WO2021103268A1 - 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用 - Google Patents

碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021103268A1
WO2021103268A1 PCT/CN2019/130377 CN2019130377W WO2021103268A1 WO 2021103268 A1 WO2021103268 A1 WO 2021103268A1 CN 2019130377 W CN2019130377 W CN 2019130377W WO 2021103268 A1 WO2021103268 A1 WO 2021103268A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
solution
preparation
nitrogen
carbon
Prior art date
Application number
PCT/CN2019/130377
Other languages
English (en)
French (fr)
Inventor
王生杰
刘方园
晏梓竣
张亚楠
修阳
徐鲁艺
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2021103268A1 publication Critical patent/WO2021103268A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • This application belongs to the technical field of inorganic nano materials, and in particular relates to a carbon and nitrogen co-doped titanium dioxide nano material, and a preparation method and application thereof.
  • NADH Reduced nicotinamide adenine dinucleotide
  • a coenzyme plays a very important auxiliary role in the biochemical synthesis system; according to statistics, more than 400 enzymatic reactions require the participation of NADH.
  • NADH directly participates in the enzymatic reaction as a reducing agent.
  • NADH is expensive, and is usually much more expensive than the product obtained from the enzymatic reaction. Therefore, it is necessary to regenerate the coenzyme and use it cyclically.
  • the methods of NADH regeneration mainly include photochemical method, electrochemical method, and enzymatic method.
  • Regeneration of coenzyme by photochemical method is an important part of coenzyme regeneration research.
  • titanium dioxide TiO 2
  • Previous researchers reported in the use of titanium dioxide to prepare NADH systems Jiang Z. et al. "Industrial and Engineering Chemistry Research", 2005, 44, 4165-4170; Wu Y. et al. "ACS Catalysis", 2018, 8, 5664-5674 )
  • the participation of electronic media is required, which makes the entire reaction system complex and greatly increases the cost.
  • This application proposes a carbon and nitrogen co-doped titanium dioxide nanomaterial, and a preparation method and application thereof.
  • the preparation method does not need to introduce expensive electronic mediators, and the method is simple.
  • the first embodiment of the present application provides a method for preparing carbon and nitrogen co-doped titanium dioxide nanomaterials, which includes the following steps:
  • Dissolve the polymer nonionic surfactant in the first solvent add amino acid molecules and mix well, adjust the pH of the system to 2-6 to obtain solution A;
  • the solution B is gradually added dropwise to the solution A under stirring, and the titanium dioxide gel is obtained by heating reaction;
  • the obtained titanium dioxide gel is dried at 60-120° C. and then calcined to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the molar ratio of the polymer nonionic surfactant, amino acid molecule and titanium dioxide precursor is (0.5-5):(0.2-1):1.
  • the polymer nonionic surfactant is selected from at least one of polyoxyethylene polyoxypropylene block copolymers F68, P123, P105 and F127, and its concentration is 0.2-2mol/L, preferably 0.2 -1mol/L, more preferably 1mol/L.
  • the polymer nonionic surfactant includes at least one of polyoxyethylene polyoxypropylene block copolymer F68, P123, P105 or F127; its concentration is 0.2-2mol/L, preferably It is 0.2-1 mol/L, more preferably 1 mol/L.
  • the amino acid molecule is selected from at least one of alanine, glycine, leucine and isoleucine, and its concentration is 0.1-1 mol/L, preferably 0.1-0.5 mol/L, more preferably 0.5mol/L.
  • the amino acid molecule includes at least one of alanine, glycine, leucine or isoleucine; its concentration is 0.1-1 mol/L, preferably 0.1-0.5 mol/L, more Preferably it is 0.5 mol/L.
  • the first solvent is a mixture of ethanol and water, and its volume ratio is (0.5-2):1.
  • the organic solvent is selected from at least one of methanol, ethanol, isopropanol and acetone;
  • the titanium dioxide precursor is selected from at least one of ethyl titanate, isopropyl titanate and n-butyl titanate, which The concentration is 0.5-5mol/L.
  • the organic solvent includes at least one of methanol, ethanol, isopropanol, or acetone.
  • the titanium dioxide precursor includes at least one of ethyl titanate, isopropyl titanate or n-butyl titanate; its concentration is 0.5-5 mol/L.
  • the volume ratio of solution A to solution B is (2-6):1.
  • the heating temperature is 30-70°C, and the heating time is 12-36 hours; the calcination temperature is 300-600°C, and the calcination time is 2-6 hours.
  • the second embodiment of the present application provides a carbon and nitrogen co-doped titanium dioxide nanomaterial prepared according to the preparation method described in any one of the above technical solutions.
  • the third embodiment of the present application provides an application of the carbon and nitrogen co-doped titanium dioxide nanomaterial as a photocatalytic material in the regeneration method of reduced nicotinamide adenine dinucleotide NADH according to the above technical solution .
  • the regeneration conversion rate of reduced nicotinamide adenine dinucleotide NADH is more than 70%.
  • At least one embodiment of the present application uses the principle of organic-inorganic interface to prepare carbon and nitrogen co-doped titanium dioxide nanomaterials through hydrolysis and polycondensation of titanium dioxide precursors controlled by organic molecules; its absorption in the visible light region is greatly enhanced When it is used as a photocatalyst for photochemical conversion reaction, there is no need to introduce expensive electronic mediators, and it can make NADH have a conversion efficiency of more than 70%.
  • the preparation method provided by at least one embodiment of the present application is simple, environmentally friendly, and low in price, which is convenient for further industrial production and commercial promotion.
  • Figure 1 is a schematic diagram of a carbon and nitrogen co-doped titanium dioxide nano-photocatalytic material provided by an embodiment
  • 2A is an X-ray photoelectron spectroscopy (XPS) of a titanium dioxide nanomaterial provided by an embodiment
  • Figure 2B is the C1s spectrum in Figure 2A;
  • Figure 2C shows the N1s spectrum in Figure 2A
  • FIG. 3 is a diffuse reflection ultraviolet-visible spectrum of a titanium dioxide nanomaterial and a commercial titanium dioxide P25 provided by an embodiment
  • FIG. 4 is an ultraviolet-visible absorption spectrum of the titania nanomaterial and commercial titania P25 provided by an embodiment as the photocatalyst, during the catalytic NADH regeneration process, the reaction time is 2 hours;
  • Figure 5A is the standard curve of absorbance in the UV-Vis absorption spectra corresponding to NADH aqueous solutions of different concentrations
  • FIG. 5B is a graph showing the relationship between the conversion yield of NADH and the irradiation time when the titanium dioxide nanomaterial and the commercial titanium dioxide P25 provided by an embodiment are used as the photocatalyst.
  • Figure 6 is a NADH conversion curve when titanium dioxide nanomaterials prepared with different amounts of amino acids are used as catalysts provided in an embodiment.
  • FIG. 7 is a NADH conversion curve of titanium dioxide nanomaterials prepared with different amounts of polymer nonionic surfactant (F127) provided in an embodiment as a catalyst.
