WO2021103154A1 - 一种可用于多车型的智能喷涂的机器人控制方法 - Google Patents

一种可用于多车型的智能喷涂的机器人控制方法 Download PDF

Info

Publication number
WO2021103154A1
WO2021103154A1 PCT/CN2019/124736 CN2019124736W WO2021103154A1 WO 2021103154 A1 WO2021103154 A1 WO 2021103154A1 CN 2019124736 W CN2019124736 W CN 2019124736W WO 2021103154 A1 WO2021103154 A1 WO 2021103154A1
Authority
WO
WIPO (PCT)
Prior art keywords
spraying
dimensional
workpiece
dimensional model
target
Prior art date
Application number
PCT/CN2019/124736
Other languages
English (en)
French (fr)
Inventor
申情
陈锋
徐海平
黄丽莎
周杭超
李威霖
詹永根
李兵
胡迎亮
陈仕军
陈云
蒋云良
黄立明
楼俊钢
沈一平
黄中元
茅立安
Original Assignee
浙江明泉工业涂装有限公司
浙江明泉工业装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江明泉工业涂装有限公司, 浙江明泉工业装备科技有限公司 filed Critical 浙江明泉工业涂装有限公司
Priority to RU2020135400A priority Critical patent/RU2758692C1/ru
Publication of WO2021103154A1 publication Critical patent/WO2021103154A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position

