CN116371391A - 一种光催化剂的制备方法及该催化剂的应用 - Google Patents

一种光催化剂的制备方法及该催化剂的应用 Download PDF

Info

Publication number
CN116371391A
CN116371391A CN202310345974.2A CN202310345974A CN116371391A CN 116371391 A CN116371391 A CN 116371391A CN 202310345974 A CN202310345974 A CN 202310345974A CN 116371391 A CN116371391 A CN 116371391A
Authority
CN
China
Prior art keywords
nitrogen
biochar
doped
tio
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310345974.2A
Other languages
English (en)
Inventor
刘冰岘
郭子成
高秋芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Minhuan Technology Co ltd
Original Assignee
Shanghai Minhuan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Minhuan Technology Co ltd filed Critical Shanghai Minhuan Technology Co ltd
Priority to CN202310345974.2A priority Critical patent/CN116371391A/zh
Publication of CN116371391A publication Critical patent/CN116371391A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光催化剂的制备方法,先制备生物炭,然后将10 mL TBOT逐滴加入100 mL超纯水中并搅拌12 h,然后加入一定量生物炭,继续搅拌12 h,制备所得悬浮液置于鼓风干燥箱中80°C干燥24 h,样品干燥研磨后置于管式炉中,在NH3氛围下升温至500°C煅烧1 h,其中升温速率为2°C/min,煅烧所得样品即为掺氮TiO2/掺氮生物炭复合催化剂,命名为NCNT,NCNT中的生物炭和TiO2均掺氮。本发明以HN3为氮源进行掺氮,研究发现,掺氮TiO2和掺氮生物炭对甲基橙的光催化降解具有协同增效作用。