  • the first embodiment of the present application provides a method for preparing carbon and nitrogen co-doped titanium dioxide nanomaterials, including the following steps:
  • Dissolve the polymer nonionic surfactant in the first solvent add amino acid molecules and mix well, adjust the pH of the system to 2-6 to obtain solution A;
  • solution B was gradually added dropwise to solution A, and heated to react to obtain titanium dioxide gel
  • the obtained titanium dioxide gel is dried at 60-120° C. and then calcined to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the principle of the preparation method is that the precursor of titanium is added to a solution containing water, a polymer nonionic surfactant and an amino acid molecule, and the target product is obtained through a hydrolysis and polycondensation reaction.
  • the advantage of this reaction is that based on the gel sol method, the production of titanium dioxide and the doping of carbon and nitrogen are achieved simultaneously through interface interaction under the control of the organic matrix.
  • the reaction conditions are mild and the product structure is easy to control.
  • the carbon and nitrogen doping elements in the titanium dioxide nanomaterial mainly come from amino acids.
  • the sol-gel method can be used to prepare titanium dioxide nanomaterials.
  • the polymer nonionic surfactant is selected from at least one of polyoxyethylene polyoxypropylene block copolymers F68, P123, P105 or F127, and in solution A, its concentration is 0.2-2 mol /L.
  • surfactants are composed of a hydrophilic head group and a hydrophobic tail chain.
  • the hydrophilic head group can be some charged ions, such as amino groups, carboxyl groups, etc., or some uncharged molecules, such as polyethylene glycol segments.
  • Surfactants that use uncharged molecules as hydrophilic head groups are called non-ionic surfactants.
  • Nonionic surfactants with larger molecular weights are called polymer nonionic surfactants (generally, the molecular weight is considered to be above 2000, but there is no strict limitation), such as polyoxyethylene polyoxypropylene block copolymers.
  • the role of the polymer nonionic surfactant is to provide a template on the one hand to regulate the polycondensation reaction of the titanium dioxide precursor and the doping of nonionic elements; on the other hand, It is to provide a mesoporous structure, organic components are removed after calcination, and the original polymer non-ionic surfactants occupy positions as a pore structure, which increases the specific surface area and catalytic activity of the synthesized carbon and nitrogen co-doped titanium dioxide nanomaterials. Therefore, the concentration of polymer nonionic surfactants is more critical.
  • the concentration of the polymer nonionic surfactant is 0.2-1 mol/L, more preferably 1 mol/L, within this range, as the concentration of the polymer nonionic surfactant increases , The ability to catalyze the regeneration of NADH gradually increases. When it is greater than 1M, the effect decreases as the concentration of polymer nonionic surfactant increases.
  • the amino acid molecule is selected from at least one of alanine, glycine, leucine or isoleucine, and in solution A, its concentration is 0.1-1 mol/L. It is understandable that both carbon and nitrogen are contained in amino acid molecules, both of which have potential as dopants. However, whether the desired catalytic effect can be achieved after doping is also affected by many factors. For example, the nature of the amino acid molecule itself will affect it. The interaction with the template and the titanium dioxide precursor will affect the doping effect. In addition, some amino acid molecules also contain elements such as S, which will also affect the final doped product structure and properties.
  • this embodiment lists the above-mentioned amino acid molecules as dopants, and sets their concentration within the above-mentioned range, because the doping concentration is less than 0.1 mol/L or greater than 1 mol/L will lead to the catalytic performance of the sample reduce.
  • the concentration of the amino acid molecule is 0.1-0.5 mol/L, more preferably 0.5 mol/L; within this range, as the amount of alanine increases, the ability to catalyze the regeneration of NADH gradually increases. When it is greater than 0.5M, the effect decreases as the amount of alanine increases.
  • the first solvent is a mixture of ethanol and water, and its volume ratio is (0.5-2):1.
  • the organic solvent is selected from at least one of methanol, ethanol, isopropanol or acetone.
  • the titanium dioxide precursor can only generate titanium dioxide through hydrolysis and polycondensation reaction, so water is a necessary reaction material; it can be seen that the first solvent contains at least water. Because the reaction rate of some titanium dioxide precursors in pure water is too fast and not easy to control, the first solvent adopts a mixed solvent method to reduce the rate of the hydrolysis polycondensation reaction.
  • Ethanol is a commonly used solvent and has good solubility with water and titanium dioxide precursors. However, it is not limited to ethanol, and other solvents, such as methanol, isopropanol, acetone, etc., can also be used, and those skilled in the art can choose according to actual conditions to achieve its purpose.
  • the molar ratio of the polymer nonionic surfactant, amino acid molecule and titanium dioxide precursor is (0.5-5):(0.2-1):1.
  • the multi-dimensional angles to be considered in the preparation of carbon and nitrogen co-doped titanium dioxide nanomaterials by the above preparation method such as the selected polymer nonionic surfactants, amino acid molecules and titanium dioxide precursors, and their respective concentrations
  • the setting and the proportion of the three collocations will have a more important impact on the final target product.
  • the molar ratio of the above three components is limited to the above range, and the ratio of the three components can have multiple options, such as 0.5:0.2:1, 0.5:0.5:1, 0.5 :0.8:1, 0.5:1:1, 1:0.2:1, 1:0.5:1, 1:0.6:1, 1:1:1, 2:0.2:1, 2:0.4:1, 2:0.7 :1, 2:1:1, 3:0.2:1, 3:0.5:1, 3:0.9:1, 3:1:1, 4:0.2:1, 4:0.4:1, 4:0.6:1 , 4:0.8:1, 4:1:1, 5:0.2:1, 5:0.5:1, 5:0.8:1, 5:1:1, etc.
  • the titanium dioxide precursor is selected from at least one of ethyl titanate, isopropyl titanate or n-butyl titanate, and in solution B, its concentration is 0.5-5 mol/L.
  • concentration 0.5-5 mol/L.
  • it can be 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 mol/L, or any value within the above range.
  • the volume ratio of solution A to solution B is (2-6):1.
  • solution A contains polymer nonionic surfactants and amino acids, which are used as templates and dopants to regulate the polycondensation reaction of the titanium dioxide precursor in solution B and the final doped structure. Therefore, solutions A and The proportion of solution B will affect the hydrolysis and polycondensation process of the titanium dioxide precursor on the one hand, on the other hand, it will affect the product structure such as doping amount, doping site, doping structure, pore structure and specific surface area, and affect its final catalysis active. Therefore, in this embodiment, the ratio is set to the above ratio, for example, it can be 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1 or a ratio within the above range relationship.
  • the heating temperature is 30-70°C, and the heating time is 12-36 hours; the calcination temperature is 300-600°C, and the calcination time is 2-6 hours.
  • the reaction parameters in the heating reaction and the calcination reaction can be selected by those skilled in the art within the above range according to actual needs.
  • the heating temperature can be 35, 40, 45, 50, 55, 60, 65°C.
  • the time can be 15, 18, 20, 22, 25, 28, 30, 32 hours or any point value in the above range
  • the calcination temperature can be 350, 380, 400, 420, 450 , 460, 500, 530, 550 or any point value in the above range
  • the calcination time can be 3, 3.5, 4, 4.5, 5, 5.5 hours or any point value in the above range.
  • the second embodiment of the present application provides a carbon and nitrogen co-doped titanium dioxide nanomaterial prepared according to the preparation method described in any one of the above embodiments, as shown in FIG. 1.
