WO2021103797A1 - 考虑复杂激励条件的车辆路面附着系数自适应估计方法 - Google Patents

考虑复杂激励条件的车辆路面附着系数自适应估计方法 Download PDF

Info

Publication number
WO2021103797A1
WO2021103797A1 PCT/CN2020/117804 CN2020117804W WO2021103797A1 WO 2021103797 A1 WO2021103797 A1 WO 2021103797A1 CN 2020117804 W CN2020117804 W CN 2020117804W WO 2021103797 A1 WO2021103797 A1 WO 2021103797A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesion coefficient
vehicle
wheel
longitudinal
tire
Prior art date
Application number
PCT/CN2020/117804
Other languages
English (en)
French (fr)
Inventor
冷搏
金达
杨兴
熊璐
余卓平
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US17/639,593 priority Critical patent/US12054155B2/en
Publication of WO2021103797A1 publication Critical patent/WO2021103797A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/174Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction

Definitions

  • the invention relates to the field of automobile control, in particular to an adaptive estimation method of vehicle road adhesion coefficient considering complex excitation conditions.
  • the peak adhesion coefficient of the vehicle road surface is a key parameter to realize the high-quality motion control of the vehicle.
  • the existing method is based on the tire force excitation in a single direction to construct a state observer. This method cannot be accurately estimated when the excitation is not satisfied, and When the tire force produces longitudinal-side coupling, the tire model will be distorted, and the estimator has the characteristics of slow convergence and low robustness. Therefore, how to comprehensively utilize the road surface recognition method of the longitudinal and lateral tire excitation force will be the difficulty and focus of future research.
  • the purpose of the present invention is to provide an adaptive estimation method of vehicle road adhesion coefficient considering complex excitation conditions in order to overcome the defects of the above-mentioned prior art.
  • An adaptive estimation method of vehicle road adhesion coefficient considering complex excitation conditions including the following steps:
  • the single-wheel dynamics model of the whole vehicle is specifically:
  • is the wheel angular velocity
  • Is the wheel angular acceleration
  • R is the wheel radius
  • T m the driving/braking torque acting on the wheel
  • F z is the vertical load on the wheel
  • I w is the moment of inertia of the wheel
  • is the wheel slip rate
  • v x is the longitudinal speed at the center of the wheel
  • ⁇ x ( ⁇ x , ⁇ ) is the adhesion coefficient of the current tire to the ground obtained based on the tire model.
  • the expression of the tire model is:
  • is the peak adhesion coefficient of the road surface, that is, the peak adhesion coefficient of the corresponding road surface at the highest point of the ⁇ - ⁇ curve
  • c 1 is the longitudinal sliding stiffness of the tire, that is, the slope of the ⁇ - ⁇ curve at the origin
  • c 2 , c 3 , C 4 are the control parameters of the descending curve of the road surface peak adhesion coefficient and slip rate respectively.
  • step 1) the expression of estimating the longitudinal tire force and the peak adhesion coefficient of the road surface under longitudinal excitation is:
  • K is the gain of the longitudinal force estimator
  • is the gain of the pavement adhesion coefficient estimator
  • y is the intermediate variable
  • the two-degree-of-freedom kinematics model of the vehicle is specifically:
  • is the front wheel turning angle
  • l f and l r are the distance from the center of the front and rear wheels to the center of mass
  • v 0 is the longitudinal speed of the vehicle
  • is the side slip angle of the center of mass of the vehicle
  • ⁇ f and ⁇ r are the distances of the front and rear wheels, respectively.
  • Side slip angle R is the radius of the wheel.
  • the expression for estimating the peak adhesion coefficient of the road surface under the excitation of the tire return torque and the lateral force is:
  • F z is the vertical load received by the wheel
  • a y is the actual value of the lateral acceleration of the vehicle
  • k 1 and k 2 are the estimator gains
  • Is the estimated value of the pavement peak adhesion coefficient under lateral force excitation for The derivative with respect to time.
  • Said step 3 specifically includes the following steps:
  • the step 31) is specifically:
  • the input membership function takes the slip rate reference ⁇ /C ⁇ and the cornering angle reference ⁇ /C ⁇ as input quantities, where C ⁇ and C ⁇ are the mutation points of the tire characteristics entering the non-linear region, which are taken as the peak adhesion coefficient Corresponding slip rate and slip angle, and use different estimators
  • As the output set the domain of input and output to be [0,1], and divide the domain into corresponding intervals according to small, medium, and large fuzzy membership.
  • step 32 the expression of adaptive estimation of the road surface peak adhesion coefficient under complex excitation is:
  • Is the representative value of the longitudinal slip degree of the wheel Is the representative value of the degree of wheel side slip
