WO2019042453A1 - 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统 - Google Patents

分布式驱动电动汽车路面自适应驱动防滑控制方法及系统 Download PDF

Info

Publication number
WO2019042453A1
WO2019042453A1 PCT/CN2018/103893 CN2018103893W WO2019042453A1 WO 2019042453 A1 WO2019042453 A1 WO 2019042453A1 CN 2018103893 W CN2018103893 W CN 2018103893W WO 2019042453 A1 WO2019042453 A1 WO 2019042453A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
road surface
speed
wheel speed
current
Prior art date
Application number
PCT/CN2018/103893
Other languages
English (en)
French (fr)
Inventor
雷波
郭鑫
邹鹏飞
马英
董伟超
郭潇然
卢甲华
Original Assignee
郑州宇通客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州宇通客车股份有限公司 filed Critical 郑州宇通客车股份有限公司
Publication of WO2019042453A1 publication Critical patent/WO2019042453A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/18Acceleration lateral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a distributed driving electric vehicle road surface adaptive driving anti-skid control method and system, and belongs to the technical field of vehicle control.
  • the distributed drive electric vehicle can take full advantage of its unique advantages to achieve a lot of safety control.
  • Publication No. CN102267459 discloses a driving anti-skid control method for a motor-driven vehicle.
  • the method uses a slip ratio as a control variable to obtain a target driving torque by using a running speed, a longitudinal acceleration, and a longitudinal slip ratio of the driving wheel to complete the driving slip adjustment.
  • This method has the following problems:
  • Publication No. CN104228607 discloses an electric vehicle driving anti-skid control method which gives a desired slip ratio and calculates a corresponding desired wheel speed, and realizes driving slip by tracking the wheel speed. Since the parameters of the desired slip ratio are different under different road surfaces, the adaptive adjustability of this method is poor in practical applications.
  • Publication No. CN105751919 discloses a four-wheel hub electric vehicle driving anti-skid control method, which obtains the optimal slip ratio of the wheel through the road surface recognition algorithm, and then calculates the desired rotation speed of the wheel. Taking the desired wheel speed as the control target, the compensation torque is calculated by the PID controller, and the compensation torque and the command torque are added and input to the motor to realize the drive slip control.
  • PID control is suitable for deterministic control systems that can establish accurate mathematical models.
  • uncertain factors such as signal noise and model error in the process of driving anti-skid control, and the anti-interference requirements of the system are high.
  • the use of PID control will affect the adaptability and stability of the controller.
  • the object of the present invention is to provide a method for adaptively driving anti-skid control of a distributed driving electric vehicle road surface, so as to solve the problem of anti-skid torque jitter, adaptability and poor stability which occur in the current anti-skid control; meanwhile, the present invention also provides a A distributed drive electric vehicle pavement adaptive drive anti-skid control system.
  • the present invention provides a distributed driving electric vehicle road surface adaptive driving anti-skid control method for solving the above technical problems, and includes the following six solutions.
  • the method 1 includes the following steps:
  • the invention estimates the current road surface peak adhesion coefficient in real time, determines the slip rate according to the current road surface peak adhesion coefficient, controls the wheel slip rate to the current road surface optimal slip rate, and realizes the adaptive control of the wheel anti-skid drive.
  • Method 2 On the basis of the method scheme 1, the model of the sliding mode variable structure controller in the step 4) is:
  • is the approach rate.
  • the sliding mode variable structure controller of the invention introduces an integral term, and the static error of the sliding mode variable structure controller is eliminated by the integral term; the sliding mode variable structure controller of the invention introduces an anti-integration saturation strategy to ensure the sliding mode change
  • the structure controller is globally stable.
  • Method 4 Based on the method scheme 3, the road surface peak coefficient estimator designed in the step D is:
  • T c is the actual output torque of the wheel
  • y is the observed value of the angular velocity ⁇ of the wheel
  • is an estimate of the longitudinal force F x
  • Ki is a constant, calibrated according to the actual vehicle state
  • I ⁇ is the wheel moment of inertia
  • is the real-time road surface adhesion coefficient
  • t is the time.
  • is the wheel speed
  • r is the wheel radius
  • v is the wheel center speed
  • Method 6 On the basis of the method scheme 1, when the difference between the actual wheel speed and the reference wheel speed is not zero, and the base torque is greater than the driving anti-skid control torque output by the sliding mode variable structure controller, the sliding mode is adopted.
  • the variable structure controller outputs a drive anti-skid control torque to drive the corresponding wheel, otherwise, the base torque is used to control the corresponding wheel.
  • the invention also provides a distributed driving electric vehicle road surface adaptive driving anti-skid control system, comprising the following six schemes: system scheme 1: the control system comprises a road surface state identification module, a slip ratio calculation module, a wheel speed difference calculation module And sliding mode variable structure controller;
  • the road surface state identification module is configured to estimate a current road surface peak adhesion coefficient according to a longitudinal vehicle speed of the vehicle, a current slip ratio of the wheel, and a longitudinal force;
  • the slip ratio calculation module is configured to determine an optimal slip ratio of the current road surface according to a correspondence relationship between a road surface peak adhesion coefficient and a road surface optimal slip ratio;
  • the wheel speed difference calculation module is configured to calculate a reference wheel speed of the current wheel according to an optimal slip ratio of the current road surface, and calculate a difference between the actual wheel speed and the reference wheel speed;
  • the sliding mode variable structure controller is configured to determine a driving slip control torque of the wheel according to a difference between the actual wheel speed and the reference wheel speed and a longitudinal force of the wheel.
  • System Solution 2 Based on System Solution 1, the model of the sliding mode variable structure controller is:
  • is the approach rate.
  • System Solution 3 On the basis of System Solution 1, the process of estimating the current road surface peak adhesion coefficient by the road surface state identification module is as follows:
  • T c is the actual output torque of the wheel
  • y is the observed value of the angular velocity ⁇ of the wheel
  • is an estimate of the longitudinal force F x
  • Ki is a constant, calibrated according to the actual vehicle state
  • I ⁇ is the wheel moment of inertia
  • is the real-time road surface adhesion coefficient
  • t is the time.
  • is the wheel speed