  • the doped titanium dioxide nanomaterial provided by at least one embodiment of the present application on the one hand, co-doping of carbon and nitrogen changes the energy band structure and improves the responsiveness to visible light, so the utilization efficiency of solar energy is higher; on the other hand, , The introduction of mesoporous structure increases the specific surface area of the applied material and can increase the chance of contact between the active site and the reactant, which plays a more important role in the improvement of its catalytic activity.
  • the third embodiment of the present application provides an application of the carbon and nitrogen co-doped titanium dioxide nanomaterial as a photocatalytic material in the NADH regeneration method of reduced nicotinamide adenine dinucleotide according to the above embodiment.
  • the regeneration conversion rate of reduced nicotinamide adenine dinucleotide NADH is more than 70%.
  • the concentration of polyoxyethylene polyoxypropylene block copolymer P123 is 2mol/L, and the concentration of alanine molecule is 0.5mol/L;
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 2:1), and the reaction is heated at 30°C for 36 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 60°C, it is calcined at 300°C for 6 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the polyoxyethylene polyoxypropylene block copolymer P105 is dissolved in a mixture of ethanol and water with a volume ratio of 1:1, then glycine molecules are added to mix well, and the pH of the system is adjusted to 2-6 to obtain solution A, wherein The concentration of oxyethylene polyoxypropylene block copolymer P105 is 1 mol/L, and the concentration of glycine molecule is 0.2 mol/L;
  • solution B Dissolve isopropyl titanate as a titanium dioxide precursor in ethanol to obtain solution B, where the concentration of isopropyl titanate is 1 mol/L;
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 3.5:1), and the reaction is heated at 40°C for 30 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 80°C, it is calcined at 400°C for 5 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • n-butyl titanate as a titanium dioxide precursor in ethanol to obtain solution B, where the concentration of n-butyl titanate is 1 mol/L;
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 4:1), and the reaction is heated at 55° C. for 22 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 100° C., it is calcined at 500° C. for 3.5 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 6:1), and the reaction is heated at 70°C for 12 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 120°C, it is calcined at 600°C for 2 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the concentration of polyoxyethylene polyoxypropylene block copolymer F68 is 0.5 mol/L, and the concentration of isoleucine molecule is 1 mol/L;
  • solution B Dissolve isopropyl titanate as a titanium dioxide precursor in ethanol to obtain solution B, where the concentration of ethyl titanate is 1 mol/L;
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 4.5:1), and the reaction is heated at 50°C for 26 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 90°C, it is calcined at 350°C for 5.5 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • the concentration of polyoxyethylene polyoxypropylene block copolymer F68 is 5 mol/L, and the concentration of isoleucine molecule is 0.2 mol/L;
  • the solution B is gradually added dropwise to the stirred solution A (the volume ratio of solution A to solution B is 5:1), and the reaction is heated at 60°C for 18 hours to obtain a titanium dioxide gel;
  • titanium dioxide gel After drying the obtained titanium dioxide gel at 110°C, it is calcined at 450°C for 4 hours to obtain carbon and nitrogen co-doped titanium dioxide nanomaterials.
  • Example 3 Using diffuse reflection ultraviolet-visible spectrophotometer, model: UV-1700PharmaSpec, the following tests were carried out at an experimental temperature of 25°C.
  • the material obtained in the above example 3 is taken as an example for illustration.
  • the test or comparison results obtained in other examples are also implemented Example 3 is similar, so I won't repeat them one by one.
  • ultrafine barium sulfate is used as a reference, the sample is coated on a barium sulfate sheet and then measured, and the measurement range is 200-800nm.
  • NADH has an absorption at 340 nm in the ultraviolet-visible spectrum, which is usually related to its concentration (as shown in FIG. 4).
  • the NADH content in the NADH regeneration system is measured with a transmission ultraviolet-visible spectrophotometer.
  • Adopt X-ray electronic energy spectrometer model: ESCALAB 250, instrument manufacturer: ThermoFisher SCIENTIFIC company, select Al target, K ⁇ ray.
  • Example 3 Take the material obtained in Example 3 above as an example for illustration. Spread the powder sample evenly on the aluminum foil, cover with a piece of aluminum foil, flatten it with a hydraulic press, uncover it, and stick the pressed sample on the sample holder with conductive tape. Put it into the sample chamber of the instrument and vacuum for 10 hours for testing.
  • the reaction solution is composed of 13 mg NAD + , 2 g TEOA, 15 mg photocatalyst (nano material) and phosphate buffer (pH 6.4).
  • the total volume of the solution is 20 mL.
  • the reaction system was sonicated for 15 minutes in the dark to achieve the adsorption/desorption equilibrium. After turning on the light, samples were taken every one hour, and the absorbance of the solution at 340nm was measured with an ultraviolet-visible spectrophotometer. Determine the concentration of NADH.
  • FIG. 4 shows the C and N co-doped titanium dioxide nanomaterials and commercial titanium dioxide P25 provided in Example 3 of this application as catalysts, and the catalytic reaction is carried out for 2 hours.
  • the UV-visible absorption spectrum curves of the samples can be seen from it. It is shown that when the C and N co-doped titanium dioxide nanomaterials provided in the examples of this application are used as the catalyst, the absorption peak intensity of the system at 340 nm is significantly higher than the absorption peak intensity when the commercial titanium dioxide P25 is used as the catalyst, indicating this Sometimes more NADH is produced.
  • FIG. 5B shows the NADH conversion rate curves in the presence of different catalysts.
  • the C and N co-doped titanium dioxide nanomaterials provided in the examples of this application have excellent photocatalytic conversion effects.
  • the conversion rate reached more than 70% within the time range of, and when commercialized titanium dioxide P25 was used as the photocatalyst under the same conditions, the NADH conversion rate was less than 10%, which fully shows that the photocatalyst provided by this application has excellent photocatalyst Catalytic effect.
  • Changing the ratio of polymer nonionic surfactant, amino acid, and titanium dioxide has an impact on the catalytic performance of the final product.
  • adjusting the amount of amino acid is used as an example for illustration.
  • the specific test process is the same as in Example 1, the difference is that the concentration of the polymer nonionic surfactant (P123, 2M) and the titanium dioxide precursor (ethyl titanate, 1M) is fixed, and only the amino acid (alanine) is changed.
  • a series of titanium dioxide nanomaterials co-doped with C and N were prepared with different dosages and used as catalysts. According to the test method provided in Example 10, the photocatalytic effects of the materials prepared with different amounts of amino acids were studied.
  • Changing the ratio of polymer nonionic surfactant, amino acid, and titanium dioxide has an impact on the catalytic performance of the final product.
  • adjusting the amount of polymer nonionic surfactant is taken as an example for illustration.