  • the present invention has the following advantages:
  • the road adhesion coefficient estimation algorithm designed in the present invention can judge the longitudinal sliding and side slip state of the tire in real time under the action of complex excitation force, and make adaptive adjustments to the tire model, thereby ensuring stable convergence and non-divergence of the estimation.
  • the road adhesion coefficient estimation algorithm designed in the present invention can simultaneously observe the longitudinal sliding and side slip conditions of the tires, make confidence judgments based on this, and fuse the estimation results, so it has better real-time performance, while the existing estimation
  • the algorithm can only use one of these incentives.
  • the road surface adhesion coefficient estimation algorithm designed by the present invention can realize rapid and accurate road surface estimation based on the return torque at the initial stage of steering.
  • Fig. 1 is a flow chart of the method of the present invention.
  • Figure 2 is a schematic diagram of a single-wheel kinetic model in the embodiment.
  • Fig. 3 is a schematic diagram of a two-degree-of-freedom kinematics model of the entire vehicle in the embodiment.
  • Fig. 4 is a schematic diagram of the estimation of the returning torque in the embodiment.
  • the present invention provides an adaptive estimation method of vehicle road adhesion coefficient considering complex excitation conditions, which includes the following steps:
  • Step 1 Design an estimator based on the single-wheel dynamics model to estimate the longitudinal tire force and the road peak adhesion coefficient under longitudinal excitation.
  • the specific process includes:
  • is the wheel angular velocity
  • R is the wheel radius
  • T m is the driving/braking torque acting on the wheel
  • F z is the vertical load on the wheel
  • I ⁇ is the moment of inertia of the wheel
  • is the wheel slip rate
  • V x is the longitudinal speed at the center of the wheel
  • ⁇ x ( ⁇ x , ⁇ ) is the current tire adhesion coefficient to the ground based on the tire model
  • is the peak adhesion coefficient of the road surface, that is, the peak adhesion coefficient of the corresponding road surface at the highest point of the ⁇ - ⁇ curve
  • is the wheel slip rate
  • c 1 is the longitudinal sliding stiffness of the tire, that is, the slope of the ⁇ - ⁇ curve at the origin
  • C 2 , c 3 , and c 4 are the control parameters of the descending section of the curve of the road surface peak adhesion coefficient and slip rate, respectively.
  • K is the gain of the longitudinal force estimator
  • is the gain of the pavement adhesion coefficient estimator
  • Step 2 Design an estimator based on the two-degree-of-freedom kinematics model of the vehicle to estimate the peak adhesion coefficient of the road under the excitation of the tire return torque and lateral force.
  • the specific process includes:
  • is the front wheel turning angle
  • l f and l r are the distance from the center of the front and rear wheels to the center of mass
  • v 0 is the longitudinal speed of the vehicle
  • is the side slip angle of the center of mass of the vehicle
  • ⁇ f and ⁇ r are the distances of the front and rear wheels, respectively. Slip angle.
  • K is the gain of the longitudinal force estimator
  • is the gain of the pavement adhesion coefficient estimator
  • Step 3 Judging the excitation conditions that the vehicle satisfies through the vehicle state parameters, fuzzy inference to the limit that the current longitudinal and lateral tire force can reach, and designing a fusion observer based on this to fuse the estimated results.
  • the specific process includes:
  • the input membership function takes the slip rate reference ⁇ /C ⁇ and the cornering angle reference ⁇ /C ⁇ as input variables, where C ⁇ and C ⁇ are the mutation points of the tire characteristics entering the nonlinear region, which can be considered to reach the peak adhesion coefficient corresponding Slip rate and slip angle, these two are based on Calculated in real time through numerical calculations; for different estimators As the output.
  • the hardware device of the present invention requires sensors to include GPS, inertial elements, steering wheel angle and torque sensors, and uses mass-produced electric vehicle controllers for data sampling to realize online estimation of the algorithms designed in steps one and two.
  • the fuzzy logic designed in step 3 is burned in the controller in the form of a lookup table to obtain the final fusion estimation result.
  • the superscript ⁇ indicates the estimated value
  • the superscript ⁇ indicates the first derivative
  • the subscript x indicates the longitudinal direction
  • the subscript y indicates the lateral direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Software Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,包括下列步骤:1)根据整车的单轮动力学模型设计估计器,并估计纵向轮胎力和纵向激励下路面峰值附着系数;2)基于整车二自由度运动学模型设计估计器,并估计轮胎回正力矩和侧向力激励下路面峰值附着系数;3)通过车辆状态参数判断车辆满足的激励条件,模糊推理出当前纵侧向轮胎力所能达到的极限,并据此设计融合观测器进行估计结果融合。本方法鲁棒性好、实时性高、快速准确。