  • r is the wheel radius
  • v is the wheel center speed
  • System scheme 6 On the basis of system scheme 1, the control system further comprises a driving anti-skid enable control module, when detecting that the difference between the actual wheel speed and the reference wheel speed is not zero, and the base torque is greater than the sliding mode variable structure
  • the driving anti-skid enabling control module drives the corresponding wheel by using the driving anti-skid control torque output by the sliding mode variable structure controller; otherwise, the basic torque is used to control the corresponding wheel.
  • Figure 1 is a schematic diagram of the principle of driving the anti-skid control system.
  • the invention estimates the current road surface peak adhesion coefficient in real time, and obtains the optimal slip ratio of the current road surface according to the linear relationship between the current road surface peak adhesion coefficient and the current road surface optimal slip rate, and then combines the current wheel center speed Determine the reference wheel speed of the current wheel, calculate the difference between the actual wheel speed and the reference wheel speed, and use the sliding mode variable structure controller to control the torque of the wheel that is slipping under the driving state according to the wheel speed difference to ensure that the wheel is slippery.
  • the rate of change is controlled to the current optimum slip ratio of the road surface.
  • V is the longitudinal vehicle speed
  • r l , r r are the left and right driven wheel radii respectively
  • w l , w r are the left and right driven wheel speeds respectively
  • is the wheel angle, which is the wheel center speed
  • b is the wheelbase of the left and right symmetrical wheels.
  • W is the yaw rate and v is the wheel speed, which can be obtained by the sensor.
  • is the wheel speed
  • r is the wheel radius
  • v is the wheel center speed
  • a log , a lat are the longitudinal acceleration and lateral acceleration of the vehicle respectively, which can be obtained by the acceleration sensor, H is the height of the centroid under the half load condition, L f is the distance from the centroid to the drive shaft under the half load condition, B is the vehicle Drive axle track, M is the vehicle half load mass, and L is the vehicle wheelbase.
  • ⁇ 1 is the road surface peak adhesion coefficient
  • ⁇ 2 is the longitudinal slip stiffness
  • ⁇ 3 , ⁇ 4 , ⁇ 5 are model control parameters
  • is the current slip ratio of the wheel.
  • the road surface peak adhesion coefficient estimator is designed in combination with the improved Burckhardt tire model. Module), real-time output of the current road surface peak adhesion coefficient
  • the road surface peak adhesion coefficient estimator consists of two parts, one is the longitudinal force estimation and the other is the road surface peak adhesion coefficient estimate:
  • T c is the actual output torque of the wheel, which can be obtained by the improved sliding mode variable structure controller
  • y is the observation value of the wheel angular velocity ⁇
  • is the estimation of the longitudinal force F x , Equation equation Numerical solution.
  • the wheel When the vehicle is running normally, the wheel will output a certain torque, which is defined as the base torque.
  • the present invention calculates a certain torque, which is defined as driving the anti-skid control torque, and then continuously updated according to the vehicle slip state.
  • the anti-skid control torque is driven as the actual output torque of the wheel.
  • the estimated value of the road surface peak attachment coefficient ⁇ can be determined according to the road surface peak adhesion coefficient estimator provided by the present invention.
  • An estimated value of the road surface adhesion coefficient ⁇ is obtained by inverting the tire model based on the estimated longitudinal force of the tire and the current wheel slip ratio.
  • the linear relationship between the current road surface peak adhesion coefficient and the optimal slip ratio can be obtained, and the optimal slip ratio ⁇ r of the current road surface is determined according to the linear relationship.
  • the difference between the actual wheel speed and the reference wheel speed and the longitudinal force of the wheel are input to the sliding mode variable structure controller, and the sliding mode variable structure controller controls the torque of the wheel that is slipping in the driving state.
  • the sliding mode variable structure control adopted by the invention is based on the traditional sliding mode variable structure controller, and two improvements are made:
  • the distance defined to the sliding surface is:
  • Anti-integral saturation control strategy effectively suppresses over-saturation of the actuator, outside the boundary layer Sliding mode switching torque control can converge the system state to the sliding surface; within the boundary layer When, the control method is similar to PI control.
  • the sliding mode variable structure controller used in the present invention is:
  • u is the driving anti-skid control torque
  • T eq is the equivalent control torque
  • ⁇ T is the switching control torque
  • the purpose of the equivalent control is to make the system state move along the sliding surface as quickly as possible. To achieve the ideal sliding mode control, it is necessary to make Calculate the equivalent control torque.
  • the equivalent control torque is designed as:
  • the purpose of switching torque is to overcome the model error caused by model uncertainty in the equivalent control torque, thus ensuring the stability of the entire control system.
  • the switching torque is designed as:
  • the controller adopts a sliding mode variable structure controller to output and drive the anti-skid control torque according to the wheel speed difference and the wheel longitudinal force, and performs driving anti-skid control torque on one or more wheels, and when the vehicle does not detect the wheel slip, the sliding mode change is exited.
  • the structural controller normally performs the base torque assigned by the upper control strategy.
  • the adaptive driving electric vehicle road surface adaptive driving anti-skid control system of the present embodiment is as shown in FIG. 1 , and includes a sliding mode variable structure controller, a driving anti-skid enabling control module, a road surface state recognition module, a vertical load calculation module, and a longitudinal force.
  • the sliding mode variable structure controller is used to calculate the difference between the actual wheel speed and the reference wheel speed according to the wheel speed difference calculation module and The longitudinal force of the wheel calculated by the longitudinal force calculation module determines the driving anti-skid control torque;
  • the driving anti-skid enable control module is used to determine the intervention and exit of the sliding mode variable structure controller according to the difference between the wheel speed difference and the base torque and the driving anti-skid control torque When the detected wheel speed difference is not 0, and the base torque is greater than the driving anti-skid control torque, the drive anti-skid enable control The module sends an enable signal, intervenes in the sliding mode variable structure controller, and uses the driving anti

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种分布式驱动电动汽车路面自适应驱动防滑控制方法,属于车辆控制技术领域,该方法通过实时估算出当前路面峰值附着系数,根据当前路面峰值附着系数与当前路面最优滑移率对应的线性关系,得出当前路面的最优滑移率,再结合当前车轮的轮心速度,确定当前车轮的参考轮速,计算出实际轮速与参考轮速的差值,依据轮速差,利用滑模变结构控制器,对驱动状态下打滑的车轮进行力矩控制,保证了将车轮滑移率控制到当前路面最优滑移率,该方法将车轮滑移率控制到当前路面最优滑移率,实现对车轮的防滑驱动的自适控制。还公开了一种分布式驱动电动汽车路面自适应驱动防滑控制系统。

Description

分布式驱动电动汽车路面自适应驱动防滑控制方法及系统 技术领域
本发明涉及一种分布式驱动电动汽车路面自适应驱动防滑控制方法及系统,属于车辆控制技术领域。
背景技术
由于采用电机独立驱动,且电机转矩可以精确控制,分布式驱动电动汽车可以充分利用自身独特的优势实现很多安全性方面的控制。
当电动汽车行驶在附着系数较低的路面上时,比如雨雪天的路面,其电机的输出转矩可能会超过路面所能提供的最大附着力对应的转矩,这种情况在车辆加速行驶时最为常见。当此情况发生时,车轮轮速会在短时间内迅速升高,此时车辆纵向车速的变化却微乎其微,车轮发生打滑现象。之后,滑移率由稳定区进入非稳定区,电动汽车与路面之间的附着力下降,极有可能引发安全事故。
公布号CN102267459公开了一种电机驱动车辆的驱动防滑控制方法,该方法以滑移率为控制变量,利用行驶速度、纵向加速度和驱动轮纵向滑移率得到目标驱动力矩,完成驱动防滑调节。该方法存在以下问题:
1)滑移率的计算依赖于车速估计的精度,而在车辆低速刚刚起步的过程中,控制存在明显的延迟,导致滑移率上升,车速估计误差以及传感器的信号噪声会造成滑移率的抖动,进一步造成力矩信号抖动。
2)电机力矩的延迟会造成在低速时候滑移率控制延迟更加严重,并且带来很大的抖振,进而造成明显的电机“低速振动”,并给驾驶员带来不舒适。
公布号CN104228607公开了一种电动汽车驱动防滑控制方法,该方法给定期望滑转率,并计算相应的期望车轮转速,通过跟踪车轮转速,实现驱动防滑。由于不同路面下期望滑转率参数设置有很大的不同,故此方法在实际应用中自适应 调节性较差。
公布号CN105751919公开了一种四轮轮毂电动汽车驱动防滑控制方法,通过路面识别算法获取车轮的最佳滑移率,进而计算出车轮的期望转速。以期望轮速为控制目标,利用PID控制器计算出补偿转矩,将补偿转矩和指令转矩相加并输入电机,实现驱动防滑控制。该方法的缺陷在于:PID控制适用于可建立精确数学模型的确定性控制系统,而驱动防滑控制过程中信号噪声、模型误差等不确定性因素较多,对系统的抗干扰性要求较高,显然,采用PID控制会影响控制器的适应性和稳定性。
发明内容
本发明的目的是提供一种分布式驱动电动汽车路面自适应驱动防滑控制方法,以解决目前防滑控制中出现的防滑力矩抖动、自适应性和稳定性差的问题;同时,本发明还提供了一种分布式驱动电动汽车路面自适应驱动防滑控制系统。
本发明为解决上述技术问题而提供一种分布式驱动电动汽车路面自适应驱动防滑控制方法,包括以下六个方案,方法方案一:该控制方法包括以下步骤:
1)根据车辆的纵向车速、车轮当前滑移率和纵向力估算当前路面峰值附着系数;
2)根据路面峰值附着系数与路面最优滑移率的对应关系确定当前路面的最优滑移率;
3)根据当前路面的最优滑移率计算当前车轮的参考轮速,并计算实际轮速和参考轮速的差值;
4)将实际轮速和参考轮速的差值以及车轮纵向力输入到滑模变结构控制器,由滑模变结构控制器对驱动状态下打滑的车轮进行力矩控制。
本发明实时估算当前路面峰值附着系数,根据当前路面峰值附着系数确定滑 移率,将车轮滑移率控制到当前路面最优滑移率,实现对车轮的防滑驱动的自适控制。
方法方案二:在方法方案一的基础上,所述步骤4)中滑模变结构控制器的模型为:
Figure PCTCN2018103893-appb-000001
T eq=rF z·μ m
Figure PCTCN2018103893-appb-000002
其中,s=e+k 0ρ,
Figure PCTCN2018103893-appb-000003
k 0
Figure PCTCN2018103893-appb-000004
都是正常数,且ρ的初值满足
Figure PCTCN2018103893-appb-000005
e为实际轮速和参考轮速的差值,T eq为等效控制力矩,ΔT为切换控制力矩,μ m为路面名义模型下对应的峰值附着系数,r为车轮半径,F z为驱动轮垂向载荷,
Figure PCTCN2018103893-appb-000006
为模型误差上界,η为趋近率。
本发明的滑模变结构控制器引入了积分项,通过积分项消除了滑模变结构控制器的静态误差;本发明的滑模变结构控制器引入了抗积分饱和策略,保证了滑模变结构控制器的全局稳定。
方法方案三:在方法方案一的基础上,所述当前路面峰值附着系数的估算过程为:
A.根据车轮转角、车轮半径和车轮轮速计算整车纵向车速,并根据整车纵向车速计算车轮轮心速度;
B.根据车轮轮心速度、车轮转速和车轮半径计算车轮当前滑移率;
C.根据车辆半载质量、纵向加速度和侧向加速度计算车辆垂向载荷;
D.Burckhardt轮胎模型设计路面峰值系数估计器,根据当前车轮滑移率和纵向力反求路面峰值附着系数。
方法方案四:在方法方案三的基础上,所述步骤D中设计的路面峰值系数估 计器为:
Figure PCTCN2018103893-appb-000007
Figure PCTCN2018103893-appb-000008
Figure PCTCN2018103893-appb-000009
其中T c为车轮实际输出力矩;y为对车轮角速度ω的观测值;φ为对纵向力F x的估计;
Figure PCTCN2018103893-appb-000010
是等式方程
Figure PCTCN2018103893-appb-000011
的数值解;Ki为常数,根据实车状态进行标定;I ω为车轮转动惯量;μ为实时路面附着系数;t表示时间。
方法方案五:在方法方案三的基础上,所述步骤B中当前滑移率λ的计算公式为:
Figure PCTCN2018103893-appb-000012
其中ω为车轮转速,r为车轮半径,v为车轮轮心速度。
方法方案六:在方法方案一的基础上,当检测到实际轮速和参考轮速的差值不为零,且基础力矩大于滑模变结构控制器输出的驱动防滑控制力矩时,采用滑模变结构控制器输出的驱动防滑控制力矩驱动相应的车轮,否则,采用基础力矩控制相应的车轮。
本发明还提供了一种分布式驱动电动汽车路面自适应驱动防滑控制系统,包括以下六个方案,系统方案一:该控制系统包括路面状态辨识模块、滑移率计算模块、轮速差计算模块和滑模变结构控制器;
所述路面状态辨识模块用于根据车辆的纵向车速、车轮当前滑移率和纵向力估算当前路面峰值附着系数;
所述滑移率计算模块用于根据路面峰值附着系数与路面最优滑移率的对应 关系确定当前路面的最优滑移率;
所述轮速差计算模块用于根据当前路面的最优滑移率计算当前车轮的参考轮速,并计算实际轮速和参考轮速的差值;
所述滑模变结构控制器用于根据实际轮速和参考轮速的差值以及车轮纵向力确定车轮的驱动防滑控制力矩。
系统方案二:在系统方案一的基础上,所述滑模变结构控制器的模型为:
Figure PCTCN2018103893-appb-000013
T eq=rF z·μ m
Figure PCTCN2018103893-appb-000014
其中,s=e+k 0ρ,
Figure PCTCN2018103893-appb-000015
k 0
Figure PCTCN2018103893-appb-000016
都是正常数,且ρ的初值满足
Figure PCTCN2018103893-appb-000017
e为实际轮速和参考轮速的差值,T eq为等效控制力矩,ΔT为切换控制力矩,μ m为路面名义模型下对应的峰值附着系数,r为车轮半径,F z为驱动轮垂向载荷,
Figure PCTCN2018103893-appb-000018
为模型误差上界,η为趋近率。
系统方案三:在系统方案一的基础上,所述路面状态辨识模块估算当前路面峰值附着系数的过程如下:
A.根据车轮转角、车轮半径和车轮轮速计算整车纵向车速,并根据整车纵向车速计算车轮轮心速度;
B.根据车轮轮心速度、车轮转速和车轮半径计算车轮当前滑移率;
C.根据车辆半载质量、纵向加速度和侧向加速度计算车辆垂向载荷;
D.Burckhardt轮胎模型设计路面峰值系数估计器,根据当前车轮滑移率和纵向力反求路面峰值附着系数。
系统方案四:在系统方案三的基础上,所述步骤D中设计的路面峰值系数估计器为:
Figure PCTCN2018103893-appb-000019
Figure PCTCN2018103893-appb-000020
Figure PCTCN2018103893-appb-000021
其中T c为车轮实际输出力矩;y为对车轮角速度ω的观测值;φ为对纵向力F x的估计;
Figure PCTCN2018103893-appb-000022
是等式方程
Figure PCTCN2018103893-appb-000023
的数值解;Ki为常数,根据实车状态进行标定;I ω为车轮转动惯量;μ为实时路面附着系数;t表示时间。
系统方案五:在系统方案三的基础上,所述步骤B中当前滑移率λ的计算公式为:
Figure PCTCN2018103893-appb-000024
其中ω为车轮转速,r为车轮半径,v为车轮轮心速度。
系统方案六:在系统方案一的基础上,所述控制系统还包括驱动防滑使能控制模块,当检测到实际轮速和参考轮速的差值不为零,且基础力矩大于滑模变结构控制器输出的驱动防滑控制力矩时,驱动防滑使能控制模块采用滑模变结构控制器输出的驱动防滑控制力矩驱动相应的车轮,否则,采用基础力矩控制相应的车轮。
附图说明
图1是驱动防滑控制系统原理示意图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步的说明。
本发明分布式驱动电动汽车路面自适应驱动防滑控制方法的实施例
本发明通过实时估算出当前路面峰值附着系数,根据当前路面峰值附着系数与当前路面最优滑移率对应的线性关系,得出当前路面的最优滑移率,再结合当前车轮的轮心速度,确定当前车轮的参考轮速,计算出实际轮速与参考轮速的差值,依据轮速差,利用滑模变结构控制器,对驱动状态下打滑的车轮进行力矩控制,保证将车轮滑移率控制到当前路面最优滑移率。该方法的具体过程如下:
1.实时估算出当前路面峰值附着系数。
1)根据车轮转角、车轮半径和车轮轮速计算整车纵向车速,并根据整车纵向车速计算车轮轮心速度,
Figure PCTCN2018103893-appb-000025
Figure PCTCN2018103893-appb-000026
其中V为纵向车速,r l,r r分别为左右从动轮半径,w l,w r分别为左右从动轮轮速,δ为车轮转角,为轮心速度,b为左右对称两车轮的轮距;W为横摆角速度,v为轮心速度,可通过传感器获得。
2)根据车轮转速、车轮半径和轮心速度计算车轮当前滑移率λ:
Figure PCTCN2018103893-appb-000027
其中ω为车轮转速,r为车轮半径,v为车轮轮心速度。
3)根据车辆半载质量、纵向加速度和侧向加速度计算单轮垂向载荷F z
Figure PCTCN2018103893-appb-000028
其中a log,a lat分别为车辆的纵向加速度和侧向加速度,可通过加速度传感器获得,H为半载条件下质心的高度,L f为半载条件下质心到驱动轴的距离,B为车辆驱动轴轮距,M为车辆半载质量,L为车辆轴距。
4)在Burckhardt轮胎模型的基础上,设计路面峰值附着系数估计器。
为了更好地表征真实路面轮胎曲线的形状特性,采用改进Burckhardt轮胎模型:
Figure PCTCN2018103893-appb-000029
式中,θ 1为路面峰值附着系数,θ 2为纵滑刚度,θ 345为模型控制参数,λ为车轮当前滑移率。
在车轮轮速ω、车轮驱动工况下的当前滑移率λ、驱动轮垂向载荷F z都已知的前提下,结合改进的Burckhardt轮胎模型,设计路面峰值附着系数估计器(路面状态辨识模块),实时输出当前路面的峰值附着系数
Figure PCTCN2018103893-appb-000030
路面峰值附着系数估计器包含两部分,一个是纵向力估计,一个是路面峰值附着系数估计:
Figure PCTCN2018103893-appb-000031
Figure PCTCN2018103893-appb-000032
Figure PCTCN2018103893-appb-000033
其中,T c为车轮实际输出力矩,通过改进后的滑模变结构控制器可以获得,y为对车轮角速度ω的观测值,φ为对纵向力F x的估计,
Figure PCTCN2018103893-appb-000034
是等式方程
Figure PCTCN2018103893-appb-000035
的数值解。
车辆正常行驶时,车轮会输出一定的力矩,定义为基础力矩;当车辆行驶发生打滑的瞬间,此时本发明计算出一定的力矩,定义为驱动防滑控制力矩,之后根据车辆打滑状态,不断更新驱动防滑控制力矩,作为车轮实际输出力矩。有了车轮实际输出力矩Tc,根据本发明提供的路面峰值附着系数估计器,即可确定路面峰值附着系数θ的估计值。