Definitions

  • the invention relates to the field of automatic control of intelligent machines, in particular to a robot control method that can be used for intelligent spraying of multiple vehicle types.
  • a spraying efficiency is high, spraying effect is good, equipment loss is small, spraying accuracy is high, and the spraying robot can be used for a large number of different models in a short time.
  • the method of identifying and spraying the wheel hub becomes very necessary.
  • the invention provides a robot control method for intelligent spraying of multiple vehicle types, including the steps: S1, detecting whether there is a workpiece in the target processing area; S2, when it is determined that there is a workpiece, acquiring the first three-dimensional contour feature of the target workpiece; S3.
  • the limit of the spraying robot spray gun Spraying range generating first running trajectory information that can fully cover the target workpiece; S7.
  • control the robot spray gun to move along the first running trajectory at a certain moving speed, and then Different positions of the target workpiece are sprayed with corresponding color particles.
  • step S1 "determining whether there is a workpiece in the target processing area” specifically includes: S11, taking a two-dimensional picture of the target processing area from a preset position; S12, converting the two-dimensional picture of the target processing area into a grayscale image; S13 , Compare with the grayscale image of the same two-dimensional picture taken before the target processing area when there is no workpiece; S14. When it is detected that the feature points of the two-dimensional images of the target processing area differ by more than the first When a preset difference value, it is determined that there is a workpiece in the target processing area.
  • the "acquiring the first three-dimensional contour feature of the target workpiece" in step S2 is specifically: S21, acquiring the feature points of the outer contour edges of the target workpiece through a three-dimensional laser scanner set in the target processing area, and adopting automatic registration The method gathers these characteristic points into the first point cloud; S22, converts each point data of the first point cloud to the first reference coordinate system; S23, uses the average curvature flow filtering algorithm to analyze the first point cloud in the first reference coordinate system Denoise one point cloud; S24, establish the topological relationship of the scattered point cloud for the first point cloud after denoising, and directly compress the point cloud data; S25, use the micro-cut plane method to perform three-dimensional reconstruction of the point cloud, Thus, the first point cloud data including the first three-dimensional contour feature of the target workpiece is obtained.
  • the preset wheel hub model library includes the wheel model data of a variety of different models of cars, when the point cloud data of the first three-dimensional contour feature and the preset point cloud data of a certain wheel model in the preset wheel model library When 99% are the same, it means that the first three-dimensional model exists.
  • the first color spraying database stores spraying parameters corresponding to the preset wheel hub model library, and each three-dimensional model in the preset wheel hub model library corresponds to several spraying parameter sets in the first color spraying database. Different spraying parameter sets record different spraying schemes.
  • the parameters of the first spraying parameter set can be adjusted online according to the first three-dimensional model, so as to obtain the second meeting the spraying requirements. Spraying parameter set, and storing the second spraying parameter into the first color spraying database at the same time.
  • step S5 specifically includes: S51, establishing a target space coordinate system based on an end point of the target processing area; S52, selecting multiple edge feature points of the target workpiece, and determining the point cloud of these edge feature points in the first three-dimensional model S53. Determine the coordinates of each edge feature point in the target space coordinate system through a three-dimensional laser scanner, and then combine the relative position relationship between each feature point in the first three-dimensional model to obtain each position of the first three-dimensional model Corresponding space coordinate parameters.
  • step S6 specifically includes: S61, obtaining the limit spraying range of the spray gun of the spraying robot; S62, obtaining the required spraying area of the first three-dimensional model from the first spraying parameter set; S63, according to the area and the area of the required spraying area of the first three-dimensional model
  • the position information is used to generate a first auxiliary trajectory that can connect the spraying areas along the surface of the first three-dimensional model; S64.
  • the entry point and separation point of each area to be sprayed, as well as the area of the area and the spraying limit spraying range Generate a second auxiliary trajectory that moves in each area that needs to be sprayed; S65. Integrate the first auxiliary trajectory with the second auxiliary trajectory to obtain first running trajectory information that can perform full coverage spraying on the target workpiece.
  • the distance between the spray gun of the spraying robot and each spraying area is substantially the same during the movement.
  • the present invention acquires the two-dimensional picture of the target processing area in real time by re-presetting the position, and judges whether there is a workpiece entering according to the change of the feature points in the gray value image of the two-dimensional picture before and after the workpiece enters, and at the same time
  • the present invention compares the first three-dimensional contour feature with the three-dimensional model set of the existing preset wheel model library, so as to quickly obtain the first three-dimensional contour feature corresponding to the target workpiece.
  • the three-dimensional model avoids the need to regenerate a new three-dimensional model and increase the computational burden of the equipment.
  • the present invention selects multiple edge feature points of the target workpiece through a three-dimensional laser scanner, and then quickly obtains the spatial coordinates of each position of the target hub according to these feature points and the first three-dimensional model, and obtains accurate workpiece position information with a small amount of systematic calculations Therefore, it is convenient to formulate the operation trajectory of the spray gun of the subsequent spraying robot, and reduce the error caused by fixing the spraying workpiece at the designated position and then positioning the coordinates of each position point of the workpiece at the designated position.
  • the present invention obtains the first auxiliary trajectory that can connect the spraying areas along the surface of the first three-dimensional model, and then according to the entry points and separation points, the area area and the spraying limit spraying range, it is generated
  • Each second auxiliary trajectory that needs to be sprayed is integrated, and the first auxiliary trajectory and the second auxiliary trajectory are integrated to generate the first running trajectory, thereby reducing the unnecessary movement of the spray gun of the spraying robot, improving the spraying efficiency and reducing the spraying time.
  • Fig. 1 is a flowchart of a robot control method for intelligent spraying of multiple vehicle types according to the present invention
  • Fig. 2 is a flowchart of step S1 of a robot control method for intelligent spraying of multiple vehicle types according to the present invention
  • 3 is a flowchart of step S2 of a robot control method for intelligent spraying of multiple vehicle types according to the present invention
  • FIG. 4 is a flowchart of step S5 of a robot control method for intelligent spraying of multiple vehicle types according to the present invention
  • Fig. 5 is a flowchart of step S6 of a robot control method for intelligent spraying of multiple vehicle types according to the present invention.
  • the present invention provides a robot control method that can be used for intelligent spraying of multiple vehicle types, which is used to identify wheels of different vehicle types and perform particle spraying, including the following steps S1 to S7.
  • step S1 in the present invention specifically includes: S11, taking a two-dimensional picture of the target processing area from a preset position; S12, converting the two-dimensional picture of the target processing area into a grayscale image; S13, and Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area; S14.
  • S11 taking a two-dimensional picture of the target processing area from a preset position
  • S12 converting the two-dimensional picture of the target processing area into a grayscale image
  • S13 and Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area
  • S14 Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area
  • the acquisition of two-dimensional pictures can be completed by a camera set in the target processing area, or can be completed by a built-in camera of a three-dimensional laser scanner. Compared with laser positioning, this method consumes the least power.
  • the first three-dimensional contour feature of the target workpiece is acquired.