Description

考虑复杂激励条件的车辆路面附着系数自适应估计方法 技术领域
本发明涉及汽车控制领域,尤其是涉及一种考虑复杂激励条件的车辆路面附着系数自适应估计方法。
背景技术
车辆路面峰值附着系数是实现汽车精确车辆高品质运动控制的关键参数,现有的方法是基于单一方向的轮胎力激励条件下构建状态观测器,这种方法在激励不满足时无法准确估计,而且当轮胎力产生纵侧耦合时,轮胎模型会产生失真,估计器具有估计收敛缓慢、鲁棒性不高的特点。因此,如何综合利用纵侧向轮胎激励力的路面识别方法将会是今后研究的难点与重点。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种考虑复杂激励条件的车辆路面附着系数自适应估计方法。
本发明的目的可以通过以下技术方案来实现:
一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,包括下列步骤:
1)根据整车的单轮动力学模型设计估计器,并估计纵向轮胎力和纵向激励下路面峰值附着系数;
2)基于整车二自由度运动学模型设计估计器,并估计轮胎回正力矩和侧向力激励下路面峰值附着系数;
3)通过车辆状态参数判断车辆满足的激励条件,模糊推理出当前纵侧向轮胎力所能达到的极限,并据此设计融合观测器进行估计结果融合。
所述的步骤1)中,整车的单轮动力学模型具体为:
Figure PCTCN2020117804-appb-000001
Figure PCTCN2020117804-appb-000002
其中,ω为车轮角速度,
Figure PCTCN2020117804-appb-000003
为车轮角加速度,R为车轮半径,T m为作用在车轮上的驱/制动力矩,F z为车轮受到的垂向载荷,I w为车轮的转动惯量,λ为车轮滑移率,v x为车轮中心处的纵向速度,μ xx,λ)为基于轮胎模型获得当前轮胎对地面的利用附着系数。
所述的轮胎模型的表达式为:
Figure PCTCN2020117804-appb-000004
其中,θ为路面峰值附着系数,即μ-λ曲线最高点的对应路面的峰值附着系数,,c 1为轮胎的纵滑刚度,即μ-λ曲线在原点处的斜率,c 2、c 3、c 4分别为路面峰值附着系数与滑移率的曲线下降段控制参数。
所述的步骤1)中,估计纵向轮胎力和纵向激励下路面峰值附着系数的表达式为:
Figure PCTCN2020117804-appb-000005
Figure PCTCN2020117804-appb-000006
Figure PCTCN2020117804-appb-000007
其中:
Figure PCTCN2020117804-appb-000008
为轮胎纵向力的估计值,
Figure PCTCN2020117804-appb-000009
为基于路面附着系数估计值和滑移率计算得到的利用附着系数,K为纵向力估计器增益,
Figure PCTCN2020117804-appb-000010
为根据当前的纵向力和滑动率在轮胎模型描述的曲线上计算得到的路面峰值附着系数,
Figure PCTCN2020117804-appb-000011
为纵向激励下路面峰值附着系数的估计值,γ为路面附着系数估计器增益,y为中间变量,
Figure PCTCN2020117804-appb-000012
为y对时间的导数,
Figure PCTCN2020117804-appb-000013
Figure PCTCN2020117804-appb-000014
对时间的导数。
所述的步骤2)中,整车二自由度运动学模型具体为:
Figure PCTCN2020117804-appb-000015
Figure PCTCN2020117804-appb-000016
其中,δ为前轮转角,l f和l r分别为前后车轮中心到质心的距离,v 0为车辆的纵向车速,β为车辆的质心侧偏角,α f和α r分别为前后车轮的侧偏角,R为车轮半径。
所述的步骤2)中,估计轮胎回正力矩和侧向力激励下路面峰值附着系数的表达式为:
Figure PCTCN2020117804-appb-000017
Figure PCTCN2020117804-appb-000018
Figure PCTCN2020117804-appb-000019
其中,α为车轮侧偏角,δ w为方向盘转角,i sw)为助力电机到主销处的力矩转动比,i mw)为方向盘到主销处的力矩转动比,M m为施加在方向盘的力矩,M s为助力电机力矩,A和B为拟合参数,M k为拟合总回正力矩,
Figure PCTCN2020117804-appb-000020
为根据车轮垂向载荷和侧偏角计算得到的回正力矩估计值,F z为车轮受到的垂向载荷,
Figure PCTCN2020117804-appb-000021
为车辆的侧向加速度估计值,a y为车辆的侧向加速度实际值,k 1和k 2为估计器增益,
Figure PCTCN2020117804-appb-000022
为侧向力激励下路面峰值附着系数估计值,
Figure PCTCN2020117804-appb-000023
Figure PCTCN2020117804-appb-000024
对时间的导数。
所述的步骤3)具体包括如下步骤:
