇ 12.2mm
  • the gap width between the first coupling subunit 61 and the second coupling subunit 62 is 0.6mm.
  • the one branch 71 and the second branch 72 have a width of 1 mm and a length of about 120 mm.
  • the working principle of the embodiment of the present invention is as follows: first, design a conventional rectangular patch antenna, and then use two ideas to broaden the high-frequency and low-frequency bandwidths, respectively.
  • the series L R method is used to increase L R.
  • the C L and L R circuits also use two one-on-one loops to increase the bandwidth.
  • the first coupling unit 4 and the second coupling unit 6 are coupled in a capacitive manner, which is equivalent to a left-handed capacitor C L in series, and the first coupling unit 4 and the patch unit 5 are equivalently connected to a right-handed inductor L R in series.
  • the use of two CRLH transmission line circuit i.e., two symmetrical L L C R and loop around for extended low frequency bandwidth.
  • the second coupling unit 6 is equivalent to a parallel right-handed capacitor C R to the ground
  • the first transmission line 7 connected thereto is equivalent to the left-handed inductor L L in parallel to the ground.
  • C R and L L obtained in parallel are obtained Is reduced, so the low frequency bandwidth is widened.
  • the antenna has significantly widened its high-frequency and low-frequency bandwidths on the basis of traditional patch antennas.
  • the size of the equivalent left-hand capacitor can be changed by changing the distance between the first coupling unit 4 and the second coupling unit 6, and the corresponding can be changed by changing the size of the first coupling unit 4 and the patch unit 5.
  • the size of the right-hand inductor. can be adjusted by changing the physical size of the antenna.
  • the size of the right-hand capacitor in the circuit can be changed by changing the area of the second coupling unit 6, and the size of the left-hand inductor can be changed by changing the length of the first transmission line 7 and the second transmission line 8, thereby changing the antenna correspondence by adjusting the physical size of the antenna. Parallel resonance point.
  • an antenna module that completely covers the working frequency band of the mobile phone antenna can be obtained, that is, the antenna structure according to the embodiment of the present invention.
  • the S11 parameters of the embodiment in FIG. 4 are simulated and calculated, and the results are shown in FIG. 9.
  • the S11 parameter is the reflection coefficient of the port, and the return loss can be derived based on the S11 parameter.
  • the impedance bandwidth of the antenna in the embodiment of the present invention is 690MHz-980MHz and 1690MHz-2700MHz, which means that it can cover multiple frequency bands such as LTE700, GSM850, GSM900, DCS1800, PCS1900, UMTS, LTE2300, and LTE2600. Wide operating frequency band.
  • the low-frequency (690-960MHz) radiation efficiency of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 10.
  • the radiation efficiency of the antenna in the low frequency band (690-960 MHz) is greater than 62%.
  • the high-band radiation efficiency (1710MHz-2690MHz) in the embodiment of FIG. 4 is simulated and calculated, and the result is shown in FIG. 11.
  • the radiation efficiency of the antenna in the high frequency band (1710MHz-2690MHz) is greater than 65%.
  • the 690 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 12.
  • the 800 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 13.
  • the 960 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 14.
  • the 1710 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 15.
  • the 2200 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 16.
  • the 2690 MHz far-field radiation pattern of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 17.
  • the low frequency (690-960MHz) gain of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 18.
  • the high frequency band (1710MHz-2690MHz) gain of the embodiment in FIG. 4 is simulated and calculated, and the result is shown in FIG. 19.
  • FIGS. 12 to 19 It can be seen from FIGS. 12 to 19 that the embodiments of the present invention meet the directional patterns and gain requirements in the industry.
  • FIG. 20 is a schematic structural diagram of a joint simulation of a mobile terminal antenna and two speakers according to an embodiment of the present invention.
  • the speaker is replaced by a first metal block 9 and a second metal block 10 to detect the external environment. Influence of antenna operating characteristics.
  • FIG. 21 is a schematic diagram of S11 parameters of a mobile terminal antenna and two speakers co-simulated according to an embodiment of the present invention. As can be seen from the figure, adding two speakers has almost no effect on the working characteristics of the antenna itself, and the impedance bandwidth of the antenna is 680MHz-960MHz and 1710MHz-2730MHz completely cover the required operating frequency band, indicating that the mobile terminal antenna has stable operating characteristics and is less affected by the external environment.
  • FIG. 22 is a schematic structural diagram of the joint simulation of the mobile terminal antenna, battery, and speaker. During the simulation, the battery and the speaker are replaced by the third metal block 11 and the fourth metal block 12 to detect the external environment to the antenna. Influence of working characteristics.