  • the present invention obtains the first three-dimensional contour feature of the target workpiece specifically as follows: S21, obtain the characteristic points of the outer contour edges of the target workpiece through a three-dimensional laser scanner set in the target processing area, and adopt automatic registration The method gathers these characteristic points into the first point cloud; S22, converts each point data of the first point cloud to the first reference coordinate system; S23, uses the average curvature flow filtering algorithm to analyze the first point cloud in the first reference coordinate system Denoise one point cloud; S24, establish the topological relationship of the scattered point cloud for the first point cloud after denoising, and directly compress the point cloud data; S25, use the micro-cut plane method to perform three-dimensional reconstruction of the point cloud, Thus, the first point cloud data including the first three-dimensional contour feature of the target workpiece is obtained.
  • a first spraying parameter set corresponding to the first three-dimensional model is selected from the first color spraying database.
  • the first color spraying database stores spraying parameters corresponding to the preset wheel hub model library, and each three-dimensional model in the preset wheel hub model library corresponds to several spraying parameters in the first color spraying database Sets, different spraying parameter sets record different spraying schemes.
  • the parameters of the first spraying parameter set can be adjusted online according to the first three-dimensional model to obtain the second spraying parameter that meets the spraying requirements set.
  • the first spraying parameter set includes the color of the paint particles to be sprayed and the thickness parameters to be sprayed at each position of the first three-dimensional model.
  • the second spraying parameters are stored in the first color spraying database. This facilitates the avoidance of secondary adjustments when the same workpiece is subsequently processed.
  • the spatial coordinate parameters corresponding to the positions of the first three-dimensional model are obtained.
  • Step S5 specifically includes: S51, establishing a target space coordinate system with an end point of the target processing area; S52, selecting multiple edge feature points of the target workpiece, and determining the number of edge feature points in the point cloud of the first three-dimensional model Corresponding position; S53. Determine the coordinates of each edge feature point in the target space coordinate system through a three-dimensional laser scanner, and then combine the relative position relationship between each feature point in the first three-dimensional model to obtain the corresponding position of the first three-dimensional model The space coordinate parameters.
  • step S6 also includes the following sub-steps.
  • S61. Obtain the limit spraying range of the spray gun of the spraying robot;
  • S62. Obtain the spraying area of the first three-dimensional model from the first spraying parameter set;
  • S63. Generate the spraying area along the first three-dimensional model according to the area and position information of the spraying area required by the first three-dimensional model.
  • the three-dimensional model surface can connect the first auxiliary trajectory to the spraying areas; S64, according to the entry point and separation point of each spraying area of the first auxiliary trajectory, as well as the area area and spraying limit spraying range, it is generated to move in each spraying area S65. Integrate the first auxiliary trajectory with the second auxiliary trajectory to obtain first running trajectory information that can spray the target workpiece with full coverage.
  • the spraying robot spray gun is approximately the same distance from each spraying area during the movement, thereby ensuring that the sprayed paint particles will not have a large number of burrs and improving the spraying quality.
  • the present invention provides a robot control method that can be used for intelligent spraying of multiple vehicle types, which is used to identify wheels of different vehicle types and perform particle spraying, including the following steps S1 to S7.
  • step S1 in the present invention specifically includes: S11, taking a two-dimensional picture of the target processing area from a preset position; S12, converting the two-dimensional picture of the target processing area into a grayscale image; S13, and Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area; S14.
  • S11 taking a two-dimensional picture of the target processing area from a preset position
  • S12 converting the two-dimensional picture of the target processing area into a grayscale image
  • S13 and Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area
  • S14 Compare the grayscale images of the same two-dimensional pictures taken when there is no workpiece before the target processing area
  • the acquisition of two-dimensional pictures can be completed by a camera set in the target processing area, or can be completed by a built-in camera of a three-dimensional laser scanner. Compared with laser positioning, this method consumes the least power.
  • the first three-dimensional contour feature of the target workpiece is acquired.
  • the present invention obtains the first three-dimensional contour feature of the target workpiece specifically as follows: S21, obtain the characteristic points of the outer contour edges of the target workpiece through a three-dimensional laser scanner set in the target processing area, and adopt automatic registration The method gathers these characteristic points into the first point cloud; S22, converts each point data of the first point cloud to the first reference coordinate system; S23, uses the average curvature flow filtering algorithm to analyze the first point cloud in the first reference coordinate system Denoise one point cloud; S24, establish the topological relationship of the scattered point cloud for the first point cloud after denoising, and directly compress the point cloud data; S25, use the micro-cut plane method to perform three-dimensional reconstruction of the point cloud, Thus, the first point cloud data including the first three-dimensional contour feature of the target workpiece is obtained.
  • the preset wheel hub model library includes the hub model data of a variety of different models of automobiles, when the point cloud data of the first three-dimensional contour feature and the preset point cloud data of a certain hub model in the preset hub model library When 99% are the same, it means that the first three-dimensional model exists.
  • a first spraying parameter set corresponding to the first three-dimensional model is selected from the first color spraying database.
  • the first color spraying database stores spraying parameters corresponding to the preset wheel hub model library, and each three-dimensional model in the preset wheel hub model library corresponds to several spraying parameters in the first color spraying database Sets, different spraying parameter sets record different spraying schemes.
  • the parameters of the first spraying parameter set can be adjusted online according to the first three-dimensional model to obtain the second spraying parameter that meets the spraying requirements set.
  • the first spraying parameter set includes the color of the paint particles to be sprayed and the thickness parameters to be sprayed at each position of the first three-dimensional model.
  • the second spraying parameters are stored in the first color spraying database. This facilitates the avoidance of secondary adjustments when the same workpiece is subsequently processed.
  • the spatial coordinate parameters corresponding to the positions of the first three-dimensional model are obtained.
  • Step S5 specifically includes: S51, establishing a target space coordinate system with an end point of the target processing area; S52, selecting multiple edge feature points of the target workpiece, and determining the number of edge feature points in the point cloud of the first three-dimensional model Corresponding position; S53. Determine the coordinates of each edge feature point in the target space coordinate system through a three-dimensional laser scanner, and then combine the relative position relationship between each feature point in the first three-dimensional model to obtain the corresponding position of the first three-dimensional model The space coordinate parameters.
  • step S6 also includes the following sub-steps.
  • S61. Obtain the limit spraying range of the spray gun of the spraying robot;
  • S62. Obtain the spraying area of the first three-dimensional model from the first spraying parameter set;
  • S63. Generate the spraying area along the first three-dimensional model according to the area and position information of the spraying area required by the first three-dimensional model.
  • the three-dimensional model surface can connect the first auxiliary trajectory to the spraying areas; S64, according to the entry point and separation point of each spraying area of the first auxiliary trajectory, as well as the area area and spraying limit spraying range, it is generated to move in each spraying area S65. Integrate the first auxiliary trajectory with the second auxiliary trajectory to obtain first running trajectory information that can spray the target workpiece with full coverage.
  • the spraying robot spray gun is approximately the same distance from each spraying area during the movement, thereby ensuring that the sprayed paint particles will not have a large number of burrs and improving the spraying quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Spray Control Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种可用于多车型的智能喷涂的机器人控制方法,用于对不同车型的轮毂进行识别并进行颗粒喷涂。该方法通过在预设位置对目标加工区域的二维图片进行实时获取,并根据工件进入前后的二维图片的灰度值图像中的特征点的变化来判断是否有工件进入,同时还能在获取目标工件的第一立体轮廓特征时进一步确定是否为轮毂工件;通过第一立体轮廓特征与现有预设轮毂模型库的立体模型集进行比较,从而快速的获取目标工件对应的第一立体模型,避免了重新生成新的立体模型加大设备的运算负担。