Description

一种光催化剂的制备方法及该催化剂的应用
技术领域
本发明属于光催化剂领域,特别是涉及一种光催化剂的制备方法。
背景技术
非金属元素掺杂是TiO2改性的一种有效方法,可以改变半导体的价带电位结构,有利于带隙能量的减小,拓宽光吸收范围。
常用的非金属元素包括N,S,I,F,而氮掺最为常见且效果良好。掺杂的氮元素会在TiO2价带之上形成新的杂质能级,有利于减小禁带宽度,促进吸收边缘向更高波长转移,即掺杂的TiO2可以在可见光照射下获得显著的光催化活性。
近期研究报道,掺氮生物炭可以提高电子传递效率,提升光电化学性质。Matos等以NH3为氮源制备了氮掺杂生物炭,并进一步制备了TiO2/掺氮生物炭复合催化剂,研究发现复合催化剂活性较TiO2明显提高,掺氮生物炭中氮官能团可起到光助作用。
然而,关于TiO2和生物炭复合催化剂同时掺氮的光催化效果研究报道甚少。
有鉴于此,本案发明人进行深入研究。
发明内容
本发明的目的在于提供一种催化效果更好的光催化剂的制备方法。
本发明的另一目的在于提供一种光催化剂在甲基橙的降解中的应用。
为了达成上述目的,本发明的技术方案是:
一种光催化剂的制备方法,包括如下步骤:
将10mL TBOT逐滴加入100mL超纯水中并搅拌12h,然后加入一定量生物炭,继续搅拌12h,制备所得悬浮液置于鼓风干燥箱中80℃干燥24h,样品干燥研磨后置于管式炉中,在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min,煅烧所得样品为掺氮TiO2/掺氮生物炭复合催化剂,命名为NCNT,NCNT中的生物炭和TiO2均掺氮。
进一步地,添加的生物炭与钛的质量比的范围值为0.1:1~1:1。
进一步地,生物炭的制备方法如下:用烘干后的核桃壳用粉碎机粉碎,然后过筛,选取直径小于0.25mm的颗粒,筛选后的核桃壳粉末置于管式炉中,在N2氛围下升温至700℃进行热解,其中升温速率为10℃/min,恒温时间为2h,制备所得核桃壳生物炭命名为WB700。
进一步地,所述NCNT用于甲基橙的降解,对甲基橙的脱色效率达到97%。
采用上述技术方案后,本发明一种光催化剂的制备方法,具有以下有益效果:本发明以HN3为氮源进行掺氮,研究发现,掺氮TiO2和掺氮生物炭的复合催化剂对甲基橙的降解具有协同增效作用。NCNT应用于甲基橙的降解,对甲基橙的光催化脱色效率最高可达到97%。
附图说明
图1为本发明不同复合催化剂对甲基橙光催化降解效率图;
图2为本发明不同催化剂对甲基橙光催化降解效率图;
图3为本发明N-WB700,N-TiO2和NCNT0.2/1的SEM-EDS mapping图。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
一、催化剂制备
本发明一种光催化剂的制备方法,包括如下步骤:
(1)生物炭的制备
用去离子水将核桃壳清洗数遍后置于鼓风干燥箱中80℃烘干,烘干后核桃壳用粉碎机粉碎,然后过六十目筛,选取直径小于0.25mm的颗粒。筛选后的核桃壳粉末置于管式炉中,在N2氛围下(纯度99.99%)升温至700℃进行热解,其中升温速率为10℃/min,恒温时间为2h,制备所得核桃壳生物炭命名为WB700。
(2)掺氮TiO2/掺氮生物炭复合催化剂的制备
将10mL TBOT逐滴加入100mL超纯水中并搅拌12h,然后加入一定量生物炭(生物炭和钛的质量比分别为0.1/1、0.2/1、0.5/1、0.8/1和1/1),继续搅拌12h。制备所得悬浮液置于鼓风干燥箱中80℃干燥24h,样品干燥研磨后置于管式炉中,在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得样品即为掺氮复合催化剂,催化剂命名为NCNT0.1/1、NCNT0.2/1、NCNT0.5/1、NCNT0.8/1和NCNT1/1。
二、催化剂活性研究
1、本发明中,催化剂活性通过甲基橙的光催化降解(脱色率和矿化率)来进行评价与分析。
光催化降解实验在具有环形反应平台和高透射石英冷阱的多位光催化反应器上进行,并采用500W长弧汞灯作为紫外光源,并采用稳压电源来维持光源的强度,主波长为360nm。实验中,将10mg催化剂加入40mL的20mg/L甲基橙溶液中,并在黑暗中持续搅拌1小时以达到吸附平衡,而后打开汞灯进行照射并保持搅拌状态。为了后续分析,从试管中取出适量溶液并用0.22μm滤膜(PES,JINTENG)过滤以除去催化剂。在相同条件下重复实验。
催化剂的光催化活性通过甲基橙的脱色率和矿化率来评价。甲基橙的吸光度通过分光光度计(Lambda 750,Perkinelmer)在464nm最大吸收波长下测定以确定实时浓度从而确定脱色率。甲基橙的矿化率由总有机碳分析仪(Vario TOC,Elementar)测定的总有机碳决定。
脱色率通过公式2-2计算:
decolorization efficiency(%)=100×([MO]o-[MO]t)/[MO]0 (2-2)
其中,[MO]0-甲基橙的初始浓度(mg/L);
[MO]t-甲基橙的实时浓度(mg/L)。
矿化率通过公式2-3计算:
mineralization efficiency(%)=100×([TOC]o-[TOC]t)/[TOC]0 (2-3)
其中,[TOC]0-甲基橙的初始总有机碳(mg/L);
[TOC]t-甲基橙的实时总有机碳(mg/L)。
2、脱色率
(1)制备其他复合催化剂
制备TiO2/生物炭复合催化剂(下文简称CT);
掺氮TiO2/生物炭复合催化剂(下文简称NTC);
TiO2/掺氮生物炭复合催化剂(下文简称NCT);
掺氮TiO2/掺氮生物炭复合催化剂(下文简称NCNT)
具体制备可参考如下方法:
CT制备:TiO2/生物炭复合材料的制备采用直接水解法及后续高温煅烧法:10mLTBOT逐滴加入100mL超纯水中并搅拌12h,然后加入一定量生物炭(生物炭和钛的质量比可为0.2/1),继续搅拌12h。制备所得悬浮液置于鼓风干燥箱中80℃干燥24h,样品干燥研磨后置于管式炉中,在N2氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得样品即为复合催化剂,催化剂命名为CT 0.2/1。
