WO2021103575A1 - 一种供电装置及单板 - Google Patents

一种供电装置及单板 Download PDF

Info

Publication number
WO2021103575A1
WO2021103575A1 PCT/CN2020/101715 CN2020101715W WO2021103575A1 WO 2021103575 A1 WO2021103575 A1 WO 2021103575A1 CN 2020101715 W CN2020101715 W CN 2020101715W WO 2021103575 A1 WO2021103575 A1 WO 2021103575A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
printed circuit
circuit board
powered
Prior art date
Application number
PCT/CN2020/101715
Other languages
English (en)
French (fr)
Inventor
邓治高
刘伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021103575A1 publication Critical patent/WO2021103575A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • This application relates to the field of power supply technology, and in particular to a power supply device and a single board.
  • the power consumption of the chip is getting higher and higher, and the power consumption of some single chips has reached several hundred watts.
  • the current output by the power supply module is usually routed inside a printed circuit board (PCB), and then enters the chip through the pins of the chip, so as to realize power supply to the chip.
  • PCB printed circuit board
  • the technical solution of the present application provides a power supply device and a single board to meet the power supply requirements of devices to be powered.
  • the technical solution of the present application provides a power supply device, which includes a printed circuit board, a power supply module provided on the printed circuit board, a device to be powered, and a current flow module.
  • the printed circuit board has a first side and a second side oppositely arranged.
  • the power supply module and the device to be powered are fixed on the first side of the printed circuit board;
  • the flow-through module is fixed on the second side of the printed circuit board, and the power supply module and the device to be powered are electrically connected through the flow-through module.
  • the current output from the power supply module can be transmitted to the through-current module; and then transmitted to the device to be powered through the through-current module, the transmission path is shorter, which can reduce the current Loss in the transmission process can also effectively avoid the increase in the number of layers of the printed circuit board, thereby reducing the cost of the printed circuit board.
  • the power supply module and the device to be powered are electrically connected through the current flow module, and the current flow module can be adjusted to meet the current flow requirements, so as to meet the power supply current requirements of the device to be powered.
  • arranging the current flow module on the outer surface of the printed circuit board can separate the current flow path from the signal path in the printed circuit board to avoid mutual interference.
  • a first current flow channel and a second current flow channel may also be provided on the printed circuit board, and the first current flow channel and the second current flow channel are arranged through the printed circuit board.
  • the power supply module is electrically connected to the current flow module through the first current flow channel
  • the device to be powered is electrically connected to the current flow module through the second current flow channel.
  • the first current flow channel and the second current flow are electrically connected through the current flow module.
  • the first current flow channel when the first current flow channel is specifically provided, the first current flow channel may be a copper pillar, a via hole, or a metal trace that penetrates the printed circuit board.
  • the second current flow channel when the second current flow channel is specifically provided, the second current flow channel may be a copper pillar, a via hole or a metal trace that penetrates the printed circuit board.
  • the power supply module further includes a first pin, and the first pin is electrically connected to the first current flow channel.
  • the device to be powered may also include a second pin, which is electrically connected to the second current flow channel.
  • the power supply module further includes a first connector, a second connector is provided on the printed circuit board, the first connector is electrically connected to the second connector through a cable, and the second connector is electrically connected to the second connector.
  • the first current flow channel is electrically connected;
  • the device to be powered includes a second pin which is electrically connected to the second current flow channel; the first current flow channel and the second current flow channel are electrically connected through the flow module.
  • the side of the flow-through module facing the printed circuit board is composed of a first conductive area, a second conductive area, and an insulating area.
  • the first conductive area and the power supply The module is electrically connected, and the second conductive area is electrically connected to the device to be powered.
  • the insulating area of the flow-through module can be provided with an insulating layer. In this way, while the power supply module and the device to be powered can be electrically connected through the through-current module, it can also avoid the conduction between the through-current module and the device or via on the printed circuit board.
  • a first bump electrically connected to the power supply module and a second bump electrically connected to the device to be powered can also be provided on the side of the flow-through module facing the printed circuit board.
  • the parts other than the first bump and the second bump of the flow-through module are not in contact with the printed circuit board, so that the devices or vias on the second surface of the printed circuit board can be avoided, thereby avoiding Affect the normal operation of devices or vias on the second side of the printed circuit board.
  • the flow-through module When the flow-through module is connected to the printed circuit board, the flow-through module can be fixed to the printed circuit board by welding or bonding. In this way, the flow-through module can be closely attached to the second surface of the printed circuit board, which is beneficial to improve the yield rate of the power supply module and the contact between the device to be powered and the flow-through module, so as to reduce the current flow between the power supply module and the flow-through module. Transmission loss between the current module and the device to be powered.
  • the fixation of the flow-through module is achieved by welding or bonding, which can also simplify the overall structure of the power supply device.
  • the flow-through module can also be fixed to the printed circuit board by a first fastener, where the first fastener can be but not limited to a screw, a bolt, or the like.
  • the power supply module and the flow-through module can also be electrically connected through the first fastener; or, the power supply device and the flow-through module are electrically connected through the first fastening Pieces of electrical connection.
  • the power supply module and the device to be powered can also be electrically connected to the current flow module through the first fasteners.
  • the power supply device may further include a backing plate, and the backing plate is arranged on a side of the flow-through module away from the printed circuit board.
  • the flow-through module when the liner is connected to the printed circuit board, the flow-through module can also be pressed against the printed circuit board, so as to achieve a close fit between the flow-through module and the printed circuit board.
  • the backing board When connecting the backing board to the printed circuit board, the backing board can be fixed to the printed circuit board by the second fastener.
  • the second fastener passes through the liner and the flow module in sequence, and the power supply module and the flow module are electrically connected through the second fastener; or, the second fastener passes through the liner and the flow module in sequence, and The power supply device and the current flow module are electrically connected through the second fastener.
  • the power supply module and the device to be powered can be electrically connected to the current flow module through the second fasteners.
  • multiple flow-through modules there are multiple flow-through modules, and two adjacent flow-through modules are insulated and arranged.
  • the provision of multiple current-passing modules can meet the power supply requirements of the device to be powered for multiple types of currents.
  • the insulating arrangement between two adjacent current-passing modules can prevent two adjacent power supply paths from interfering with each other.
  • the power supply module can include multiple power supply units, and the device to be powered includes multiple power supply units.
  • the power supply unit, the current flow module, and the power supply unit can be electrically connected in a one-to-one correspondence. Multiple power supply paths are formed, so as to realize the power supply of each unit to be powered of the device to be powered.
  • one power supply module can be set corresponding to different current flow modules.
  • the power supply module, the current flow module, and the unit to be powered can be electrically connected in a one-to-one correspondence to form multiple power supply paths, so as to realize the device to be powered. Power supply for each unit to be powered.