Description

一种可用于多车型的智能喷涂的机器人控制方法 技术领域
本发明涉及智能机器自动控制领域,具体涉及一种可用于多车型的智能喷涂的机器人控制方法。
背景技术
随着上世纪80年代电子科技的爆炸式发展开始,各种各样的信息化机器人开始替代一些工人执行各种工业生成活动。而随着信息化技术的完善,工业机器人技术被普遍地应用到生产线,包括组装、焊接、涂胶等场合都常见机器人执行操作的身影。例如,人们对于汽车等机械加工制品的性能和外观的要求也越来越高。汽车涂装效果是汽车外观给人最直接的印象。汽车涂装工艺是汽车制造四大工艺(冲压、焊装、涂装、总装)之一,其质量直接影响消费者对于汽车品牌的第一印象。由于汽车涂装质量受到多种因素的影响,如:涂料本身、涂装环境以及各个工艺参数设定等,使得汽车涂装成为一项高精度、高难度的工作。
技术问题
由于喷涂机器人的有着喷涂精准、喷涂范围可控的优点,从而在喷涂中节约了大量的工业涂料,同时喷涂过程中也产生更少的油漆废料,减少了对环境的破坏。所以大量的新型喷涂机器人以及相关的控制技术也成为了研究的热点,出现了大量的如专利申请号为CN201811569171.0的这类专利“工件喷涂系统”,但喷涂机器人硬件系统的结构都大同小异,所以现有的喷涂机器人的研究方向主要在于轨迹规划、喷涂控制、机器视觉等方向。
现有的喷涂机器人大多按照生成的理想轨迹进行喷涂作业,为了保证喷涂质量,要求待喷涂工件必须放置于理想位置,但实际固定待喷涂工件时会存在位置误差,所以会造成喷涂时无法达到理想效果。而根据对工件的现场扫描得到工件模型,再现场处理扫描数据而得到工件的实时模型的方法会造成设备的运算负担加大,从而造成单个工件的喷涂消耗时间变长,同时也加快了喷涂机器人的处理器的损耗。而对已汽车轮毂这种轮廓复杂、且需要短时间大批喷涂的工件来说,一种喷涂效率高、喷涂效果好、对设备损耗小、喷涂精度高、能短时间实现喷涂机器人对大量不同车型的轮毂的识别与喷涂的方法变得十分必要。
技术解决方案
为了解决上述技术问题,本发明提供了一种可用于多车型的智能喷涂的机器人控制方法,用于对不同车型的轮毂进行识别并进行颗粒喷涂。
本发明提供的一种可用于多车型的智能喷涂的机器人控制方法,包括步骤:S1、检测目标加工区域内是否存在工件;S2、确定有工件存在时,获取目标工件的第一立体轮廓特征;S3、将目标工件的第一立体轮廓特征与预设轮毂模型库的立体模型集进行对比,判断预设轮毂模型库中是否存与目标工件相对应的第一立体模型;S4、确定存在与目标工件相对应的第一立体模型时,从第一颜色喷涂数据库中选取与所述第一立体模型相对应的第一喷涂参数集;S5、根据第一立体模型的各个特征点之间的相对距离与部分特征点在目标加工区域的空间坐标,进而获取第一立体模型的各个位置相对应的空间坐标参数;S6、根据第一立体模型的各个位置相对应的空间坐标参数、喷涂机器人喷枪的极限喷涂范围,生成可以对目标工件进行全覆盖喷涂的第一运行轨迹信息;S7、根据第一运行轨迹信息与第一喷涂参数集,以一定移动速度控制机器人喷枪沿第一运行轨迹运动,进而对目标工件不同的位置使用相应颜色颗粒进行喷涂。
进一步,步骤S1中“判断目标加工区域内是否存在工件”具体为:S11、从预设位置拍摄目标加工区域的二维图片;S12、将目标加工区域的二维图片转换为灰度图像;S13、与目标加工区域之前的从同一拍摄的没有工件存在时的二维图片的灰度图像进行比较;S14、当检测到两张目标加工区域的二维图片的灰度图像的特征点相差超过第一预设差值时,则确定目标加工区域存在工件。
进一步,步骤S2中的“获取目标工件的第一立体轮廓特征”具体为:S21、通过设于目标加工区域的三维激光扫描仪获取目标工件的外部各轮廓边缘的特征点,并采用自动配准的方法将这些特征点汇聚为第一点云;S22、将第一点云的各个点数据转换到第一基准坐标系中;S23、采用平均曲率流滤波算法对第一基准坐标系中的第一点云进行去噪;S24、对去噪后的第一点云进行散乱点云的拓扑关系的建立,直接对点云数据进行压缩;S25、采用微切平面法对点云进行三维重建,从而得到包括目标工件的第一立体轮廓特征的第一点云数据。
进一步,所述预设轮毂模型库中包括有多种不同车型的汽车的轮毂模型数据,当第一立体轮廓特征的点云数据与预设轮毂模型库的某一轮毂模型的预设点云数据有99%等同相同时,则说明第一立体模型存在。
进一步,所述第一颜色喷涂数据库中存储有与预设轮毂模型库相对应的喷涂参数,预设轮毂模型库中的各个立体模型均在第一颜色喷涂数据库中对应有若干种喷涂参数集,不同的喷涂参数集记载有不同的喷涂方案。
进一步,当第一立体模型在第一颜色喷涂数据库中对应的参数集不满足使用需求时,可根据第一立体模型对第一喷涂参数集的参数进行在线调整,从而得到满足喷涂要求的第二喷涂参数集,同时将第二喷涂参数存储进第一颜色喷涂数据库中。
进一步,步骤S5具体包括:S51、以目标加工区域的一个端点建立目标空间坐标系;S52、选取目标工件的多个边缘特征点,并确定这几个边缘特征点在第一立体模型的点云中的对应位置;S53、通过三维激光扫描仪确定各个边缘特征点在目标空间坐标系中的坐标,再结合第一立体模型中各个特征点之间相对位置关系,得到第一立体模型的各个位置相对应的空间坐标参数。
进一步,步骤S6具体包括:S61、获取喷涂机器人喷枪的极限喷涂范围;S62、从第一喷涂参数集中获取第一立体模型的需要喷涂区域;S63、根据第一立体模型的需要喷涂区域的面积与位置信息,生成沿第一立体模型表面可将各喷涂区域相连的第一辅助轨迹;S64、根据第一辅助轨迹的各个需要喷涂区域的进入点与分离点、以及区域面积和喷涂极限喷涂范围,生成在各个需要喷涂区域移动的第二辅助轨迹;S65、将第一辅助轨迹与第二辅助轨迹相整合得到可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
进一步,在第一辅助轨迹与第二辅助轨迹中,喷涂机器人喷枪在移动过程中与各个喷涂区域的距离大体相同。
有益效果
本发明通过再预设位置对目标加工区域的二维图片进行实时获取,并根据工件进入前后的二维图片的灰度值图像中的特征点的变化来判断是否有工件进入,同时还能在获取目标工件的第一立体轮廓特征时进一步确定是否为轮毂工件;本发明通过第一立体轮廓特征与现有预设轮毂模型库的立体模型集进行比较,从而快速的获取目标工件对应的第一立体模型,避免了重新生成新的立体模型加大设备的运算负担。本发明通过三维激光扫描仪选取目标工件的多个边缘特征点,再根据这些特征点与第一立体模型快速获取目标轮毂的各个位置的空间坐标,以少量的系统运算得到了精准的工件位置信息,从而便于制定后续的喷涂机器人的喷枪的运行轨迹,减小了现有的将喷涂工件固定在指定位置,再以指定位置来定位工件的各个位置点的坐标而造成的误差。本发明根据目标工件的需要喷涂区域获取沿第一立体模型表面可将各喷涂区域相连的第一辅助轨迹,再根据在各个的进入点与分离点、以及区域面积和喷涂极限喷涂范围,生成在各个需要喷涂区域移动的第二辅助轨迹,整合第一辅助轨迹与第二辅助轨迹生成第一运行轨迹,从而减少喷涂机器人的喷枪的多余移动动作,提高了喷涂效率的同时减少了喷涂时间。
附图说明
图1为本发明的一种可用于多车型的智能喷涂的机器人控制方法的流程图;图2为本发明的一种可用于多车型的智能喷涂的机器人控制方法的步骤S1的流程图;图3为本发明的一种可用于多车型的智能喷涂的机器人控制方法的步骤S2的流程图;图4为本发明的一种可用于多车型的智能喷涂的机器人控制方法的步骤S5的流程图;图5为本发明的一种可用于多车型的智能喷涂的机器人控制方法的步骤S6的流程图。