NCT制备:TiO2/掺氮生物炭复合材料的制备步骤与上述CT的制制备步骤相同,主要区别在于所加生物炭为掺氮生物炭,所得催化剂命名为NCT 0.2/1。其中,掺氮生物炭的制备方法如下:将上述制备所得核桃壳生物炭(WB700)在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得即为掺氮生物炭,样品命名为N-WB700。
NTC制备:先将10mL TBOT逐滴加入100mL超纯水中并搅拌12h,然后置于鼓风干燥箱中80℃干燥24h,样品干燥后置于管式炉中,在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得样品即为掺氮TiO2,命名为N-TiO2
接着将生物炭与N-TiO2(生物炭和钛的质量比可为0.2/1)相混合制成悬浮液置于鼓风干燥箱中80℃干燥24h,样品干燥研磨后置于管式炉中,在N2氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得样品即为掺氮TiO2/生物炭复合催化剂,催化剂命名为NTC。
需要说明的是,各复合催化剂中,(掺氮)生物炭和钛的质量比分别为0.1/1、0.2/1、0.5/1、0.8/1和1/1)
CT相应命名为CT0.1/1、CT0.2/1、CT0.5/1、CT0.8/1和CT1/1
NTC相应命名为NTC0.1/1、NTC0.2/1、NTC0.5/1、NTC0.8/1和NTC1/1
NCT相应命名为NCT0.1/1、NCT0.2/1、NCT0.5/1、NCT0.8/1和NCT1/1
NCNT0.1/1、NCNT0.2/1、NCNT0.5/1、NCNT0.8/1和NCNT1/1
(2)CT和NCNT对甲基橙光催化降解效率对比图
CT和NCNT的各催化剂(CT0.1/1、CT0.2/1、CT0.5/1、CT0.8/1和CT1/1和NCNT0.1/1、NCNT0.2/1、NCNT0.5/1、NCNT0.8/1和NCNT1/1),对甲基橙光催化降解效率图如图1所示。
由图1可知,复合催化剂CT0.1/1、CT0.2/1、CT0.5/1、CT0.8/1和CT1/1对甲基橙的脱色效率分别为65.69%、76.37%、62.61%、46.57%和42.89%,而一系列同比例掺氮复合催化剂脱色效率分别为89.3%、97.56%、90.38%、74.22%和66.66%,同比分别提高35.94%、27.75%、44.35%、58.76%和55.42%。因此一系列TiO2/生物炭复合催化剂掺氮后,对甲基橙的降解率都有所提升,其催化剂性能得到提高的原因是掺氮TiO2和掺氮生物炭的协同增效效应。同时,可以观察到NCNT0.2/1拥有最高的光催化活性,这主要是由于生物炭的含量存在一个最优值,过量的生物炭对光形成了一种过滤作用,阻碍了光到达催化剂表面,抑制了TiO2表面光子吸收,从而降低了催化剂性能。
(3)NCT、NTC、NCNT对甲基橙光催化降解效率对比图
NCT、NTC、NCNT的各催化剂,对甲基橙光催化降解效率图如图2所示,图2中,横坐标表示生物炭与钛的质量比。
由图2所示,复合催化剂CT0.1/1、CT0.2/1、CT0.5/1、CT0.8/1和CT1/1对甲基橙的脱色效率分别为65.69%、76.37%、62.61%、46.57%和42.89%。而CT的生物炭掺氮复合催化剂(即NCT),NCT0.1/1、NCT0.2/1、NCT0.5/1、NCT0.8/1和NCT1/1对甲基橙的脱色效率分别为71.51%、83.24%、70.43%、55.37%和50.26%;分别提高8.86%、9.00%、12.97%、18.90%和17.18%。
而CT的TiO2掺氮复合催化剂(即NTC),NTC0.1/1、NTC 0.2/1、NTC 0.5/1、NTC 0.8/1和NTC 1/1,对甲基橙的脱色效率分别为80.77%、87.91.%、81.25%、63.43%和55.31%。而CT的生物炭和TiO2同比例掺氮复合催化剂(即NCNT)对甲基橙的脱色效率分别为89.3%、97.56%、90.38%、74.22%和66.66%。分别提高22.97%、15.11%、29.77%、36.20%和28.96%。
NCNT相比CT对甲基橙的脱色效率的提高幅度,均比NCT相比CT的脱色效率的提高幅度以及NTC相比CT的脱色效率的提高幅度的总和还大。具体地,NCNT相比CT对甲基橙的脱色效率的提高幅度,相比于NCT相比CT的脱色效率的提高以及NTC相比CT的脱色效率的提高的总和,分别又提高了12.91%、15.09%、4.38%、6.64%和20.11%。
可见,掺氮TiO2和掺氮生物炭对甲基橙的光催化降解具有协同增效作用,NCNT的催化效果不可预料。
3、催化剂的能谱图
(1)制备掺氮生物炭
用去离子水将核桃壳清洗数遍后置于鼓风干燥箱中80℃烘干,烘干后核桃壳用粉碎机粉碎,然后过六十目筛,选取直径小于0.25mm的颗粒。筛选后的核桃壳粉末置于管式炉中,在N2氛围下(纯度99.99%)升温至700℃进行热解,其中升温速率为10℃/min,恒温时间为2h,制备所得核桃壳壳生物炭命名为WB700。
将制备所得核桃壳生物炭在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得即为掺氮生物炭,样品命名为N-WB700。
(2)制备掺氮TiO2
将10mL TBOT逐滴加入100mL超纯水中并搅拌12h,然后置于鼓风干燥箱中80℃干燥24h,样品干燥后置于管式炉中,在NH3氛围下升温至500℃煅烧1h,其中升温速率为2℃/min。煅烧所得样品即为掺氮TiO2,命名为N-TiO2
本发明中,N-WB700,N-TiO2和NCNT0.2/1的SEM-EDS mapping图,如图3的(a)(b)(c)所示,其中(a)对应N-WB700、(b)对应N-TiO2、(c)对应NCNT0.2/1。
由图3可观察到三种催化剂中氮元素的存在。N-WB700的EDS-mapping图表明热解制备的核桃壳生物炭在NH3煅烧后,有氮元素掺杂进生物炭中。N-TiO2的EDS-mapping图表明水解制备的TiO2在NH3煅烧后,有氮元素掺杂进TiO2中。因此,由NCNT0.2/1的EDS-mapping图可以推断出其样品中的氮元素同时存在于生物炭和TiO2中。
上述实施例和附图并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (4)