5)根据轮胎纵向力的估计值和当前车轮滑移率,通过对轮胎模型求逆得到路 面峰值附着系数θ的估计值。
2.根据当前路面峰值附着系数与当前路面最优滑移率对应的线性关系,确定当前路面的最优滑移率。
通过不同附着系数下的轮胎特性仿真试验,可获得当前路面峰值附着系数和最优滑移率对应的线性关系,依据此线性关系,确定当前路面的最优滑移率λ r
3.确定当前车轮的参考轮速,并计算实际轮速与参考轮速的差值。
根据轮心速度v和当前路面的最优滑移率λ r,计算车轮的参考轮速ω r
Figure PCTCN2018103893-appb-000036
计算实际轮速ω与参考轮速的差值e:
e=ω-ω r
4.将实际轮速和参考轮速的差值以及车轮纵向力输入到滑模变结构控制器,由滑模变结构控制器对驱动状态下打滑的车轮进行力矩控制。
本发明所采用的滑模变结构控制在传统的滑模变结构控制器基础上,做了两点改进:
1)引入积分项,通过积分项消除静态误差;
2)引入抗积分饱和策略,保证控制器全局稳定。
选取路面名义模型下对应的峰值附着系数为0.5,即μ m=0.5,结合单轮垂向载荷F z,确定路面名义模型下的车轮纵向力F x
F x=μ mF z
定义到滑模面的距离为:
s=e+k 0ρ
Figure PCTCN2018103893-appb-000037
式中,k 0
Figure PCTCN2018103893-appb-000038
都是正常数,且ρ的初值满足
Figure PCTCN2018103893-appb-000039
抗积分饱和控制策略有效地抑制了执行器的过度饱和,在边界层外
Figure PCTCN2018103893-appb-000040
时,滑模切换力矩控制可以使系统状态向滑模面上收敛;在边界层内
Figure PCTCN2018103893-appb-000041
时,控制方法类似于PI控制。
因此本发明所采用的滑模变结构控制器为:
Figure PCTCN2018103893-appb-000042
其中,u为驱动防滑控制力矩,T eq为等效控制力矩,ΔT为切换控制力矩。
等效控制的目的就是使系统状态可以尽快地沿着滑模面运动,要达到理想的滑动模态控制,需使
Figure PCTCN2018103893-appb-000043
计算得等效控制力矩。
等效控制力矩设计为:
T eq=-f m(x)=rF x
切换力矩的目的是克服等效控制力矩中由于模型不确定性引起的模型误差,从而保证整个控制系统的稳定性。
切换力矩设计为:
Figure PCTCN2018103893-appb-000044
式中,
Figure PCTCN2018103893-appb-000045
为模型误差上界,可取为峰值附着系数为0.5的名义路面上车轮所受阻力矩大小,即
Figure PCTCN2018103893-appb-000046
η为趋近率。
在驱动状态下,当车辆检测到轮速差不为0,且上层控制策略分配的基础力矩大于驱动防滑控制力矩时,说明分布式驱动电动汽车出现一个或多个车轮打滑,进入滑模变结构控制器,由滑模变结构控制器根据轮速差和车轮纵向力,输出驱动防滑控制力矩,对一个或多个车轮执行驱动防滑控制力矩,当车辆检测不到车轮打滑时,退出滑模变结构控制器,正常执行上层控制策略分配的基础力矩。
本发明分布式驱动电动汽车路面自适应驱动防滑控制系统的实施例
本实施例的分布式驱动电动汽车路面自适应驱动防滑控制系统如图1所示, 包括滑模变结构控制器、驱动防滑使能控制模块、路面状态辨识模块、垂向载荷计算模块、纵向力计算模块、滑移率计算模块、轮心速度计算模块和轮速差计算模块,其中,路面状态辨识模块的输入端与垂向载荷计算模块和滑移率计算模块连接,用于根据车轮轮速、实际滑移率和驱动轮垂向载荷F z,实时估算出当前路面峰值附着系数;滑模变结构控制器用于根据轮速差计算模块计算出的实际轮速和参考轮速的差值以及纵向力计算模块计算出的车轮纵向力确定驱动防滑控制力矩;驱动防滑使能控制模块用来根据轮速差和基础力矩与驱动防滑控制力矩的大小关系确定滑模变结构控制器的介入与退出,当检测到轮速差不为0,且基础力矩大于驱动防滑控制力矩时,驱动防滑使能控制模块发出使能信号,介入滑模变结构控制器,以滑模变结构控制器输出的驱动防滑控制力矩作为车轮执行的防滑控制力矩。各模块的具体实现手段已在方法的实施例中进行详细说明,这里不再赘述。

Claims (12)

  1. 分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,该控制方法包括以下步骤:
    1)根据车辆的纵向车速、车轮当前滑移率和纵向力估算当前路面峰值附着系数;
    2)根据路面峰值附着系数与路面最优滑移率的对应关系确定当前路面的最优滑移率;
    3)根据当前路面的最优滑移率计算当前车轮的参考轮速,并计算实际轮速和参考轮速的差值;
    4)将实际轮速和参考轮速的差值以及车轮纵向力输入到滑模变结构控制器,由滑模变结构控制器对驱动状态下打滑的车轮进行力矩控制。
  2. 根据权利要求1所述的分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,所述步骤4)中滑模变结构控制器的模型为:
    Figure PCTCN2018103893-appb-100001
    T eq=rF z·μ m
    Figure PCTCN2018103893-appb-100002
    其中,s=e+k 0ρ,
    Figure PCTCN2018103893-appb-100003
    k 0
    Figure PCTCN2018103893-appb-100004
    都是正常数,且ρ的初值满足
    Figure PCTCN2018103893-appb-100005
    e为实际轮速和参考轮速的差值,T eq为等效控制力矩,ΔT为切换控制力矩,μ m为路面名义模型下对应的峰值附着系数,r为车轮半径,F z为驱动轮垂向载荷,
    Figure PCTCN2018103893-appb-100006
    为模型误差上界,η为趋近率。
  3. 根据权利要求1所述的分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,所述当前路面峰值附着系数的估算过程为:
    A.根据车轮转角、车轮半径和车轮轮速计算整车纵向车速,并根据整车纵向车速计算车轮轮心速度;
    B.根据车轮轮心速度、车轮转速和车轮半径计算车轮当前滑移率;
    C.根据车辆半载质量、纵向加速度和侧向加速度计算车辆垂向载荷;
    D.Burckhardt轮胎模型设计路面峰值系数估计器,根据当前车轮滑移率和纵向力反求路面峰值附着系数。
  4. 根据权利要求3所述的分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,所述步骤D中设计的路面峰值系数估计器为:
    Figure PCTCN2018103893-appb-100007
    Figure PCTCN2018103893-appb-100008
    Figure PCTCN2018103893-appb-100009
    其中T c为车轮实际输出力矩;y为对车轮角速度ω的观测值;φ为对纵向力F x的估计;
    Figure PCTCN2018103893-appb-100010
    是等式方程
    Figure PCTCN2018103893-appb-100011
    的数值解;Ki为常数,根据实车状态进行标定;I ω为车轮转动惯量;μ为实时路面附着系数;t表示时间。
  5. 根据权利要求3所述的分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,所述步骤B中当前滑移率λ的计算公式为:
    Figure PCTCN2018103893-appb-100012
    其中ω为车轮转速,r为车轮半径,v为车轮轮心速度。
  6. 根据权利要求1所述的分布式驱动电动汽车路面自适应驱动防滑控制方法,其特征在于,当检测到实际轮速和参考轮速的差值不为零,且基础力矩大于滑模变结构控制器输出的驱动防滑控制力矩时,采用滑模变结构控制器输出的驱 动防滑控制力矩驱动相应的车轮,否则,采用基础力矩控制相应的车轮。
  7. 一种分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,该控制系统包括路面状态辨识模块、滑移率计算模块、轮速差计算模块和滑模变结构控制器;
    所述路面状态辨识模块用于根据车辆的纵向车速、车轮当前滑移率和纵向力估算当前路面峰值附着系数;
    所述滑移率计算模块用于根据路面峰值附着系数与路面最优滑移率的对应关系确定当前路面的最优滑移率;
    所述轮速差计算模块用于根据当前路面的最优滑移率计算当前车轮的参考轮速,并计算实际轮速和参考轮速的差值;
    所述滑模变结构控制器用于根据实际轮速和参考轮速的差值以及车轮纵向力确定车轮的驱动防滑控制力矩。
  8. 根据权利要求7所述的分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,所述滑模变结构控制器的模型为:
    Figure PCTCN2018103893-appb-100013
    T eq=rF z·μ m
    Figure PCTCN2018103893-appb-100014
    其中,s=e+k 0ρ,
    Figure PCTCN2018103893-appb-100015
    k 0
    Figure PCTCN2018103893-appb-100016
    都是正常数,且ρ的初值满足
    Figure PCTCN2018103893-appb-100017
    e为实际轮速和参考轮速的差值,T eq为等效控制力矩,ΔT为切换控制力矩,μ m为路面名义模型下对应的峰值附着系数,r为车轮半径,F z为驱动轮垂向载荷,
    Figure PCTCN2018103893-appb-100018
    为模型误差上界,η为趋近率。
  9. 根据权利要求7所述的分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,所述路面状态辨识模块估算当前路面峰值附着系数的过程如下:
    A.根据车轮转角、车轮半径和车轮轮速计算整车纵向车速,并根据整车纵向车速计算车轮轮心速度;
    B.根据车轮轮心速度、车轮转速和车轮半径计算车轮当前滑移率;
    C.根据车辆半载质量、纵向加速度和侧向加速度计算车辆垂向载荷;
    D.Burckhardt轮胎模型设计路面峰值系数估计器,根据当前车轮滑移率和纵向力反求路面峰值附着系数。
  10. 根据权利要求9所述的分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,所述步骤D中设计的路面峰值系数估计器为:
    Figure PCTCN2018103893-appb-100019
    Figure PCTCN2018103893-appb-100020
    Figure PCTCN2018103893-appb-100021
    其中T c为车轮实际输出力矩;y为对车轮角速度ω的观测值;φ为对纵向力F x的估计;
    Figure PCTCN2018103893-appb-100022
    是等式方程
    Figure PCTCN2018103893-appb-100023
    的数值解;Ki为常数,根据实车状态进行标定;I ω为车轮转动惯量;μ为实时路面附着系数;t表示时间。
  11. 根据权利要求9所述的分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,所述步骤B中当前滑移率λ的计算公式为:
    Figure PCTCN2018103893-appb-100024
    其中ω为车轮转速,r为车轮半径,v为车轮轮心速度。
  12. 根据权利要求7所述的分布式驱动电动汽车路面自适应驱动防滑控制系统,其特征在于,所述控制系统还包括驱动防滑使能控制模块,当检测到实际轮速和参考轮速的差值不为零,且基础力矩大于滑模变结构控制器输出的驱动防滑 控制力矩时,驱动防滑使能控制模块采用滑模变结构控制器输出的驱动防滑控制力矩驱动相应的车轮,否则,采用基础力矩控制相应的车轮。
PCT/CN2018/103893 2017-09-04 2018-09-04 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统 WO2019042453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710787813.3A CN109421552B (zh) 2017-09-04 2017-09-04 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统
CN201710787813.3 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019042453A1 true WO2019042453A1 (zh) 2019-03-07