本发明的最佳实施方式
如图1所示,本发明提供了一种可用于多车型的智能喷涂的机器人控制方法,用于对不同车型的轮毂进行识别并进行颗粒喷涂,包括以下步骤S1至S7。
S1、检测目标加工区域内是否存在工件。
如图1与2所示,本发明中步骤S1具体包括:S11、从预设位置拍摄目标加工区域的二维图片;S12、将目标加工区域的二维图片转换为灰度图像;S13、与目标加工区域之前的从同一拍摄的没有工件存在时的二维图片的灰度图像进行比较;S14、当检测到两张目标加工区域的二维图片的灰度图像的特征点相差超过第一预设差值时,则确定目标加工区域存在工件。其中二维图片的获取可以通过设于目标加工区域中的摄像机完成,也可以通过三维激光扫描仪的内置摄像机完成,该方法相对于激光定位来说,消耗的电量最少。
S2、确定有工件存在时,获取目标工件的第一立体轮廓特征。
如图3所示,本发明获取目标工件的第一立体轮廓特征具体为:S21、通过设于目标加工区域的三维激光扫描仪获取目标工件的外部各轮廓边缘的特征点,并采用自动配准的方法将这些特征点汇聚为第一点云;S22、将第一点云的各个点数据转换到第一基准坐标系中;S23、采用平均曲率流滤波算法对第一基准坐标系中的第一点云进行去噪;S24、对去噪后的第一点云进行散乱点云的拓扑关系的建立,直接对点云数据进行压缩;S25、采用微切平面法对点云进行三维重建,从而得到包括目标工件的第一立体轮廓特征的第一点云数据。本发明中只获取目标工件的外部各轮廓边缘的特征点,所以不需要测量全部数据,只要能达到匹配预设轮毂模型库的程度就行,因此减少了大量的运算工作,同时又保证了测量的准确度。
其中,所述预设轮毂模型库中包括有多种不同车型的汽车的轮毂模型数据,当第一立体轮廓特征的点云数据与预设轮毂模型库的某一轮毂模型的预设点云数据有99%等同相同时,则说明第一立体模型存在。
S4、确定存在与目标工件相对应的第一立体模型时,从第一颜色喷涂数据库中选取与所述第一立体模型相对应的第一喷涂参数集。
本发明中,所述第一颜色喷涂数据库中存储有与预设轮毂模型库相对应的喷涂参数,预设轮毂模型库中的各个立体模型均在第一颜色喷涂数据库中对应有若干种喷涂参数集,不同的喷涂参数集记载有不同的喷涂方案。当第一立体模型在第一颜色喷涂数据库中对应的参数集不满足使用需求时,可根据第一立体模型对第一喷涂参数集的参数进行在线调整,从而得到满足喷涂要求的第二喷涂参数集。其中,第一喷涂参数集包括第一立体模型的各个位置点的需要喷涂的油漆颗粒的颜色与待喷厚度参数。同时将第二喷涂参数存储进第一颜色喷涂数据库中。从而便于后续相同的工件被加工时,可以避免二次调整。
S5、根据第一立体模型的各个特征点之间的相对距离与部分特征点在目标加工区域的空间坐标,进而获取第一立体模型的各个位置相对应的空间坐标参数。
其中,如图4所示。步骤S5具体包括:S51、以目标加工区域的一个端点建立目标空间坐标系;S52、选取目标工件的多个边缘特征点,并确定这几个边缘特征点在第一立体模型的点云中的对应位置;S53、通过三维激光扫描仪确定各个边缘特征点在目标空间坐标系中的坐标,再结合第一立体模型中各个特征点之间相对位置关系,得到第一立体模型的各个位置相对应的空间坐标参数。
S6、根据第一立体模型的各个位置相对应的空间坐标参数、喷涂机器人喷枪的极限喷涂范围,生成可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
如图5所示,步骤S6还包括下述子步骤。S61、获取喷涂机器人喷枪的极限喷涂范围;S62、从第一喷涂参数集中获取第一立体模型的需要喷涂区域;S63、根据第一立体模型的需要喷涂区域的面积与位置信息,生成沿第一立体模型表面可将各喷涂区域相连的第一辅助轨迹;S64、根据第一辅助轨迹的各个需要喷涂区域的进入点与分离点、以及区域面积和喷涂极限喷涂范围,生成在各个需要喷涂区域移动的第二辅助轨迹;S65、将第一辅助轨迹与第二辅助轨迹相整合得到可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
S7、根据第一运行轨迹信息与第一喷涂参数集,以一定移动速度控制机器人喷枪沿第一运行轨迹运动,进而对目标工件不同的位置使用相应颜色颗粒进行喷涂。
在第一辅助轨迹与第二辅助轨迹中,喷涂机器人喷枪在移动过程中与各个喷涂区域的距离大体相同,从而保证了喷涂的油漆颗粒不会出现大量的毛刺,提高了喷涂质量。
本发明的实施方式
为了更清楚地说明本发明实施例和/或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。另,涉及方位的属于仅表示各部件间的相对位置关系,而不是绝对位置关系。
如图1所示,本发明提供了一种可用于多车型的智能喷涂的机器人控制方法,用于对不同车型的轮毂进行识别并进行颗粒喷涂,包括以下步骤S1至S7。
S1、检测目标加工区域内是否存在工件。
如图1与2所示,本发明中步骤S1具体包括:S11、从预设位置拍摄目标加工区域的二维图片;S12、将目标加工区域的二维图片转换为灰度图像;S13、与目标加工区域之前的从同一拍摄的没有工件存在时的二维图片的灰度图像进行比较;S14、当检测到两张目标加工区域的二维图片的灰度图像的特征点相差超过第一预设差值时,则确定目标加工区域存在工件。其中二维图片的获取可以通过设于目标加工区域中的摄像机完成,也可以通过三维激光扫描仪的内置摄像机完成,该方法相对于激光定位来说,消耗的电量最少。
S2、确定有工件存在时,获取目标工件的第一立体轮廓特征。
如图3所示,本发明获取目标工件的第一立体轮廓特征具体为:S21、通过设于目标加工区域的三维激光扫描仪获取目标工件的外部各轮廓边缘的特征点,并采用自动配准的方法将这些特征点汇聚为第一点云;S22、将第一点云的各个点数据转换到第一基准坐标系中;S23、采用平均曲率流滤波算法对第一基准坐标系中的第一点云进行去噪;S24、对去噪后的第一点云进行散乱点云的拓扑关系的建立,直接对点云数据进行压缩;S25、采用微切平面法对点云进行三维重建,从而得到包括目标工件的第一立体轮廓特征的第一点云数据。本发明中只获取目标工件的外部各轮廓边缘的特征点,所以不需要测量全部数据,只要能达到匹配预设轮毂模型库的程度就行,因此减少了大量的运算工作,同时又保证了测量的准确度。
其中,所述预设轮毂模型库中包括有多种不同车型的汽车的轮毂模型数据,当第一立体轮廓特征的点云数据与预设轮毂模型库的某一轮毂模型的预设点云数据有99%等同相同时,则说明第一立体模型存在。
S4、确定存在与目标工件相对应的第一立体模型时,从第一颜色喷涂数据库中选取与所述第一立体模型相对应的第一喷涂参数集。
本发明中,所述第一颜色喷涂数据库中存储有与预设轮毂模型库相对应的喷涂参数,预设轮毂模型库中的各个立体模型均在第一颜色喷涂数据库中对应有若干种喷涂参数集,不同的喷涂参数集记载有不同的喷涂方案。当第一立体模型在第一颜色喷涂数据库中对应的参数集不满足使用需求时,可根据第一立体模型对第一喷涂参数集的参数进行在线调整,从而得到满足喷涂要求的第二喷涂参数集。其中,第一喷涂参数集包括第一立体模型的各个位置点的需要喷涂的油漆颗粒的颜色与待喷厚度参数。同时将第二喷涂参数存储进第一颜色喷涂数据库中。从而便于后续相同的工件被加工时,可以避免二次调整。