  • Figure 23 is a schematic diagram of the S11 parameters of the antenna, battery and speaker joint simulation. It can be seen from the figure that the addition of the battery and speaker has basically no effect on the antenna's own operating characteristics.
  • the impedance bandwidth of the antenna is 690MHz-960MHz and 1710MHz-2690MHz. It completely covers the required working frequency band, indicating that the mobile terminal antenna has stable working characteristics and is less affected by the external environment.
  • FIG. 24 is a schematic diagram of the S11 parameters of the mobile terminal antenna simulation of FIG. 6. It can be seen from the figure that even if the shape of the patch antenna changes, the bandwidth characteristics of the mobile terminal antenna based on the composite left-hand transmission line remain basically unchanged.
  • the impedance bandwidth is 690MHz-960MHz and 1680MHz-2740MHz, which completely covers the required operating frequency band.
  • the mobile terminal when there are multiple antenna modules, the mobile terminal is a MIMO antenna based on a composite left and right hand transmission line, and can be applied to mobile terminals such as mobile phones and tablet computers.
  • the MIMO antenna structure is shown in Figure 25, Figure 29, and Figure 31. Multiple antenna modules are placed on the floor of different sizes.
  • FIG. 26, FIG. 30, and FIG. 32 are schematic diagrams of simulation results of the MIMO antenna of the mobile terminal.
  • FIG. 27 is a structural diagram of a conventional monopole MIMO antenna
  • FIG. 28 is a schematic diagram of a simulation result of the conventional monopole MIMO antenna.
  • the impedance bandwidth of the MIMO dual antenna based on the composite left and right hand transmission lines is 680MHz-970MHz and 1680MHz-2710MHz. Since no decoupling structure is added, the coupling between the MIMO dual antennas is large, but the operating characteristics of each antenna are basically Affected, completely covering the required operating frequency band.
  • the impedance bandwidth of one monopole antenna is 720MHz-950MHz and 1710MHz-3000MHz, and the impedance bandwidth at low frequencies is higher than the impedance bandwidth of the MIMO dual antenna based on the composite left-hand transmission line in FIG. 25. It is narrower, but the operating characteristics of another monopole antenna at low frequencies are seriously deteriorated, and the required low-frequency operating frequency band is not covered at all.
  • the embodiment of the present invention The impedance bandwidth of the MIMO dual antenna based on the composite left-right transmission line is wider than that of the traditional monopole antenna, which can cover more operating frequency bands, and the antenna module can keep its own operating characteristics basically unaffected.
  • the coupling between the two antennas is basically the same as the traditional monopole MIMO antenna, but the working characteristics of the two antenna modules themselves are basically not affected, and the impedance bandwidth It is 680MHz-970MHz and 1680MHz-2710MHz, which completely covers the required operating frequency band. This shows that mobile terminal MIMO antennas based on composite left and right-handed transmission lines can stably maintain their own operating characteristics and will not be basically interfered by other antennas.
  • the impedance bandwidth of the MIMO four antenna based on the composite left-right transmission line is 680MHz-910MHz and 1690MHz-2690MHz, which can basically cover the required operating frequency band.
  • the impedance bandwidth of a MIMO six-antenna based on a composite left and right-handed transmission line is greatly affected by the coupling, and the required working frequency band can be covered after the decoupling structure is added.
  • the above-mentioned MIMO multi-antenna does not include a decoupling structure, which results in changes in the performance of the antenna module to different degrees, and the decoupling structure can work normally.
  • a decoupling structure 16 is provided between adjacent antenna modules with a distance less than a distance threshold.
  • the distance threshold is a preset value, for example, it can be set to a quarter wavelength.
  • the decoupling structure may take various forms, for example, a neutral line is used in FIG. 33.
  • An embodiment of the present invention further provides a mobile terminal, where the mobile terminal includes the foregoing mobile terminal antenna.
  • the mobile terminal can be implemented in various forms.
  • the mobile terminal described in the embodiment of the present invention may include a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a Personal Digital Assistant (PDA), a tablet computer (PAD), Portable media (PMP), navigation devices, etc.
  • PDA Personal Digital Assistant
  • PAD tablet computer
  • PMP Portable media
  • the configuration according to the embodiment of the present application can also be applied to a terminal of a fixed type, in addition to an element particularly used for mobile purposes.
  • fixed terminals such as digital TVs, desktop computers, and more.