31)车辆激励状态模糊推理;
32)进行复杂激励下的路面峰值附着系数自适应估计。
所述的步骤31)具体为:
输入隶属度函数以滑动率参考λ/C λ和侧偏角参考α/C α作为输入量,其中,C λ和C α为轮胎特性进入非线性区的突变点,将其作为达到峰值附着系数对应的滑动率和侧偏角,并以不同估计器的
Figure PCTCN2020117804-appb-000025
作为输出量,设置输入量和输出量的论域均为[0,1],并对论域按照小、中、大进行模糊隶属度划分相应的区间。
所述的步骤32)中,进行复杂激励下的路面峰值附着系数自适应估计的表达式为:
Figure PCTCN2020117804-appb-000026
Figure PCTCN2020117804-appb-000027
Figure PCTCN2020117804-appb-000028
其中,
Figure PCTCN2020117804-appb-000029
为车轮纵向滑动程度的表征值,
Figure PCTCN2020117804-appb-000030
为车轮侧偏程度的表征值,
Figure PCTCN2020117804-appb-000031
为路面峰值附着系数估计值。
与现有技术相比,本发明具有以下优点:
1、本发明设计的路面附着系数估计算法在复杂激励力作用下,能通过实时判断轮胎的纵向滑动和侧偏状态,对轮胎模型做自适应调整,从而保证估计稳定收敛不发散。
2、本发明设计的路面附着系数估计算法能在同时观测轮胎的纵向滑动和侧偏状态的基础上,据此做置信判别,融合估计结果,因此具有较好的实时性,而现有的估计算法只能利用其中某一种激励力。
3、本发明设计的路面附着系数估计算法在转向初始阶段就能依据回正力矩即可实现路面快速、准确估计。
附图说明
图1为本发明的方法流程框图。
图2为实施例中单轮动力学模型示意图。
图3为实施例中整车二自由度运动学模型示意图。
图4为实施例中回正力矩估计示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
下面结合附图和具体实施例对本发明进行详细说明。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
实施例
如图1所示,本发明提供一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,包括如下步骤:
步骤一、基于单轮动力学模型设计估计器,估计纵向轮胎力和纵向激励下路面峰值附着系数。具体过程包括:
1.1、建立整车的单轮动力学模型。
首先获取车轮角速度和车轮滑移率:
Figure PCTCN2020117804-appb-000032
Figure PCTCN2020117804-appb-000033
其中,ω为车轮角速度,R为车轮半径,T m为作用在车轮上的驱/制动力矩,F z为车轮受到的垂向载荷,I ω为车轮的转动惯量,λ为车轮滑移率,v x为车轮中心处的纵向速度,μ xx,λ)为基于轮胎模型获得当前轮胎对地面的利用附着系数;
然后,轮胎模型的表达式为:
Figure PCTCN2020117804-appb-000034
其中,θ为路面峰值附着系数,即μ-λ曲线最高点的对应路面的峰值附着系数,λ为车轮滑移率,c 1为轮胎的纵滑刚度,即μ-λ曲线在原点处的斜率,c 2、c 3、c 4分别为路面峰值附着系数与滑移率的曲线下降段控制参数。
1.2、纵向轮胎力和纵向激励下路面峰值附着系数估计算法的表达式为:
Figure PCTCN2020117804-appb-000035
Figure PCTCN2020117804-appb-000036
Figure PCTCN2020117804-appb-000037
其中:
Figure PCTCN2020117804-appb-000038
为轮胎纵向力的估计,
Figure PCTCN2020117804-appb-000039
为基于路面附着系数估计值和滑移率计算的利用附着系数,K为纵向力估计器增益,
Figure PCTCN2020117804-appb-000040
为根据当前的纵向力和滑动率通过数值计算的方法在轮胎模型描述的曲线上计算得到的路面峰值附着系数,
Figure PCTCN2020117804-appb-000041
为纵向激励下路面峰值附着系数的估计值,γ为路面附着系数估计器增益。
步骤二、基于整车二自由度运动学模型设计估计器,估计轮胎回正力矩和侧向 力激励下路面峰值附着系数。具体过程包括:
2.1、建立整车二自由度运动学模型。
获取车轮侧偏角:
Figure PCTCN2020117804-appb-000042
Figure PCTCN2020117804-appb-000043
其中,δ为前轮转角,l f和l r分别为前后车轮中心到质心的距离,v 0为车辆的纵向车速,β为车辆的质心侧偏角,α f和α r分别为前后车轮的侧偏角。
2.2、纵向轮胎力和纵向激励下路面峰值附着系数估计算法。
表达式为:
Figure PCTCN2020117804-appb-000044
Figure PCTCN2020117804-appb-000045
Figure PCTCN2020117804-appb-000046