S5、根据第一立体模型的各个特征点之间的相对距离与部分特征点在目标加工区域的空间坐标,进而获取第一立体模型的各个位置相对应的空间坐标参数。
其中,如图4所示。步骤S5具体包括:S51、以目标加工区域的一个端点建立目标空间坐标系;S52、选取目标工件的多个边缘特征点,并确定这几个边缘特征点在第一立体模型的点云中的对应位置;S53、通过三维激光扫描仪确定各个边缘特征点在目标空间坐标系中的坐标,再结合第一立体模型中各个特征点之间相对位置关系,得到第一立体模型的各个位置相对应的空间坐标参数。
S6、根据第一立体模型的各个位置相对应的空间坐标参数、喷涂机器人喷枪的极限喷涂范围,生成可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
如图5所示,步骤S6还包括下述子步骤。S61、获取喷涂机器人喷枪的极限喷涂范围;S62、从第一喷涂参数集中获取第一立体模型的需要喷涂区域;S63、根据第一立体模型的需要喷涂区域的面积与位置信息,生成沿第一立体模型表面可将各喷涂区域相连的第一辅助轨迹;S64、根据第一辅助轨迹的各个需要喷涂区域的进入点与分离点、以及区域面积和喷涂极限喷涂范围,生成在各个需要喷涂区域移动的第二辅助轨迹;S65、将第一辅助轨迹与第二辅助轨迹相整合得到可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
S7、根据第一运行轨迹信息与第一喷涂参数集,以一定移动速度控制机器人喷枪沿第一运行轨迹运动,进而对目标工件不同的位置使用相应颜色颗粒进行喷涂。
在第一辅助轨迹与第二辅助轨迹中,喷涂机器人喷枪在移动过程中与各个喷涂区域的距离大体相同,从而保证了喷涂的油漆颗粒不会出现大量的毛刺,提高了喷涂质量。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种可用于多车型的智能喷涂的机器人控制方法,用于对不同车型的轮毂进行识别并进行颗粒喷涂,包括步骤:S1、检测目标加工区域内是否存在工件;S2、确定有工件存在时,获取目标工件的第一立体轮廓特征;S3、将目标工件的第一立体轮廓特征与预设轮毂模型库的立体模型集进行对比,判断预设轮毂模型库中是否存与目标工件相对应的第一立体模型;S4、确定存在与目标工件相对应的第一立体模型时,从第一颜色喷涂数据库中选取与所述第一立体模型相对应的第一喷涂参数集;S5、根据第一立体模型的各个特征点之间的相对距离与部分特征点在目标加工区域的空间坐标,进而获取第一立体模型的各个位置相对应的空间坐标参数;S6、根据第一立体模型的各个位置相对应的空间坐标参数、喷涂机器人喷枪的极限喷涂范围,生成可以对目标工件进行全覆盖喷涂的第一运行轨迹信息;S7、根据第一运行轨迹信息与第一喷涂参数集,以一定移动速度控制机器人喷枪沿第一运行轨迹运动,进而对目标工件不同的位置使用相应颜色颗粒进行喷涂。
  2. 如权利要求1所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于,步骤S1中“判断目标加工区域内是否存在工件”具体为:S11、从预设位置拍摄目标加工区域的二维图片;S12、将目标加工区域的二维图片转换为灰度图像;S13、与目标加工区域之前的从同一拍摄的没有工件存在时的二维图片的灰度图像进行比较;S14、当检测到两张目标加工区域的二维图片的灰度图像的特征点相差超过第一预设差值时,则确定目标加工区域存在工件。
  3. 如权利要求1所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于,步骤S2中的“获取目标工件的第一立体轮廓特征”具体为:S21、通过设于目标加工区域的三维激光扫描仪获取目标工件的外部各轮廓边缘的特征点,并采用自动配准的方法将这些特征点汇聚为第一点云;S22、将第一点云的各个点数据转换到第一基准坐标系中;S23、采用平均曲率流滤波算法对第一基准坐标系中的第一点云进行去噪;S24、对去噪后的第一点云进行散乱点云的拓扑关系的建立,直接对点云数据进行压缩;S25、采用微切平面法对点云进行三维重建,从而得到包括目标工件的第一立体轮廓特征的第一点云数据。
  4. 如权利要求1或3所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于:所述预设轮毂模型库中包括有多种不同车型的汽车的轮毂模型数据,当第一立体轮廓特征的点云数据与预设轮毂模型库的某一轮毂模型的预设点云数据有99%等同相同时,则说明第一立体模型存在。
  5. 如权利要求1所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于:所述第一颜色喷涂数据库中存储有与预设轮毂模型库相对应的喷涂参数,预设轮毂模型库中的各个立体模型均在第一颜色喷涂数据库中对应有若干种喷涂参数集,不同的喷涂参数集记载有不同的喷涂方案。
  6. 如权利要求5所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于:当第一立体模型在第一颜色喷涂数据库中对应的参数集不满足使用需求时,可根据第一立体模型对第一喷涂参数集的参数进行在线调整,从而得到满足喷涂要求的第二喷涂参数集,同时将第二喷涂参数存储进第一颜色喷涂数据库中。
  7. 如权利要求5所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于,步骤S5具体包括:S51、以目标加工区域的一个端点建立目标空间坐标系;S52、选取目标工件的多个边缘特征点,并确定这几个边缘特征点在第一立体模型的点云中的对应位置;S53、通过三维激光扫描仪确定各个边缘特征点在目标空间坐标系中的坐标,再结合第一立体模型中各个特征点之间相对位置关系,得到第一立体模型的各个位置相对应的空间坐标参数。
  8. 如权利要求1所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于,步骤S6具体包括:S61、获取喷涂机器人喷枪的极限喷涂范围;S62、从第一喷涂参数集中获取第一立体模型的需要喷涂区域;S63、根据第一立体模型的需要喷涂区域的面积与位置信息,生成沿第一立体模型表面可将各喷涂区域相连的第一辅助轨迹;S64、根据第一辅助轨迹的各个需要喷涂区域的进入点与分离点、以及区域面积和喷涂极限喷涂范围,生成在各个需要喷涂区域移动的第二辅助轨迹;S65、将第一辅助轨迹与第二辅助轨迹相整合得到可以对目标工件进行全覆盖喷涂的第一运行轨迹信息。
  9. 如权利要求8所述的一种可用于多车型的智能喷涂的机器人控制方法,其特征在于,在第一辅助轨迹与第二辅助轨迹中,喷涂机器人喷枪在移动过程中与各个喷涂区域的距离大体相同。
PCT/CN2019/124736 2019-11-25 2019-12-12 一种可用于多车型的智能喷涂的机器人控制方法 WO2021103154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020135400A RU2758692C1 (ru) 2019-11-25 2019-12-12 Способ управления роботом для интеллектуального распыления нескольких моделей транспортных средств