  • the specific test process is the same as in Example 1, the difference is that the concentration of fixed amino acid (alanine, 0.5M) and titanium dioxide precursor (ethyl titanate, 1M) is fixed, and only the polymer nonionic surfactant (here A series of C and N co-doped titanium dioxide nanomaterials were prepared at the concentration of F127) and used as photocatalysts. According to the test method provided in Example 10, the preparation of different polymer nonionic surfactants was studied. The photocatalytic effect of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用,该制备方法包括(1)将高分子非离子型表面活性剂溶于第一溶剂中,加入氨基酸分子混匀后,调节体系pH至2-6,得到溶液A;(2)将二氧化钛前驱体溶于有机溶剂中,得到溶液B;(3)将溶液B逐步滴加到搅拌下的溶液A中,通过加热反应,得到二氧化钛凝胶;(4)将所得二氧化钛凝胶于60-120℃下干燥后,煅烧,得到碳、氮共掺杂的二氧化钛纳米材料。所得到的纳米材料可作为光催化材料而有效应用于NADH的再生中。

Description

碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用 技术领域
本申请属于无机纳米材料技术领域,尤其涉及一种碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用。
背景技术
还原型烟酰胺腺嘌呤二核苷酸(缩写为NADH)作为辅酶在生化合成体系中起着非常重要的辅助作用;据统计,400个以上的酶促反应需要NADH的参与。NADH作为还原剂直接参与酶促反应。然而,NADH的价格昂贵,通常比酶促反应所得到的产物要贵得多。因此,对辅酶进行再生并循化使用是很有必要的。
目前,NADH再生的方法主要有光化学法、电化学法、酶法。光化学法再生辅酶是辅酶再生研究中的一个重要部分。在众多的光催化剂中,二氧化钛(TiO 2)由于具有化学性质稳定、无毒、抗光腐蚀和成本低等优点,在光电转化和光催化领域具有广阔的应用前景。先前研究者所报导的利用二氧化钛制备NADH的体系中(Jiang Z.等《工业和工程化学研究》,2005,44,4165-4170;Wu Y.等《ACS催化》,2018,8,5664-5674)需要电子媒介体的参与,使得整个反应体系复杂,成本大幅度提高。
发明内容
本申请提出一种碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用,该制备方法无需引入昂贵的电子媒介体,且方法简单。
为了达到上述目的,本申请的第一种实施方式提供了一种碳、氮共掺杂的二氧化钛纳米材料的制备方法,包括以下步骤:
将高分子非离子型表面活性剂溶于第一溶剂中,加入氨基酸分子混匀后,调节体系pH至2-6,得到溶液A;
将二氧化钛前驱体溶于有机溶剂中,得到溶液B;
将溶液B于搅拌下逐步滴加到溶液A中,通过加热反应,得到二氧化钛凝胶;
将所得二氧化钛凝胶于60-120℃下干燥后,煅烧,得到碳、氮共掺杂的二氧化钛纳米材料。
作为优选,所述高分子非离子型表面活性剂、氨基酸分子和二氧化钛前驱体的摩尔比为(0.5-5):(0.2-1):1。
作为优选,所述高分子非离子型表面活性剂选自聚氧乙烯聚氧丙烯嵌段共聚物F68、P123、P105和F127中的至少一种,其浓度为0.2-2mol/L,优选为0.2-1mol/L,更优选为1mol/L。
或者,可选地,所述高分子非离子型表面活性剂包括聚氧乙烯聚氧丙烯嵌段共聚物F68、P123、P105或F127中的至少一种;其浓度为0.2-2mol/L,优选为0.2-1mol/L,更优选为1mol/L。
作为优选,所述氨基酸分子选自丙氨酸、甘氨酸、亮氨酸和异亮氨酸中的至少一种,其浓度为0.1-1mol/L,优选为0.1-0.5mol/L,更优选为0.5mol/L。
或者,可选地,所述氨基酸分子包括丙氨酸、甘氨酸、亮氨酸或异亮氨酸中的至少一种;其浓度为0.1-1mol/L,优选为0.1-0.5mol/L,更优选为0.5mol/L。
作为优选,所述第一溶剂为乙醇和水的混合物,其体积比为(0.5-2):1。所述有机溶剂选自甲醇、乙醇、异丙醇和丙酮中的至少一种;所述二氧化钛前驱体选自钛酸乙酯、钛酸异丙酯和钛酸正丁酯中的至少一种,其浓度为0.5-5mol/L。
或者,可选地,所述有机溶剂包括甲醇、乙醇、异丙醇或丙酮中的至少一种。所述二氧化钛前驱体包括钛酸乙酯、钛酸异丙酯或钛酸正丁酯中的至少一种;其浓度为0.5-5mol/L。
作为优选,溶液A与溶液B的体积比为(2-6):1。
作为优选,加热温度为30-70℃,加热时间为12-36小时;煅烧温度为300-600℃,煅烧时间为2-6小时。
本申请的第二种实施方式提供了一种根据上述任一项技术方案所述的制备方法制备得到的碳、氮共掺杂的二氧化钛纳米材料。
本申请的第三种实施方式提供了一种根据上述技术方案所述的碳、氮共掺杂的二氧化钛纳米材料作为光催化材料在还原型烟酰胺腺嘌呤二核苷酸NADH再生方法中的应用。
作为优选,还原型烟酰胺腺嘌呤二核苷酸NADH再生的转化率达70%以上。
与现有技术相比,本申请的优点和积极效果在于:
1、本申请的至少一种实施方式利用有机-无机界面作用原理,通过有机分子调控的二氧化钛前驱体水解缩聚反应制备了碳、氮共掺杂的二氧化钛纳米材料;其在可见光区的吸收大大增强,以其作为光催化剂用于光化学转化反应时,不需要引入昂贵的电子媒介体,其自身就可以使NADH具有超过70%的转化效率。
2、与现有技术相比,本申请的至少一种实施方式提供的制备方法简单、环境友好,且价格低廉,便于进一步的工业化生成和商业推广。
附图说明
图1为一种实施例所提供的碳、氮共掺杂二氧化钛纳米光催化材料示意图;
图2A为一种实施例所提供的二氧化钛纳米材料的X射线光电子能谱(XPS);
图2B为图2A中的C 1s谱图;
图2C图2A中的N 1s谱图;
图3为一种实施例所提供的二氧化钛纳米材料和商品化二氧化钛P25的漫反射紫外-可见光谱;
图4为一种实施例所提供的二氧化钛纳米材料和商品化二氧化钛P25为光催化剂时,在催化NADH再生过程中,反应2个小时时的紫外-可见吸收光谱;
图5A为不同浓度NADH水溶液所对应紫外-可见吸收光谱中吸光度的标准曲线;
图5B为一种实施例所提供的二氧化钛纳米材料和商品化二氧化钛P25为光催化剂时,NADH的转化产率与辐照时间的关系曲线。
图6为一种实施例所提供的由不同氨基酸用量所制备的二氧化钛纳米材料为催化剂时的NADH转化曲线。
图7为一种实施例所提供的由不同高分子非离子型表面活性剂(F127)用量所制备的二氧化钛纳米材料为催化剂时的NADH转化曲线。
具体实施方式
下面将对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请第一种实施方式提供了一种碳、氮共掺杂的二氧化钛纳米材料的制备方法,包括以下步骤:
将高分子非离子型表面活性剂溶于第一溶剂中,加入氨基酸分子混匀后,调节体系pH至2-6,得到溶液A;
将二氧化钛前驱体溶于有机溶剂中,得到溶液B;
于搅拌下,将溶液B逐步滴加到溶液A中,通过加热反应,得到二氧化钛凝胶;
