WO2021103750A1 - 一种具有多种运动模式的可重构双足机器人 - Google Patents

一种具有多种运动模式的可重构双足机器人 Download PDF

Info

Publication number
WO2021103750A1
WO2021103750A1 PCT/CN2020/115412 CN2020115412W WO2021103750A1 WO 2021103750 A1 WO2021103750 A1 WO 2021103750A1 CN 2020115412 W CN2020115412 W CN 2020115412W WO 2021103750 A1 WO2021103750 A1 WO 2021103750A1
Authority
WO
WIPO (PCT)
Prior art keywords
hip
component
toe
leg
biped robot
Prior art date
Application number
PCT/CN2020/115412
Other languages
English (en)
French (fr)
Inventor
黄冠宇
孔令雨
蔡建东
姜红建
谢安桓
张丹
Original Assignee
之江实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室 filed Critical 之江实验室
Priority to JP2021546670A priority Critical patent/JP7037706B2/ja
Publication of WO2021103750A1 publication Critical patent/WO2021103750A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the invention relates to the field of footed robots, in particular to a reconfigurable bipedal robot with multiple motion modes.
  • foot-mounted robots Compared with wheeled robots, foot-mounted robots have significant advantages in terrain adaptability, and can perform actions such as going up and down stairs, crossing gullies, and avoiding obstacles. Therefore, in scenes such as field exploration, post-disaster rescue, and material transportation, foot-mounted robots have huge potential applications.
  • wheeled robots have great advantages in energy utilization and speed. How to combine the advantages of the two robots to design a reconfigurable biped robot with good terrain adaptability, high speed, and high energy utilization? It has become a hot research direction of biped robots.
  • the present invention proposes a reconfigurable biped robot with multiple motion modes.
  • the biped robot has a left-right symmetrical structure, which includes a torso component, a left hip, a right hip, a left leg, and a right leg.
  • the torso component is symmetrical
  • the left hip and the right hip arranged on both sides of the trunk component are rotatably connected, and the left leg and the right leg are respectively rotatably connected with the left hip and the right hip;
  • the left leg includes a thigh part, a calf part, a flexible cushioning part, a sole part, a toe part, a balance link part, a driving wheel part, and a driven wheel part;
  • One end of the thigh part is connected with the left hip part by a rotation joint, the other end is connected with one end of the lower leg part by a rotation joint, the other end of the lower leg part is connected with the middle of the sole part by a rotation joint, and one end of the sole part passes through
  • the rotating pair is connected to the middle of the toe part, the other end is connected to one end of the balance link part through the rotating pair, the driving wheel part is connected to the other end of the balance link part through the rotating pair, and the driven wheel part is connected to the toe part through the rotating pair.
  • the flexible cushioning component is connected between the thigh component and the sole component;
  • the left hip and the right hip have the same structure, and the left leg and the right leg have the same structure.
  • the driving wheel part and the driven wheel part are off the ground, it is a bipedal motion mode; when the driving wheel part and the driven wheel part touch the ground , When the toe part is off the ground, it is a wheeled motion mode.
  • the flexible cushioning component includes a connecting rod component at the upper end of the thigh, an elastic component and a sole connecting rod component connected in sequence.
  • the left hip includes a hip vertical rotation lever, a hip horizontal rotation component, and a hip fixing component.
  • the trunk component is connected to the hip vertical rotation lever through a rotation pair.
  • the hip vertical rotation rod is connected to the hip horizontal rotation component through a rotation pair, the hip fixing component is rigidly connected to the hip horizontal rotation component, and the trunk component is connected through the hip vertical rotation rod.
  • the biped robot designed in the present invention can select wheeled or footed motion modes according to the external conditions, improve the adaptability and speed of the robot to the terrain, combine the advantages of the biped robot and the wheeled robot, and have strong environmental adaptability and work efficient.
  • Figure 1 is a schematic diagram of the foot movement mode of a biped robot
  • Figure 2 is a schematic diagram of the wheeled motion mode of the biped robot
  • the reconfigurable biped robot with multiple motion modes of the present invention includes a trunk part 1, a hip vertical rotation rod 2, a hip horizontal rotation part 3, a hip fixing part 4, and a thigh.
  • Part 5 calf part 6, upper thigh link member 7, flexible member 8, lower thigh link member 9, sole member 10, toe member 11, balance link member 12, toe lower link member 13, toe upper link member Component 14, driving wheel component 15, driven wheel component 16.
  • the hip vertical rotation rods 2 are respectively connected to the trunk component 1 and the hip horizontal rotation component 3 through rotation pairs with axes perpendicular to each other, forming a universal joint hinge, which provides a biped robot
  • the degree of freedom of rotation around the z-axis and the y-axis, by driving the universal joint hinge, can realize that the hip fixing component 4 rotates appropriately about the z-axis and the y-axis relative to the trunk component 1.
  • the hip fixing component 4 is fixed to the hip horizontal rotating component 3, and is connected with the thigh component 5 through a rotating pair, which can provide the biped robot with a degree of freedom to rotate around the x-axis.
  • the thigh member 5 By driving the rotation pair, the thigh member 5 can be appropriately rotated about the x-axis, the y-axis, and the z-axis relative to the trunk member 1. It is not limited to this connection method, and connecting the torso part 1 and the thigh part 5 through the ball pair will also achieve the same gain effect.
  • the thigh member 5, the calf member 6, the upper thigh link member 7, the lower thigh link member 9 and the sole member 10 are all connected to each other by a rotating pair, and the two ends of the flexible member 8 are respectively connected to the upper thigh link member 7 and the lower thigh
  • the connecting rod components 9 are fixedly connected, so that the six rods form a flexible planar multi-bar mechanism.
  • the planar multi-link mechanism can not only improve the structural rigidity of the biped robot, but also reduce the impact force between the end of the biped robot and the ground through the introduction of flexible parts, and can store a certain amount of energy to reduce vibration and improve energy Efficacy of utilization.
  • the walking task of the biped robot can be realized, as shown in FIG. 3 in detail. It is not limited to this type of connection. Using a flexible rod to directly connect the thigh member 5 and the sole member 10 can also achieve the same gain effect.
  • the biped robot By appropriately driving the driving joints of the biped robot, the biped robot can be switched between the biped motion mode and the wheeled motion mode.
  • the two ends of the balance link member 12 are respectively connected to the sole member 10 and the driving wheel member 15 through a rotating pair.
  • the swing angle, speed and acceleration of the balance link member 12 and the driving wheel can be actively controlled.
  • the rotational speed of the component 15 realizes the static and dynamic balance of the robot; in the wheeled motion mode, the active control of the balance link component 12 can be used to realize the functions of shock absorption and obstacle avoidance.
  • the sole part 10, the toe part 11, the toe lower end link part 13 and the toe upper end link part 14 are all connected to each other through a rotating pair, thereby forming a planar four-bar mechanism, and the other end of the toe part 11 is connected to the driven wheel part 16 through a rotating pair.
  • the toe part 11 can be driven up by the planar four-bar mechanism, which can reduce the moment of inertia of the biped robot under the condition that the biped robot adapts to different terrains.
  • the position of the driven wheel component 16 can be adjusted by the movement of the four-bar mechanism, so that the driven wheel component 16 can better cooperate with the driving wheel component 15 to move, and further enhance the biped robot Sports performance in wheeled sports mode.
  • the invention adopts a mixed structure of wheels and feet.
  • the introduced flexible parts can reduce the impact and store energy; the thigh part, the calf part, the flexible shock absorption and the sole part of the foot can reduce the impact.
  • the linkage mechanism increases the rigidity of the biped robot body and improves the walking stability; through the use of the swing of the balance link component and the rotation of the driving wheel component, the active balance of the biped robot in the biped walking state is realized; through the sole component , Toe parts, to realize the active adaptability of the biped robot to different terrains; by adjusting the leg mechanism of the biped robot, the biped robot can switch between foot and wheel motion modes; in the wheel motion mode, By adjusting the balance connecting rod component and the toe component, the driving wheel component and the driven wheel component can actively dampen the terrain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种具有多种运动模式的可重构双足机器人,该双足机器人为左右对称结构,其包括躯干部件(1)、左髋部、右髋部、左腿和右腿,躯干部件(1)与对称布置在躯干部件(1)的两侧的左髋部、右髋部可转动连接,左腿、右腿分别与左髋部、右髋部可转动连接;左腿包括大腿部件(5)、小腿部件(6)、柔性缓震部件(8)、脚掌部件(10)、脚趾部件(11)、平衡连杆部件(12)、主动轮部件(15)、从动轮部件(16),左髋部和右髋部结构相同,左腿和右腿结构相同。通过改变驱动关节以及改变机器人构型,实现双足机器人的运动模式的切换,实现了足式机器人在不同场景、不同功能需求下的高效驱动。

Description

一种具有多种运动模式的可重构双足机器人 技术领域
本发明涉及足式机器人领域,尤其涉及一种具有多种运动模式的可重构双足机器人。
背景技术
足式机器人相比轮式机器人,在地形适应性方面具有显著的优势,可以实现上下楼梯、跨越沟壑以及躲避障碍等动作。因而在野外勘探、灾后救援、物资运输等场景中,足式机器人潜藏着巨大的应用前景。但是,轮式机器人在能量利用率以及速度等方面具有较大优势,如何结合两种机器人优势,设计出一种具有良好地形适应性、高速度以及高能量利用率的可重构双足机器人,成为现在双足机器人的热点研究方向。
发明内容
针对现有的双足机器人速度较低、能量利用率较低等问题,本发明提出了一种具有多种运动模式的可重构双足机器人。
本发明的目的通过如下的技术方案来实现:
一种具有多种运动模式的可重构双足机器人,该双足机器人为左右对称结构,其包括躯干部件、左髋部、右髋部、左腿和右腿,所述的躯干部件与对称布置在躯干部件的两侧的左髋部、右髋部可转动连接,所述的左腿、右腿分别与左髋部、右髋部可转动连接;
所述的左腿包括大腿部件、小腿部件、柔性缓震部件、脚掌部件、脚趾部件、平衡连杆部件、主动轮部件、从动轮部件;
所述的大腿部件一端与所述的左髋部通过转动副连接,另一端与小腿部件的一端通过转动副连接,小腿部件的另一端与脚掌部件的中部通过转动副连接,脚掌部件的一端通过转动副与脚趾部件的中部相连,另一端通过转动副与平衡连杆部件的一端连接,主动轮部件通过转动副连接在平衡连杆部件的另一端,从动轮部件通过转动副连接在脚趾部件的一端;
所述的柔性缓震部件连接在所述的大腿部件和脚掌部件之间;
所述的左髋部和右髋部结构相同,左腿和右腿结构相同。
通过调整驱动双足机器人的驱动关节,当所述的脚趾部件着地、所述的主动轮部件和从动轮部件离地时,为双足运动模式;当所述的主动轮部件和从动轮部件着地、所述的脚趾部件 离地时,为轮式运动模式。
进一步地,所述的柔性缓震部件包括依次连接的大腿上端连杆部件、弹性部件和脚掌连杆部件。
进一步地,所述的双足机器人还包括脚趾下端连杆部件、脚趾上端连杆部件,所述的脚趾下端连杆部件的一端通过转动副与脚趾部件的另一端连接,所述的脚趾上端连杆部件的一端通过转动副与脚掌部件的连接,脚趾下端连杆部件的另一端和脚趾上端连杆部件的另一端通过转动副连接,从而形成调节从动轮部件的连杆机构。
进一步地,所述的左髋部包括髋部竖直转动杆件、髋部水平转动部件、髋部固定部件,所述的躯干部件通过转动副与髋部竖直转动杆件连接,所述的髋部竖直转动杆件通过转动副与髋部水平转动部件连接,所述的髋部固定部件与在所述的髋部水平转动部件刚性连接,所述的躯干部件通过髋部竖直转动杆件、髋部水平转动部件实现横滚和偏转。
本发明的有益效果如下:
本发明所设计的双足机器人能够根据外界情况,选择轮式或者足式运动方式,提升机器人对于地形的适应性与速度,将双足机器人与轮式机器人优势相结合,环境适应能力强,工作效率高。
附图说明
图1是双足机器人足式运动模式示意图;
图2是双足机器人轮式运动模式示意图;
图3是双足机器人腿部机构简图;
图中,躯干部件1、髋部竖直转动杆件2、髋部水平转动部件3、髋部固定部件4、大腿部件5、小腿部件6、大腿上端连杆部件7、柔性部件8、大腿下端连杆部件9、脚掌部件10、脚趾部件11、平衡连杆部件12、脚趾下端连杆部件13、脚趾上端连杆部件14、主动轮部件15、从动轮部件16。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的具有多种运动模式的可重构双足机器人,包括躯干部件1,髋部 竖直转动杆件2、髋部水平转动部件3、髋部固定部件4、大腿部件5、小腿部件6、大腿上端连杆部件7、柔性部件8、大腿下端连杆部件9、脚掌部件10、脚趾部件11、平衡连杆部件12、脚趾下端连杆部件13、脚趾上端连杆部件14、主动轮部件15、从动轮部件16。
如图1~3所示,髋部竖直转动杆件2分别通过轴线互相垂直的转动副与躯干部件1和髋部水平转动部件3相连接,形成一个万向节铰链,为双足机器人提供绕z轴和y轴转动的自由度,通过驱动万向节铰链,可以实现髋部固定部件4相对于躯干部件1绕z轴和y轴进行适当地转动。髋部固定部件4固定在髋部水平转动部件3,通过转动副与大腿部件5相连接,可以为双足机器人的提供绕x轴转动的自由度。通过驱动该转动副,可以实现大腿部件5相对于躯干部件1绕x轴、y轴和z轴进行适当地转动。不限于该种连接方式,通过球副连接躯干部件1和大腿部件5也会起到同样的增益效果。
大腿部件5、小腿部件6、大腿上端连杆部件7、大腿下端连杆部件9和脚掌部件10均通过转动副相互连接,而柔性部件8的两端分别与大腿上端连杆部件7和大腿下端连杆部件9相固接,从而使得这六根杆件形成带有柔性的平面多杆机构。该平面多连杆机构不仅可以提升双足机器人的结构刚度,还可以通过柔性部件的引入,减小双足机器人末端与地面的冲击力,并能储存一定的能量,起到减振和提升能源利用率的功效。通过驱动髋部固定部件4与大腿部件5之间、大腿部件5与小腿部件6之间的转动关节,可以实现双足机器人的行走任务,具体如图3所示。不限于该种连接方式,使用一根柔性杆件直接连接大腿部件5和脚掌部件10也可以起到同样的增益效果。
通过适当驱动双足机器人的驱动关节,可以实现双足机器人在双足运动模式与轮式运动模式之间的切换。平衡连杆部件12的两端通过转动副分别与脚掌部件10和主动轮部件15相连接,在双足运动模式下,可以通过主动控制平衡连杆部件12的摆动角度、速度和加速度以及主动轮部件15的转速,来实现机器人的静平衡与动平衡;在轮式运动模式下,可以通过对平衡连杆部件12的主动控制,实现减震、避障等作用。
脚掌部件10、脚趾部件11、脚趾下端连杆部件13和脚趾上端连杆部件14均通过转动副相互连接,从而形成平面四杆机构,而脚趾部件11的另一端通过转动副与从动轮部件16相连接,使从动轮部件16自由转动。如图3所示,在双足运动模式下,通过该平面四杆机构,可以将脚趾部件11的驱动上移,在满足双足机器人适应不同地形的情况下,减轻双足机器人的转动惯量,提升其运动性能;在轮式运动模式下,可以通过对该四杆机构的运动,调节从动轮 部件16的位置,使得从动轮部件16更好地配合主动轮部件15运动,进一步提升双足机器人在轮式运动模式下的运动性能。
本发明采用轮、足混合结构,在双足行走状态下,通过引入的柔性部件可以起到减少冲击,并储存能量的作用;通过大腿部件、小腿部件、柔性减震和脚掌部件所形成的多连杆机构,增加双足机器人的机体刚度,提升行走的稳定性;通过利用平衡连杆部件的摆动与主动轮部件的转动,实现双足机器人在双足行走状态下的主动平衡;通过脚掌部件、脚趾部件,实现对双足机器人对于不同地形的主动适应性;通过调整双足机器人的腿部机构,实现双足机器人在足式和轮式运动模式之间切换;在轮式运动模式下,通过调整平衡连杆部件和脚趾部件,实现主动轮部件和从动轮部件对于地形的主动减震。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (4)

  1. 一种具有多种运动模式的可重构双足机器人,其特征在于,该双足机器人为左右对称结构,其包括躯干部件、左髋部、右髋部、左腿和右腿,所述的躯干部件与对称布置在躯干部件的两侧的左髋部、右髋部可转动连接,所述的左腿、右腿分别与左髋部、右髋部可转动连接;
    所述的左腿包括大腿部件、小腿部件、柔性缓震部件、脚掌部件、脚趾部件、平衡连杆部件、主动轮部件、从动轮部件;
    所述的大腿部件一端与所述的左髋部通过转动副连接,另一端与小腿部件的一端通过转动副连接,小腿部件的另一端与脚掌部件的中部通过转动副连接,脚掌部件的一端通过转动副与脚趾部件的中部相连,另一端通过转动副与平衡连杆部件的一端连接,主动轮部件通过转动副连接在平衡连杆部件的另一端,从动轮部件通过转动副连接在脚趾部件的一端;
    所述的柔性缓震部件连接在所述的大腿部件和脚掌部件之间;
    所述的左髋部和右髋部结构相同,左腿和右腿结构相同。
    通过调整驱动双足机器人的驱动关节,当所述的脚趾部件着地、所述的主动轮部件和从动轮部件离地时,为双足运动模式;当所述的主动轮部件和从动轮部件着地、所述的脚趾部件离地时,为轮式运动模式。
  2. 根据权利要求1所述的具有多种运动模式的可重构双足机器人,其特征在于,所述的柔性缓震部件包括依次连接的大腿上端连杆部件、弹性部件和脚掌连杆部件。
  3. 根据权利要求1所述的具有多种运动模式的可重构双足机器人,其特征在于,所述的双足机器人还包括脚趾下端连杆部件、脚趾上端连杆部件,所述的脚趾下端连杆部件的一端通过转动副与脚趾部件的另一端连接,所述的脚趾上端连杆部件的一端通过转动副与脚掌部件的连接,脚趾下端连杆部件的另一端和脚趾上端连杆部件的另一端通过转动副连接,从而形成调节从动轮部件的连杆机构。
  4. 根据权利要求1所述的具有多种运动模式的可重构双足机器人,其特征在于,所述的左髋部包括髋部竖直转动杆件、髋部水平转动部件、髋部固定部件,所述的躯干部件通过转动副与髋部竖直转动杆件连接,所述的髋部竖直转动杆件通过转动副与髋部水平转动部件连接,所述的髋部固定部件与在所述的髋部水平转动部件刚性连接,所述的躯干部件通过髋部竖直转动杆件、髋部水平转动部件实现横滚和偏转。
PCT/CN2020/115412 2020-04-02 2020-09-15 一种具有多种运动模式的可重构双足机器人 WO2021103750A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546670A JP7037706B2 (ja) 2020-04-02 2020-09-15 複数の運動モードを有する再構成可能な二足歩行ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010255320.7 2020-04-02
CN202010255320.7A CN111516773A (zh) 2020-04-02 2020-04-02 一种具有多种运动模式的可重构双足机器人

Publications (1)

Publication Number Publication Date
WO2021103750A1 true WO2021103750A1 (zh) 2021-06-03

Family

ID=71902395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115412 WO2021103750A1 (zh) 2020-04-02 2020-09-15 一种具有多种运动模式的可重构双足机器人

Country Status (4)

Country Link
JP (1) JP7037706B2 (zh)
CN (1) CN111516773A (zh)
LU (1) LU500267B1 (zh)
WO (1) WO2021103750A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111516773A (zh) * 2020-04-02 2020-08-11 之江实验室 一种具有多种运动模式的可重构双足机器人
CN112278105B (zh) * 2020-11-02 2022-04-08 之江实验室 一种用于足式机器人的六杆机构
KR102661981B1 (ko) * 2022-07-28 2024-05-03 국민대학교산학협력단 레그-휠 모드로 전환가능한 하이브리드 로봇의 이동부
KR102482096B1 (ko) * 2021-07-30 2022-12-28 국민대학교산학협력단 레그-휠 모드로 전환가능한 하이브리드 로봇
US20240336313A1 (en) * 2021-07-30 2024-10-10 Kookmin University Industry Academy Cooperation Foundation Moving part switchable between leg mode and wheel mode and hybrid robot having thereof
CN114872814A (zh) * 2022-04-15 2022-08-09 上海师范大学 一种仿生双足机器人及其稳定步态规划方法
CN115946795B (zh) * 2023-03-10 2023-05-30 之江实验室 一种具有轻质腿特性的足式机器人
CN117446049B (zh) * 2023-12-22 2024-02-23 长春电子科技学院 一种用于机器人控制的腿部运动装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985553A1 (en) * 1998-03-06 2000-03-15 Shigeo Takizawa Caster for robot
CN102431604A (zh) * 2011-11-09 2012-05-02 上海交通大学 具有双足步行与轮式移动互变功能的仿人机器人
CN105730549A (zh) * 2016-02-19 2016-07-06 常州大学 混联减振仿人三自由度机械足
WO2017087986A1 (en) * 2015-11-20 2017-05-26 The Regents On The University Of California Non-anthropomorphic bipedal robotic system
CN110843952A (zh) * 2019-11-18 2020-02-28 榆林学院 一种可轮式运动的双足机器人及其工作方法
CN111516773A (zh) * 2020-04-02 2020-08-11 之江实验室 一种具有多种运动模式的可重构双足机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285864A (ja) * 1992-04-08 1993-11-02 Toshiba Corp 二足移動歩行装置
JP3918049B2 (ja) 2002-03-11 2007-05-23 独立行政法人産業技術総合研究所 2足歩行ロボット
US7909595B2 (en) 2006-03-17 2011-03-22 Applied Materials, Inc. Apparatus and method for exposing a substrate to UV radiation using a reflector having both elliptical and parabolic reflective sections
JP4797775B2 (ja) 2006-04-24 2011-10-19 株式会社日立製作所 2足型移動機構
CN104029745B (zh) 2014-05-21 2016-01-06 浙江大学 一种腿轮混合式液压机械腿
CN105667622B (zh) 2016-01-14 2017-09-01 哈尔滨工业大学 一种具有三段机体的六轮足式移动机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985553A1 (en) * 1998-03-06 2000-03-15 Shigeo Takizawa Caster for robot
CN102431604A (zh) * 2011-11-09 2012-05-02 上海交通大学 具有双足步行与轮式移动互变功能的仿人机器人
WO2017087986A1 (en) * 2015-11-20 2017-05-26 The Regents On The University Of California Non-anthropomorphic bipedal robotic system
CN105730549A (zh) * 2016-02-19 2016-07-06 常州大学 混联减振仿人三自由度机械足
CN110843952A (zh) * 2019-11-18 2020-02-28 榆林学院 一种可轮式运动的双足机器人及其工作方法
CN111516773A (zh) * 2020-04-02 2020-08-11 之江实验室 一种具有多种运动模式的可重构双足机器人

Also Published As

Publication number Publication date
LU500267B1 (fr) 2021-12-10
JP7037706B2 (ja) 2022-03-16
CN111516773A (zh) 2020-08-11
JP2022509716A (ja) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2021103750A1 (zh) 一种具有多种运动模式的可重构双足机器人
WO2021047680A1 (zh) 一种具有双足/四轮/四足运动模式的可重构足式机器人
CN107140052B (zh) 一种具有悬挂系统的轮腿式六足机器人
KR100687461B1 (ko) 로보트 및 로보트용 관절 장치
JP5578556B2 (ja) 人間型歩行ロボット用脚とその足
KR100515277B1 (ko) 2각 보행식 이동 장치, 그 보행 제어 장치 및 보행 제어방법
CN111391934B (zh) 一种轮腿复合型的机器人移动装置及轮腿复合型机器人
CN112937717B (zh) 一种仿生机械腿及仿生机器人
KR102126134B1 (ko) 다족 로봇용 다리유닛 및 이를 구비하는 다족로봇
CN113443042A (zh) 一种轮足复合式双足机器人
JP4707372B2 (ja) 二足歩行ロボットとその歩行制御方法
CN110181541B (zh) 一种双足跑跳机器人转向控制方法
Hodoshima et al. Development of ASURA I: harvestman-like hexapod walking robot—approach for Long-legged robot and leg mechanism design
KR102445308B1 (ko) 다족 로봇용 다리유닛
CN112433535B (zh) 轮步复合移动平台及越障模式下多关节协同的自回稳方法
JP2002307339A (ja) 脚式移動ロボット及びその制御方法、並びに脚式移動ロボットのための足首構造
CN116573077A (zh) 一种具有被动柔顺小腿的双足机器人下肢结构
CN114506400B (zh) 基于集中驱动四自由度腿部结构的仿生足式机器人
CN207257818U (zh) 一种机器人多连杆悬架车轮和单段履带式行走机构
CN212313720U (zh) 一种具有多种运动模式的可重构双足机器人
CN211032808U (zh) 一种多自由度双足机器人平台装置
CN112706853A (zh) 一种具有多连杆结构的可重构双足机器人
CN108516028B (zh) 一种复式四足机器人的行走控制方法
Yoneda et al. Non-bio-mimetic walkers
Wang et al. Structure design and locomotion analysis of a novel robot for lunar exploration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892053

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20892053

Country of ref document: EP

Kind code of ref document: A1