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911166205.6A CN111013883A (zh) 2019-11-25 2019-11-25 一种可用于多车型的智能喷涂的机器人控制方法
CN201911166205.6 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103154A1 true WO2021103154A1 (zh) 2021-06-03

Family

ID=70206581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124736 WO2021103154A1 (zh) 2019-11-25 2019-12-12 一种可用于多车型的智能喷涂的机器人控制方法

Country Status (3)

Country Link
CN (1) CN111013883A (zh)
RU (1) RU2758692C1 (zh)
WO (1) WO2021103154A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522583A (zh) * 2021-06-10 2021-10-22 深圳远荣智能制造股份有限公司 一种物品的喷涂方法、装置、终端和存储介质
CN114082568A (zh) * 2021-11-19 2022-02-25 江苏科技大学 一种大型船体分段的喷涂作业离线数模规划系统及其方法
CN114227691A (zh) * 2021-12-30 2022-03-25 中铭谷智能机器人(广东)有限公司 一种汽车钣金机器人智能喷漆轨迹安全检测方法
CN114281019A (zh) * 2021-12-27 2022-04-05 江苏源清动力技术有限公司 一种燃气轮机零件表面圆变方路径喷涂方法
CN114310890A (zh) * 2021-12-28 2022-04-12 中铭谷智能机器人(广东)有限公司 一种前后杠钣金喷漆区域智能框选喷漆方法
CN114618704A (zh) * 2022-02-23 2022-06-14 深圳远荣智能制造股份有限公司 一种3d视觉引导机器人免编程的喷涂方法及其系统
CN114950775A (zh) * 2022-05-07 2022-08-30 苏州方石科技有限公司 喷涂路径控制方法和装置
CN115007367A (zh) * 2022-07-15 2022-09-06 上海联影智能医疗科技有限公司 一种喷涂方法和系统
CN115178398A (zh) * 2022-08-05 2022-10-14 中铭谷智能机器人(广东)有限公司 一种汽车维修智能环保钣喷系统控制方法及其系统
CN115213038A (zh) * 2022-06-24 2022-10-21 中铭谷智能机器人(广东)有限公司 一种汽车钣金点云多边形框选方法
CN115755753A (zh) * 2022-11-09 2023-03-07 埃夫特智能装备股份有限公司 一种基于家具边缘特征的机器人喷涂轨迹自动规划方法
CN115945324A (zh) * 2023-03-13 2023-04-11 汕头大学 一种玩具模型表面喷涂系统及方法
CN116079757A (zh) * 2023-03-10 2023-05-09 模德模具(苏州工业园区)有限公司 一种六自由度动态模具点云重构装置及喷涂方法
CN116393273A (zh) * 2023-06-08 2023-07-07 深圳中宝新材科技有限公司 合金丝的智能镀漆调节方法、设备及存储介质
CN116993923A (zh) * 2023-09-22 2023-11-03 长沙能川信息科技有限公司 换流站三维模型制作方法、系统、计算机设备和存储介质
DE102022119668A1 (de) 2022-08-04 2024-02-15 Gema Switzerland Gmbh Anordnung und verfahren zum vorzugsweise automatischen beschichten von gegenständen
CN117619615A (zh) * 2024-01-25 2024-03-01 雪橇老人信息技术有限公司 一种ai人工智能轨迹喷漆系统
CN118115368A (zh) * 2024-04-28 2024-05-31 广州市加杰机械设备有限公司 一种自动化喷涂路径优化方法及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013883A (zh) * 2019-11-25 2020-04-17 浙江明泉工业涂装有限公司 一种可用于多车型的智能喷涂的机器人控制方法
CN111495635A (zh) * 2020-04-23 2020-08-07 佛山科学技术学院 一种自适应喷涂方法
CN111805543B (zh) * 2020-07-10 2022-04-26 佛山科学技术学院 一种红外成像目标作业轨迹检测系统及其坐标转换方法
CN112024167A (zh) * 2020-08-07 2020-12-04 湖南中环机械涂装有限公司 汽车喷涂的工艺方法及其智能操控系统
CN114274139B (zh) * 2020-09-27 2024-04-19 西门子股份公司 自动喷涂方法、装置、系统和存储介质
CN112231848B (zh) * 2020-11-09 2023-04-07 北京理工大学 一种构建车辆喷涂模型的方法及系统
CN112862704B (zh) * 2021-01-22 2023-08-11 北京科技大学 一种基于3d视觉的喷胶及喷胶质量检测系统
CN113245094B (zh) * 2021-03-22 2022-08-05 福建金泰机械制造有限公司 汽车制动鼓机器人喷涂系统及方法
CN113420384B (zh) * 2021-08-23 2021-11-30 深圳市信润富联数字科技有限公司 轮毂打磨轨迹的生成方法及装置
WO2023060403A1 (en) * 2021-10-11 2023-04-20 Abb Schweiz Ag Method and electronic device for controlling robotic system
CN113976353B (zh) * 2021-10-12 2022-10-14 广汽本田汽车有限公司 一种车辆颜色喷涂的检测系统
CN114769021B (zh) * 2022-04-24 2022-11-25 广东天太机器人有限公司 一种基于全角度模板识别的机器人喷涂系统及方法
CN114792373B (zh) * 2022-04-24 2022-11-25 广东天太机器人有限公司 一种工业机器人的视觉识别喷涂方法及系统
CN115179304B (zh) * 2022-06-14 2024-10-22 广东天太机器人有限公司 基于高效性能伺服驱动的机械臂喷涂控制方法及系统
CN115350834B (zh) * 2022-10-19 2023-01-03 二重(德阳)重型装备有限公司 锻造视觉协同喷涂方法
CN115672688B (zh) * 2022-11-16 2023-12-19 广州瑞松北斗汽车装备有限公司 一种工件胶体的烘干控制方法、装置、终端设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299934B1 (en) * 1999-02-22 2001-10-09 Trimble Navigation Limited Global positioning system controlled paint sprayer
CN104588243A (zh) * 2015-01-04 2015-05-06 成都思达特电器有限公司 一种智能机器人喷涂系统
CN104874512A (zh) * 2015-06-18 2015-09-02 南京理工大学 一种智能轮毂喷涂装置及其控制方法
CN106179828A (zh) * 2016-08-29 2016-12-07 桂林梵玛科机械有限公司 轮胎胎胚喷涂机自动控制方法和系统
CN206057946U (zh) * 2016-08-31 2017-03-29 成都飞机工业(集团)有限责任公司 一种基于三维数模的零件智能标识设备
CN106670043A (zh) * 2017-02-25 2017-05-17 中信戴卡股份有限公司 一种智能柔性轮毂喷漆线及工艺
CN107908152A (zh) * 2017-12-26 2018-04-13 苏州瀚华智造智能技术有限公司 一种活动式机器人自动喷涂装置、控制系统及方法
CN108480101A (zh) * 2018-05-21 2018-09-04 广州泽亨实业有限公司 一种视觉检测工件识别的喷涂控制方法和装置
CN109590181A (zh) * 2018-11-15 2019-04-09 株洲飞鹿高新材料技术股份有限公司 一种基于双目视觉的工件喷涂方法、喷涂装置及喷涂系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390383B1 (en) * 2000-07-31 2002-05-21 General Electric Company Staged feed robotic machine
JP5892017B2 (ja) * 2012-09-19 2016-03-23 マツダ株式会社 塗装方法及び塗装装置
DE102013208235A1 (de) * 2013-05-06 2014-11-06 Hp Pelzer Holding Gmbh Verfahren zum Sprühbeschichten
CN105021124B (zh) * 2015-04-16 2018-02-16 华南农业大学 一种基于深度图的平面零件三维位置和法向量计算方法
CN106651894B (zh) * 2017-01-10 2020-02-11 重庆大学 基于点云和图像匹配的自动化喷涂系统坐标变换方法
CN107818577A (zh) * 2017-10-26 2018-03-20 滁州学院 一种基于混合模型的零件识别与定位方法
CN108274092B (zh) * 2017-12-12 2020-08-21 北京石油化工学院 基于三维视觉与模型匹配的坡口自动切割系统及切割方法
CN107899814A (zh) * 2017-12-20 2018-04-13 芜湖哈特机器人产业技术研究院有限公司 一种机器人喷涂系统及其控制方法
CN108198186A (zh) * 2017-12-27 2018-06-22 华南智能机器人创新研究院 一种在五轴机器人基于视觉跟踪实现喷漆的方法及系统
CN108225180A (zh) * 2017-12-31 2018-06-29 芜湖哈特机器人产业技术研究院有限公司 一种涂装定位系统和方法
CN111013883A (zh) * 2019-11-25 2020-04-17 浙江明泉工业涂装有限公司 一种可用于多车型的智能喷涂的机器人控制方法
CN111123853B (zh) * 2019-11-25 2021-05-14 浙江明泉工业涂装有限公司 一种对汽车内表面喷涂检测与补救的机器人的控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299934B1 (en) * 1999-02-22 2001-10-09 Trimble Navigation Limited Global positioning system controlled paint sprayer
CN104588243A (zh) * 2015-01-04 2015-05-06 成都思达特电器有限公司 一种智能机器人喷涂系统
CN104874512A (zh) * 2015-06-18 2015-09-02 南京理工大学 一种智能轮毂喷涂装置及其控制方法
CN106179828A (zh) * 2016-08-29 2016-12-07 桂林梵玛科机械有限公司 轮胎胎胚喷涂机自动控制方法和系统
CN206057946U (zh) * 2016-08-31 2017-03-29 成都飞机工业(集团)有限责任公司 一种基于三维数模的零件智能标识设备
CN106670043A (zh) * 2017-02-25 2017-05-17 中信戴卡股份有限公司 一种智能柔性轮毂喷漆线及工艺
CN107908152A (zh) * 2017-12-26 2018-04-13 苏州瀚华智造智能技术有限公司 一种活动式机器人自动喷涂装置、控制系统及方法
CN108480101A (zh) * 2018-05-21 2018-09-04 广州泽亨实业有限公司 一种视觉检测工件识别的喷涂控制方法和装置
CN109590181A (zh) * 2018-11-15 2019-04-09 株洲飞鹿高新材料技术股份有限公司 一种基于双目视觉的工件喷涂方法、喷涂装置及喷涂系统