1.一种光催化剂的制备方法,其特征在于,包括如下步骤:
将10 mL TBOT 逐滴加入100 mL超纯水中并搅拌12 h,然后加入一定量生物炭,继续搅拌12 h,制备所得悬浮液置于鼓风干燥箱中80 °C干燥24 h,样品干燥研磨后置于管式炉中,在NH3氛围下升温至500 °C煅烧1 h,其中升温速率为2 °C /min,煅烧所得样品为掺氮TiO2/掺氮生物炭复合催化剂,命名为NCNT,NCNT中的生物炭和TiO2均掺氮。
2.如权利要求1所述的光催化剂的制备方法,其特征在于:添加的生物炭与钛的质量比的范围值为0.1:1~1:1。
3.如权利要求1所述的光催化剂的制备方法,其特征在于:生物炭的制备方法如下:用烘干后的核桃壳用粉碎机粉碎,然后过筛,选取直径小于0.25 mm的颗粒,筛选后的核桃壳粉末置于管式炉中,在N2氛围下升温至700 °C进行热解,其中升温速率为10 °C /min,恒温时间为2 h,制备所得核桃壳生物炭命名为WB700。
4.如权利要求1所述的一种光催化剂的应用,其特征在于:所述 NCNT用于甲基橙的降解,对甲基橙的脱色效率达到97%。
CN202310345974.2A 2023-03-31 2023-03-31 一种光催化剂的制备方法及该催化剂的应用 Pending CN116371391A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310345974.2A CN116371391A (zh) 2023-03-31 2023-03-31 一种光催化剂的制备方法及该催化剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310345974.2A CN116371391A (zh) 2023-03-31 2023-03-31 一种光催化剂的制备方法及该催化剂的应用