Family

ID=65513790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103893 WO2019042453A1 (zh) 2017-09-04 2018-09-04 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统

Country Status (2)

Country Link
CN (1) CN109421552B (zh)
WO (1) WO2019042453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306545A (zh) * 2021-07-15 2021-08-27 吉林大学 一种车辆轨迹跟踪控制方法及系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661050A (zh) * 2019-03-06 2020-09-15 郑州宇通客车股份有限公司 一种车辆及其制动扭矩控制方法
CN110001657B (zh) * 2019-04-19 2020-04-03 中睿宏智汽车技术(深圳)有限公司 基于轮胎状态信息的车辆安全控制方法及车辆
CN110103725B (zh) * 2019-05-24 2020-10-09 河北优控新能源科技有限公司 基于轮毂电机转速信号的分布式驱动汽车稳定控制方法
CN110509780B (zh) * 2019-08-05 2023-02-17 上海大学 一种电动汽车路面突变稳定性控制与最大驱动/制动转矩寻优系统与方法
CN110949344B (zh) * 2019-12-18 2021-01-29 北京理工大学 一种分布式驱动电动汽车制动防抱死控制方法及系统
CN111137263B (zh) * 2019-12-26 2022-11-18 的卢技术有限公司 一种车辆制动稳定控制方法及系统
CN113386585A (zh) * 2020-03-12 2021-09-14 南京金龙客车制造有限公司 一种纯电动汽车驱动力控制系统及其控制方法
CN113561788A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种电动汽车的牵引力控制方法、装置、设备及电动汽车
CN111665726B (zh) * 2020-06-30 2022-05-06 长春工业大学 基于多智能体的asr自适应非奇异终端滑模控制方法
CN112277929B (zh) * 2020-11-05 2022-03-01 中国第一汽车股份有限公司 一种车辆车轮滑转率控制方法、装置、车辆及存储介质
CN112406824A (zh) * 2020-11-27 2021-02-26 中车唐山机车车辆有限公司 列车制动方法、装置、设备及存储介质
CN112537307B (zh) * 2020-12-04 2022-04-01 北京理工大学 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN112660109B (zh) * 2020-12-25 2022-08-30 浙江吉利控股集团有限公司 一种四驱扭矩限制方法及装置
CN113044041A (zh) * 2021-03-09 2021-06-29 中国第一汽车股份有限公司 基于轮速及整车加速度的汽车车速及轮胎滑移率估计方法
CN113581144B (zh) * 2021-07-19 2022-08-12 中车唐山机车车辆有限公司 列车防滑控制方法及设备
CN114407673B (zh) * 2021-12-31 2024-06-21 吉泰车辆技术(苏州)有限公司 一种基于滑移率的电动四驱车的扭矩控制方法
CN114802249B (zh) * 2022-04-27 2024-10-29 广西大学 基于卡车改装的自主行驶驱动防滑控制系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024377A (zh) * 2006-12-22 2007-08-29 上海燃料电池汽车动力系统有限公司 四轮驱动电动汽车的驱动防滑控制系统及方法
US20090210128A1 (en) * 2006-09-07 2009-08-20 Yokohama National University Slip ratio estimating device and slip ratio control device
CN102267459A (zh) * 2011-05-17 2011-12-07 清华大学 一种电机驱动车辆的驱动防滑调节控制方法
JP2012110073A (ja) * 2010-11-15 2012-06-07 Hitachi Constr Mach Co Ltd 電気駆動車両
CN103879305A (zh) * 2014-03-10 2014-06-25 清华大学 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
CN106985703A (zh) * 2017-03-08 2017-07-28 同济大学 一种分布式驱动电动汽车路面自适应防滑控制系统及方法
CN107009916A (zh) * 2017-03-08 2017-08-04 同济大学 考虑驾驶员意图分布式驱动电动汽车防滑控制系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245610B (zh) * 2013-05-17 2015-07-15 清华大学 一种分布式驱动电动汽车的路面峰值附着系数估算方法
CN105270409A (zh) * 2015-09-25 2016-01-27 江苏大学 一种路面峰值附着系数测试装置及测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210128A1 (en) * 2006-09-07 2009-08-20 Yokohama National University Slip ratio estimating device and slip ratio control device
CN101024377A (zh) * 2006-12-22 2007-08-29 上海燃料电池汽车动力系统有限公司 四轮驱动电动汽车的驱动防滑控制系统及方法
JP2012110073A (ja) * 2010-11-15 2012-06-07 Hitachi Constr Mach Co Ltd 電気駆動車両
CN102267459A (zh) * 2011-05-17 2011-12-07 清华大学 一种电机驱动车辆的驱动防滑调节控制方法
CN103879305A (zh) * 2014-03-10 2014-06-25 清华大学 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
CN106985703A (zh) * 2017-03-08 2017-07-28 同济大学 一种分布式驱动电动汽车路面自适应防滑控制系统及方法
CN107009916A (zh) * 2017-03-08 2017-08-04 同济大学 考虑驾驶员意图分布式驱动电动汽车防滑控制系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306545A (zh) * 2021-07-15 2021-08-27 吉林大学 一种车辆轨迹跟踪控制方法及系统

Also Published As

Publication number Publication date
CN109421552A (zh) 2019-03-05
CN109421552B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2019042453A1 (zh) 分布式驱动电动汽车路面自适应驱动防滑控制方法及系统
CN105751919B (zh) 一种四轮轮毂电动汽车防滑控制方法
CN107009916B (zh) 考虑驾驶员意图分布式驱动电动汽车防滑控制系统及方法
JP5339121B2 (ja) スリップ率推定装置及びその方法と、スリップ率制御装置及びその方法
WO2018121601A1 (zh) 四驱电动汽车的驱动防滑控制方法和装置
WO2018121595A1 (zh) 四驱电动汽车的驱动防滑控制方法和装置
JP5035419B2 (ja) 路面摩擦係数推定装置及び路面摩擦係数推定方法
JP4538642B2 (ja) スリップ率推定装置およびスリップ率制御装置
CN112537307B (zh) 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
JP5035418B2 (ja) 路面摩擦係数推定装置及び路面摩擦係数推定方法
CA2613519A1 (en) System and method for locomotive adhesion control
JP2002145037A (ja) 車両の路面摩擦係数推定装置
KR20080105032A (ko) 차량 특성 결정 방법
CN110949344A (zh) 一种分布式驱动电动汽车制动防抱死控制方法及系统
CN109572447B (zh) 一种多轮分布式混合动力系统驱动防滑控制方法
JP2001334921A (ja) 車両の路面摩擦係数推定装置
CN109664774A (zh) 一种用于分布式驱动电动汽车的驱动防滑控制方法及系统
US20210031750A1 (en) Method for controlling wheel slip of vehicle
CN108313062A (zh) 一种分布式驱动电动车的扭矩分配控制方法和系统
US11505073B1 (en) Method for controlling driving force of vehicle
JP5007542B2 (ja) 車両の旋回挙動制御装置
CN1987483A (zh) 四轮驱动电动汽车的车速回归方法
CN117719516A (zh) 一种积分估计器计算路面附着系数的方法
JP6202278B2 (ja) 電動車両のスリップ率制御装置
JP2001088683A (ja) 車両の路面摩擦係数推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850621

Country of ref document: EP

Kind code of ref document: A1