Abstract

公开了一种移动终端天线和移动终端,所述移动终端天线包括介质基板和位于所述介质基板一侧的地板,以及设置在所述介质基板另一侧的一个或多个天线模块,天线模块包括第一层和第二层,第一层设置于介质基板表面,包括第一传输线;第二层包括第一耦合单元和第二耦合单元,第一耦合单元和第二耦合单相耦合,等效为左手电容;第二耦合单元与地板相耦合,等效为右手电容;第一层和第二层之间通过中间部件相连,中间部件包括贴片单元和第二传输线,贴片单元和第一耦合单元等效为右手电感;第一传输线和第二传输线等效为左手电感;第一传输线、第一耦合单元、第二耦合单元、贴片单元和第二传输线构成复合左右手传输线结构。

Description

移动终端天线和移动终端
本申请要求在2018年06月26日提交中国专利局、申请号为201810671765.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于天线领域,例如涉及一种移动终端天线和移动终端。
背景技术
对于无线设备而言,移动宽带数据的传输都依赖于天线。对于集成了多种功能于一体的移动终端,例如手机,天线设计的好坏直接影响了手机的无线通信性能和电池使用寿命,第一代手机采用拉杆天线,体积庞大,使用不便;第二代手机采用小型螺旋天线和内置平面倒F天线(Planar Inverted F-shaped Antenna,PIFA),能够减少天线体积,实现多频带覆盖;第三代手机采用贴片天线,简化了天线设计流程,降低天线成本。
对于第四代移动通信技术,除了第三代移动通信技术常用的频段全球移动通信系统(Global System for Mobile Communication,GSM)850,GSM900,数字蜂窝系统(Digital Cellular System,DCS)1800,个人通信系统(Personal Communication System,PCS)1900,通用移动通信系统(Universal Mobile Telecommunications System,UMTS)之外,天线还要覆盖新的通信频段,如长期演进(Long Term Evolution,LTE)700,LTE2300,LTE2600等,因此设计移动终端天线时,要满足天线的多频带以及超宽带特性。此外,对于手机来说,内部的传感器越来越多,留给天线的设计空间也越来越小。
发明内容
本发明实施例提供了一种移动终端天线和移动终端,以覆盖多个频带且满足移动终端天线的体积要求。
本发明实施例提供了一种移动终端天线,包括介质基板和位于所述介质基板一侧的地板,还包括:设置在所述介质基板另一侧的一个或多个天线模块,其中
所述天线模块包括第一层和第二层,第一层设置于所述介质基板表面,包 括第一传输线;第二层包括第一耦合单元和第二耦合单元,所述第一耦合单元和第二耦合单元相耦合,等效为左手电容;所述第二耦合单元与所述地板相耦合,等效为右手电容;所述第一层和第二层之间通过中间部件相连,所述中间部件包括贴片单元和第二传输线,所述贴片单元和所述第一耦合单元等效为右手电感;所述第一传输线的一端与所述地板相连,另一端与所述第二传输线相连,所述第一传输线和第二传输线等效为左手电感;所述第一传输线、第一耦合单元、第二耦合单元、贴片单元和第二传输线构成复合左右手传输线结构。
本发明实施例还提供一种移动终端,包括上述移动终端天线。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为理想复合左右手传输线电路模型示意图。
图2为复合左右手传输线色散关系示意图。
图3为本申请一实施例的移动终端天线整体结构示意图。
图4为本申请一实施例的移动终端天线结构示意图。
图5为图4实施例的移动终端天线结构分解图。
图6为本申请另一实施例的移动终端天线整体结构示意图。
图7为本申请另一实施例的移动终端天线结构分解图。
图8为图4实施例的复合左右手传输线电路模型示意图。
图9为图4实施例的移动终端天线的S11参数示意图。
图10为图4实施例的移动终端天线在低频工作频段(690MHz-960MHz)的辐射效率示意图。
图11为图4实施例的移动终端天线在高频工作频段(1710MHz-2690MHz)的辐射效率示意图。
图12为图4实施例的移动终端天线在690MHz的远场辐射方向图。
图13为图4实施例的移动终端天线在800MHz的远场辐射方向图。
图14为图4实施例的移动终端天线在960MHz的远场辐射方向图。
图15为图4实施例的移动终端天线在1710MHz的远场辐射方向图。
图16为图4实施例的移动终端天线在2200MHz的远场辐射方向图。
图17为图4实施例的移动终端天线在2690MHz的远场辐射方向图。
图18为图4实施例的移动终端天线在低频工作频段(690MHz-960MHz)的增益示意图。
图19为图4实施例的移动终端天线在高频工作频段(1710MHz-2690MHz)的增益示意图。
图20为本发明实施例的移动终端天线与两个扬声器联合仿真的结构示意图。
图21为本发明实施例的移动终端天线与两个扬声器联合仿真的S11参数示意图。
图22为本发明实施例的移动终端天线与电池、扬声器联合仿真的结构示意图。
图23为本发明实施例的移动终端天线与电池、扬声器联合仿真的S11参数示意图。
图24为图6实施例的移动终端天线S11参数示意图。
图25为本发明实施例的基于复合左右手传输线的MIMO双天线结构示意图。
图26为图25实施例的MIMO双天线S参数示意图。
图27为传统单极子MIMO双天线结构示意图。
图28为传统单极子MIMO双天线S参数示意图。
图29为本发明实施例的基于复合左右手传输线的MIMO四天线结构示意图。
图30为图29实施例的MIMO四天线S参数示意图。
图31为本发明实施例的基于复合左右手传输线的MIMO六天线结构示意图。
图32为图31实施例的MIMO六天线S参数示意图。
图33为本发明实施例的加入去耦结构的MIMO六天线结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
目前,移动终端天线设计方案中常用的是PIFA、单极子天线等。PIFA天线 体积较小、加工难度低,但是PIFA天线带宽较窄,且不易实现低剖面设计。单极子天线具有更宽的带宽,但天线整体尺寸较大,且需要对系统地板做出一定处理,使用场景受到较强限制,而且单极子天线的工作状态容易受到环境因素的干扰。另外,利用可重构技术实现宽频带的手机天线,加大了天线复杂度与加工难度,而且由于引入其他元器件,使得加工难度增加,天线的增益与效率受到了恶化。
本发明实施例基于传统贴片天线结构,提出一种利用复合左右手传输线以分别展宽高低频带宽的移动终端天线,覆盖移动通信的多个工作频带,且天线体积较小。
下面简述一下复合左右手传输线的原理。
根据Chu定理,电小天线所能达到的最大带宽与天线占用的空间成正比,要获得大的带宽,必须保证为电小天线预留足够的空间。而Chu定理的建立是基于电磁波的右手定则,即电磁波在自然界的大部分介质中传播时(介电常数ε>0,磁导率μ>0),该处电磁场的能量流密度S=E×H,其中电场强度为E,磁场强度为H,玻印亭矢量S的方向是电磁波传播的方向,即电磁能传递的方向,E、H、S彼此垂直构成右手螺旋关系。
对于电磁波在一般介质中的传播,即右手材料,也可以用传输线理论进行分析,即单位长度的传输线可等效为串联分布电感和并联分布电容,色散关系,也就是相位常数与频率成正比。
如果存在一种材料,其ε<0、μ<0,那么电磁波在其中传播时电场强度、磁场强度和波矢量之间满足左手螺旋关系,谐振频率与物理尺寸之间不再存在必然的约束关系,为实现天线小型化方面创造了理论基础。
对于左手材料,可以等效为单位长度的串联分布电容和并联分布电感,相位传播常数为负,相速度和群速度反向。
实际中的左手材料都是利用自然界存在的右手材料人工构造的,所以不可能得到单纯的左手传输线,两者同时存在,即复合左右手传输线。
对于复合左右手传输线来说,兼具左手模式和左右手模式,当传播常数为纯实数时为传输禁带。这种情况是复合左右手传输线的不平衡状态,串联谐振点和并联谐振点不同。若串联谐振和并联谐振相同,则得到平衡态,此时左手特性频率区与右手特性频率区之间没有任何阻带。这种情况下谐振频率与物理尺寸之间就不存在必然的约束关系,只要通过改变物理结构来改变等效的电容 和电感值,就能改变零阶谐振点的谐振中心频率。可以利用这一点实现天线的小型化。
如图1所示,为理想复合左右手传输线电路模型,由四部分组成:(a)右手电感L′ R、(b)右手电容C′ R、(c)左手电感L′ L和(d)左手电容C′ L。其中(a)和(d)构成了等效电路中的串联部分,(b)和(c)构成了等效电路中的并联部分;(a)和(c)构成了等效电路中的电感部分,(b)和(d)构成了等效电路中的电容部分;(a)和(b)构成了等效电路中的右手部分,(b)和(d)构成了等效电路中的左手部分。
复合左右手传输线的串联谐振点可用
Figure PCTCN2019091055-appb-000001
表征,并联谐振点可用
Figure PCTCN2019091055-appb-000002
来表征,其色散关系示意图如图2所示。通常情况下复合左右手传输线的串联谐振点和并联谐振点不同,这种情况就称为复合左右手传输线的不平衡状态,即ω se≠ω sh。当复合左右手传输线工作在非平衡状态时,在ω se和ω sh之间的工作频带内表现为阻带。为了获得较好的宽带特性,可以通过调整左手电容电感和右手电容电感对应的物理结构来改变等效电路中的各个电参数,从而使复合左右手传输线工作在平衡状态。当复合左右手传输线工作于平衡状态时,其串联谐振和并联谐振相等时,有ω se=ω sh=ω 0,即L′ RC′ L=′ LC′ R,此时复合左右手传输线达到平衡,在过度频率ω 0上相位常数β=0,但是因为群速v g=dω/dβ≠0,所以波还会传播,此时复合左右手传输线无阻带。
为了利用复合左右手传输线平衡状态下的这种宽频带特性,本发明实施例通过天线的物理结构来实现复合左右手传输线结构,从而满足移动终端天线的宽频带需要。通常情况下可以通过微带线、带状线、共面波导等等分布式组件来构成这种LC网络。
如图3所示,本发明实施例的移动终端天线,包括介质基板1和位于所述介质基板1一侧的地板2,以及设置在所述介质基板1另一侧的一个或多个天线模块3。
如图4~5所示,所述天线模块3至少包括两层,第一层设置于所述介质基板表面,包括第一传输线7;第二层包括第一耦合单元4和第二耦合单元6,所述第一耦合单元4和第二耦合单元6相耦合,等效为左手电容,所述第二耦合单元6与所述地板2相耦合,等效为右手电容;所述第一层和第二层之间通过中间部件相连,所述中间部件包括贴片单元5和第二传输线8,所述贴片单元5和所述第一耦合单元4等效为右手电感;所述第一传输线7的一端与所述地板2 相连,另一端与所述第二传输线8相连,所述第一传输线7和第二传输线8等效为左手电感;所述第一传输线、第一耦合单元、第二耦合单元、贴片单元和第二传输线构成复合左右手传输线结构。
本发明实施例中,第一耦合单元4与第二耦合单元6以电容形式相耦合,等效为串联的左手电容C L,而第一耦合单元4和贴片单元5则等效为串联的右手电感L R;第二耦合单元6对地等效为并联的右手电容C R,而与其相连的第二传输线8和第一传输线7则对地等效为并联的左手电感L L;第一耦合单元4与第一传输线7之间、第二耦合单元6与贴片单元5之间、贴片单元5与第一传输线7之间则没有形成等效电容或者电感。通过优化天线模块结构,可以在原有谐振点的基础上分别扩展高频和低频。
本发明实施例提出了利用复合左右手传输线来拓宽传统贴片天线带宽,在传统贴片天线的基础上,利用复合左右手传输线结构实现了多种等效电路,其中不同等效电路分别用以扩展高频与低频带宽,可以覆盖多个频带,具有较宽的工作频带,且由于采用了两层结构,所以体积小巧,满足当前移动终端对天线的整体要求。
参见图4,所述第一耦合单元4和第二耦合单元6为平面结构,所述第一耦合单元4和第二耦合单元6之间设置有缝隙,通过所述缝隙等效为左手电容。