将所得二氧化钛凝胶于60-120℃下干燥后,煅烧,得到碳、氮共掺杂的二氧化钛纳米材料。
所述制备方法的原理在于将钛的前驱体加入到含有水、高分子非离子型表面活性剂和氨基酸分子的溶液中,通过发生水解缩聚反应,得到目标产物。该反应的优势在于:基于凝胶溶胶法,在有机基质的调控下通过界面相互作用同时实现二氧化钛的生成和碳、氮元素的掺杂,该反应条件温和,产物结构容易 控制。所述二氧化钛纳米材料中的碳氮掺杂元素主要来自于氨基酸。通过溶胶-凝胶法可以较好地制备二氧化钛纳米材料。
可选地,所述高分子非离子型表面活性剂选自聚氧乙烯聚氧丙烯嵌段共聚物F68、P123、P105或F127中的至少一种,在溶液A中,其浓度为0.2-2mol/L。
常规地,表面活性剂由亲水头基和疏水尾链组成,亲水头基可以是一些带电的离子,例如氨基、羧基等,也可以是一些不带电的分子,例如聚乙二醇链段。以不带电的分子为亲水头基的表面活性剂称为非离子型表面活性。分子量较大的非离子型表面活性称为高分子非离子型表面活性剂,(通常地,认为分子量在2000以上,但是并无严格限定),例如聚氧乙烯聚氧丙烯嵌段共聚物。
需要说明的是,在上述制备方法中,高分子非离子型表面活性剂所起到的作用一方面在于提供模板,用来调控二氧化钛前驱体的缩聚反应和非离子元素的掺杂;另一方面在于提供介孔结构,煅烧后有机成分被除去,原来高分子非离子型表面活性剂占据的位置成为孔穴结构,增加所合成碳、氮共掺杂二氧化钛纳米材料的比表面积和催化活性。因此,高分子非离子型表面活性剂的浓度大小较为关键,一方面会影响其所导向的二氧化钛缩聚反应过程,另一方面会影响最终产物的介孔结构和催化活性,因此优选将其浓度设定在上述范围内,小于0.2mol/L、大于2mol/L均会影响二氧化钛缩聚反应过程以及最终产物的介孔结构和催化活性。优选地,溶液A中,所述高分子非离子型表面活性剂浓度为0.2-1mol/L,更优选为1mol/L,在该范围内,随着高分子非离子型表面活性剂浓度的增加,催化NADH再生的能力逐渐增强,当大于1M后,随着高分子非离子型表面活性剂浓度增加而效果减弱。
可选地,所述氨基酸分子选自丙氨酸、甘氨酸、亮氨酸或异亮氨酸中的至少一种,在溶液A中,其浓度为0.1-1mol/L。可以理解的是,氨基酸分子中都含有碳和氮元素,都有作为掺杂剂的潜质,但掺杂后能否达到希望的催化效果还受很多因素影响,例如氨基酸分子自身的性质会影响其与模板剂、二氧化钛前驱体的相互作用,会影响掺杂效果。另外有些氨基酸分子还含有S等元素,也会影响最终的掺杂产物结构和性质。基于掺杂效果出发,本实施方式列举了 上述氨基酸分子作为掺杂剂,并将其浓度设定在上述范围内,因为掺杂浓度小于0.1mol/L或大于1mol/L均会导致样品催化性能降低。优选地,溶液A中,所述氨基酸分子浓度为0.1-0.5mol/L,更优选为0.5mol/L;在该范围内,随着丙氨酸用量的增加,催化NADH再生的能力逐渐增强,当大于0.5M后,随着丙氨酸用量增加而效果减弱。
可选地,所述第一溶剂为乙醇和水的混合物,其体积比为(0.5-2):1。所述有机溶剂选自甲醇、乙醇、异丙醇或丙酮中的至少一种。可以理解的是,二氧化钛前驱体通过水解缩聚反应才能生成二氧化钛,因此水是必要的反应物质;可见所述第一溶剂中至少含有水。由于某些二氧化钛前驱体在纯水中的反应速率过快,不容易控制,因此第一溶剂采用混合溶剂的方法来降低水解缩聚反应的速率。乙醇是常用的溶剂,其与水和二氧化钛前驱体均有很好的溶解性。但不限于乙醇,也可采用其它溶剂,例如甲醇、异丙醇、丙酮等,本领域技术人员可根据实际情况进行选用以达到其目的。
可选地,所述高分子非离子型表面活性剂、氨基酸分子和二氧化钛前驱体的摩尔比为(0.5-5):(0.2-1):1。如前所述,通过上述制备方法制备碳、氮共掺杂的二氧化钛纳米材料所要考虑的角度多维度,例如所选用的高分子非离子型表面活性剂、氨基酸分子和二氧化钛前驱体,各自的浓度设定以及三者搭配的比例关系,其对最终的目标产物均会产生较为重要的影响。本实施例中将上述三种组分的摩尔比限定在上述范围内也正是如此,其中三者的比例关系可以有多种选择性,例如0.5:0.2:1、0.5:0.5:1、0.5:0.8:1、0.5:1:1、1:0.2:1、1:0.5:1、1:0.6:1、1:1:1、2:0.2:1、2:0.4:1、2:0.7:1、2:1:1、3:0.2:1、3:0.5:1、3:0.9:1、3:1:1、4:0.2:1、4:0.4:1、4:0.6:1、4:0.8:1、4:1:1、5:0.2:1、5:0.5:1、5:0.8:1、5:1:1等。
优选地,所述二氧化钛前驱体选自钛酸乙酯、钛酸异丙酯或钛酸正丁酯中的至少一种,在溶液B中,其浓度为0.5-5mol/L。例如可以为1、1.5、2、2.5、3、3.5、4、4.5mol/L或上述范围内的任一点值。
可选地,溶液A与溶液B的体积比为(2-6):1。正如前面所述,溶液A 中含有高分子非离子型表面活性剂和氨基酸,分别作为模板剂和掺杂剂来调控溶液B中二氧化钛前驱体的缩聚反应以及最终的掺杂结构,因此溶液A和溶液B的比例一方面会影响二氧化钛前驱体的水解缩聚过程,另一方面会影响产物结构例如掺杂量、掺杂位点、掺杂结构、孔结构以及比表面积等,并影响其最终的催化活性。因此,该实施例将其比例设定为上述比例,例如可以为2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、5.5:1或上述范围内的比例关系。
可选地,加热温度为30-70℃,加热时间为12-36小时;煅烧温度为300-600℃,煅烧时间为2-6小时。该实施方式中,对于加热反应和煅烧反应中的反应参数本领域技术人员可根据实际需求在上述范围内进行选择,例如,加热温度可以为35、40、45、50、55、60、65℃或上述范围内的任意点值,时间可以为15、18、20、22、25、28、30、32小时或上述范围内的任意点值,煅烧温度可以为350、380、400、420、450、460、500、530、550或上述范围内的任意点值,煅烧时间可以为3、3.5、4、4.5、5、5.5小时或上述范围内的任意点值。
本申请第二种实施方式提供了一种根据上述任一项实施方式所述的制备方法制备得到的碳、氮共掺杂的二氧化钛纳米材料,如图1所示。
本申请至少一种实施方式提供的掺杂的二氧化钛纳米材料一方面碳、氮的共掺杂改变了能带结构,提高了对于可见光的响应性,因此对于太阳能的利用效率更高;另一方面,介孔结构的引入,提高了所申请材料的比表面积,可增加活性位点与反应物的接触机会,这对于其催化活性的提高有着较为重要的作用。
本申请第三种实施方式提供了一种根据上述实施方式所述的碳、氮共掺杂的二氧化钛纳米材料作为光催化材料在还原型烟酰胺腺嘌呤二核苷酸NADH再生方法中的应用。优选地,还原型烟酰胺腺嘌呤二核苷酸NADH再生的转化率达70%以上。
为了更清楚详细地介绍本申请实施方式所提供的碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用,下面将结合具体实施例进行描述。
实施例1
将聚氧乙烯聚氧丙烯嵌段共聚物P123溶于体积比为0.5:1的乙醇与水的混合物中,然后加入丙氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物P123的浓度为2mol/L,丙氨酸分子的浓度为0.5mol/L;
将钛酸乙酯作为二氧化钛前驱体溶于甲醇中,得到溶液B,其中,钛酸乙酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为2:1)中,于30℃下加热反应36小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于60℃下干燥后,于300℃下煅烧6小时,得到碳、氮共掺杂的二氧化钛纳米材料。
实施例2
将聚氧乙烯聚氧丙烯嵌段共聚物P105溶于体积比为1:1的乙醇与水的混合物中,然后加入甘氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物P105的浓度为1mol/L,甘氨酸分子的浓度为0.2mol/L;
将钛酸异丙酯作为二氧化钛前驱体溶于乙醇中,得到溶液B,其中,钛酸异丙酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为3.5:1)中,于40℃下加热反应30小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于80℃下干燥后,于400℃下煅烧5小时,得到碳、氮共掺杂的二氧化钛纳米材料。
实施例3
将聚氧乙烯聚氧丙烯嵌段共聚物F127溶于体积比为1.5:1的乙醇与水的混合物中,然后加入亮氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物F127的浓度为1.2mol/L,亮氨酸分子的浓度为0.5mol/L;
将钛酸正丁酯作为二氧化钛前驱体溶于乙醇中,得到溶液B,其中,钛酸正丁酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为4:1)中,于55℃下加热反应22小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于100℃下干燥后,于500℃下煅烧3.5小时,得到碳、氮共掺杂的二氧化钛纳米材料。
实施例4
将聚氧乙烯聚氧丙烯嵌段共聚物F68溶于体积比为2:1的乙醇与水的混合物中,然后加入异亮氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物F68的浓度为0.7mol/L,异亮氨酸分子的浓度为0.25mol/L;
将钛酸乙酯作为二氧化钛前驱体溶于乙醇中,得到溶液B,其中,钛酸乙酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为6:1)中,于70℃下加热反应12小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于120℃下干燥后,于600℃下煅烧2小时,得到碳、氮共掺杂的二氧化钛纳米材料。
实施例5
将聚氧乙烯聚氧丙烯嵌段共聚物F68溶于体积比为0.8:1的甲醇与水的混合物中,然后加入丙氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物F68的浓度为0.5mol/L,异亮氨酸分子的浓度为1mol/L;
将钛酸异丙酯作为二氧化钛前驱体溶于乙醇中,得到溶液B,其中,钛酸乙酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为4.5:1)中,于50℃下加热反应26小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于90℃下干燥后,于350℃下煅烧5.5小时,得到碳、 氮共掺杂的二氧化钛纳米材料。
实施例6
将聚氧乙烯聚氧丙烯嵌段共聚物P123溶于体积比为1.6:1的异丙醇与水的混合物中,然后加入甘氨酸分子混匀后,调节体系pH至2-6,得到溶液A,其中聚氧乙烯聚氧丙烯嵌段共聚物F68的浓度为5mol/L,异亮氨酸分子的浓度为0.2mol/L;
将钛酸正丁酯作为二氧化钛前驱体溶于乙醇中,得到溶液B,其中,钛酸乙酯的浓度为1mol/L;
将溶液B逐步滴加到搅拌下的溶液A(溶液A与溶液B的体积比为5:1)中,于60℃下加热反应18小时,得到二氧化钛凝胶;
将所得二氧化钛凝胶于110℃下干燥后,于450℃下煅烧4小时,得到碳、氮共掺杂的二氧化钛纳米材料。
测试实施例7
采用漫反射紫外可见分光光度仪,型号:UV-1700PharmaSpec,于实验温度25℃下进行下述测试,以上述实施例3所得材料为例进行说明,采用其他实施例所得测试或比较结果也与实施例3相似,因此不再一一赘述。
结合漫反射紫外可见分光光度仪测量二氧化钛在可见光区的吸收,具体的,以超细硫酸钡做参比,将样品涂于硫酸钡片上压片后进行测量,测量范围200-800nm。
测试结果如图3所示,对于未掺杂的纯TiO 2样品(P25),吸光度随着波长的增加在400nm附近出现明显的下降,这是由半导体材料固有的禁带宽度决定的,纯的TiO 2只能吸收波长小于375nm的紫外光,而对于占太阳光中绝大多数的可见光吸收很少。而碳、氮元素共掺杂的样品对可见光有了明显的响应性,说明掺杂TiO 2材料在可见光下具有优异的光吸收能力。
测试实施例8
采用透射紫外可见分光光度仪,型号:UV-1700PharmaSpec,于实验温度25℃下进行下述测试,以上述实施例3所得材料为例进行说明。
NADH在紫外可见光谱中340nm处具有吸收,通常与其浓度相关(如图4所示),本实施例结合透射紫外可见分光光度仪测量NADH再生体系中NADH的含量。
首先,先配置不同浓度的NADH溶液,然后测量其在340nm处的紫外吸收,以不同浓度的NADH水溶液在340nm处的吸收峰强度为横坐标,以所对应的浓度为纵坐标,做NADH的标准曲线,如图5A所示,数据点之间具有较好的线性关系,线性方程为:y=0.00814+0.18833x,通过测量不同反应体系中340nm处的紫外可见吸收强度,可以根据此关系式来计算体系中NADH的浓度,从而进一步计算出NADH的转化率。
测试实施例9
采用X射线电子能谱仪,型号:ESCALAB 250,仪器生产厂家:ThermoFisher SCIENTIFIC公司,选用Al靶,Kα射线。
以上述实施例3所得材料为例进行说明,将粉末样品均匀铺在铝箔上,盖上一片铝箔,用液压机压平,揭开,将压成片状的样品用导电胶带粘于样品托上,放入仪器样品室内抽真空10h后进行检测。
XPS分析如图2所示,通过掺杂,C、N成功掺杂进入了二氧化钛纳米材料中,不仅在XPS全谱中出现了N的结合能峰(图2A中的N 1s位置),而且通过对其C1s(图2B)和N1s(图2C)的进一步分析表明,N以N-Ti-O形式存在,说明N元素部分取代O元素,成功掺杂进入二氧化钛晶格中,C元素存在形式为C=O、C-O,说明掺杂进入二氧化钛的部分C以碳酸盐形式存在。正是这种掺杂结构的形成,使得二氧化钛的能带结构发生了改变,对可见光的响应性提高。
测试实施例10
对比本申请实施例所提供的C、N共掺杂二氧化钛纳米材料和商品化的二氧化钛P25光催化的效果,具体实验方法如下:
反应溶液由13mg NAD +,2g TEOA,15mg光催化剂(纳米材料)和磷酸盐缓冲液(pH 6.4)组成。溶液的总体积为20mL。将该溶液置于玻璃瓶中摇匀。 使用氙灯(>400nm)作为光源,距离保持在5cm。在打开灯之前,将反应体系在黑暗中超声15分钟,以达到吸附/解吸平衡,开灯后,每隔一个小时取一次样,通过用紫外可见分光光度计测量溶液在340nm处的吸光度来确定NADH的浓度。
图4示出了分别以本申请实施例3所提供的C、N共掺杂二氧化钛纳米材料和商品化的二氧化钛P25为催化剂,催化反应进行2小时,样品的紫外可见吸收光谱曲线,从中可以看出,以本申请实施例所提供的C、N共掺杂二氧化钛纳米材料为催化剂时,体系在340nm处的吸收峰强度明显高于以商品化的二氧化钛P25为催化剂时的吸收峰强度,表明此时有更多的NADH生成。
图5B给出了不同催化剂存在时的NADH转化率曲线,在没有电子媒介物存在时,本申请实施例所提供的C、N共掺杂二氧化钛纳米材料具有优异的光催化转化效果,在所观测的时间范围内转化率达到了70%以上,而在相同条件下以商品化的二氧化钛P25作为光催化剂时,其NADH转化率不到10%,充分表明本申请所提供的光催化剂具有优异的光催化效果。
测试实施例11
改变高分子非离子型表面活性剂、氨基酸、二氧化钛的比例对最终产物的催化性能产生影响,本实施例中以调整氨基酸的用量为例进行说明。
具体试验过程同实施例1,不同之处在于固定高分子非离子型表面活性剂(P123,2M)和二氧化钛前驱体的浓度(钛酸乙酯,1M),只改变氨基酸(丙氨酸)的用量制备了一系列C、N共掺杂的二氧化钛纳米材料,并以其为催化剂,按照实施例10所提供的试验方法研究了不同氨基酸用量所制备材料的光催化效果。
如图6所示,在制备催化剂时采用不同浓度的丙氨酸,使得所制备得到的C、N共掺杂的二氧化钛纳米材料具有不同的催化效果。在0.1-1M范围内,当丙氨酸的用量为零时,几乎没有催化效果;用量小于0.05M时,催化效果不明显,当用量为0.1M时,开始逐渐起到催化效果,并随着丙氨酸用量的增加,催化NADH再生的能力逐渐增强,到0.5M时达到最大,然后随着丙氨酸用量增加而效果减弱,说明在高分子非离子型表面活性剂、氨基酸和二氧化硅前驱体 间存在有最优的浓度配比。
测试实施例12
改变高分子非离子型表面活性剂、氨基酸、二氧化钛的比例对最终产物的催化性能产生影响,本实施例中以调整高分子非离子型表面活性剂的用量为例进行说明。
具体试验过程同实施例1,不同之处在于固定氨基酸(丙氨酸,0.5M)和二氧化钛前驱体(钛酸乙酯,1M)的浓度,只改变高分子非离子型表面活性剂(此处选F127)的浓度制备了一系列C、N共掺杂的二氧化钛纳米材料,并以其为光催化剂,按照实施例10所提供的试验方法研究了不同高分子非离子型表面活性剂用量所制备材料的光催化效果。
如图7所示,在制备催化剂时采用不同用量的高分子非离子型表面活性剂,使得所制备得到的C、N共掺杂的二氧化钛纳米材料具有不同的催化效果。在0.2-2mol/L浓度范围内,随着F127的用量增加催化活性增加,在其浓度为1M时达到最大,而后随着F127浓度继续增加,其催化活性反而有降低,说明在高分子非离子型表面活性剂、氨基酸和二氧化硅前驱体间存在有最优的浓度配比。

Claims (10)

  1. 碳、氮共掺杂的二氧化钛纳米材料的制备方法,其特征在于,包括以下步骤:
    将高分子非离子型表面活性剂溶于第一溶剂中,加入氨基酸分子混匀后,调节体系pH至2-6,得到溶液A;
    将二氧化钛前驱体溶于有机溶剂中,得到溶液B;
    将溶液B于搅拌下逐步滴加到溶液A中,通过加热反应,得到二氧化钛凝胶;
    将所得二氧化钛凝胶于60-120℃下干燥后,煅烧,得到碳、氮共掺杂的二氧化钛纳米材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所加入的高分子非离子型表面活性剂、氨基酸分子和二氧化钛前驱体的摩尔比为(0.5-5):(0.2-1):1。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述高分子非离子型表面活性剂选自聚氧乙烯聚氧丙烯嵌段共聚物F68、P123、P105或F127中的至少一种,其浓度为0.2-2mol/L,优选为0.2-1mol/L,更优选为1mol/L。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述氨基酸分子选自丙氨酸、甘氨酸、亮氨酸或异亮氨酸中的至少一种,其浓度为0.1-1mol/L,优选为0.1-0.5mol/L,更优选为0.5mol/L。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述第一溶剂为乙醇和水的混合物,其体积比为(0.5-2):1;所述有机溶剂选自甲醇、乙醇、异丙醇或丙酮中的至少一种;所述二氧化钛前驱体选自钛酸乙酯、钛酸异丙酯或钛酸正丁酯中的至少一种,其浓度为0.5-5mol/L。
  6. 根据权利要求1或2所述的制备方法,其特征在于,溶液A与溶液B的体积比为(2-6):1。
  7. 根据权利要求1或2所述的制备方法,其特征在于,加热温度为30-70℃,加热时间为12-36小时;煅烧温度为300-600℃,煅烧时间为2-6小时。
  8. 一种碳、氮共掺杂的二氧化钛纳米材料,采用权利要求1-7任一项所 述的制备方法制备得到。
  9. 一种碳、氮共掺杂的二氧化钛纳米材料作为光催化材料在还原型烟酰胺腺嘌呤二核苷酸再生方法中的应用,所述纳米材料为权利要求8所述的纳米材料。
  10. 根据权利要求9所述的应用,其特征在于,还原型烟酰胺腺嘌呤二核苷酸再生的转化率达70%以上。
PCT/CN2019/130377 2019-11-25 2019-12-31 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用 WO2021103268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911165361.0 2019-11-25
CN201911165361.0A CN111530485B (zh) 2019-11-25 2019-11-25 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021103268A1 true WO2021103268A1 (zh) 2021-06-03

Family

ID=71969147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130377 WO2021103268A1 (zh) 2019-11-25 2019-12-31 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111530485B (zh)
WO (1) WO2021103268A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115430451A (zh) * 2022-08-29 2022-12-06 湖南大学 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用
CN115491410A (zh) * 2022-10-18 2022-12-20 浙江大学 二氧化钛/锌铝水滑石类氧化物纳米材料在寡核苷酸测序中的应用
CN115888677A (zh) * 2022-11-03 2023-04-04 山东欧蓝素汽车环保科技有限公司 一种制备碳-二氧化钛纳米复合多孔光催化剂的方法
CN116371391A (zh) * 2023-03-31 2023-07-04 上海闵环科技有限公司 一种光催化剂的制备方法及该催化剂的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079380A (zh) * 2020-09-11 2020-12-15 安徽景成新材料有限公司 一种制备二氧化钛的方法
CN113198441B (zh) * 2021-05-12 2023-06-02 中国石油大学(华东) 一种混晶型二氧化钛光催化剂的制备方法及应用
CN114192173A (zh) * 2021-11-05 2022-03-18 五邑大学 一种用于nadh再生的光催化剂及其制备方法和应用
CN115530183B (zh) * 2022-10-12 2023-11-07 南方科技大学 C/n@二氧化钛、金属氧化物掺杂c/n@二氧化钛及其纳米纤维与制备方法和杀菌设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655869A (zh) * 2002-03-25 2005-08-17 住友钛株式会社 二氧化钛基光催化剂及其制备方法和应用
CN101332436A (zh) * 2008-08-06 2008-12-31 华中师范大学 碳氮硫三元素共掺杂二氧化钛光催化剂的低温制备方法
CN102161506A (zh) * 2011-01-20 2011-08-24 苏州苏纳特科技有限公司 一种制备C-N共掺杂纳米TiO2粉体的方法