其中:
Figure PCTCN2020117804-appb-000047
为轮胎纵向力的估计,
Figure PCTCN2020117804-appb-000048
为基于路面附着系数估计值和滑移率计算的利用附着系数,K为纵向力估计器增益,
Figure PCTCN2020117804-appb-000049
为根据当前的纵向力和滑动率通过数值计算的方法在轮胎模型描述的曲线上计算得到的路面峰值附着系数,
Figure PCTCN2020117804-appb-000050
为纵向激励下路面峰值附着系数的估计值,γ为路面附着系数估计器增益。
步骤三、通过车辆状态参数判断车辆满足的激励条件,模糊推理出当前纵侧向轮胎力所能达到的极限,并据此设计融合观测器进行估计结果融合。具体过程包括:
3.1、车辆激励状态模糊推理。
输入隶属度函数以滑动率参考λ/C λ和侧偏角参考α/C α作为输入量,其中C λ和C α为轮胎特性进入非线性区的突变点,可以认为是达到峰值附着系数对应的滑动率和侧偏角,这两项依据
Figure PCTCN2020117804-appb-000051
通过数值计算实时得出;对不同估计器的
Figure PCTCN2020117804-appb-000052
作为输出量。设置输入量和输出量的论域均为[0,1],并对论域按照S、M、B(对应小、中、大)进行模糊隶属度划分相应的区间。
3.2、复杂激励下的路面峰值附着系数自适应估计算法。
表达式为:
Figure PCTCN2020117804-appb-000053
Figure PCTCN2020117804-appb-000054
Figure PCTCN2020117804-appb-000055
本发明的硬件设备要求传感器包括GPS、惯性元件、方向盘转角和转矩传感器,使用量产的电动汽车整车控制器进行数据采样,实现步骤一和步骤二设计的算法的在线估计。步骤三设计的模糊逻辑以查询表的方式烧录在控制器中,获取最终的融合估计结果。
本实施例中参数说明:
上标^表示估计值,上标·表示一阶导数,下标x表示纵向,下标y表示侧向。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,包括下列步骤:
    1)根据整车的单轮动力学模型设计估计器,并估计纵向轮胎力和纵向激励下路面峰值附着系数;
    2)基于整车二自由度运动学模型设计估计器,并估计轮胎回正力矩和侧向力激励下路面峰值附着系数;
    3)通过车辆状态参数判断车辆满足的激励条件,模糊推理出当前纵侧向轮胎力所能达到的极限,并据此设计融合观测器进行估计结果融合。
  2. 根据权利要求1所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤1)中,整车的单轮动力学模型具体为:
    Figure PCTCN2020117804-appb-100001
    Figure PCTCN2020117804-appb-100002
    其中,ω为车轮角速度,
    Figure PCTCN2020117804-appb-100003
    为车轮角加速度,R为车轮半径,T m为作用在车轮上的驱/制动力矩,F z为车轮受到的垂向载荷,I w为车轮的转动惯量,λ为车轮滑移率,v x为车轮中心处的纵向速度,μ xx,λ)为基于轮胎模型获得当前轮胎对地面的利用附着系数。
  3. 根据权利要求2所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的轮胎模型的表达式为:
    Figure PCTCN2020117804-appb-100004
    其中,θ为路面峰值附着系数,即μ-λ曲线最高点的对应路面的峰值附着系数,,c 1为轮胎的纵滑刚度,即μ-λ曲线在原点处的斜率,c 2、c 3、c 4分别为路面峰值附着系数与滑移率的曲线下降段控制参数。
  4. 根据权利要求2所述的一种考虑复杂激励条件的车辆路面附着系数自适应 估计方法,其特征在于,所述的步骤1)中,估计纵向轮胎力和纵向激励下路面峰值附着系数的表达式为:
    Figure PCTCN2020117804-appb-100005
    Figure PCTCN2020117804-appb-100006
    Figure PCTCN2020117804-appb-100007
    其中:
    Figure PCTCN2020117804-appb-100008
    为轮胎纵向力的估计值,
    Figure PCTCN2020117804-appb-100009
    为基于路面附着系数估计值和滑移率计算得到的利用附着系数,K为纵向力估计器增益,
    Figure PCTCN2020117804-appb-100010
    为根据当前的纵向力和滑动率在轮胎模型描述的曲线上计算得到的路面峰值附着系数,
    Figure PCTCN2020117804-appb-100011
    为纵向激励下路面峰值附着系数的估计值,γ为路面附着系数估计器增益,y为中间变量,
    Figure PCTCN2020117804-appb-100012
    为y对时间的导数,
    Figure PCTCN2020117804-appb-100013
    Figure PCTCN2020117804-appb-100014
    对时间的导数。
  5. 根据权利要求4所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤2)中,整车二自由度运动学模型具体为:
    Figure PCTCN2020117804-appb-100015
    Figure PCTCN2020117804-appb-100016
    其中,δ为前轮转角,l f和l r分别为前后车轮中心到质心的距离,v 0为车辆的纵向车速,β为车辆的质心侧偏角,α f和α r分别为前后车轮的侧偏角,R为车轮半径。
  6. 根据权利要求5所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤2)中,估计轮胎回正力矩和侧向力激励下路面峰值附着系数的表达式为:
    Figure PCTCN2020117804-appb-100017
    Figure PCTCN2020117804-appb-100018
    Figure PCTCN2020117804-appb-100019
    其中,α为车轮侧偏角,δ w为方向盘转角,i sw)为助力电机到主销处的力矩转动比,i mw)为方向盘到主销处的力矩转动比,M m为施加在方向盘的力矩,M s为助 力电机力矩,A和B为拟合参数,M k为拟合总回正力矩,
    Figure PCTCN2020117804-appb-100020
    为根据车轮垂向载荷和侧偏角计算得到的回正力矩估计值,F z为车轮受到的垂向载荷,
    Figure PCTCN2020117804-appb-100021
    为车辆的侧向加速度估计值,a y为车辆的侧向加速度实际值,k 1和k 2为估计器增益,
    Figure PCTCN2020117804-appb-100022
    为侧向力激励下路面峰值附着系数估计值,
    Figure PCTCN2020117804-appb-100023
    Figure PCTCN2020117804-appb-100024
    对时间的导数。
  7. 根据权利要求6所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤3)具体包括如下步骤:
    31)车辆激励状态模糊推理;
    32)进行复杂激励下的路面峰值附着系数自适应估计。
  8. 根据权利要求7所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤31)具体为:
    输入隶属度函数以滑动率参考λ/C λ和侧偏角参考α/C α作为输入量,其中,C λ和C α为轮胎特性进入非线性区的突变点,将其作为达到峰值附着系数对应的滑动率和侧偏角,并以不同估计器的
    Figure PCTCN2020117804-appb-100025
    作为输出量,设置输入量和输出量的论域均为[0,1],并对论域按照小、中、大进行模糊隶属度划分相应的区间。
  9. 根据权利要求8所述的一种考虑复杂激励条件的车辆路面附着系数自适应估计方法,其特征在于,所述的步骤32)中,进行复杂激励下的路面峰值附着系数自适应估计的表达式为:
    Figure PCTCN2020117804-appb-100026
    Figure PCTCN2020117804-appb-100027
    Figure PCTCN2020117804-appb-100028
    其中,
    Figure PCTCN2020117804-appb-100029
    为车轮纵向滑动程度的表征值,
    Figure PCTCN2020117804-appb-100030
    为车轮侧偏程度的表征值,
    Figure PCTCN2020117804-appb-100031
    为路面峰值附着系数估计值。
PCT/CN2020/117804 2019-11-25 2020-09-25 考虑复杂激励条件的车辆路面附着系数自适应估计方法 WO2021103797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/639,593 US12054155B2 (en) 2019-11-25 2020-09-25 Method of adaptive estimation of adhesion coefficient of vehicle road surface considering complex excitation conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911167653.8 2019-11-25
CN201911167653.8A CN110901647B (zh) 2019-11-25 2019-11-25 考虑复杂激励条件的车辆路面附着系数自适应估计方法

Publications (1)

Publication Number Publication Date
WO2021103797A1 true WO2021103797A1 (zh) 2021-06-03

Family

ID=69819365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117804 WO2021103797A1 (zh) 2019-11-25 2020-09-25 考虑复杂激励条件的车辆路面附着系数自适应估计方法

Country Status (3)

Country Link
US (1) US12054155B2 (zh)
CN (1) CN110901647B (zh)
WO (1) WO2021103797A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715138A (zh) * 2022-04-26 2022-07-08 合肥工业大学 一种基于汽车理想轮速变化率的车轮防滑控制方法
CN116443022A (zh) * 2023-06-19 2023-07-18 成都赛力斯科技有限公司 基于路面轮胎附着系数调整车辆的方法及装置
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110901647B (zh) * 2019-11-25 2021-03-26 同济大学 考虑复杂激励条件的车辆路面附着系数自适应估计方法
CN113465934B (zh) * 2020-03-31 2024-08-16 广州汽车集团股份有限公司 一种车辆响应速度评价方法及装置
CN111688706A (zh) * 2020-05-26 2020-09-22 同济大学 一种基于视觉与动力学的路面附着系数交互式估计方法
CN111688707A (zh) * 2020-05-26 2020-09-22 同济大学 一种视觉与动力学融合的路面附着系数估计方法
CN111898207B (zh) * 2020-07-31 2022-03-15 哈尔滨工业大学 一种考虑动载荷和路面附着系数的质心侧偏角估计方法
CN111845710B (zh) * 2020-08-03 2023-10-03 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN111959516B (zh) * 2020-09-02 2023-08-01 上海智驾汽车科技有限公司 一种车辆状态与路面附着系数联合估计的方法
CN113060143B (zh) * 2021-04-25 2022-04-08 北京理工大学 一种路面附着系数确定系统和方法
CN114407902B (zh) * 2022-01-19 2023-11-28 浙江大学 一种基于道路水层深度估计的驾驶决策的系统
CN114454893B (zh) * 2022-01-27 2024-08-16 中国矿业大学 一种路面自适应矿卡轨迹跟踪预测控制方法
CN114572224B (zh) * 2022-02-21 2024-10-08 南京航空航天大学 一种路面最大附着系数的估算方法及终端

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083743A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 車輪のタイヤグリップ度推定装置
CN103754218A (zh) * 2014-01-09 2014-04-30 同济大学 一种汽车轮胎侧偏工况下的路面附着系数估计方法
CN106476809A (zh) * 2016-04-29 2017-03-08 江苏理工学院 一种汽车附着状态的估计方法和专用测试装置
CN107016157A (zh) * 2017-02-20 2017-08-04 同济大学 分布式驱动电动汽车路面自适应纵向车速估计系统及方法
CN107901913A (zh) * 2017-09-26 2018-04-13 同济大学 多源信息融合的车辆质心侧偏角及路面附着系数估计系统
CN108238025A (zh) * 2017-09-26 2018-07-03 同济大学 一种分布式驱动电动汽车路面附着系数估计系统
CN108594652A (zh) * 2018-03-19 2018-09-28 江苏大学 一种基于观测器信息迭代的车辆状态融合估计方法
CN108622101A (zh) * 2018-05-09 2018-10-09 南京航空航天大学 一种汽车转向工况下的路面附着系数估计方法
CN109515442A (zh) * 2018-11-06 2019-03-26 吉林大学 四轮驱动电动汽车路面附着系数估计方法
CN110901647A (zh) * 2019-11-25 2020-03-24 同济大学 考虑复杂激励条件的车辆路面附着系数自适应估计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060923B2 (ja) * 1995-11-24 2000-07-10 トヨタ自動車株式会社 車両状態推定装置
DE10251381A1 (de) * 2002-11-01 2004-05-19 Continental Aktiengesellschaft Verfahren zur Ermittlung des Kraftschlussbeiwertes zwischen Reifen und Fahrbahn
EP3309025B1 (en) * 2016-10-13 2021-06-30 Volvo Car Corporation Method and system for computing a road friction estimate
US10988142B1 (en) * 2017-09-27 2021-04-27 Apple Inc. Determining friction coefficient of a tire/surface interface

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083743A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 車輪のタイヤグリップ度推定装置
CN103754218A (zh) * 2014-01-09 2014-04-30 同济大学 一种汽车轮胎侧偏工况下的路面附着系数估计方法
CN106476809A (zh) * 2016-04-29 2017-03-08 江苏理工学院 一种汽车附着状态的估计方法和专用测试装置
CN107016157A (zh) * 2017-02-20 2017-08-04 同济大学 分布式驱动电动汽车路面自适应纵向车速估计系统及方法
CN107901913A (zh) * 2017-09-26 2018-04-13 同济大学 多源信息融合的车辆质心侧偏角及路面附着系数估计系统
CN108238025A (zh) * 2017-09-26 2018-07-03 同济大学 一种分布式驱动电动汽车路面附着系数估计系统
CN108594652A (zh) * 2018-03-19 2018-09-28 江苏大学 一种基于观测器信息迭代的车辆状态融合估计方法
CN108622101A (zh) * 2018-05-09 2018-10-09 南京航空航天大学 一种汽车转向工况下的路面附着系数估计方法
CN109515442A (zh) * 2018-11-06 2019-03-26 吉林大学 四轮驱动电动汽车路面附着系数估计方法
CN110901647A (zh) * 2019-11-25 2020-03-24 同济大学 考虑复杂激励条件的车辆路面附着系数自适应估计方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device
CN114715138A (zh) * 2022-04-26 2022-07-08 合肥工业大学 一种基于汽车理想轮速变化率的车轮防滑控制方法
CN116443022A (zh) * 2023-06-19 2023-07-18 成都赛力斯科技有限公司 基于路面轮胎附着系数调整车辆的方法及装置
CN116443022B (zh) * 2023-06-19 2023-08-15 成都赛力斯科技有限公司 基于路面轮胎附着系数调整车辆的方法及装置

Also Published As

Publication number Publication date
US12054155B2 (en) 2024-08-06
CN110901647A (zh) 2020-03-24
CN110901647B (zh) 2021-03-26
US20220332323A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2021103797A1 (zh) 考虑复杂激励条件的车辆路面附着系数自适应估计方法
CN109747434B (zh) 分布式驱动电动汽车转矩矢量分配控制方法
Li et al. Comprehensive tire–road friction coefficient estimation based on signal fusion method under complex maneuvering operations
Lee et al. Adaptive vehicle traction force control for intelligent vehicle highway systems (IVHSs)
Zhao et al. Displacement and force coupling control design for automotive active front steering system
CN103921786B (zh) 一种电动车辆再生制动过程的非线性模型预测控制方法
CN107009916B (zh) 考虑驾驶员意图分布式驱动电动汽车防滑控制系统及方法
CN108839652B (zh) 一种车辆失稳可控域的自动驾驶紧急避让系统
Nam et al. Design of an adaptive sliding mode controller for robust yaw stabilisation of in–wheel–motor–driven electric vehicles
WO2019042453A1 (zh) 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统
CN111688715B (zh) 四轮驱动电动汽车基于融合技术的质心侧偏角观测方法
Boisvert et al. Estimators of wheel slip for electric vehicles using torque and encoder measurements
CN103754218A (zh) 一种汽车轮胎侧偏工况下的路面附着系数估计方法
Jeon et al. Simultaneous state estimation and tire model learning for autonomous vehicle applications
CN109850015B (zh) 一种控制参数可自动调节的电动车主动前轮转向控制方法
CN107199884A (zh) 用于减小车轴平均滑转率的转矩分配方法
Matsuda et al. Instantaneous estimation of road friction based on front tire SAT using Kalman filter
CN107284519A (zh) 基于自适应终端滑模控制的汽车线控转向控制方法
JP4926729B2 (ja) 車両の路面摩擦係数推定装置
Wang et al. Research on strategy of the stability control system of dual-motor drive electric vehicle
CN110871801B (zh) 一种基于激光雷达车速估计的车辆启动控制方法
Shi et al. A novel integral terminal sliding mode control of yaw stability for steer-by-wire vehicles
CN111267949B (zh) 一种用于车辆的滑移转向控制系统
Hakima et al. Designing a fuzzy logic controller to adjust the angle of tires in four wheel steering vehicles
Guo et al. Vehicle velocities estimation based on mixed EKF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893409

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20893409

Country of ref document: EP

Kind code of ref document: A1