  • an embodiment of the present application also provides a single board, which includes a communication interface and the power supply device as described in the first aspect. Wherein, the device to be powered in the power supply device communicates with the external device through the communication interface.
  • the power supply module when the power supply device is used to supply power to the device to be powered that communicates with external equipment, the power supply module can be electrically connected to the device to be powered through the current flow module, so that the current output from the power supply module It enters the device to be powered through the current flow module, and its transmission path is short, which can reduce the loss of current in the transmission process.
  • the flow-through module since the flow-through module is arranged on the outer surface of the printed circuit board, it is convenient to adjust the flow-through module to meet the flow requirements of the power supply current of the device to be powered, so as to realize the power supply of the device to be powered.
  • the provision of the flow-through module can also effectively avoid the increase in the number of layers of the printed circuit board, thereby reducing the cost of the printed circuit board, so that the cost of the single board can be effectively controlled.
  • FIG. 1 is a schematic diagram of the structure of a single board provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of a power supply device provided by an embodiment of the prior art
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the application.
  • Figure 4 is a top view of the power supply device provided in Figure 3;
  • FIG. 5 is a schematic structural diagram of a power supply device provided by another embodiment of the application.
  • Figure 6 is a top view of the power supply device provided in Figure 5;
  • FIG. 7 is a schematic structural diagram of a power supply device provided by another embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a power supply device provided by another embodiment of the application.
  • Figure 9 is a top view of the power supply device provided in Figure 8.
  • FIG. 10 is a schematic structural diagram of a power supply device provided by another embodiment of the application.
  • Figure 11 is a top view of the power supply device provided in Figure 10;
  • FIG. 12 is a schematic structural diagram of a power supply device provided by another embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a flow-through module provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a power supply device provided by another embodiment of the application.
  • the power supply device can be installed in electronic devices such as mobile phones, tablet computers, and personal digital assistants (PDAs). In the device, it can be realized to supply power to the devices on the single board of the electronic device that are waiting for power supply.
  • the devices to be powered include but are not limited to a central processing unit (CPU), an artificial intelligence (AI) processor, a system on chip (system on chip, SoC), or a power management unit.
  • FIG. 1 provides a schematic structural diagram of a single board of an electronic device.
  • the single board may include a power supply device and a communication module 001.
  • the power supply device has a printed circuit board 002, a device 003 to be powered on the printed circuit board 002, and a power supply module 004, which can be used to supply power to the device 003 to be powered.
  • the communication module 001 may be a network port, and the device 003 to be powered may communicate with an external device through the communication module 001, so as to realize the network signal interaction between the board and the external device.
  • the power supply device mainly includes a printed circuit board (PCB 01), a power supply module 02 and a device 03 to be powered on the same side surface of the PCB 01.
  • the PCB 01 is provided with a current transmission line (not shown in the figure), the power supply module 02 is connected to the current transmission line of the PCB 01 through the first pin 021, and the device to be powered 03 is connected to the PCB 01 through the second pin 031.
  • the current transmission line is connected, the current can be output from the power supply module 02, and enter the PCB 01 through the first pin 021, and then enter the device to be powered 03 through the current transmission line and the second pin 031 to realize the device to be powered 03 powered by.
  • the power supply voltage of these devices 03 to be powered is usually a low voltage. Taking a power supply voltage of 0.8 volts as an example, the power supply current is close to 400 amperes at this time.
  • the width of the traces that need to be arranged in the PCB 01 is close to 4000 miles, and the area of the single-layer structure of the PCB 01 is limited, which requires a multilayer structure in the PCB 01 for wiring.
  • the increase in the number of layers of PCB 01 will lead to a sharp increase in its cost. Considering that the thickness of the traces set on each layer of PCB 01 is small, the traces between each layer need to be drilled through the layer structure. Connection, these will lead to a large loss of voltage through the PCB 01.
  • the embodiment of the present application provides a power supply device.
  • the specific setting method of the power supply device will be described in detail below with reference to the accompanying drawings, so as to understand the process of the power supply device supplying power to the power supply device.
  • the specific structure and power supply process of the power supply device are described in detail by taking the device to be powered as a chip as an example.
  • the power supply device The setting method is similar.
  • the power supply device mainly includes a PCB 1, a power supply module 2 provided on the PCB 1, a chip 3, and a current flow module 4.
  • the PCB 1 has a first surface 11 and a second surface 12 opposite to each other, and the power supply module 2 and the chip 3 are disposed on the first surface 11 of the PCB 1 at intervals.
  • the power supply module 2 may have a first pin 21 (in each embodiment of the present application, the pin is an interface that can be electrically connected, such as a pointer pin or a pad).
  • the first pad (not shown in the figure) on the first side 11 of the PCB 1 is soldered.
  • the PCB 1 is provided with a first current flow channel 13 at a position corresponding to the first pin 21.
  • the first current flow channel 13 can be but not It is limited to copper pillars, vias or metal traces penetrating through the PCB 1.
  • the chip 3 when the chip 3 is specifically set, the chip 3 has a second pin 31 which is soldered to a second pad (not shown in the figure) on the first side 11 of the PCB 1, and the PCB 1 is provided with a second current flow channel 14 at a position corresponding to the second pin 31, and the second current flow channel 14 may be, but is not limited to, a copper pillar, a via hole or a metal trace penetrating through the PCB 1.
  • the current flow module 4 is arranged on the second surface 12 of the PCB 1, and the first current flow channel 13 and the second current flow channel 14 can be connected through the flow module 4.
  • the flow-through module 4 may be, but is not limited to, a metal module with good flow-through capability, such as a module formed of metal such as copper or gold, and the module may be a sheet-shaped module.
  • the flow-through module 4 by arranging the flow-through module 4 on the second side 12 of the PCB 1, the flow area of the flow-through module 4 can also be adjusted according to the requirements of the chip 3 for the supply current.
  • FIG. 3 the arrow indicates the process of the power supply module 2 supplying power to the chip 3.
  • the current output by the power supply module 2 can be transmitted from the first current flow channel 13 of the PCB 1 to the current flow module 4 through the first pin 21; then, the current is transmitted to the position directly opposite to the chip 3 through the current flow module 4; and finally , It is transmitted to the second pin 31 through the second current flow channel 14 of the PCB 1 and enters the chip 3 to complete the power supply to the chip 3.
  • the power supply module 2 may also be provided with a first connector 23, and the power supply device further includes a second connector 7 provided on the PCB 1, and the first connector 23 is connected to the second connector 7 through a cable 8 Electric connection.
  • the second connector 7 is electrically connected to the first current flow channel 13, so that the current output from the power supply module 2 can enter the second connector 7 through the first connector 23 and the cable 8;
  • a current flow channel 13 is transmitted to the current flow module 4; after that, the current is transmitted through the flow module 4 to a position directly opposite to the chip 3; finally, it is transmitted to the second pin 31 through the second current flow channel 14 of the PCB 1, And enter chip 3 to complete power supply to chip 3.
  • the current output from the power supply module 2 can be transmitted through the first current flow channel 13
  • the flow-through module 4 is then transmitted to the chip 3 through the flow-through module 4 and the second current flow channel 14, and its transmission path is short, which can reduce the loss of current in the transmission process.
  • the current flow path can be separated from the signal path in the PCB 1 to avoid mutual interference, and the current flow path can also be simplified and the design cost can be reduced.
  • the current-passing module 4 on the PCB 1, the increase in the number of layers of the PCB 1 and the increase in the cost of the PCB 1 can be avoided, and the attenuation of the voltage on the transmission path can be reduced, thereby improving its utilization rate.
  • FIG. 4 is a top view of the power supply device in FIG. 3
  • FIG. 6 is a top view of the power supply device in FIG. 5. Since different areas of the same chip 3 can be supplied by different power supply modules 2 with different voltage currents, in the embodiment shown in FIG. 4 or FIG. 6, the first pin of the power supply module 2 is represented by a circle with the same cross-section. 21, and the second pin 31 of the chip 3 that has a power supply relationship with the first pin 21.
  • fasteners 5 such as screws and bolts for fixing the flow-through module 4 can also be arranged at a position opposite to the first pin 21 of the power supply module 2 (or the second pin 31 of the chip 3) , So that the fastener 5 can also serve as the first current flow channel (or the second current flow channel) while playing the role of fixing the flow-through module 4.
  • the number of fasteners 5 used to fix the flow-through module 4 can be one or more than one. When there are more than one fasteners 5, the number of fasteners can be 5 are respectively set corresponding to the first pin 21 and the second pin 31 to be used as the first current flow channel and the second current flow channel respectively. This can effectively simplify the structure of the power supply device and save costs.
  • FIG. 8 the flow-through module 4 can be fixed to the PCB 1 by welding or bonding.
  • the yield rate of the contact between the flow-through modules 4 is to reduce the loss of current transmission between the power supply module 2, the flow-through module 4 and the chip 3.
  • FIG. 9 is a top view of FIG. 8.
  • the fixing of the flow-through module 4 is achieved by welding or bonding, which can also simplify the overall structure of the power supply device.
  • the power supply device may further include a backing plate 6, and the backing plate 6 is arranged on the side of the flow-through module 4 away from the PCB 1.
  • the lining board 6 can be fixed to the PCB 1 by bolts, screws and other fasteners 5. It can be understood that while fixing the lining board 6 to the PCB 1, the lining board 6 can press the flow module 4 to the PCB 1 , In order to realize the close fit between the flow-through module 4 and the PCB 1.
  • FIG. 11 is a top view of FIG. 10.
  • the projection of the PCB 1 on the lining board 6 falls within the boundary range of the lining board 6.
  • the projection of the backing board 6 on the PCB 1 can also fall within the boundary range of the PCB 1, as long as the backing board 6 can support the PCB 1, so as to improve the PCB 1.
  • the structure is stable to avoid large deformation of the PCB1.
  • fasteners 5 such as screws and bolts for fixing the liner 6 can also be arranged at a position opposite to the first pin 21 of the power supply module 2 (or the second pin 31 of the chip 3). In this way, the fastener 5 can also serve as the first current flow channel (or the second current flow channel) while playing the role of fixing the liner 6.
  • the number of fasteners 5 used to fix the flow-through module 4 can be one or more than one. When there are more than one fasteners 5, the number of fasteners can be 5 are respectively set corresponding to the first pin 21 and the second pin 31 to be used as the first current flow channel and the second current flow channel respectively. This can effectively simplify the structure of the power supply device and save costs.
  • the insulation protection structure may be An insulating layer such as an insulating glue coated or adhered to the surface of the through-flow module 4 facing the PCB 1. It can be understood that the insulation protection structure requires that the flow-through module 4 is used to expose the parts in contact with the first current flow channel and the second current flow channel. In addition, the insulation protection structure can also be set up with reference to FIG. 13.
  • the part of the flow module 4 used to communicate with the first current flow channel is set as a first protrusion 41
  • the part in contact with the second flow channel is set It is the second protrusion 42, so that the part of the flow-through module 4 except the first protrusion 41 and the second protrusion 42 does not contact the PCB 1, so as to realize the detection of the devices or vias on the second surface 12 of the PCB 1. This avoids affecting the normal operation of the devices or vias on the second side 12 of the PCB 1.
  • some embodiments of the present application also provide a power supply device.
  • the power supply device is different from the above-mentioned power supply device in that there can be multiple flow-through modules, so that different flow-through modules respectively perform different types of power supplies. Flow through.
  • the two flow-through modules are the first flow-through module 4a and the second flow-through module 4b.
  • the first flow-through module 4a and the second flow-through module 4b need to be insulated to make the power supply module 2 work as a chip. 3
  • the two power supply paths do not interfere with each other.
  • the power supply module 2 has a first power supply unit and a second power supply unit, where the first power supply unit includes a first pin 21, the second power supply unit includes a third pin 22, and the first pin 21 is soldered to the first pad on the first side of the PCB 1, and the third pin is soldered to the third pad on the first side 11 of the PCB 1.
  • the position of the PCB 1 corresponding to the first pin 21 is provided with a first
  • the current flow channel is provided with a third current flow channel corresponding to the position of the third pin 22.
  • the chip 3 when the chip 3 is specifically set, the chip 3 has a first unit to be powered and a second unit to be powered, wherein the first unit to be powered includes the second pin 31, and the second unit to be powered includes the fourth pin 32 ,
  • the second pin 31 is soldered to the second pad on the first surface of the PCB 1
  • the fourth pin 32 is soldered to the fourth pad on the first surface of the PCB 1
  • the PCB 1 corresponds to the second pin 31
  • the position of the PCB 1 is provided with a second current flow channel
  • the position of the PCB 1 corresponding to the fourth pin 32 is provided with a fourth current flow channel.
  • the first current flow module 4a and the second current flow module 4b are arranged on the second surface of the PCB 1, and the first current flow channel and the second current flow channel can be connected through the first current flow module 4a to form a first type of current
  • the transmission path of the third current flow path and the fourth current flow path can be connected through the second current flow module 4b to form a second type of current transmission path.
  • the first type of current is output from the power supply module 2, and can be transmitted from the first current flow channel of the PCB 1 to the first current flow module 4a through the first pin 21;
  • the class current is transmitted to the position directly opposite to the second pin 31 of the chip 3 through the first current flow module 4a; finally, it is transmitted to the second pin 31 through the second current flow channel of the PCB 1 and enters the chip 3 to Meet the power supply requirements for the first type of current of the chip 3.
  • the second type current is output from the power supply module 2 and can be transmitted from the third current flow channel of the PCB 1 to the second flow module 4b through the third pin 22; after that, the second type current passes through the second flow module 4b It is transmitted to the position directly opposite to the fourth pin 32 of the chip 3; finally, it is transmitted to the fourth pin 32 through the fourth current flow channel of the PCB 1, and enters the chip 3 to meet the second type of current to the chip 3. Power requirements.
  • the power supply modules 2 may also be provided corresponding to different types of power supply currents.
  • the specific setting methods and power supply paths are similar to those in the above-mentioned embodiments, and will not be repeated here.
  • the power supply device of this embodiment of the present application its two power supply paths do not interfere with each other, and can meet the power supply requirements of the same chip 3 for different currents.
  • the current output from the power supply module 2 can be transmitted to the current flow module 4 by setting the power supply module 2 on the PCB 1 and the opposite side of the chip 3 with a current flow module; It is transmitted to the chip 3 through the through-current module 4, and the transmission path is relatively short, which can reduce the loss of the current in the transmission process.
  • the current flow path can be separated from the signal path in the PCB 1 to avoid mutual interference, and the flow path of the power supply can be simplified, and the design cost can be reduced.
  • the current-passing module on the PCB 1, the increase in the number of layers of the PCB 1 and the increase in the cost of the PCB 1 can be avoided, and the attenuation of the voltage on the transmission path can be reduced, thereby improving its utilization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本申请提供了一种供电装置及单板。涉及供电技术领域。该供电装置包括印刷电路板,设置于印刷电路板的供电模块、待供电器件以及通流模块。供电模块和待供电器件设置于印刷电路板的第一面上,通流模块设置于印刷电路板的第二面上,第二面与第一面相对设置。供电模块与待供电器件通过通流模块电连接。这样,从供电模块输出的电流,可通流模块传输至待供电器件,以实现供电模块对待供电器件的供电。采用该方案,电流的传输路径较短,可减少电流在传输过程中的损耗,另外,还可以有效的避免印刷电路板的层数增多,从而降低印刷电路板的成本。

Description

一种供电装置及单板
相关申请的交叉引用
本申请要求在2019年11月29日提交中国专利局、申请号为201911205874.X、申请名称为“一种供电装置及单板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到供电技术领域,尤其涉及到一种供电装置及单板。
背景技术
随着芯片的规模越来越大,功能越来越强,芯片所需的功耗越来越高,一些单芯片的功耗已经达到几百瓦。目前,通常是通过供电模块输出的电流经过印刷电路板(printed circuit board,PCB)内部走线后,再经过芯片的引脚(pin)进入芯片,以实现对芯片的供电。
当芯片的功耗较大时,其所需要的供电电流较大,该供电电流都要经过PCB供给芯片。由于PCB的单层结构的面积有限,这就需要在PCB中设置多层结构进行布线,以满足供电电流的流通面积的要求。但这会导致PCB的层数增多,随即带来PCB成本的增加,另外,PCB的层数越多,加工难度越高,其层数很难随着通流面积的增大而无限制的增加。因此,采用现有的供电装置为功耗较高的芯片进行供电,存在供不进电的巨大风险。
发明内容
本申请技术方案提供了一种供电装置及单板,以满足待供电器件的供电需求。
第一方面,本申请技术方案提供了一种供电装置,该供电装置包括印刷电路板,设置于印刷电路板的供电模块、待供电器件以及通流模块。其中:印刷电路板,具有相对设置的第一面和第二面。供电模块与待供电器件,固定于印刷电路板的第一面;通流模块,固定于印刷电路板的第二面,供电模块与待供电器件通过通流模块电连接。采用本技术方案,在通过供电模块对待供电器件进行供电时,从供电模块输出的电流,可传输至通流模块;再通过通流模块传输至待供电器件,其传输路径较短,可减少电流在传输过程中的损耗,还可以有效的避免印刷电路板的层数增多,从而降低印刷电路板的成本。另外,通过通流模块将供电模块与待供电器件相电连接,可以通过对通流模块进行调整来满足电流的通流要求,从而满足待供电器件对供电电流的要求。此外,将通流模块设置于印刷电路板的外部表面,可以使电流的通流路径与印刷电路板中的信号路径相分离,以避免相互之间的干扰。
在本申请一个可能的实施方式中,还可以在印刷电路板上设置第一电流流通通道和第二电流流通通道,该第一电流流通通道和第二电流流通通道贯穿于印刷电路板设置。其中,供电模块通过第一电流流通通道与通流模块电连接,待供电器件通过第二电流流通通道与通流模块电连接。第一电流流通通道和第二电流流通通过通流模块电连接。
另外,在具体设置第一电流流通通道时,第一电流流通通道可以为贯穿于印刷电路板的铜柱、过孔或者金属走线。相对应的,在具体设置第二电流流通通道时,第二电流流通通道可以为贯穿于印刷电路板的铜柱、过孔或者金属走线。
在本申请一个可能的实施方式中,供电模块还包括第一引脚,该第一引脚与第一电流流通通道电连接。在具体设置待供电器件时,待供电器件也可以包括第二引脚,该第二引脚与第二电流流通通道电连接。
在本申请一个可能的实施方式中,供电模块还包括第一连接器,印刷电路板上设置有第二连接器,第一连接器通过线缆与第二连接器电连接,第二连接器与第一电流流通通道电连接;待供电器件包括第二引脚,第二引脚与第二电流流通通道电连接;第一电流流通通道与第二电流流通通道通过通流模块电连接。
在本申请一个可能的实施方式中,在具体设置通流模块时,通流模块朝向印刷电路板的一侧由第一导电区、第二导电区,以及绝缘区组成,第一导电区与供电模块电连接,第二导电区与待供电器件电连接。其中,通流模块的绝缘区可以设置有绝缘层。这样在使供电模块与待供电器件可以通过通流模块电连接的同时,还能够避免通流模块与印刷电路板上的器件或者过孔相导通。
另外,还可以将通流模块朝向印刷电路板的一侧设置有与供电模块电连接的第一凸起,以及与待供电器件电连接的第二凸起。这样可以使通流模块的除第一凸起以及第二凸起之外的部分不与印刷电路板相接触,从而可以对印刷电路板第二面上的器件或者过孔等进行避让,从而避免影响印刷电路板的第二面上的器件或者过孔等的正常工作。
在将通流模块与印刷电路板连接时,可以通过焊接或者粘接的方式将通流模块固定于印刷电路板。这样可以使通流模块与印刷电路板的第二面贴合的较为紧密,从而有利于提高供电模块以及待供电器件与通流模块之间接触的良率,以减小电流在供电模块、通流模块以及待供电器件之间传输的损耗。另外,通过焊接或者粘接的方式实现通流模块的固定,还可以使供电装置的整体结构得到简化。
另外,通流模块还可以通过第一紧固件固定于印刷电路板,其中,第一紧固件可以但不限于为螺钉、螺栓等。在通过螺钉、螺栓等紧固件对通流模块进行固定时,还可以使供电模块与通流模块通过该第一紧固件电连接;或,待供电器件与通流模块通过第一紧固件电连接。当第一紧固件为多个时,还可以使供电模块和待供电器件分别通过第一紧固件与通流模块电连接。
在本申请一个可能的实施方式中,供电装置还可以包括衬板,该衬板设置于通流模块远离印刷电路板的一侧。这样,除了上述的固定方式外,在衬板与印刷电路板连接的同时,还可以将通流模块压紧于印刷电路板,以实现通流模块与印刷电路板的紧密贴合。在将衬板与印刷电路板连接时,可以通过第二紧固件将衬板固定于印刷电路板。
另外,第二紧固件依次穿过衬板和通流模块,供电模块与通流模块通过第二紧固件电连接;或,第二紧固件依次穿过衬板和通流模块,待供电器件与通流模块通过第二紧固件电连接。当第二紧固件为多个时,还可以使供电模块和待供电器件分别通过第二紧固件与通流模块电连接。
在本申请一个可能的实施方式中,通流模块为多个,相邻两个通流模块之间绝缘设置。通过设置多个通流模块可以满足待供电器件对于多种类型的电流的供电需求,另外,相邻两个通流模块之间绝缘设置,可以使相邻两条供电通路之间互不干扰。
当通流模块为多个时,可以使供电模块包括多个供电单元,待供电器件包括多个待供电单元,这样可以通过使供电单元、通流模块以及待供电单元一一对应电连接,来形成多条供电通路,从而实现对待供电器件的各个待供电单元的供电。
另外,还可以对应不同的通流模块分别设置一个供电模块,这时,可使供电模块、通流模块以及待供电单元一一对应电连接,来形成多条供电通路,从而实现对待供电器件的各个待供电单元的供电。
第二方面,本申请实施例还提供了一种单板,该单板包括通信接口,以及如第一方面所述的供电装置。其中,供电装置中的待供电器件通过该通信接口与外部设备进行通信。
采用本技术方案的单板,在通过供电装置对与外部设备进行通信的待供电器件进行供电时,可以通过通流模块将供电模块与待供电器件相电连接,从而使从供电模块输出的电流经通流模块进入待供电器件,其传输路径较短,可减少电流在传输过程中的损耗。另外,由于通流模块设置于印刷电路板的外部表面,这样可便于通过对通流模块进行调整,来满足待供电器件的供电电流的通流要求,从而实现对待供电器件的供电。另外,通过设置通流模块还可以有效的避免印刷电路板的层数增多,从而降低印刷电路板的成本,以使单板的成本得到有效的控制。
附图说明
图1为本申请实施例提供的单板的结构示意图;
图2为现有技术实施例提供的供电装置的结构示意图;
图3为本申请一实施例提供的供电装置的结构示意图;
图4为图3中提供的供电装置的俯视图;
图5为本申请另一实施例提供的供电装置的结构示意图;
图6为图5中提供的供电装置的俯视图;
图7为本申请另一实施例提供的供电装置的结构示意图;
图8为本申请另一实施例提供的供电装置的结构示意图;
图9为图8中提供的供电装置的俯视图;
图10为本申请另一实施例提供的供电装置的结构示意图;
图11为图10中提供的供电装置的俯视图;
图12为本申请另一实施例提供的供电装置的结构示意图;
图13为本申请一实施例提供的通流模块的结构示意图;
图14为本申请另一实施例提供的供电装置的结构示意图。
具体实施方式
为了方便理解本申请实施例提供的供电装置,下面首先说明一下本申请实施例提供的供电装置的应用场景,该供电装置可设置于手机、平板电脑、掌上电脑(personal digital assistant,PDA)等电子设备中,并可实现对电子设备中的单板上的芯片等待供电的器件进行供电。其中,待供电的器件包括但不限于中央处理器(central processing unit,CPU)、人工智能(artificial intelligence,AI)处理器、片上系统(system on chip,SoC)或者电源管理单元。
参照图1,图1提供了一种电子设备的单板的结构示意图。该单板可以包括供电装置,以及通信模块001。其中,供电装置具有印刷电路板002,以及设置于印刷电路板002上的待供电器件003,以及供电模块004,供电模块004可用于对待供电器件003进行供电。通信模块001可以为网口,待供电器件003可通过通信模块001与外部设备进行通信,从而实现该单板与外部设备之间的网络信号的交互。
参考图2,在一个现有的技术方案中,供电装置主要包括印刷电路板(printed circuit board,PCB 01),设置于PCB 01的同一侧表面的供电模块02以及待供电器件03。PCB 01中设置有电流传输走线(图中未示出),供电模块02通过第一引脚021与PCB 01的电流传输走线连接,待供电器件03通过第二引脚031与PCB 01的电流传输走线连接,电流可以从供电模块02输出,并通过第一引脚021进入PCB 01,然后通过电流传输走线以及第二引脚031进入待供电器件03,以实现对待供电器件03的供电。
由于一些规模较大,功能较强的待供电器件03,其所需的功耗较高,有些甚至可达到300瓦以上。而这些待供电器件03的供电电压通常为低电压,以供电电压为0.8伏为例,此时供电电流接近400安培。当该电流流经PCB 01时,需要在PCB 01中布置的走线的宽度接近4000英里,而PCB 01的单层结构的面积有限,这就需要在PCB 01中设置多层结构进行布线。PCB 01的层数增加,会导致其成本急剧增多,又考虑到在PCB 01的每层上设置的走线的厚度较小,每层之间的走线还需要通过在层结构上打孔进行连接,这些都将导致通过PCB 01的电压的损耗较大。
为了解决上述问题,本申请实施例提供了一种供电装置,下面结合附图对该供电装置的具体设置方式进行详细的说明,以便于对该供电装置对待供电器件进行供电的过程进行理解。另外,为便于说明,在以下的各实施例中,均以待供电器件为芯片为例对供电装置的具体结构以及供电过程进行详细介绍,待供电器件为除芯片之外的器件时,供电装置的设置方式相类似。
参照图3,本申请的一个实施例提供的供电装置,该供电装置主要包括PCB 1,设置于PCB 1的供电模块2、芯片3以及通流模块4。其中,PCB 1具有相对设置的第一面11和第二面12,供电模块2与芯片3设置于PCB 1的第一面11,且间隔设置。
在具体设置供电模块2时,供电模块2可具有第一引脚21(在本申请各实施例中,引脚是指针脚或者焊盘等可进行电连接的接口),第一引脚21与PCB 1的第一面11上的第一焊盘(图中未示出)焊接,PCB 1对应第一引脚21的位置设置有第一电流流通通道13,第一电流流通通道13可以但不限于为贯穿于PCB 1的铜柱、过孔或者金属走线。相对应的,在具体设置芯片3时,芯片3具有第二引脚31,该第二引脚31与PCB 1的第一面11上的第二焊盘(图中未示出)焊接,PCB 1对应第二引脚31的位置设置有第二电流流通通道14,第二电流流通通道14可以但不限于为贯穿于PCB 1的铜柱、过孔或者金属走线。
通流模块4设置于PCB 1的第二面12,第一电流流通通道13与第二电流流通通道14可以通过该通流模块4相连通。其中,通流模块4可以但不限于为通流能力较好的金属模块,例如铜或者金等金属形成的模块,该模块可以为片状模块。另外,通过将通流模块4设置于PCB 1的第二面12,还可以根据芯片3对于供电电流的要求,对通流模块4的通流面积进行调整。
这样,采用本申请该实施例的供电装置,在通过供电模块2为芯片3供电时,可继续参照图3,图3中用箭头表示了供电模块2为芯片3供电的过程,具体的:从供电模块2 输出的电流,可通过第一引脚21从PCB 1的第一电流流通通道13传输到通流模块4;之后,电流通过通流模块4传输到与芯片3正对的位置;最后,通过PCB 1的第二电流流通通道14传输到第二引脚31,并进入芯片3,以完成对芯片3的供电。
另外,参照图5,供电模块2还可以设置有第一连接器23,该供电装置还包括设置于PCB 1的第二连接器7,第一连接器23通过线缆8与第二连接器7电连接。第二连接器7与第一电流流通通道13电连接,这样,从供电模块2输出的电流,可通过第一连接器23以及线缆8进入第二连接器7;然后,从PCB 1的第一电流流通通道13传输到通流模块4;之后,电流通过通流模块4传输到与芯片3正对的位置;最后,通过PCB 1的第二电流流通通道14传输到第二引脚31,并进入芯片3,以完成对芯片3的供电。
在本申请该实施例的供电装置中,通过在PCB 1的设置供电模块2以及芯片3的对侧设置通流模块4,从供电模块2输出的电流,可通过第一电流流通通道13传输至通流模块4;再通过通流模块4以及第二电流流通通道14传输至芯片3,其传输路径较短,可减少电流在传输过程中的损耗。此外,采用本方案还可以将电流的通流路径与PCB 1中的信号路径相分离,以避免相互之间的干扰,而且还可以简化电流的通流路径,降低设计成本。另外,通过在PCB 1上设置通流模块4还可在避免PCB 1的层数增多,PCB 1成本增加的基础上,减少电压在传输路径上的衰减,从而可提高其利用率。
继续参照图3和图5,为了使通流模块4与PCB 1的第一电流流通通道13以及第二信号传输通道之间有良好的接触,需要将通流模块4与PCB 1紧密贴合。参照图3和图5,可以通过螺钉、螺栓等紧固件5将通流模块4锁紧于PCB 1。参照图4和图6,图4为图3中的供电装置的俯视图,图6为图5中的供电装置的俯视图。由于同一芯片3的不同区域可由不同的供电模块2提供不同电压的电流,在图4或图6所示的实施例中,用具有相同的剖面线的圆表示了供电模块2的第一引脚21,以及与第一引脚21存在供电关系的芯片3的第二引脚31。
参照图7,还可将用于固定通流模块4的螺钉、螺栓等紧固件5,设置于与供电模块2的第一引脚21(或者芯片3的第二引脚31)相对的位置,以使该紧固件5在起到固定通流模块4的作用的同时,还能作为第一电流流通通道(或者第二电流流通通道)。可以理解的是,继续参照图7,用于固定通流模块4的紧固件5可以为一个,也可以为多个,当紧固件5为多个时,可以使该多个紧固件5分别对应第一引脚21和第二引脚31设置,以分别作为第一电流流通通道和第二电流流通通道使用。这样可以有效的简化该供电装置的结构,节约成本。
除了通过螺钉、螺栓等紧固件5来实现通流模块4的固定的方式外,还可以参照图8,在图8中,通流模块4可通过焊接或者粘接的方式固定于PCB 1的第二面12,这样可以使通流模块4与PCB 1的第二面12贴合的较为紧密,从而有利于提高第一电流流通通道13与通流模块4,以及第二电流流通通道14与通流模块4之间接触的良率,以减小电流在供电模块2、通流模块4以及芯片3之间传输的损耗。一并参照图8和图9,图9为图8的俯视图,通过焊接或者粘接的方式实现通流模块4的固定,还可以使供电装置的整体结构得到简化。
另外,还可以参照图10,在图10所示的实施例中,供电装置还可以包括衬板6,该衬板6设置于通流模块4远离PCB 1的一侧。衬板6可以通过螺栓、螺钉等紧固件5固定于PCB 1,可以理解的是,在将衬板6固定于PCB 1的同时,可以使衬板6将通流模块4 压紧于PCB 1,以实现通流模块4与PCB 1的紧密贴合。
在具体设置衬板6时,可以参照图11,图11为图10的俯视图。在图11中,PCB 1在衬板6上的投影落在了衬板6的边界范围之内。在其它可能的实施例中,还可以使衬板6在PCB 1上的投影落在PCB 1的边界范围之内,只要使衬板6能够起到对PCB 1的支撑作用,以提高PCB 1的结构稳定性,避免PCB 1产生较大的形变。
参照图12,还可将用于固定衬板6的螺钉、螺栓等紧固件5,设置于与供电模块2的第一引脚21(或者芯片3的第二引脚31)相对的位置,以使该紧固件5在起到固定衬板6的作用的同时,还能作为第一电流流通通道(或者第二电流流通通道)。可以理解的是,继续参照图12,用于固定通流模块4的紧固件5可以为一个,也可以为多个,当紧固件5为多个时,可以使该多个紧固件5分别对应第一引脚21和第二引脚31设置,以分别作为第一电流流通通道和第二电流流通通道使用。这样可以有效的简化该供电装置的结构,节约成本。
在本申请各实施例中,为避免通流模块4与PCB 1上的器件或者过孔相导通,还需要在通流模块4与PCB 1之间做绝缘保护结构,该绝缘保护结构可以为涂覆或者粘接于通流模块4朝向PCB 1的一侧表面的绝缘胶等绝缘层。可以理解的是,该绝缘保护结构需要将通流模块4用于与第一电流流通通道以及第二电流流通通道相接触的部分露出。另外,该绝缘保护结构还可以参照图13进行设置,具体的,将通流模块4的用于与第一电流流通通道部分设置为第一凸起41,与第二流通通道相接触的部分设置为第二凸起42,从而使通流模块4除第一凸起41以及第二凸起42之外的部分不与PCB 1相接触,以实现对PCB1第二面12上的器件或者过孔等的避让,从而避免影响PCB 1第二面12上的器件或者过孔等的正常工作。
参照图14,本申请一些实施例还提供了一种供电装置,该供电装置与上述供电装置不同的是,通流模块可以为多个,以使不同的通流模块分别对不同类型的电源进行通流。
在图14所示的供电装置中,以通流模块为两个为例,对该供电装置的结构以及供电过程进行说明。其中,两个通流模块分别为第一通流模块4a和第二通流模块4b,第一通流模块4a和第二通流模块4b之间需要绝缘设置,以使供电模块2在为芯片3供电时,两条供电通路之间互不干扰。
在具体设置供电模块2时,供电模块2具有第一供电单元和第二供电单元,其中,第一供电单元包括第一引脚21,第二供电单元包括第三引脚22,第一引脚21与PCB 1的第一面上的第一焊盘焊接,第三引脚与PCB 1的第一面11上的第三焊盘焊接,PCB 1对应第一引脚21的位置设置有第一电流流通通道,对应第三引脚22的位置设置有第三电流流通通道。对应的,在具体设置芯片3时,芯片3具有第一待供电单元和第二待供电单元,其中,第一待供电单元包括第二引脚31,第二待供电单元包括第四引脚32,该第二引脚31与PCB 1的第一面上的第二焊盘焊接,第四引脚32与PCB 1的第一面上的第四焊盘焊接,PCB 1对应第二引脚31的位置设置有第二电流流通通道,PCB 1对应第四引脚32的位置设置有第四电流流通通道。
第一通流模块4a和第二通流模块4b设置于PCB 1的第二面,第一电流流通通道与第二电流流通通道可以通过第一通流模块4a相连通,以形成第一类电流的传输通路;第三电流流通通道与第四电流流通通道可以通过第二通流模块4b相连通,以形成第二类电流的传输通路。
在通过供电模块2为芯片3供电时,第一类电流从供电模块2输出,可通过第一引脚21从PCB 1的第一电流流通通道传输到第一通流模块4a;之后,第一类电流通过第一通流模块4a传输到与芯片3的第二引脚31正对的位置;最后,通过PCB 1的第二电流流通通道传输到第二引脚31,并进入芯片3,以满足对芯片3的第一类电流的供电要求。另外,第二类电流从供电模块2输出,可通过第三引脚22从PCB 1的第三电流流通通道传输到第二通流模块4b;之后,第二类电流通过第二通流模块4b传输到与芯片3的第四引脚32正对的位置;最后,通过PCB 1的第四电流流通通道传输到第四引脚32,并进入芯片3,以满足对芯片3的第二类电流的供电要求。
另外,在本申请一些实施例中还可以对应不同类型的供电电流分别设置供电模块2,其具体设置方式以及供电通路与上述实施例相类似,在此不再赘述。
采用本申请该实施例的供电装置,其两条供电通路互不干扰,可以满足同一芯片3对于不同的电流的供电要求。另外,在本申请该实施例的供电装置中,通过在PCB 1的设置供电模块2以及芯片3的对侧设置通流模块,从供电模块2输出的电流,可传输至通流模块4;再通过通流模块4传输至芯片3,其传输路径较短,可减少电流在传输过程中的损耗。此外,采用本方案还可以将电流的通流路径与PCB 1中的信号路径相分离,以避免相互之间的干扰,而且还可以简化电源的通流路径,降低设计成本。另外,通过在PCB 1上设置通流模块还可在避免PCB 1的层数增多,PCB 1成本增加的基础上,减少电压在传输路径上的衰减,从而可提高其利用率。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种供电装置,其特征在于,包括印刷电路板,设置于所述印刷电路板的供电模块、待供电器件以及通流模块,其中:
    所述印刷电路板,具有相对设置的第一面和第二面;
    所述供电模块与所述待供电器件,固定于所述印刷电路板的第一面;
    所述通流模块,固定于所述印刷电路板的第二面,所述供电模块与所述待供电器件通过所述通流模块电连接。
  2. 如权利要求1所述的供电装置,其特征在于,所述印刷电路板还包括贯穿所述印刷电路板的第一电流流通通道和第二电流流通通道;
    所述供电模块包括第一引脚,所述第一引脚与所述第一电流流通通道电连接;所述待供电器件包括第二引脚,所述第二引脚与所述第二电流流通通道电连接;所述第一电流流通通道与所述第二电流流通通道通过所述通流模块电连接。
  3. 如权利要求1所述的供电装置,其特征在于,所述印刷电路板还包括贯穿所述印刷电路板的第一电流流通通道和第二电流流通通道;
    所述供电模块包括第一连接器,所述印刷电路板上设置有第二连接器,所述第一连接器通过线缆与所述第二连接器电连接,所述第二连接器与所述第一电流流通通道电连接;所述待供电器件包括第二引脚,所述第二引脚与所述第二电流流通通道电连接;所述第一电流流通通道与所述第二电流流通通道通过所述通流模块电连接。
  4. 如权利要求2或3所述的供电装置,其特征在于,所述第一电流流通通道为贯穿于所述印刷电路板的铜柱、过孔或者金属走线;和/或,所述第二电流流通通道为贯穿于所述印刷电路板的铜柱、过孔或者金属走线。
  5. 如权利要求1~4任一项所述的供电装置,其特征在于,所述通流模块焊接于所述印刷电路板的所述第二面。
  6. 如权利要求1~4任一项所述的供电装置,其特征在于,所述通流模块通过第一紧固件与所述印刷电路板紧固联接。
  7. 如权利要求6所述的供电装置,其特征在于,所述供电模块与所述通流模块通过所述第一紧固件电连接;或,所述待供电器件与所述通流模块通过所述第一紧固件电连接。
  8. 如权利要求1~4任一项所述的供电装置,其特征在于,所述供电装置还包括衬板,所述衬板设置于所述通流模块远离所述印刷电路板的一侧。
  9. 如权利要求8所述的供电装置,其特征在于,所述衬板通过第二紧固件与所述印刷电路板紧固联接。
  10. 如权利要求9所述的供电装置,其特征在于,所述第二紧固件依次穿过所述衬板和所述通流模块,所述供电模块与所述通流模块通过所述第二紧固件电连接;
    或,所述第二紧固件依次穿过所述衬板和所述通流模块,所述待供电器件与所述通流模块通过所述第二紧固件电连接。
  11. 如权利要求1~10任一项所述的供电装置,其特征在于,所述通流模块朝向所述印刷电路板的一侧由第一导电区、第二导电区,以及绝缘区组成,所述第一导电区与所述供电模块电连接,所述第二导电区与所述待供电器件电连接。
  12. 如权利要求11所述的供电装置,其特征在于,所述绝缘区设置有绝缘层。
  13. 如权利要求1~10任一项所述的供电装置,其特征在于,所述通流模块朝向所述印刷电路板的一侧设置有与所述供电模块电连接的第一凸起,以及与所述待供电器件电连接的第二凸起。
  14. 如权利要求1~13任一项所述的供电装置,其特征在于,所述通流模块为多个,相邻两个所述通流模块之间绝缘设置。
  15. 如权利要求14所述的供电装置,其特征在于,所述供电模块包括多个供电单元,所述待供电器件包括多个待供电单元,所述供电单元、所述通流模块以及所述待供电单元一一对应电连接。
  16. 如权利要求14所述的供电装置,其特征在于,所述供电模块为多个,所述待供电器件包括多个待供电单元,所述供电模块、所述通流模块以及所述待供电单元一一对应电连接。
  17. 一种单板,其特征在于,包括通信接口,以及如权利要求1~16任一项所述的供电装置,其中,所述待供电器件通过所述通信接口与外部设备进行通信。
PCT/CN2020/101715 2019-11-29 2020-07-13 一种供电装置及单板 WO2021103575A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205874.X 2019-11-29
CN201911205874.XA CN111065199A (zh) 2019-11-29 2019-11-29 一种供电装置及单板

Publications (1)

Publication Number Publication Date
WO2021103575A1 true WO2021103575A1 (zh) 2021-06-03

Family

ID=70299393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101715 WO2021103575A1 (zh) 2019-11-29 2020-07-13 一种供电装置及单板

Country Status (2)

Country Link
CN (1) CN111065199A (zh)
WO (1) WO2021103575A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065199A (zh) * 2019-11-29 2020-04-24 华为技术有限公司 一种供电装置及单板
CN112333915B (zh) * 2020-11-20 2024-07-02 成都天锐星通科技有限公司 一种供电一致的pcb板、芯片系统及相控阵天线
CN115237231A (zh) * 2021-04-23 2022-10-25 华为技术有限公司 一种包括供电装置的电子设备和计算系统
CN115411956A (zh) * 2021-05-28 2022-11-29 华为技术有限公司 一种电流传输板、芯片系统及电子设备
CN115087193B (zh) * 2022-06-30 2024-08-30 苏州浪潮智能科技有限公司 一种印制电路板、印制电路板供电系统、仿真方法及装置
CN115500008B (zh) * 2022-08-30 2024-07-19 超聚变数字技术有限公司 计算节点及计算设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183271A (ja) * 1992-01-07 1993-07-23 Mitsubishi Electric Corp 配線基板及びその製造方法
CN1141572A (zh) * 1995-07-25 1997-01-29 北京汇众实业总公司 电路板大电流导电用铜箔焊装技术
US20060050494A1 (en) * 2004-09-03 2006-03-09 Cotek Electronic Ind. Co. Ltd. DC-AC power inverter
US20060048968A1 (en) * 2004-09-03 2006-03-09 Wei-Kuang Chen Construction for DC to AC power inverter
CN201550356U (zh) * 2009-11-20 2010-08-11 陈赞棋 能负载大电流的电路板
CN102711377A (zh) * 2012-05-09 2012-10-03 敬鹏(常熟)电子有限公司 用于传输大电流的电路板
CN111065199A (zh) * 2019-11-29 2020-04-24 华为技术有限公司 一种供电装置及单板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100536294C (zh) * 2005-01-21 2009-09-02 株式会社日立制作所 电源装置、使用该电源装置的电源系统及电子装置
CN205670879U (zh) * 2016-06-03 2016-11-02 北京比特大陆科技有限公司 电路板
CN106129494B (zh) * 2016-07-28 2018-05-18 广东欧珀移动通信有限公司 电池及其保护电路板和电子设备
CN109587947A (zh) * 2018-12-24 2019-04-05 威创集团股份有限公司 一种电路板
CN110445217A (zh) * 2019-08-15 2019-11-12 珠海格力电器股份有限公司 控制充电快慢的方法、充电数据线及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183271A (ja) * 1992-01-07 1993-07-23 Mitsubishi Electric Corp 配線基板及びその製造方法
CN1141572A (zh) * 1995-07-25 1997-01-29 北京汇众实业总公司 电路板大电流导电用铜箔焊装技术
US20060050494A1 (en) * 2004-09-03 2006-03-09 Cotek Electronic Ind. Co. Ltd. DC-AC power inverter
US20060048968A1 (en) * 2004-09-03 2006-03-09 Wei-Kuang Chen Construction for DC to AC power inverter
CN201550356U (zh) * 2009-11-20 2010-08-11 陈赞棋 能负载大电流的电路板
CN102711377A (zh) * 2012-05-09 2012-10-03 敬鹏(常熟)电子有限公司 用于传输大电流的电路板
CN111065199A (zh) * 2019-11-29 2020-04-24 华为技术有限公司 一种供电装置及单板

Also Published As

Publication number Publication date
CN111065199A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021103575A1 (zh) 一种供电装置及单板
US6580611B1 (en) Dual-sided heat removal system
US6356448B1 (en) Inter-circuit encapsulated packaging for power delivery
RU2013100003A (ru) Технологии, системы и аппаратура миниатюризации применительно к источникам питания, памяти, соединителям и светодиодам
WO2019192147A1 (zh) 一种印刷电路板及移动设备
TW202144958A (zh) 桌上型電腦的供電結構
US20100020505A1 (en) Printed Circuit Board Assembly Having Multiple Land Grid Arrays for Providing Power Distribution
CN109714882B (zh) 移动终端及柔性线路板
US6741480B2 (en) Integrated power delivery with flex circuit interconnection for high density power circuits for integrated circuits and systems
CN219320333U (zh) 一种翻盖型射频测试夹具
WO2023273635A1 (zh) 一种滤波模组和电子设备
CN212811639U (zh) 一种嵌入式大功率微波功能模块
WO2021103848A1 (zh) 一种单板散热结构
CN111865235B (zh) 一种嵌入式大功率微波功能模块
US6809260B1 (en) Apparatus and method for an integrated high-performance electrical interconnect
CN113271726A (zh) 一种金手指三面镀金的方法
CN108811314A (zh) 一种基于高厚径比深孔电镀技术高频高速电子线路板
CN219456836U (zh) 计算机主板及其供电电路
US20230014167A1 (en) Thermal heatsink systems and methods in information handling systems
CN105789938B (zh) 机架内部供电方法、总线式供电板以及通信设备
CN215581909U (zh) 一种镀金电路板
US20050092988A1 (en) Mounting member of semiconductor device, mounting configuration of semiconductor device, and drive unit of semiconductor device
US20080032518A1 (en) System and method for distributing power in an electronic system
CN221863150U (zh) 一种用于bga芯片的电控板散热结构
US11864330B2 (en) Thermally isolating mounting boss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894466

Country of ref document: EP

Kind code of ref document: A1