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522583B (zh) * 2021-06-10 2022-03-11 深圳远荣智能制造股份有限公司 一种物品的喷涂方法、装置、终端和存储介质
CN113522583A (zh) * 2021-06-10 2021-10-22 深圳远荣智能制造股份有限公司 一种物品的喷涂方法、装置、终端和存储介质
CN114082568B (zh) * 2021-11-19 2023-05-26 江苏科技大学 一种大型船体分段的喷涂作业离线数模规划系统及其方法
CN114082568A (zh) * 2021-11-19 2022-02-25 江苏科技大学 一种大型船体分段的喷涂作业离线数模规划系统及其方法
CN114281019A (zh) * 2021-12-27 2022-04-05 江苏源清动力技术有限公司 一种燃气轮机零件表面圆变方路径喷涂方法
CN114310890A (zh) * 2021-12-28 2022-04-12 中铭谷智能机器人(广东)有限公司 一种前后杠钣金喷漆区域智能框选喷漆方法
CN114227691A (zh) * 2021-12-30 2022-03-25 中铭谷智能机器人(广东)有限公司 一种汽车钣金机器人智能喷漆轨迹安全检测方法
CN114227691B (zh) * 2021-12-30 2023-11-28 中铭谷智能机器人(广东)有限公司 一种汽车钣金机器人智能喷漆轨迹安全检测方法
CN114618704A (zh) * 2022-02-23 2022-06-14 深圳远荣智能制造股份有限公司 一种3d视觉引导机器人免编程的喷涂方法及其系统
CN114950775A (zh) * 2022-05-07 2022-08-30 苏州方石科技有限公司 喷涂路径控制方法和装置
CN115213038A (zh) * 2022-06-24 2022-10-21 中铭谷智能机器人(广东)有限公司 一种汽车钣金点云多边形框选方法
CN115213038B (zh) * 2022-06-24 2024-03-29 中铭谷智能机器人(广东)有限公司 一种汽车钣金点云多边形框选方法
CN115007367A (zh) * 2022-07-15 2022-09-06 上海联影智能医疗科技有限公司 一种喷涂方法和系统
DE102022119668A1 (de) 2022-08-04 2024-02-15 Gema Switzerland Gmbh Anordnung und verfahren zum vorzugsweise automatischen beschichten von gegenständen
CN115178398A (zh) * 2022-08-05 2022-10-14 中铭谷智能机器人(广东)有限公司 一种汽车维修智能环保钣喷系统控制方法及其系统
CN115755753A (zh) * 2022-11-09 2023-03-07 埃夫特智能装备股份有限公司 一种基于家具边缘特征的机器人喷涂轨迹自动规划方法
CN116079757A (zh) * 2023-03-10 2023-05-09 模德模具(苏州工业园区)有限公司 一种六自由度动态模具点云重构装置及喷涂方法
CN115945324A (zh) * 2023-03-13 2023-04-11 汕头大学 一种玩具模型表面喷涂系统及方法
CN116393273A (zh) * 2023-06-08 2023-07-07 深圳中宝新材科技有限公司 合金丝的智能镀漆调节方法、设备及存储介质
CN116393273B (zh) * 2023-06-08 2023-08-22 深圳中宝新材科技有限公司 合金丝的智能镀漆调节方法、设备及存储介质
CN116993923A (zh) * 2023-09-22 2023-11-03 长沙能川信息科技有限公司 换流站三维模型制作方法、系统、计算机设备和存储介质
CN116993923B (zh) * 2023-09-22 2023-12-26 长沙能川信息科技有限公司 换流站三维模型制作方法、系统、计算机设备和存储介质
CN117619615A (zh) * 2024-01-25 2024-03-01 雪橇老人信息技术有限公司 一种ai人工智能轨迹喷漆系统
CN117619615B (zh) * 2024-01-25 2024-04-26 森塔(山东)机器人科技股份公司 一种ai人工智能轨迹喷漆系统
CN118115368A (zh) * 2024-04-28 2024-05-31 广州市加杰机械设备有限公司 一种自动化喷涂路径优化方法及系统

Also Published As

Publication number Publication date
CN111013883A (zh) 2020-04-17
RU2758692C1 (ru) 2021-11-01

Similar Documents

Publication Publication Date Title
WO2021103154A1 (zh) 一种可用于多车型的智能喷涂的机器人控制方法
Wang et al. A robust weld seam recognition method under heavy noise based on structured-light vision
CN111192307B (zh) 基于激光切割三维零部件的自适应纠偏方法
CN112581451B (zh) 一种基于激光雷达的仓库线卷位置检测系统及方法
US10427300B2 (en) Robot program generation for robotic processes
CN112223293B (zh) 焊缝磨抛机器人在线打磨方法
CN113798634B (zh) 空间环形焊缝示教与焊缝跟踪方法、系统及设备
CN111644935A (zh) 一种机器人三维扫描测量装置及工作方法
Wang et al. A real-time weld line detection for derusting wall-climbing robot using dual cameras
CN114055255A (zh) 一种基于实时点云的大型复杂构件表面打磨路径规划方法
CN111539446A (zh) 一种基于模板匹配的2d激光孔位检测方法
KR101844281B1 (ko) 복잡구조물 용접자동화를 위한 광역 환경 인식 방법 및 시스템
CN117885096B (zh) 一种控制机器人末端焊枪的焊接作业的方法及装置
CN115358965A (zh) 焊接变形量自适应的直线焊缝打磨轨迹生成方法及装置
US6597967B2 (en) System and method for planning a tool path along a contoured surface
CN117324221A (zh) 一种曲面构件腻子喷涂方法
CN117522830A (zh) 用于检测锅炉腐蚀的点云扫描系统
Yusen et al. A method of welding path planning of steel mesh based on point cloud for welding robot
Wang et al. Model-enabled robotic machining framework for repairing paint film defects
Huang et al. Weld line detection using realsense depth camera based on depth map
Leo Princely et al. Teach less robotic system for deburring workpieces of various shapes
CN114800034B (zh) 一种采用机器视觉的数控机床智能化对刀系统及方法
CN116394235B (zh) 一种基于三维测量的大型零部件机器人干冰清洗轨迹规划系统及方法
Li et al. Optimization of abnormal point cloud recognition in robot vision grinding system based on multidimensional improved eigenvalue method (MIEM)
Li et al. Type identification and feature extraction of weld joint for adaptive robotic welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953803

Country of ref document: EP

Kind code of ref document: A1