CN102179260A (zh) * 2011-03-21 2011-09-14 厦门大学 多组分掺杂光催化材料及其制备方法
WO2011161497A1 (en) * 2010-06-23 2011-12-29 Hcl Technologies Limited Nano mixed metal oxide thin film photocatalyst consisting of titanium, indium and tin
CN109794281A (zh) * 2019-03-14 2019-05-24 东华大学 一种基于MXene材料制备碳氮共掺杂纳米TiO2光催化剂的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386788B2 (ja) * 2004-05-11 2009-12-16 東邦チタニウム株式会社 酸化チタン光触媒の製造方法
KR100935512B1 (ko) * 2008-05-15 2010-01-06 경북대학교 산학협력단 이산화티타늄 광촉매의 제조방법 및 이에 의해 제조된이산화티타늄 광촉매
CN102078806A (zh) * 2011-01-06 2011-06-01 华东师范大学 一种掺杂介孔二氧化钛光催化剂的制备方法
CN105709792A (zh) * 2016-01-19 2016-06-29 上海师范大学 共掺杂有序介孔氧化钛/碳纳米复合材料及其制备方法
CN106981671A (zh) * 2017-04-15 2017-07-25 佛山市利元合创科技有限公司 一种三维多孔氮掺杂石墨烯及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655869A (zh) * 2002-03-25 2005-08-17 住友钛株式会社 二氧化钛基光催化剂及其制备方法和应用
CN101332436A (zh) * 2008-08-06 2008-12-31 华中师范大学 碳氮硫三元素共掺杂二氧化钛光催化剂的低温制备方法
WO2011161497A1 (en) * 2010-06-23 2011-12-29 Hcl Technologies Limited Nano mixed metal oxide thin film photocatalyst consisting of titanium, indium and tin
CN102161506A (zh) * 2011-01-20 2011-08-24 苏州苏纳特科技有限公司 一种制备C-N共掺杂纳米TiO2粉体的方法
CN102179260A (zh) * 2011-03-21 2011-09-14 厦门大学 多组分掺杂光催化材料及其制备方法
CN109794281A (zh) * 2019-03-14 2019-05-24 东华大学 一种基于MXene材料制备碳氮共掺杂纳米TiO2光催化剂的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115430451A (zh) * 2022-08-29 2022-12-06 湖南大学 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用
CN115430451B (zh) * 2022-08-29 2023-10-31 湖南大学 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用
CN115491410A (zh) * 2022-10-18 2022-12-20 浙江大学 二氧化钛/锌铝水滑石类氧化物纳米材料在寡核苷酸测序中的应用
CN115491410B (zh) * 2022-10-18 2024-05-17 浙江大学 二氧化钛/锌铝水滑石类氧化物纳米材料在寡核苷酸测序中的应用
CN115888677A (zh) * 2022-11-03 2023-04-04 山东欧蓝素汽车环保科技有限公司 一种制备碳-二氧化钛纳米复合多孔光催化剂的方法
CN115888677B (zh) * 2022-11-03 2024-04-30 山东欧蓝素汽车环保科技有限公司 一种制备碳-二氧化钛纳米复合多孔光催化剂的方法
CN116371391A (zh) * 2023-03-31 2023-07-04 上海闵环科技有限公司 一种光催化剂的制备方法及该催化剂的应用

Also Published As

Publication number Publication date
CN111530485A (zh) 2020-08-14
CN111530485B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2021103268A1 (zh) 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用
CN103170358B (zh) 一种多孔g-C3N4光催化剂及其制备方法
CN104258886B (zh) 一种磷酸银/氧空穴型二氧化钛复合光催化剂及制备方法
CN109201121B (zh) 一种双金属负载型磁性可见光复合催化材料及其制备方法和应用
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN102728342A (zh) 一种钒酸铋可见光光催化材料的制备方法
CN107359356B (zh) 一种直接甲醇燃料电池阳极催化剂及制备方法
CN102600865B (zh) 用于降解有机染料废水污染物的光催化剂及其制备方法
CN102784638A (zh) 光照原位还原法制备Pt-M(Mo,Au,Ce)/C/TiO2燃料电池阳极电催化剂新工艺
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN114308084A (zh) 一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法
CN113600221B (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用
CN110605138A (zh) 一种钽氧氮/泡沫镍光催化接触氧化膜的制备方法和应用
CN104549202A (zh) 一种锐钛矿相碳掺杂二氧化钛光催化剂的制造方法
CN107552042B (zh) 片状钛酸锰包覆凹凸棒土负载CeO2低温Photo-SCR脱硝催化剂及制备方法
CN112316936B (zh) 一种BiVO4界面光催化剂、制备方法及其应用
CN108479751A (zh) 一种Bi-Bi3NbO7复合光催化剂的制备方法及Bi-Bi3NbO7复合光催化剂
CN112642456A (zh) 一种复合光催化剂的制备方法
CN114452996B (zh) 一种g-C3N4/WO3·H2O/Pd三元复合光催化剂及其制备方法与应用
CN105032399A (zh) 一种钒酸铋-氧化锡复合光催化剂及其制备方法和应用
CN110302804B (zh) 一种VS4-TiO2/AC光催化剂及其制备方法
CN113797910B (zh) 一种含缺陷的纳米微球状钙钛矿催化剂及其制备方法和应用
CN113413907A (zh) 一种复配型近红外光光催化剂及其制备方法和应用
CN111924928A (zh) 一种FeVO4多孔纳米棒的制作方法
CN112774699A (zh) 一种氯氧化铋碳基复合材料的原位合成方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953986

Country of ref document: EP

Kind code of ref document: A1