通过改变所述缝隙的宽度,可以调整左手电容的大小。
在本发明实施例中,第一耦合单元4和第二耦合单元6与介质基板1平行。
参见图5,所述第二耦合单元6包括第一耦合子单元61和第二耦合子单元62。可以认为所述右手电容包括第一右手电容和第二右手电容;所述第一耦合子单元61和第二耦合子单元62分别与所述地板2相耦合,等效为第一右手电容和第二右手电容。
在一实施例中,所述第一耦合子单元61与第二耦合子单元62相对称。
在其他实施例中,所述第一耦合子单元61与第二耦合子单元62也可以不对称,也即,形状和大小不相同。
在一实施例中,所述第一耦合单元4、第一耦合子单元61和第二耦合子单元62均为矩形。
在其他实施例中,所述第一耦合单元4、第一耦合子单元61和第二耦合子单元62可以是其他形状,不局限于矩形、圆形等规则的几何形状。例如,如图6所示,所述第一耦合单元4、第一耦合子单元61和第二耦合子单元62为不规 则形状,其中,所述第一耦合单元4面向所述第一耦合子单元61和第二耦合子单元62的一边为弧形,所述第一耦合子单元61和第二耦合子单元62面向所述第一耦合单元4的一边为与所述第一耦合单元4的弧形边相匹配的弧形。
参见图5,所述第一传输线7可采用细金属绕线,例如,可对介质基板1表面的金属层进行刻蚀得到。所述第一传输线7包括第一分支71和第二分支72,所述第二传输线8包括第三分支81和第四分支82;可以认为所述左手电感包括第一左手电感和第二左手电感,所述第一分支71和第三分支81相连,等效为第一左手电感,所述第二分支72和第四分支82相连,等效为第二左手电感。
在一实施例中,所述第一分支71与所述第二分支72相对称,所述第三分支81与所述第四分支82相对称。
在其他实施例中,所述第一分支71可以与所述第二分支72不相对称,以及,所述第三分支81与所述第四分支82不相对称。
在一实施例中,所述第一分支71和所述第二分支72为蛇形线,所述蛇形线的转角均为直角。
在其他实施例中,所述第一分支71和所述第二分支72也可以是其他形状,例如参见图7,所述第一分支71和所述第二分支72均包括直线和一条或多条L型线,每条L型线与对应分支的直线相连。
参见图5和图7,所述第三分支81和所述第四分支82可以为U型线。在其他实施例中,所述第三分支81和所述第四分支82也可以是直线或其他形状的线。
由于所述第一分支71和第三分支81等效为第一左手电感,所述第二分支72和第四分支82等效为第二左手电感,则改变所述第一分支71、第二分支72、第三分支81和第四分支82的长度、宽度和形状,则相应地改变左手电感的大小。
参见图5,在一实施例中,所述贴片单元5可采用细金属片5,其与所述介质基板1表面垂直,包括依次相连的第一矩形子单元51、十字形子单元52和第二矩形子单元53,所述十字形子单元52分别与所述第一矩形子单元51和第二矩形子单元53垂直,所述第一矩形子单元51与第二矩形子单元53平行。
所述十字形子单元52与馈电点15相连。
在一实施例中,地板2大小为120mm×65mm,介质基板1选用FR4基板,体积为145mm×65mm×1mm。天线模块大小为25mm×25mm×5mm。第一耦合单 元4的尺寸为25mm×8.5mm,第一矩形子单元51和第二矩形子单元53分别为13.2mm×2mm,第一耦合单元4与第二耦合单元6之间的缝隙宽度为0.5mm,所述第一耦合子单元61和第二耦合子单元62分别为16mm×12.2mm,所述第一耦合子单元61和第二耦合子单元62之间的缝隙宽度为0.6mm,第一分支71和第二分支72的宽度为1mm,长度大约为120mm。
需要说明的是,这只是列举了一种天线尺寸,如果地板2或者介质基板1发生改变,只需要对基于复合左右手传输线的移动终端天线进行适当调整即可正常工作,也就是说,基于复合左右手传输线的移动终端天线可以具有多种尺寸,可以与其他尺寸的地板和不同材质的介质基板相结合。
本发明实施例的工作原理为:首先设计传统矩形贴片天线,接下来采用两种思路分别展宽高频与低频的带宽。对高频而言,为了展宽带宽,采用串联L R的方法增加L R,同时C L和L R回路也采用两个一上一下回路,用以增加带宽。其中,第一耦合单元4与第二耦合单元6以电容形式相耦合,等效为串联的左手电容C L,而第一耦合单元4和贴片单元5则等效为串联的右手电感L R,通过采用这样的结构,使得天线在高频处的带宽得到增加。
对于低频而言,采用两个复合左右手传输线回路,即两个对称的C R和L L左右回路,用以扩展低频带宽。其中,第二耦合单元6对地等效为并联的右手电容C R,而与其连的第一传输线7则对地等效为并联的左手电感L L,并联后的C R与L L得到了减小,因此低频带宽得到展宽。
通过采用这两种思路,天线在传统贴片天线的基础上高频与低频带宽都得到了明显展宽。
如图8所示,由于本发明实施例采用了对称的第一左手电感和第二左手电感,以及对称的第一右手电容和第二右手电容,使得高低频带宽加宽。
另外,通过改变第一耦合单元4和第二耦合单元6之间的间距即可改变等效的左手电容的大小,同理通过改变第一耦合单元4和贴片单元5的尺寸即可改变对应的右手电感的大小。从而通过改变天线的物理尺寸来调整天线的串联谐振点。
通过改变第二耦合单元6的面积可以对应改变电路中的右手电容大小,通过改变第一传输线7和第二传输线8的长度可以改变对应左手电感的大小,从而通过调整天线物理尺寸来改变天线对应的并联谐振点。
通过对上述结构的调整优化可以得到完全覆盖手机天线工作频带的天线模 块,即本发明实施例所述的天线结构。
对上述图4实施例的S11参数进行仿真计算,结果如图9所示。其中S11参数为端口的反射系数,根据S11参数可以推导出回波损耗。以S11小于-6dB为标准,本发明实施例中天线的阻抗带宽为690MHz-980MHz和1690MHz-2700MHz,说明可以覆盖LTE700,GSM850,GSM900,DCS1800,PCS1900,UMTS,LTE2300,LTE2600等多个频带,具有较宽的工作频带。