Publications (1)

Publication Number Publication Date
CN116371391A true CN116371391A (zh) 2023-07-04

Family

ID=86961048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310345974.2A Pending CN116371391A (zh) 2023-03-31 2023-03-31 一种光催化剂的制备方法及该催化剂的应用

Country Status (1)

Country Link
CN (1) CN116371391A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583250A (zh) * 2004-06-03 2005-02-23 上海交通大学 掺氮二氧化钛光催化剂的制备方法
CN105709792A (zh) * 2016-01-19 2016-06-29 上海师范大学 共掺杂有序介孔氧化钛/碳纳米复合材料及其制备方法
KR20170043952A (ko) * 2015-10-14 2017-04-24 울산대학교 산학협력단 탄소 및 질소가 도핑된 이산화티타늄, 이의 제조방법 및 이를 이용한 광촉매
CN110605133A (zh) * 2019-08-22 2019-12-24 中国科学院山西煤炭化学研究所 一种掺氮钛炭复合型催化剂及其制备方法和应用
CN111450819A (zh) * 2020-04-27 2020-07-28 成都信息工程大学 生物炭改性钒酸铋催化剂、制备方法及其应用
WO2021103268A1 (zh) * 2019-11-25 2021-06-03 中国石油大学(华东) 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用
CN114768762A (zh) * 2022-04-22 2022-07-22 南京科泓环保技术有限责任公司 一种同时脱除VOCs和甲醛吸附剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583250A (zh) * 2004-06-03 2005-02-23 上海交通大学 掺氮二氧化钛光催化剂的制备方法
KR20170043952A (ko) * 2015-10-14 2017-04-24 울산대학교 산학협력단 탄소 및 질소가 도핑된 이산화티타늄, 이의 제조방법 및 이를 이용한 광촉매
CN105709792A (zh) * 2016-01-19 2016-06-29 上海师范大学 共掺杂有序介孔氧化钛/碳纳米复合材料及其制备方法
CN110605133A (zh) * 2019-08-22 2019-12-24 中国科学院山西煤炭化学研究所 一种掺氮钛炭复合型催化剂及其制备方法和应用
WO2021103268A1 (zh) * 2019-11-25 2021-06-03 中国石油大学(华东) 碳、氮共掺杂的二氧化钛纳米材料及其制备方法和应用
CN111450819A (zh) * 2020-04-27 2020-07-28 成都信息工程大学 生物炭改性钒酸铋催化剂、制备方法及其应用
CN114768762A (zh) * 2022-04-22 2022-07-22 南京科泓环保技术有限责任公司 一种同时脱除VOCs和甲醛吸附剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POW-SENG YAP ET AL., 《APPLIED CATALYSIS A: GENERAL》BIMODAL N-DOPED P25-TIO2/AC COMPOSITE: PREPARATION, CHARACTERIZATION, PHYSICAL STABILITY, AND SYNERGISTIC ADSORPTIVE-SOLAR PHOTOCATALYTIC REMOVAL OF SULFAMETHAZINE, vol. 427, 6 April 2012 (2012-04-06), pages 125 - 136 *
POW-SENG YAP ET AL., 《CATALYSIS TODAY》NITROGEN-DOPED TIO2/AC BI-FUNCTIONAL COMPOSITE PREPARED BY TWO-STAGE CALCINATION FOR ENHANCED SYNERGISTIC REMOVAL OF HYDROPHOBIC POLLUTANT USING SOLAR IRRADIATION, vol. 161, 3 November 2010 (2010-11-03), pages 46 - 52 *
陈孝云 等, 《无机材料学报》 活性炭负载N掺杂可见光型TIC2-XNY/AC光催化剂的制备及性能研究, vol. 23, no. 3, 31 May 2008 (2008-05-31), pages 464 - 470 *

Similar Documents

Publication Publication Date Title
Ali et al. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange
Tian et al. Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area
Bera et al. Synthesis of α-β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight
Wu et al. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light
Raza et al. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide
Zhang et al. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst
CN110124660B (zh) 一种富含氧空位的Z-机制Bi2O3@CeO2光催化剂及其制备方法与应用
Zhang et al. Effects of calcination temperature on characterization and photocatalytic activity of La2Ti2O7 supported on HZSM-5 zeolite
Fu et al. Fabrication of Ti 3+ self-doped TiO 2 (A) nanoparticle/TiO 2 (R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties
Liu et al. Cooperative luminescence mediated near infrared photocatalysis of CaF2: Yb@ BiVO4 composites
Song et al. Solvothermal synthesis of P25/Bi2WO6 nanocomposite photocatalyst and photocatalytic degradation of ethylene under visible light
CN103706349A (zh) 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN108404959B (zh) 一种棒状g-C3N4@SnIn4S8复合光催化剂及其制备方法
Adán et al. Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: Inactivation of Escherichia coli vs oxidation of methanol
Kokilavani et al. Novel NiS/Ag2MoO4 heterostructure nanocomposite: Synthesis, characterization and superior antibacterial and enhanced photocatalytic activity
CN109603809B (zh) 一种钒酸铋量子点与二氧化钛纳米带复合光催化剂的制备和应用
Wongso et al. Silica–carbon quantum dots decorated titanium dioxide as sunlight-driven photocatalyst to diminish acetaminophen from aquatic environment
Adhikari et al. Metal oxide semiconductors for dye degradation
Hu et al. Controlled fabrication of monoclinic BiVO4 rod-like structures for natural-sunlight-driven photocatalytic dye degradation
CN102600865A (zh) 用于降解有机染料废水污染物的光催化剂及其制备方法
Fan et al. Enhancement of photocatalytic H2 evolution on hexagonal CdS by a simple calcination method under visible light irradiation
CN110615470A (zh) 一维金属掺杂金红石二氧化钛纳米线及其制备方法
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN116371391A (zh) 一种光催化剂的制备方法及该催化剂的应用
Lian et al. High vis-light photocatalytic property of g-C3N4 on four pollutants (RhB, MB, TC-HCl and P-Nitrophenol)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination