WO2021104095A1 - 一种植入式医疗器件及其制造方法 - Google Patents

一种植入式医疗器件及其制造方法 Download PDF

Info

Publication number
WO2021104095A1
WO2021104095A1 PCT/CN2020/129206 CN2020129206W WO2021104095A1 WO 2021104095 A1 WO2021104095 A1 WO 2021104095A1 CN 2020129206 W CN2020129206 W CN 2020129206W WO 2021104095 A1 WO2021104095 A1 WO 2021104095A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
anisotropic conductive
electrode
pads
conductive material
Prior art date
Application number
PCT/CN2020/129206
Other languages
English (en)
French (fr)
Inventor
杨汉高
吴天准
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021104095A1 publication Critical patent/WO2021104095A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions

Definitions

  • the invention belongs to the technical field of medical devices, and specifically relates to an implantable medical device and a manufacturing method thereof.
  • Implantable medical devices are widely used because they can restore part of the patient's body functions through functional repair methods, achieve the effects of curing diseases and prolonging life.
  • people have higher and higher requirements for implanted devices, and they have begun to develop in the direction of intelligence, miniaturization and multi-channel.
  • it is currently more difficult to produce high-density chips and high-density implantable electrodes, and the connection between the two is even more difficult.
  • high-density chips and high-density implantable electrodes The connection process is still blank.
  • the existing low-density chip and the low-density electrode are connected in the following way: first connect the chip, electronic components and the PCB board, and connect the formed integrated circuit board and the substrate connected with the flexible electrode by reflow soldering technology. , And then realize the electrical connection between the chip and the electrode. That is, there is no direct connection between the chip and the electrode, and an integrated circuit board is required for switching.
  • the high-density flexible electrodes of implantable medical devices are thinner, have more stimulation channels (>1000 channels), and the pad spacing is small. If the existing reflow soldering technology is used to directly connect high-density chips and high-density implanted electrodes , It will cause problems such as more false welding, lower conductivity, more cracks, and lower strength.
  • the present invention provides a method for manufacturing an implantable medical device, which is particularly suitable for connecting high-density chips and high-density implanted electrodes, without the need for switching of integrated circuit boards.
  • the connection method has simple operation and high connection efficiency, and the product after connection has extremely high conduction rate and high connection strength.
  • the present invention provides a method for manufacturing an implantable medical device, including:
  • the electrode includes a stimulation terminal and a connection terminal that are arranged oppositely.
  • the stimulation terminal includes N stimulation terminal pads, the connection terminal includes N connection terminal pads, and the N stimulation terminals are welded.
  • the disk and the N connection terminal pads are connected in a one-to-one correspondence through wires, and N is an integer ⁇ 1;
  • a chip is provided, the chip has a first surface and a second surface which are arranged oppositely, and N chip pads arranged at intervals are provided on the first surface;
  • An anisotropic conductive material is provided on the die pad; the electrode is attached to the chip provided with the anisotropic conductive material, so that the connection terminal pad and the die pad are one-to-one quasi;
  • the bonded electrode and the chip are thermocompressed, wherein, during the thermocompression bonding, pressure is applied to the second surface of the chip and the side of the connecting end away from the chip; the thermocompression After bonding, the chip pad is connected to the connection terminal pad through an anisotropic conductive material, and in the energized state, the chip pad and the connection terminal pad are only along the vertical direction of the first surface The direction of conduction.
  • the thickness of the electrode is 10-50 ⁇ m.
  • anisotropic conductive material is selected from anisotropic conductive adhesive ACA (Anisotropic Conductive Adhesive), anisotropic conductive film ACF (Anisotropic Conductive film) and anisotropic conductive paste ACP (Anisotropic conductive One or more of paste).
  • the arrangement of the anisotropic conductive material includes screen printing, coating or pasting.
  • the orthographic projections of the chip pads and the gaps between them on the electrodes all fall within the area covered by the anisotropic conductive material.
  • the setting thickness of the anisotropic conductive material is 20-50 ⁇ m.
  • the bonding of the electrode and the chip is performed under an inverted microscope or an upright microscope.
  • thermocompression bonding is 120-180°C; the pressure applied during the thermocompression bonding is 10-1000g.
  • the holding time of the thermocompression bonding is 1-20s.
  • the shear strength between the chip and the electrode is 200-800 g.
  • solder balls are also planted on each of the chip pads.
  • the material of the solder ball is tin, gold or an alloy thereof; the size of the solder ball does not exceed the size of the connecting terminal pad. Further preferably, the size of the solder ball is 0.04-0.2 mm.
  • the manufacturing method further includes: manufacturing a biocompatible packaging layer, and the chip, the electrode and the anisotropic conductive material are located in the accommodating layer of the packaging layer. In the space, and the stimulation terminal pad is exposed from the encapsulation layer.
  • the roughness Ra of the encapsulation layer is 0.1-0.2; the thickness of the encapsulation layer is 0.1-0.5 mm.
  • the present invention also provides an implantable medical device, including implantable electrodes and a chip; the electrodes include oppositely arranged stimulation terminals and connecting terminals, the stimulation terminals include N stimulation terminal pads, so
  • the connection terminal includes N connection terminal pads; the N stimulation terminal pads and the N connection terminal pads are connected in a one-to-one correspondence with wires, and N is an integer ⁇ 1000; on the first surface of the chip N chip pads are arranged at intervals;
  • An anisotropic conductive material is connected between the chip pad and the connecting terminal pad, and in the energized state, the chip pad and the connecting terminal pad are only along a direction perpendicular to the first surface Conduction.
  • the implantable medical device further includes an encapsulation layer with biocompatibility, the chip, the electrode, and the anisotropic conductive material are located in the accommodating space of the encapsulation layer, and the stimulation The terminal pad is exposed from the encapsulation layer.
  • the thickness of the anisotropic conductive material is 20-50 ⁇ m.
  • the connection between the chip and the implanted electrode is realized by an anisotropic conductive material, and the conduction is only in the longitudinal direction in the energized state, without the need for an integrated circuit board
  • the manufacturing method is simple to operate, does not require expensive raw materials and complicated equipment, and can significantly improve the connection efficiency of the chip and the implanted electrode.
  • the chip and the electrode have extremely high conduction rate and high connection strength, which can avoid the problems of virtual welding and cracks caused by the use of integrated circuit board transfer in the prior art.
  • the preparation method is particularly suitable for the connection of high-density chips and high-density implanted electrodes.
  • the implantable medical device provided by the second aspect of the present invention, there is no integrated circuit board, and the structure is simple.
  • the chip and the electrode are connected through anisotropic conductive material, and the conduction in the longitudinal direction in the energized state.
  • the conduction rate is extremely high, the connection strength is high, and there are no problems such as virtual welding and cracking.
  • FIG. 1 is a process flow diagram of a manufacturing method of an implantable medical device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of an implantable electrode in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a chip in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the chip in FIG. 3 after being aligned with the implanted electrode of FIG. 2 with solder balls and anisotropic conductive materials sequentially arranged on the chip pads;
  • FIG. 5 is a schematic diagram of the conductive particles (a) of the anisotropic conductive material in the present invention and the structure (b) of the anisotropic conductive material in the present invention;
  • FIG. 6 is a schematic diagram of the structure of the implantable medical device in FIG. 4 after being coated with an encapsulation layer;
  • FIG. 7 is a process flow diagram of a manufacturing method of an implantable medical device in another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of an implantable medical device manufactured by the method of Fig. 7.
  • Implantable electrode-1 stimulation terminal pad-11, connection terminal pad-12, chip-2, chip pad-21, solder ball-22, anisotropic conductive material 3, encapsulation layer-4.
  • FIG. 1 is a flowchart of a manufacturing method of an implantable medical device disclosed in an embodiment of the present invention. This method is particularly suitable for the manufacture of high-density implantable medical devices.
  • the manufacturing method of the implantable medical device described in this embodiment includes steps S101, S102, S103, and S104.
  • an implantable electrode 1 is provided.
  • the electrode 1 includes a stimulation terminal 101 and a connection terminal 102 arranged oppositely.
  • the stimulation terminal 101 includes N stimulation terminal pads 11, and the connection terminal 102 includes N connection terminal pads 12 ,
  • the N stimulation terminal pads 11 and the N connection terminal pads 12 are connected in a one-to-one correspondence through the wire 13, and N is an integer ⁇ 1.
  • connection terminal 102 of the implantable electrode 1 is mainly connected to a chip, electronic components, etc., for the purpose of transmitting the stimulation current emitted by the chip or the like to the electrode 1.
  • the stimulating terminal 101 is used to stimulate human tissues or organs, and can be attached to human tissues, such as cerebral cortex, retinal cortex, and cochlear cortex, so that when a stimulating current passes through, it can have a functional stimulating effect on the human body.
  • the stimulation terminal pads 11 of the stimulation terminal 101 correspond to the connection terminal pads 12 of the connection terminal 102 in a one-to-one correspondence, and are correspondingly connected by wires, and the number of wires is also N.
  • the number of N represents the number of channels of electrode 1.
  • N when N is 1500, it means that the electrode 1 has 1500 stimulation channels.
  • N when the electrode 1 is a high-density implantable electrode 1, N may be an integer ⁇ 1000. Preferably it is an integer ⁇ 2000.
  • the distribution density of the stimulation terminal pads 11 of the high-density implantable electrode 1 may be 10-50 pieces•mm -2 .
  • the thickness of the electrode 1 is 10-50 ⁇ m.
  • the multiple pads of the stimulation terminal 101 are respectively denoted as A, B, C, D,...Z
  • the multiple pads of the connecting terminal 102 are respectively denoted as A', B', C ', D',...Z', where A and A'pads are electrically connected, B and B'pads are electrically connected, and so on.
  • the material of the stimulation terminal pad 11 and the connection terminal pad 12 is a biocompatible conductive material, which can be independently selected from one or more of platinum, titanium, iridium, palladium, niobium, tantalum and their alloys; but Gold cannot be used, because long-term implantation of gold will cause electron migration, which significantly shortens the life of the implanted device. It is preferable to use high-stability pure platinum bonding pads.
  • the production technology of the stimulation terminal pad 11 and the connection terminal pad 12 generally adopts sputtering technology (magnetron sputtering, electron beam evaporation), electroplating, chemical plating, or the like.
  • the size of the stimulation terminal pad 11 and the connection terminal pad 12 are designed according to the size of the implantable medical device.
  • the connection terminal pad 12 (or the stimulation terminal pad 11) has a thickness of 50-2000 nm and a diameter of 30 -300 ⁇ m, the pitch is 80-600 ⁇ m.
  • the stimulation terminal pad 11 and the connection terminal pad 12 are located on the same surface of the electrode 1 (that is, arranged in the same direction), and the surface subsequently faces the first surface 201 of the chip 2. Of course, in other embodiments, they can also be located on two opposite surfaces of the electrode 1.
  • the material of the wire 13 may be the same as or different from that of the stimulation terminal pad 11 and the connection terminal pad 12. It is independently selected from one of gold, platinum, titanium, iridium, palladium, niobium, tantalum and their alloys. Many kinds.
  • a chip 2 is provided.
  • the chip 2 has a first surface 201 and a second surface 202 opposed to each other.
  • N chip pads 21 are arranged on the first surface 201 at intervals, and each chip pad 21 is planted with Solder balls 22.
  • the N chip pads 21 are in a one-to-one correspondence with the aforementioned N connection terminal pads 12, and their positions and arrangements are the same.
  • the first surface 201 here is also the side where the subsequent chip 2 and the electrode 1 are to be connected.
  • the chip 2 is generally a flip chip, that is, the chip pads 21 are all located on the lower surface of the chip (ie, the side 201 to be connected to the electrode 1). There are only chip pads 21 on the first surface 201, and no pads for electronic components or the like. Of course, in other embodiments of the present invention, the chip 2 may also be a formal chip.
  • the chip 2 is generally rectangular.
  • the chip 2 is a rectangle or a square with a side length of 6-15 mm.
  • Chip 2 is too small to accommodate more than 1,000 chip pads, too large will cause difficulty in implanting the human body, and will cause greater harm to the human body.
  • the material of the die pad 21 is generally one or more of copper, aluminum, tin, silver, and alloys thereof.
  • the size of the die pad 21 is not larger than the size of the connection terminal pad 12.
  • the chip 2 Before the chip 2 is connected to the implantable electrode 1, the chip 2 can be implanted.
  • the implanted solder balls 22 can facilitate the application of pressure to the chip at a certain temperature in the later stage, and can better crush the outer insulating layer of the conductive particles in the anisotropic conductive material 3.
  • the solder ball 22 may be tin, gold or an alloy thereof; the size of the solder ball 22 is not larger than the size of the die pad 21. Naturally, the size of the solder ball 22 is also not larger than the size of the connection terminal pad 12. More preferably, the size of the solder ball 22 is 0.04-0.2 mm.
  • the anisotropic conductive material 3 is arranged on the die pad 21; the electrode 1 is attached to the chip 2 provided with the anisotropic conductive material 3, so that the connection terminal pad 12 and the die pad 21 are aligned one by one .
  • the aligned product is shown in Figure 4.
  • the anisotropic conductive material 3 may be solid (such as a film) or semi-solid (such as a paste).
  • the semi-solid anisotropic conductive adhesive ACA (Anisotropic Conductive Adhesive) and anisotropic conductive paste ACP (Anisotropic conductive paste Paste) can be printed on the solder balls 22 by screen printing or manually coated on the solder balls 22, while the anisotropic conductive film ACF (Anisotropic Conductive film) directly cut into a suitable size and manually paste it on the solder ball 22.
  • the anisotropic conductive material 3 is an anisotropic conductive film ACF.
  • the application of ACF is more convenient, and its setting thickness can be 20-50 ⁇ m.
  • the setting direction is parallel to the first surface 201 of the chip 2.
  • the coverage area of the anisotropic conductive material 3 on the chip 2 needs to be greater than or equal to the area of the chip pad 21 (when there are solder balls on the chip pad 21) , Also greater than or equal to the area of the solder ball 22).
  • the orthographic projection of the die pad 21 and the gap between the die pad 21 (the solder ball 22 and the gap therebetween) on the electrode 1 all fall within the area covered by the anisotropic conductive material 3.
  • the anisotropic conductive material 3 also covers the connection terminal pad 12 of the electrode 1.
  • the projection contour line of the anisotropic conductive material 3 on the electrode 1 is 1-5 mm from the projection contour line of the N connection terminal pads 12 on the electrode 1.
  • the bonding of the electrode 1 and the chip 2 is performed under an inverted microscope or an upright microscope. Since the implanted electrode 1 is of high density, its thickness is relatively thin (10-50 ⁇ m thick). When the electrode 1 is attached to the chip 2, the light emitted by the inverted microscope or the upright microscope used can pass through the electrode 1. And the anisotropic conductive material 3 can see the die pad 21, so that the connection terminal pad 12 of the electrode 1 and the die pad 21 can be aligned one by one (as shown in Figure 4) to ensure the final Implantable medical devices can work normally.
  • the anisotropic conductive material 3 used in the present invention is a connecting material with the three characteristics of adhesion, conductivity and insulation. It includes a binder, and conductive particles dispersed in the binder. In the case of heat and pressure, it can conduct in the vertical direction (Z direction, longitudinal) and insulate in the horizontal direction (X, Y direction).
  • the difference in the binder in the anisotropic conductive material 3 may result in a different shape of the anisotropic conductive material 3 (such as a paste shape, a film shape).
  • the binder is usually sensitive to temperature and pressure, and can be a thermoplastic tacky resin or a thermosetting tacky resin. It is preferable to use a thermoplastic resin with a low curing temperature so that the connection can be achieved at a lower temperature.
  • Conductive particles are usually spherical and have various structures depending on the usage.
  • the conductive particles may include a resin core layer, a conductive layer, and an insulating layer in sequence along the center of the sphere (as shown in Fig. 5(a)).
  • the conductive layer of the conductive particle may be a single Ni layer, Ag layer, or Au layer, or may include an Au layer and a Ni layer arranged in sequence along the spherical center of the conductive particle.
  • an anisotropic conductive material 3 with a large number of conductive particles, uniformity, and low resistance.
  • the conductivity of the anisotropic conductive material 3 needs to meet the requirement that the longitudinal (Z-axis direction) conduction resistance during conduction should be sufficiently low, generally lower than 1-10 ⁇ ; and the transverse (X-axis, Y-axis direction) insulation that needs to be insulated The resistance must be greater than 100-10000M ⁇ .
  • S104 Perform thermocompression bonding of the bonded electrode 1 and the chip 2, where, during the thermocompression bonding, pressure is applied to the second surface 202 of the chip 2 and the connecting end 102 of the electrode 1 facing away from the chip 2 (apply The direction of the pressure is shown by the arrow in Figure 4).
  • the solder ball 22 is connected to the connection terminal pad 12 through the anisotropic conductive material 3, and in the energized state, the solder ball 22 is connected to the connection terminal
  • the pad 12 is only conductive in the direction perpendicular to the first surface 201 (ie, the Z axis).
  • the electrode 1 and the chip 2 are connected with the anisotropic conductive material 3 by thermocompression bonding (heating, pressing).
  • the conductive particles in the anisotropic conductive material 3 are used to connect the solder balls 22 and the connecting terminal pads 12 vertically, while avoiding the conduction and short-circuit between the adjacent solder balls 22 and the connecting terminal pads 12, and finally
  • the ideal state where the die pad 21 and the connection terminal pad 12 of the electrode 1 are connected and conducted in the vertical direction, and are firmly connected in other directions but insulated from each other is perfectly realized.
  • the anisotropic conductive material 3 is an insulator under normal conditions.
  • pressure is applied to its longitudinal direction (Z-axis direction) at a certain temperature, due to the electrical conduction between the solder ball 22 and the connecting terminal pad 12 in the longitudinal direction
  • the pressure on the particles is relatively high (this part is due to the bumps of the solder balls 22 and the connecting terminal pad 12, so it is stronger than the pressure of the conductive particles in the gap corresponding to the connecting terminal pad 12), and the external insulation of this part of the conductive particle
  • the layer will be broken, so that the conductive layer of the conductive particles and the corresponding solder balls 22 and the connection terminal pads 12 are in contact with each other to realize the longitudinal conduction between the chip 2 and the electrode 1, and the gap corresponding to the chip pad 21 is anisotropic
  • the conductive particles of the conductive material 3 are complete, as shown in Figure 5(b); the insulating layer of the conductive particles in the other directions (X-axis and Y-axis) is not crushed, and the anis
  • the temperature of the hot pressing is 120-180°C; the applied pressure is 10-1000 g. If the predetermined temperature is too high, the chip 2 and the electrode 1 will be burned, and if it is too low, the adhesive in the anisotropic conductive material 3 will not be cured, and the chip 2 and the electrode 1 will not be firmly connected. If the pressure used for hot pressing is too large, it will easily crush the chip 2; if the pressure is too small, the outer insulating layer of conductive particles in the anisotropic conductive material 3 cannot be crushed, and the chip 2 and the electrode 1 cannot be vertically aligned. The electrical conduction.
  • the holding time of the thermocompression bonding is 1-20 s. For example, it is 1-10s, 5-20s, or 5-10s. The holding time of the thermocompression bonding can be adjusted according to the size of the chip 2.
  • the heat source is removed, the adhesive in the anisotropic conductive material 3 is cured, and the chip 2 and the electrode 1 are firmly connected together.
  • the shear strength between the chip 2 and the electrode 1 is 200-800 g.
  • the resistance of the conduction part between the chip 2 and the connection terminal pad 12 of the electrode 1 is generally lower than 1-10 ⁇ , which achieves good conduction in the longitudinal direction (Z-axis direction); and the lateral resistance It needs to be greater than 100-10000M ⁇ to make the transverse direction (X-axis and Y-axis directions) completely insulated.
  • the manufacturing method may further include step S105.
  • S105 Making a biocompatible packaging layer 4, where the chip 2, the electrode 1 and the anisotropic conductive material 3 are located in the accommodating space of the packaging layer 4, and the stimulation terminal pad 11 is exposed from the packaging layer 4.
  • the formed implantable medical device is shown in Figure 6.
  • the encapsulation layer 4 wraps the structure formed by the chip 2 and the electrode 1 after thermal compression (for example, covering the second surface and the periphery of the chip 2, the periphery of the chip pad 21 and the solder ball 22, the anisotropic conductive material 3
  • the periphery, the electrode 1 is away from the outer surface and periphery of the chip, etc.), but the stimulation terminal pad 11 is not covered.
  • the gap between the stimulation terminal pads 11 may not be covered by the encapsulation layer 4 (as shown in FIG. 6).
  • the encapsulation layer 4 is continuously coated.
  • the material of the encapsulation layer 4 is a biocompatible material, which can be implantable silicone or resin.
  • the presence of the encapsulation layer 4 can ensure that the obtained implantable medical device can gently contact the human body, and can also prevent the device from corroding electrodes, chips, etc. due to long-term contact with the human body.
  • the surface of the encapsulation layer 4 must be relatively smooth to avoid harm to the human body.
  • the roughness Ra of the encapsulation layer 4 is 0.1-0.2.
  • the encapsulation layer 4 can be formed by injection molding, die casting, or the like.
  • the thickness of the encapsulation layer 4 is 0.1-0.5 mm.
  • the connection between the chip and the implanted electrode and the conduction only in the longitudinal direction are realized by the anisotropic conductive material, and the switching of the integrated circuit board is not required.
  • the manufacturing method is simple to operate, does not require expensive raw materials and complex equipment, and can significantly improve the connection efficiency of the chip and the electrode.
  • the chip and the electrode have extremely high conduction rate and high connection strength, which can avoid the problems of virtual welding and cracks caused by the use of integrated circuit board transfer in the prior art.
  • the preparation method is particularly suitable for the connection of high-density chips and high-density implanted electrodes.
  • the embodiment of the present invention also provides an implantable medical device manufactured by the above-mentioned method.
  • an implantable medical device manufactured by the above-mentioned method for a schematic diagram of the structure, please refer to FIG. 2 and FIG. 6 together.
  • the implantable medical device includes an implanted electrode 1 and a chip 2.
  • the electrode 1 includes a stimulation terminal 101 and a connection terminal 102 arranged oppositely, the stimulation terminal 101 includes N stimulation terminal pads 11, the connection terminal 102 includes N connection terminal pads 12, N stimulation terminal pads 11 and N
  • the connection terminal pads 12 are connected in a one-to-one correspondence through the wires 13, and N is an integer ⁇ 1.
  • N chip pads 21 are arranged on the first surface 201 of the chip 2 at intervals, and solder balls 22 are planted on each chip pad 21; an anisotropic conductive material 3 is connected between the solder balls 22 and the connecting terminal pads 12 , And in the energized state, the solder ball 22 and the connection terminal pad 12 are only conducted in a direction perpendicular to the first surface 201.
  • the implantable medical device further includes an encapsulation layer 4, the chip 2, the electrode 1 and the anisotropic conductive material 3 are all located in the accommodating space of the encapsulation layer, but the stimulation terminal pad of the electrode 1 is not covered.
  • the implanted medical device provided by the embodiment of the present invention, there is no integrated circuit board, and the chip 2 and the electrode 1 are connected through the anisotropic conductive material 3 and conduction in the longitudinal direction.
  • the conduction rate of the two is extremely high and the connection is very high.
  • the strength is large, and there are no problems such as virtual welding and cracking.
  • Another embodiment of the present invention also provides a manufacturing method of an implantable medical device, the process flow of which is shown in FIG. 7. Including steps S201, S202, S203 and S204.
  • the difference between this embodiment and the previous embodiment is that no solder balls are provided on the die pad 21. I will not repeat the steps here. After applying pressure at a predetermined temperature, the die pad 21 is directly connected to the connecting terminal pad 12 through the anisotropic conductive material 3, and in the energized state, the die pad 21 and the connecting terminal pad 12 are only along the first vertical direction. The direction of the surface 201 is conductive.
  • step S205 of making the encapsulation layer 4 with biocompatibility after the step S204.
  • the final implantable medical device is shown in Figure 8.
  • FIG. 8 is similar to FIG. 6, except that no solder balls 22 are provided on the die pad 21.
  • the preparation method of this embodiment also does not require the switching of the integrated circuit board, the operation is simple, and the connection efficiency of the chip 2 and the electrode 1 can be significantly improved without the use of expensive raw materials and complicated equipment.
  • the preparation method is particularly suitable for the connection of high-density chips and high-density implanted electrodes.
  • the conductivity of the chip 2 and the electrode 1 is extremely high, and the connection strength is high, which can avoid the problems of virtual welding and cracks caused by the use of integrated circuit board switching in the prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • Otolaryngology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种植入式医疗器件的制造方法,包括:提供植入式电极,电极包括刺激端和连接端,连接端有N个连接端焊盘;提供芯片,芯片的第一表面间隔设置N个芯片焊盘;在芯片焊盘上设置各向异性导电材料,将电极与其相贴合,使连接端焊盘和芯片焊盘一一对准;对贴合后的电极与芯片进行热压合,朝芯片的第二表面和连接端背离芯片的一面施加压力,芯片焊盘通过各向异性导电材料与连接端焊盘连接,在通电状态下二者仅沿垂直第一表面的方向导通。该制造方法无需集成电路板转接,芯片与电极的连接效率、连接强度、导通率均高,特别适合高密度植入式电极与芯片的连接。还提供一种植入式医疗器件。该医疗器件中无集成电路板,结构简单。

Description

一种植入式医疗器件及其制造方法 技术领域
本发明属于医疗器件技术领域,具体涉及一种植入式医疗器件及其制造方法。
背景技术
植入式医疗器件由于可以通过功能性修复的方法恢复病人的部分身体功能、达到治疗疾病和延长寿命的作用而得到广泛应用。随着医疗技术的迅速发展,人们对植入器件的要求越来越高,开始朝智能化、小型化和多通道的方向发展。但对于多通道长期植入医疗器件来说,目前制作高密度芯片和高密度可植入电极的难度较大,两者的连接难度就更大,目前,高密度芯片与高密度植入式电极的连接工艺仍是一片空白。
现有的低密度芯片与低密度电极的连接是通过以下方式进行:先将芯片、电子元器件与PCB板连接,将形成的集成电路板与连接有柔性电极的基板通过回流焊技术连接在一起,进而实现芯片与电极之间的电连接。即,没有直接将芯片与电极连接,均需要集成电路板来转接。而植入式医疗器件的高密度柔性电极较薄、刺激通道较多(>1000通道)、焊盘间距较小,若采用现有的回流焊技术直接连接高密度芯片和高密度植入式电极,会导致虚焊较多、导通率较低、裂纹较多、强度较低等问题。
技术问题
鉴于此,本发明提供了一种植入式医疗器件的制造方法,特别适用于连接高密度芯片和高密度植入式电极,无需集成电路板的转接。该连接方法操作简单、连接效率高,连接后产品的导通率极高、连接强度高。
技术解决方案
第一方面,本发明提供了一种植入式医疗器件的制造方法,包括:
提供植入式电极,所述电极包括相对设置的刺激端和连接端,所述刺激端包括N个刺激端焊盘,所述连接端包括N个连接端焊盘,所述N个刺激端焊盘与所述N个连接端焊盘通过导线一一对应连接,N为≥1的整数;
提供芯片,所述芯片具有相对设置的第一表面和第二表面,所述第一表面上设有间隔设置的N个芯片焊盘;
在所述芯片焊盘上设置各向异性导电材料;将所述电极与设置有所述各向异性导电材料的芯片相贴合,使所述连接端焊盘和所述芯片焊盘一一对准;
对贴合后的所述电极和芯片进行热压合,其中,所述热压合时,朝所述芯片的第二表面和所述连接端背离所述芯片的一面施加压力;所述热压合后,所述芯片焊盘通过各向异性导电材料与所述连接端焊盘相连接,且在通电状态下,所述芯片焊盘与所述连接端焊盘仅沿垂直所述第一表面的方向导通。
其中,所述电极的厚度为10-50μm。
其中,所述各向异性导电材料选自各向异性导电胶ACA(Anisotropic Conductive Adhesive)、各向异性导电薄膜ACF(Anisotropic Conductive film)和各向异性导电浆料ACP(Anisotropic conductive paste)中的一种或多种。
其中,所述各向异性导电材料的设置方式包括丝网印刷、涂布或粘贴。
其中,所述芯片焊盘及其之间的间隙在所述电极上的正投影均落入所述各向异性导电材料所覆盖的区域内。
进一步地,所述各向异性导电材料的设置厚度为20-50μm。
其中,所述电极与所述芯片的贴合是在倒置显微镜或正置显微镜下进行。
其中,所述热压合的温度为120-180℃;所述热压合时所施加的压力为10-1000g。
其中,所述热压合的保持时间为1-20s。
其中,在所述热压合之后,所述芯片和电极之间的剪切强度为200-800g。
其中,每个所述芯片焊盘上还植有焊球。
进一步地,所述焊球的材质为锡、金或其合金;所述焊球的尺寸不超过所述连接端焊盘的尺寸。进一步优选地,所述焊球的尺寸为0.04-0.2mm。
其中,在所述热压合之后,所述制造方法还包括:制作具有生物相容性的封装层,所述芯片、所述电极与所述各向异性导电材料位于所述封装层的容置空间内,且所述刺激端焊盘从所述封装层中露出。
进一步地,所述封装层的粗糙度Ra为0.1-0.2;所述封装层的厚度为0.1-0.5mm。
第二方面,本发明还提供了一种植入式医疗器件,包括植入式电极与芯片;所述电极包括相对设置的刺激端和连接端,所述刺激端包括N个刺激端焊盘,所述连接端包括N个连接端焊盘;所述N个刺激端焊盘与所述N个连接端焊盘通过导线一一对应连接,N为≥1000的整数;所述芯片的第一表面上间隔设置有N个芯片焊盘;
所述芯片焊盘和所述连接端焊盘之间连接有各向异性导电材料,且在通电状态下,所述芯片焊盘和所述连接端焊盘仅沿垂直所述第一表面的方向导通。
其中,所述植入式医疗器件还包括具有生物相容性的封装层,所述芯片、所述电极与所述各向异性导电材料位于所述封装层的容置空间内,且所述刺激端焊盘从所述封装层中露出。
其中,所述各向异性导电材料厚度为20-50μm。
有益效果
本发明第一方面提供的植入式医疗器件的制造方法中,通过各向异性导电材料来实现芯片和植入式电极的连接,以及通电状态下仅在纵向上的导通,无需集成电路板的转接,该制造方法操作简单,不需要采用昂贵的原材料及复杂设备,就能显著提高芯片和植入式电极的连接效率。连接后形成的植入式医疗器件中,芯片和电极的导通率极高、连接强度大,可避免现有技术中采用集成电路板转接所带来的虚焊、裂纹等问题。该制备方法特别适用于高密度芯片与高密度植入式电极的连接。
本发明第二方面提供的植入式医疗器件中,不存在集成电路板,结构简单,所述芯片和电极通过各向异性导电材料实现连接,以及通电状态下纵向上的导通,二者的导通率极高、连接强度大,不存在虚焊、裂纹等问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例中所需要使用的附图进行说明。
图1为本发明一实施例中植入式医疗器件的制造方法的工艺流程图;
图2为本发明一实施例中植入式电极的结构示意图;
图3为本发明一实施例中芯片的结构示意图;
图4为芯片焊盘上依次设有焊球、各向异性导电材料的图3中芯片与图2植入式电极对准后的结构示意图;
图5为本发明中各向异性导电材料的导电粒子(a)及其在热压合时(b)的结构示意图;
图6为图4中的植入式医疗器件经封装层包覆后的结构示意图;
图7为本发明另一实施例中植入式医疗器件的制造方法的工艺流程图;
图8为采用图7方法制得的植入式医疗器件的结构示意图。
主要元件的附图标记:
植入式电极-1,刺激端焊盘-11,连接端焊盘-12,芯片-2,芯片焊盘-21,焊球-22,各向异性导电材料3,封装层-4。
本发明的实施方式
以下是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
请参阅图1,图1是本发明实施例公开的一种植入式医疗器件的制造方法的流程图。该方法特别适合高密度植入式医疗器件的制造。
如图1所示,本实施例中所描述的植入式医疗器件的制造方法,包括步骤S101、S102、S103和S104。
S101,参见图2,提供植入式电极1,电极1包括相对设置的刺激端101和连接端102,刺激端101包括N个刺激端焊盘11,连接端102包括N个连接端焊盘12,N个刺激端焊盘11与N个连接端焊盘12通过导线13一一对应连接,N为≥1的整数。
本发明实施例中,植入式电极1的连接端102主要是连接芯片、电子元器件等,目的是将芯片等发出的刺激电流传输给电极1。刺激端101用于对人体组织或器官进行刺激,可以贴在人体组织上,如大脑皮层、视网膜皮层和耳蜗皮层等,这样当有刺激电流通过时,能对人体起到功能性刺激作用。刺激端101的刺激端焊盘11与连接端102的连接端焊盘12一一对应,且通过导线对应连接,导线的数量也为N。N的数量代表电极1的通道数。例如当N为1500,即表明该电极1具有1500个刺激通道。当电极1为高密度植入式电极1时,N可以为≥1000的整数。优选为≥2000的整数。高密度植入式电极1的刺激端焊盘11的分布密度可以为10-50个•mm -2。可选地,电极1的厚度为10-50μm。
这里“一一对应”可以这样理解:刺激端101的多个焊盘分别记作A、B、C、D、…Z,连接端102的多个焊盘分别记作A’、B’、C’、D’、…Z’,其中,A与A’焊盘电连接、B与B’焊盘电连接,依次类推。
刺激端焊盘11、连接端焊盘12的材质为具有生物兼容性的导电材料,可独立地选自铂、钛、铱、钯、铌、钽及其合金中的一种或多种;但不能使用金,因为金长期植入会发生电子迁移,显著缩短植入式器件的寿命。优选采用高稳定性的纯铂焊盘。刺激端焊盘11、连接端焊盘12的制作技术一般是采用溅射技术(磁控溅射、电子束蒸镀)或者电镀、化学镀等方式。刺激端焊盘11、连接端焊盘12的尺寸根据植入式医疗器件的尺寸来设计,可选地,连接端焊盘12(或刺激端焊盘11)的厚度50-2000nm、直径为30-300μm、间距为80-600μm。
在本发明实施方式中,刺激端焊盘11与连接端焊盘12是位于电极1的同一表面(即,同向设置),该表面后续是朝向芯片2的第一表面201。当然,在其他实施方式中,它们还可以位于电极1的相对设置的两个表面。
导线13的材料可以与刺激端焊盘11、连接端焊盘12的相同,也可以不同,其独立地选自金、铂、钛、铱、钯、铌、钽及其合金中的一种或多种。
S102,参见图3,提供芯片2,芯片2具有相对设置的第一表面201和第二表面202,第一表面201上间隔设置有N个芯片焊盘21,每个芯片焊盘21上植有焊球22。
本发明实施例中,N个芯片焊盘21是与上述N个连接端焊盘12是一一对应的,两者的位置及排布方式一致。这里的第一表面201也即是后续芯片2与电极1待连接的一面。该芯片2一般为倒装式芯片,即,芯片焊盘21全部位于芯片的下表面(即,与电极1待连接的一面201)。第一表面201上只有芯片焊盘21,而不会有电子元器件等的焊盘。当然,在本发明其他实施方式中,芯片2也可以为正装式芯片。芯片2通常为矩形。可选地,芯片2为边长6-15mm的长方形或正方形。芯片2太小不能容纳1000以上的芯片焊盘,太大会造成植入人体困难,对人体伤害较大。芯片焊盘21的材质一般是铜、铝、锡、银及其合金中的一种或多种。芯片焊盘21的尺寸不大于连接端焊盘12的尺寸。
芯片2与植入式电极1进行连接之前,可以对芯片2进行植球处理。所植的焊球22可以便于后期在一定温度下向芯片施加压力时,可以较好地压破各向异性导电材料3中导电粒子的外部绝缘层。焊球22可以为锡、金或其合金;焊球22的尺寸不大于芯片焊盘21的尺寸。自然地,焊球22的尺寸也不大于连接端焊盘12的尺寸。进一步优选地,焊球22的尺寸为0.04-0.2mm。
S103,在芯片焊盘21上设置各向异性导电材料3;将电极1与设置有各向异性导电材料3的芯片2相贴合,使连接端焊盘12和芯片焊盘21一一对准。对准后的产品如图4所示。
本发明实施例中,根据各向异性导电材料3的形态和性质不同,将其设置到植有焊球22的芯片2上的方式也不同。各向异性导电材料3可以为固态(如薄膜状)、半固态(如膏状)。例如,半固态的各向异性导电胶ACA(Anisotropic Conductive Adhesive)和各向异性导电浆料ACP(Anisotropic conductive paste)可以采用丝网印刷方式印刷到焊球22上或者手工涂布到焊球22上,而各向异性导电薄膜ACF(Anisotropic Conductive film)直接裁剪成合适尺寸手动粘贴到焊球22上。优选地,所述各向异性导电材料3为各向异性导电薄膜ACF。ACF的应用较方便,其设置厚度可以为20-50μm。其设置方向平行于芯片2的第一表面201。
为使植入式电极1和芯片2能较好地连接,各向异性导电材料3在芯片2上的覆盖面积需大于或等于芯片焊盘21的面积(当芯片焊盘21上有焊球时,也大于或等于焊球22的面积)。也即是说,芯片焊盘21及其之间的间隙(焊球22及其之间的间隙)在电极1上的正投影均落入各向异性导电材料3所覆盖的区域内。自然地,各向异性导电材料3也覆盖电极1的连接端焊盘12。优选地,各向异性导电材料3在电极1上的投影轮廓线距N个连接端焊盘12在电极1上的投影轮廓线1-5mm。
本发明实施方式中,所述电极1与芯片2的贴合是在倒置显微镜或正置显微镜下进行。由于植入式电极1为高密度时,其厚度较薄(厚10-50μm),当将电极1与芯片2贴合时,所使用的倒置显微镜或正置显微镜发出的光能穿过电极1和各向异性导电材料3看见芯片焊盘21,这样使用显微镜或夹具就可以将电极1的连接端焊盘12与芯片焊盘21一一对准(如图4所示),以确保最终的植入式医疗器件能正常工作。
本发明所用的各向异性导电材料3为具有粘接、导电、绝缘三大特性的连接材料。它包括粘结剂,以及分散在粘结剂中的导电粒子。在受热、受压的情况下,它可以在垂直方向(Z方向,纵向)上导通而水平方向上(X、Y方向)绝缘。
各向异性导电材料3中粘结剂的不同可导致各向异性导电材料3的形态不同(如膏状、薄膜状)。粘结剂通常对温度和压力敏感,可以为热塑性粘性树脂或热固性粘性树脂。优选采用固化温度低的热塑性树脂,以便在较低温度下可实现连接。导电粒子通常为球状,根据使用情况的不同有多种结构。在本发明实施方式中,导电粒子沿球心向外可以依次包括树脂核心层、导电层、绝缘层(如图5中(a)所示)。导电粒子的导电层可以为单一的Ni层、Ag层、Au层,也可以包括沿导电粒子的球心向外依次设置的Au层和Ni层。
本发明中,优选采用导电粒子多且均匀、电阻小的各向异性导电材料3。各向异性导电材料3的导电性能需满足导通时纵向(Z轴方向)的导通电阻需足够低,一般低于1-10Ω;而需绝缘的横向(X轴、Y轴方向)的绝缘电阻需大于100-10000MΩ。
S104,对贴合后的电极1和芯片2进行热压合,其中,热压合时,朝芯片2的第二表面202和电极1的连接端102背离所述芯片2的一面施加压力(施加压力的方向如图4中箭头所示),所述热压合后,焊球22通过各向异性导电材料3与连接端焊盘12相连接,且在通电状态下,焊球22与连接端焊盘12仅沿垂直第一表面201的方向(即,Z轴)导通。
本发明中,采用热压合(施热、施压)各向异性导电材料3的方式来连接电极1与芯片2。利用各向异性导电材料3中的导电粒子来纵向上导通焊球22与连接端焊盘12,同时又避免相邻的焊球22之间、连接端焊盘12之间导通短路,最后完美实现了芯片焊盘21与电极1的连接端焊盘12在垂直方向连接并导通,其他方向上牢固连接但相互绝缘的理想状态。
具体地,各向异性导电材料3在正常情况下为绝缘体,当在一定温度下向其纵向(Z轴方向)上施加压力后,由于纵向上焊球22与连接端焊盘12之间的导电粒子所承受的压力较大(这部分因为有焊球22和连接端焊盘12凸起,所以比对应连接端焊盘12的间隙处的导电粒子的压强大),这部分导电粒子的外部绝缘层会破裂,使得导电粒子的导电层与对应的焊球22和连接端焊盘12相互接触而实现芯片2与电极1在纵向上导通,而对应芯片焊盘21的间隙处,各向异性导电材料3的导电粒子完整,如图5中(b)所示;其他方向上(X轴和Y轴)上导电粒子的绝缘层未被压破,仍然保持各向异性导电材料3绝缘。
可选地,所述热压合的温度为120-180℃;所施加的压力为10-1000g。所述预定温度若过高会烧坏芯片2和电极1,若过低,会导致各向异性导电材料3中的粘结剂无法固化,进而无法牢固地连接芯片2与电极1。热压合所采用的压力若过大,会容易压碎芯片2,压力太小则无法压碎各向异性导电材料3中导电粒子的外部绝缘层,进而不能实现芯片2与电极1在纵向上的电导通。可选地,所述热压合的保持时间为1-20s。例如为1-10s、5-20s或5-10s。热压合的保持时间可根据芯片2的大小来调节。
本发明中,在热压合之后,撤去热源,各向异性导电材料3中的粘结剂固化,芯片2与电极1牢固连接在一起。可选地,在冷却之后,芯片2和电极1之间的剪切强度为200-800g。
可选地,在热压合之后,芯片2与电极1的连接端焊盘12之间的导通部分的电阻一般低于1-10Ω,实现纵向(Z轴方向)良好导通;而横向电阻需大于100-10000MΩ,使横向(X轴和Y轴方向)完全绝缘。
本发明实施例中,在步骤S104之后,该制造方法还可以包括步骤S105。
S105:制作具有生物相容性的封装层4,其中,芯片2、电极1与各向异性导电材料3位于封装层4的容置空间内,且刺激端焊盘11从封装层4中露出。形成的植入式医疗器件如图6所示。
封装层4将热压合后的芯片2与电极1形成的结构包裹起来(例如包覆芯片2的第二表面及周边、芯片焊盘21及焊球22的周边、各向异性导电材料3的周边、电极1背离芯片的外表面及周边等),但却未包覆刺激端焊盘11。刺激端焊盘11之间的间隙也可以不被封装层4所包覆(如图6所示)。所述封装层4是呈连续包覆的。
封装层4的材质为具有生物相容性的材料,可以为植入式硅胶或树脂。封装层4的存在可以保证得到的植入式医疗器件能温和地与人体接触,也可以避免器件因长期接触人体而对电极、芯片等造成腐蚀。封装层4的表面必须较光滑,以免对人体造成伤害。可选地,封装层4的粗糙度Ra为0.1-0.2。
封装层4可以通过注塑、压铸等方式形成。可选地,封装层4的厚度为0.1-0.5mm。
本发明实施例提供的植入式医疗器件的制造方法中,通过各向异性导电材料来实现芯片和植入式电极的连接以及只在纵向上的导通,无需集成电路板的转接,该制造方法操作简单,不需要采用昂贵的原材料及复杂设备,就能显著提高芯片和电极的连接效率。连接后形成的植入式医疗器件中,芯片和电极的导通率极高、连接强度大,可避免现有技术中采用集成电路板转接所带来的虚焊、裂纹等问题。该制备方法特别适用于高密度芯片与高密度植入式电极的连接。
本发明实施例还提供了采用上述方法制得的一种植入式医疗器件,其结构示意图可一并参阅图2和图6。
该植入式医疗器件包括植入式电极1与芯片2。其中,电极1包括相对设置的刺激端101和连接端102,刺激端101包括N个刺激端焊盘11,连接端102包括N个连接端焊盘12,N个刺激端焊盘11与N个连接端焊盘12通过导线13一一对应连接,N为≥1的整数。芯片2的第一表面201上间隔置有N个芯片焊盘21,每个芯片焊盘21上植有焊球22;焊球22和连接端焊盘12之间连接有各向异性导电材料3,且在通电状态下,焊球22和连接端焊盘12仅沿垂直第一表面201的方向导通。该植入式医疗器件还包括封装层4,芯片2、电极1与各向异性导电材料3均位于所述封装层的容置空间内,但电极1的刺激端焊盘未被包覆。
本发明实施例提供的植入式医疗器件中,不存在集成电路板,芯片2和电极1通过各向异性导电材料3实现连接及纵向上的导通,二者的导通率极高、连接强度大,不存在虚焊、裂纹等问题。
本发明另一实施例还提供了一种植入式医疗器件的制造方法,其工艺流程如图7所示。包括步骤S201、S202、S203和S204。
本实施例与上一实施例的区别在于:芯片焊盘21上没有设置焊球。这里就不再对各步骤进行赘述。在预定温度下施加压力后,芯片焊盘21直接通过各向异性导电材料3与连接端焊盘12相连接,且在通电状态下,芯片焊盘21与连接端焊盘12仅沿垂直第一表面201的方向导通。
当然,也可以在步骤S204之后包括制作具有生物相容性的封装层4的步骤S205。最终所得的植入式医疗器件如图8所示。图8与图6类似,区别在于芯片焊盘21上未设置焊球22。
该实施例的制备方法也无需集成电路板的转接,操作简单,不需要采用昂贵的原材料及复杂设备,就能显著提高芯片2和电极1的连接效率。该制备方法特别适用于高密度芯片与高密度植入式电极的连接。连接后形成的植入式医疗器件中,芯片2和电极1的导通率极高、连接强度大,可避免现有技术中采用集成电路板转接所带来的虚焊、裂纹等问题。
以上所述是本发明的示例性实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对其做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种植入式医疗器件的制造方法,其特征在于,包括:
    提供植入式电极,所述电极包括相对设置的刺激端和连接端,所述刺激端包括N个刺激端焊盘,所述连接端包括N个连接端焊盘;所述N个刺激端焊盘与所述N个连接端焊盘通过导线一一对应连接,N为≥1的整数;
    提供芯片,所述芯片具有相对设置的第一表面和第二表面,所述第一表面上间隔设置N个芯片焊盘;
    在所述芯片焊盘上设置各向异性导电材料;将所述电极与设置有所述各向异性导电材料的芯片相贴合,使所述连接端焊盘和所述芯片焊盘一一对准;
    对贴合后的所述电极和芯片进行热压合,其中,所述热压合时,朝所述芯片的第二表面和所述连接端背离所述芯片的一面施加压力;在所述热压合后,所述芯片焊盘通过各向异性导电材料与所述连接端焊盘相连接,且在通电状态下,所述芯片焊盘与所述连接端焊盘仅沿垂直所述第一表面的方向导通。
  2. 如权利要求1所述的制造方法,其特征在于,所述各向异性导电材料选自各向异性导电胶、各向异性导电薄膜和各向异性导电浆料中的一种或多种;所述各向异性导电材料的设置方式包括丝网印刷、涂布或粘贴。
  3. 如权利要求2所述的制造方法,其特征在于,所述芯片焊盘及其之间的间隙在所述电极上的正投影均落入所述各向异性导电材料所覆盖的区域内。
  4. 如权利要求1所述的制造方法,其特征在于,所述各向异性导电材料的设置厚度为20-50μm。
  5. 如权利要求5所述的制造方法,其特征在于,所述热压合时的温度为120-180℃;所述热压合时所施加的压力为10-1000g。
  6. 如权利要求1-5任一项所述的制造方法,其特征在于,每个所述芯片焊盘上还植有焊球。
  7. 如权利要求1-6任一项所述的制造方法,其特征在于,在所述热压合之后,所述制造方法还包括:制作具有生物相容性的封装层;其中,所述芯片、所述电极与所述各向异性导电材料位于所述封装层的容置空间内,且所述刺激端焊盘从所述封装层中露出。
  8. 一种植入式医疗器件,其特征在于,包括植入式电极与芯片;
    所述电极包括相对设置的刺激端和连接端,所述刺激端包括N个刺激端焊盘,所述连接端包括N个连接端焊盘;所述N个刺激端焊盘与所述N个连接端焊盘通过导线一一对应连接,N为≥1的整数;
    所述芯片具有相对设置的第一表面和第二表面,所述第一表面上间隔设置有N个芯片焊盘;
    所述芯片焊盘和所述连接端焊盘之间连接有各向异性导电材料,且在通电状态下,所述芯片焊盘和所述连接端焊盘仅沿垂直所述第一表面的方向导通。
  9. 如权利要求8所述的植入式医疗器件,其特征在于,还包括具有生物相容性的封装层,所述芯片、所述电极与所述各向异性导电材料位于所述封装层的容置空间内,且所述刺激端焊盘从所述封装层中露出。
  10. 如权利要求9所述的植入式医疗器件,其特征在于,所述各向异性导电材料厚度为20-50μm。
PCT/CN2020/129206 2019-11-29 2020-11-17 一种植入式医疗器件及其制造方法 WO2021104095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911219294.6A CN111111006A (zh) 2019-11-29 2019-11-29 一种植入式医疗器件及其制造方法
CN201911219294.6 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104095A1 true WO2021104095A1 (zh) 2021-06-03

Family

ID=70497184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129206 WO2021104095A1 (zh) 2019-11-29 2020-11-17 一种植入式医疗器件及其制造方法

Country Status (2)

Country Link
CN (1) CN111111006A (zh)
WO (1) WO2021104095A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111006A (zh) * 2019-11-29 2020-05-08 深圳先进技术研究院 一种植入式医疗器件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650789A (zh) * 2015-02-11 2015-05-27 武汉轻工大学 一种各向异性导电胶及封装方法
CN107583191A (zh) * 2016-07-07 2018-01-16 徐文敏 一种神经刺激器装置
CN109821149A (zh) * 2019-03-04 2019-05-31 微智医疗器械有限公司 视网膜假体、植入装置及柔性电缆
CN109999343A (zh) * 2019-03-30 2019-07-12 深圳硅基仿生科技有限公司 植入式器件的电子封装体及视网膜刺激器
CN111111006A (zh) * 2019-11-29 2020-05-08 深圳先进技术研究院 一种植入式医疗器件及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332052A (ja) * 1999-05-18 2000-11-30 Hitachi Ltd 半導体装置の製造方法および半導体装置
US7211103B2 (en) * 2002-04-11 2007-05-01 Second Sight Medical Products, Inc. Biocompatible bonding method and electronics package suitable for implantation
JP3755824B2 (ja) * 2003-03-04 2006-03-15 株式会社らいふ 複数電極接着用の電子部品とその実装方法
KR20180024029A (ko) * 2010-04-22 2018-03-07 세키스이가가쿠 고교가부시키가이샤 이방성 도전 재료 및 접속 구조체
CN107982637A (zh) * 2017-12-15 2018-05-04 深圳先进技术研究院 植入式医疗器件的制造方法、植入式医疗器件及对准装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650789A (zh) * 2015-02-11 2015-05-27 武汉轻工大学 一种各向异性导电胶及封装方法
CN107583191A (zh) * 2016-07-07 2018-01-16 徐文敏 一种神经刺激器装置
CN109821149A (zh) * 2019-03-04 2019-05-31 微智医疗器械有限公司 视网膜假体、植入装置及柔性电缆
CN109999343A (zh) * 2019-03-30 2019-07-12 深圳硅基仿生科技有限公司 植入式器件的电子封装体及视网膜刺激器
CN111111006A (zh) * 2019-11-29 2020-05-08 深圳先进技术研究院 一种植入式医疗器件及其制造方法

Also Published As

Publication number Publication date
CN111111006A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US10159845B2 (en) Biocompatible bonding method and electronics package suitable for implantation
JP3420917B2 (ja) 半導体装置
KR100290993B1 (ko) 반도체장치,반도체탑재용배선기판및반도체장치의제조방법
US6544428B1 (en) Method for producing a multi-layer circuit board using anisotropic electro-conductive adhesive layer
TW200303588A (en) Semiconductor device and its manufacturing method
JPH02230610A (ja) 電気的装置
TW200426903A (en) Semiconductor device and production method therefor
WO2016114293A1 (ja) バンプ形成用フィルム、半導体装置及びその製造方法、並びに接続構造体
WO2021104095A1 (zh) 一种植入式医疗器件及其制造方法
KR20220154545A (ko) 액체 금속을 포함하는 이방성 도전 필름, 그 제조방법 및 이를 이용한 표시장치
KR100724720B1 (ko) 도전성 접착제와 이 도전성 접착제를 이용한 단자간의 접속 방법
JPH04292803A (ja) 異方導電性フィルム
JP4542842B2 (ja) 電極間接続構造
JP4479582B2 (ja) 電子部品実装体の製造方法
JPS6386322A (ja) 導電異方性接着剤シ−ト
JP2895569B2 (ja) 電気的接続部材および電気回路部材
JPH05290946A (ja) 電子部品実装方法
JP2003188212A (ja) 半導体装置及びその製造方法
JP2895570B2 (ja) 電気的接続部材および電気回路部材
JP2895568B2 (ja) 電気回路部材
JP2004127612A (ja) 導電性微粒子、電極端子の相互接続方法及び導電接続構造体
JP2009032948A (ja) Icチップ及びicチップの実装方法
JPH0430532A (ja) 突起状電極バンプの構造及びその製法
KR20010069358A (ko) 공정합금계의 이방성 전도필름을 이용한 반도체 칩본딩공정 및 그 제조방법
JPH10125720A (ja) 半導体集積回路装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892531

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20892531

Country of ref document: EP

Kind code of ref document: A1