对上述图4实施例的低频段(690-960MHz)辐射效率进行仿真计算,结果如图10所示。本发明实施例中天线在低频段(690-960MHz)辐射效率大于62%。
对上述图4实施例的高频段辐射效率(1710MHz-2690MHz)进行仿真计算,结果如图11所示。本发明实施例中天线在高频段(1710MHz-2690MHz)辐射效率大于65%。
对上述图4实施例的690MHz远场辐射方向图进行仿真计算,结果如图12所示。对上述图4实施例的800MHz远场辐射方向图进行仿真计算,结果如图13所示。对上述图4实施例的960MHz远场辐射方向图进行仿真计算,结果如图14所示。对上述图4实施例的1710MHz远场辐射方向图进行仿真计算,结果如图15所示。对上述图4实施例的2200MHz远场辐射方向图进行仿真计算,结果如图16所示。对上述图4实施例的2690MHz远场辐射方向图进行仿真计算,结果如图17所示。对上述图4实施例的低频段(690-960MHz)增益进行仿真计算,结果如图18所示。对上述图4实施例的高频段(1710MHz-2690MHz)增益进行仿真计算,结果如图19所示。
从图12~19可以看出,本发明实施例满足业内的方向图和增益要求。
图20所示,为本发明实施例的移动终端天线与两个扬声器联合仿真的结构示意图,在仿真过程中,扬声器由第一金属块9与第二金属块10代替,用以检测外部环境对天线工作特性的影响。
图21所示,为本发明实施例的移动终端天线与两个扬声器联合仿真的S11参数示意图,从图中可以看出,加入两个扬声器对天线自身工作特性基本没有影响,天线的阻抗带宽为680MHz-960MHz和1710MHz-2730MHz,完全覆盖了所需的工作频带,说明所述的移动终端天线具有稳定的工作特性,受到外部环境影响较小。
图22所示为所述的移动终端天线与电池、扬声器联合仿真的结构示意图,在仿真过程中,电池与扬声器由第三金属块11与第四金属块12代替,用以检 测外部环境对天线工作特性的影响。
图23所示为天线与电池、扬声器联合仿真的S11参数示意图,从图中可以看出,加入电池、扬声器对天线自身工作特性基本没有影响,天线的阻抗带宽为690MHz-960MHz和1710MHz-2690MHz,完全覆盖了所需的工作频带,说明所述的移动终端天线具有稳定的工作特性,受到外部环境影响较小。
图24中所示为图6的移动终端天线仿真的S11参数示意图,从图中可以看出,即使贴片天线的形状发生变化,但是基于复合左右手传输线的移动终端天线的带宽特性基本保持不变,阻抗带宽为690MHz-960MHz和1680MHz-2740MHz,完全覆盖了所需的工作频带。
基于本发明上述实施例,当天线模块为多个时,为基于复合左右手传输线的移动终端MIMO天线,可应用于手机、平板电脑等移动终端。
MIMO天线结构如图25、图29、图31所示,在不同尺寸的地板上放置多个天线模块。
图26、图30、图32中所示为所述的移动终端MIMO天线的仿真结果示意图。图27中所示为传统的单极子MIMO天线结构图,图28中所示为传统的单极子MIMO天线仿真结果示意图。
参照图26,基于复合左右手传输线的MIMO双天线的阻抗带宽为680MHz-970MHz和1680MHz-2710MHz,由于没有加入去耦结构,MIMO双天线之间的耦合较大,但是每个天线的工作特性基本没有受到影响,完全覆盖了所需的工作频带。
参照图28,传统单极子MIMO双天线中,一个单极子天线的阻抗带宽为720MHz-950MHz和1710MHz-3000MHz,在低频的阻抗带宽比图25中基于复合左右手传输线的MIMO双天线的阻抗带宽窄了一些,但是另一个单极子天线在低频的工作特性受到了严重恶化,完全没有覆盖所需的低频工作频带,证明在相同地板尺寸下,在双天线耦合基本相同时,本发明实施例中基于复合左右手传输线的MIMO双天线的阻抗带宽比传统单极子天线的阻抗带宽更宽,可以覆盖更多的工作频带,并且天线模块可以保持自身的工作特性基本不受影响。
通过对比传统单极子MIMO天线与基于复合左右手传输线的移动终端MIMO天线可以发现,在没有加入去耦结构时,传统单极子MIMO天线模块之间的耦合比较大,直接影响了单极子天线本身的工作特性,其中一个单极子天线基本可以覆盖低频所需的工作频带,但是另一个单极子天线在低频的工作特 性受到了严重恶化,导致原有的低频工作频带消失,天线无法使用;而基于复合左右手传输线的移动终端MIMO天线,同样没有加入去耦结构,两天线之间的耦合与传统单极子MIMO天线基本相同,但是两天线模块自身的工作特性基本没有受到影响,阻抗带宽为680MHz-970MHz和1680MHz-2710MHz,完全覆盖了所需的工作频带,说明基于复合左右手传输线的移动终端MIMO天线可以稳定的保持自身的工作特性,基本不会受到其他天线的干扰。
参照图30,基于复合左右手传输线的MIMO四天线的阻抗带宽为680MHz-910MHz和1690MHz-2690MHz,基本可以覆盖所需的工作频带。
参照图32,基于复合左右手传输线的MIMO六天线的阻抗带宽受到耦合影响较大,在加入去耦结构后可以覆盖所需的工作频段。
上述MIMO多天线中并没有加入去耦结构,导致天线模块性能发生不同程度的改变,增加去耦结构即可正常工作。如图33所示,在本发明实施例中,所述移动终端天线包括多个天线模块3时,距离小于距离阈值的相邻天线模块之间设置有去耦结构16。
其中,距离阈值为预设值,例如,可以设置为四分之一波长。
所述去耦结构可以采用多种形式,例如图33中采用了中和线。
以上仿真结果说明,本发明实施例天线具有符合要求的阻抗带宽和较高的辐射效率,完全满足当前移动终端天线的要求。
本发明实施例还提供一种移动终端,所述移动终端包括上述的移动终端天线。
移动终端可以以各种形式来实施。例如,本发明实施例中描述的移动终端可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置等等的移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。以及诸如数字TV、台式计算机等等的固定终端。

Claims (15)

  1. 一种移动终端天线,包括介质基板和位于所述介质基板一侧的地板,所述移动终端天线还包括:设置在所述介质基板另一侧的至少一个天线模块,其中
    所述天线模块包括第一层和第二层,第一层设置于所述介质基板表面,包括第一传输线;第二层包括第一耦合单元和第二耦合单元,所述第一耦合单元和第二耦合单元相耦合,等效为左手电容;所述第二耦合单元与所述地板相耦合,等效为右手电容;所述天线模块的第一层和所述天线模块的第二层之间通过中间部件相连,所述中间部件包括贴片单元和第二传输线,所述贴片单元和所述第一耦合单元等效为右手电感;所述第一传输线的一端与所述地板相连,所述第一传输线的另一端与所述第二传输线相连,所述第一传输线和第二传输线等效为左手电感;所述第一传输线、第一耦合单元、第二耦合单元、贴片单元和第二传输线构成复合左右手传输线结构。
  2. 如权利要求1所述的天线,其中,
    所述第一耦合单元和第二耦合单元为平面结构,所述第一耦合单元和第二耦合单元之间设置有缝隙。
  3. 如权利要求1或2所述的天线,其中,
    所述右手电容包括第一右手电容和第二右手电容;
    所述第二耦合单元包括第一耦合子单元和第二耦合子单元,所述第一耦合子单元与所述地板相耦合,等效为第一右手电容;所述第二耦合子单元与所述地板相耦合,等效为第二右手电容。
  4. 如权利要求3所述的天线,其中,
    所述第一耦合子单元与第二耦合子单元相对称。
  5. 如权利要求3所述的天线,其中,
    所述第一耦合单元、第一耦合子单元和第二耦合子单元均为矩形。
  6. 如权利要求3所述的天线,其中,
    所述第一耦合单元面向所述第一耦合子单元和第二耦合子单元的一边为弧形,所述第一耦合子单元和第二耦合子单元面向所述第一耦合单元的一边为与所述第一耦合单元的弧形边相匹配的弧形。
  7. 如权利要求1所述的天线,其中,
    所述左手电感包括第一左手电感和第二左手电感;
    所述第一传输线包括第一分支和第二分支,所述第二传输线包括第三分支 和第四分支;所述第一分支和第三分支相连,等效为第一左手电感,所述第二分支和第四分支相连,等效为第二左手电感。
  8. 如权利要求7所述的天线,其中,
    所述第一分支与所述第二分支相对称,所述第三分支与所述第四分支相对称。
  9. 如权利要求7所述的天线,其中,
    所述第一分支和所述第二分支为蛇形线,所述蛇形线的转角均为直角。
  10. 如权利要求7所述的天线,其中,
    所述第一分支和所述第二分支均包括直线和至少一条L型线,所述至少一条L型线中的每条L型线与对应分支的直线相连。
  11. 如权利要求7所述的天线,其中,
    所述第三分支和所述第四分支为直线或为U型线。
  12. 如权利要求1所述的天线,其中,
    所述贴片单元与所述介质基板表面垂直,包括依次相连的第一矩形子单元、十字形子单元和第二矩形子单元,所述十字形子单元分别与所述第一矩形子单元和第二矩形子单元垂直,所述第一矩形子单元与第二矩形子单元平行。
  13. 如权利要求1所述的天线,其中,
    在所述移动终端天线包括多个天线模块的情况下,距离小于距离阈值的相邻天线模块之间设置有去耦结构。
  14. 如权利要求13所述的天线,其中,
    所述去耦结构包括中和线。
  15. 一种移动终端,包括如权利要求1~14中任意一项所述的移动终端天线。
PCT/CN2019/091055 2018-06-26 2019-06-13 移动终端天线和移动终端 WO2020001280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810671765.6 2018-06-26
CN201810671765.6A CN109088168B (zh) 2018-06-26 2018-06-26 一种移动终端天线和移动终端

Publications (1)

Publication Number Publication Date
WO2020001280A1 true WO2020001280A1 (zh) 2020-01-02

Family

ID=64839817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091055 WO2020001280A1 (zh) 2018-06-26 2019-06-13 移动终端天线和移动终端

Country Status (2)

Country Link
CN (1) CN109088168B (zh)
WO (1) WO2020001280A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088168B (zh) * 2018-06-26 2020-09-25 中兴通讯股份有限公司 一种移动终端天线和移动终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290581A1 (en) * 2005-06-27 2006-12-28 Harris Corporation Rotational polarization antenna and associated methods
CN101447602A (zh) * 2008-12-11 2009-06-03 中国科学院微电子研究所 基于左右手复合传输线的零阶谐振天线
US20150021402A1 (en) * 2010-08-12 2015-01-22 David Finn Booster antenna configurations and methods
US20160004954A1 (en) * 2014-07-07 2016-01-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Frequency tuning of an electronic tag
CN107359395A (zh) * 2017-07-17 2017-11-17 中国人民解放军空军工程大学 交指耦合类crlh传输线结构及漏波天线
CN109088168A (zh) * 2018-06-26 2018-12-25 中兴通讯股份有限公司 一种移动终端天线和移动终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911386B1 (en) * 2006-05-23 2011-03-22 The Regents Of The University Of California Multi-band radiating elements with composite right/left-handed meta-material transmission line
US8368595B2 (en) * 2008-09-19 2013-02-05 Tyco Electronics Services Gmbh Metamaterial loaded antenna devices
KR101118038B1 (ko) * 2009-03-02 2012-02-24 주식회사 이엠따블유 다중 대역 및 광대역 안테나 및 이를 포함하는 통신 장치
KR20110031614A (ko) * 2009-09-21 2011-03-29 중앙대학교 산학협력단 접지면에 형성된 나선형 슬롯을 가지는 소형 0차 공진 안테나
US8604983B2 (en) * 2010-02-06 2013-12-10 Vaneet Pathak CRLH antenna structures
KR101302391B1 (ko) * 2011-07-11 2013-09-02 주식회사 이엠따블유 메타머티리얼 전송선로 및 이를 이용한 메타머티리얼 안테나
CN203103510U (zh) * 2012-09-27 2013-07-31 东莞宇龙通信科技有限公司 Mimo天线装置及具有mimo天线装置的通信终端
CN105098347A (zh) * 2015-09-16 2015-11-25 中国人民解放军空军工程大学 一种基于复合左右手传输线单元的天线
CN106299644B (zh) * 2016-08-19 2019-09-24 联想(北京)有限公司 天线装置和包括该天线装置的电子设备
CN107093793B (zh) * 2017-04-25 2019-03-22 西安电子科技大学 一种基于复合左右手传输线的全向滤波单极子天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290581A1 (en) * 2005-06-27 2006-12-28 Harris Corporation Rotational polarization antenna and associated methods
CN101447602A (zh) * 2008-12-11 2009-06-03 中国科学院微电子研究所 基于左右手复合传输线的零阶谐振天线
US20150021402A1 (en) * 2010-08-12 2015-01-22 David Finn Booster antenna configurations and methods
US20160004954A1 (en) * 2014-07-07 2016-01-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Frequency tuning of an electronic tag
CN107359395A (zh) * 2017-07-17 2017-11-17 中国人民解放军空军工程大学 交指耦合类crlh传输线结构及漏波天线
CN109088168A (zh) * 2018-06-26 2018-12-25 中兴通讯股份有限公司 一种移动终端天线和移动终端

Also Published As

Publication number Publication date
CN109088168A (zh) 2018-12-25
CN109088168B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
US8547286B2 (en) Metamaterial antennas for wideband operations
US7825863B2 (en) Compact antenna
US8547283B2 (en) Multiband antenna and method for an antenna to be capable of multiband operation
US9246228B2 (en) Multiband composite right and left handed (CRLH) slot antenna
TWI495196B (zh) 天線系統
WO2020133111A1 (zh) 天线装置及终端
US9147929B2 (en) Antennaless wireless device comprising one or more bodies
US7453402B2 (en) Miniature balanced antenna with differential feed
WO2009137302A2 (en) Single cable antenna module for laptop computer and mobile devices
US9577325B2 (en) Compact radiating array for wireless handheld or portable devices
TW201409828A (zh) 行動裝置
WO2010033865A2 (en) Metamaterial loaded antenna devices
JP2002290139A (ja) プレーナアンテナ装置
TWI648906B (zh) 行動裝置和天線結構
JP4107325B2 (ja) アンテナ素子および携帯電話機
CN105846071B (zh) 一种具有良好带外抑制特性的电小三阶滤波器天线
CN104183912A (zh) 一种基于超材料单元的小型化双频带单极子天线
WO2022110951A1 (zh) 天线模块及电子设备
WO2020001147A1 (zh) 一种移动终端天线和移动终端
WO2020001280A1 (zh) 移动终端天线和移动终端
US9431710B2 (en) Printed wide band monopole antenna module
US11916318B2 (en) Antenna
TWI530025B (zh) 可攜式電子裝置之多頻天線
JP2004194089A (ja) 複共振アンテナ装置
Duong et al. 4× 4 Dual-band MIMO antenna with low mutual coupling using a novel structure of neutral line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19825795

Country of ref document: EP

Kind code of ref document: A1