WO2021100453A1 - ガスバリア性フィルム及び複合樹脂組成物 - Google Patents

ガスバリア性フィルム及び複合樹脂組成物 Download PDF

Info

Publication number
WO2021100453A1
WO2021100453A1 PCT/JP2020/041110 JP2020041110W WO2021100453A1 WO 2021100453 A1 WO2021100453 A1 WO 2021100453A1 JP 2020041110 W JP2020041110 W JP 2020041110W WO 2021100453 A1 WO2021100453 A1 WO 2021100453A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
bond
starch
represented
Prior art date
Application number
PCT/JP2020/041110
Other languages
English (en)
French (fr)
Inventor
昌志 谷川
千也 木村
高橋 賢一
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to JP2021558266A priority Critical patent/JP7263547B2/ja
Priority to EP20891130.5A priority patent/EP4063437A4/en
Publication of WO2021100453A1 publication Critical patent/WO2021100453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a gas barrier film and a composite resin composition.
  • Gas barrier films Films with gas barrier properties are mainly used for the purpose of protecting the contents, and are mainly used as packaging materials for foods and pharmaceuticals in the field of industrial materials. Widely used in.
  • a resin for a gas barrier film in which the formed film exhibits gas barrier properties is used.
  • examples of such a resin include an ethylene-vinyl alcohol copolymer resin (hereinafter abbreviated as EVOH) and a vinylidene chloride resin (hereinafter abbreviated as PVDC). These resins having gas barrier properties can be used alone.
  • a multilayer film is formed by using another resin material, and is used as a material for forming a gas barrier layer in the multilayer film.
  • EVOH is used for composite films by coextruding with a resin such as polypropylene (hereinafter abbreviated as PP), but EVOH is inferior in solubility in organic solvents, so it is a coating method. It is not suitable for producing films and coating films.
  • PVDC can be molded by a coating method and can be applied to various base materials, and therefore is used as a coat film for food packaging and the like.
  • PVDC has a high chlorine content, so that dioxin is generated when it is discarded (incinerated).
  • biomass-derived materials in this specification, resources may be simply referred to as “biomass" are polymers. Consideration is underway to use it as a raw material. For example, in polyethylene terephthalate (PET) used for packaging materials, a manufacturing method using biomass has been almost established, and consideration is given to using biomass in polyethylene (PE) and polypropylene (PP). It is done.
  • PET polyethylene terephthalate
  • PP polypropylene
  • resins such as EVOH and PVDC, which are widely used as materials for forming the gas barrier layer described above, are difficult to replace with biomass-derived components due to their chemical structure, and the current situation is that studies have not been made.
  • gas barrier coating agents for polysaccharides such as water-soluble starch and water-soluble cellulose derivatives have also been developed. Since these are naturally derived, they are excellent from the viewpoint of environment and safety. However, in the coating material of a water-soluble polysaccharide, a coating film having sufficient water resistance cannot be obtained, and it cannot be put into practical use.
  • Patent Document 1 proposes to use a polyhydroxyurethane resin as a material for forming a gas barrier layer.
  • the polyhydroxyurethane resin described in Patent Document 1 is a resin that can cope with environmental problems in that it can be configured to have an —O—CO— bond derived from carbon dioxide in the chemical structure of the resin. Further, this resin is characterized by a chemical structure having a hydroxyl group in the vicinity of the urethane bond, and the chemical structure having the hydroxyl group exhibits gas barrier properties not found in conventional polyurethane resins.
  • the present invention is intended to provide a gas barrier film that does not impair water resistance while being an environment-friendly material using biomass.
  • the present invention also provides a resin composition capable of producing such a gas barrier film.
  • the present invention is a gas barrier film made of a composite resin, wherein the composite resin contains a compound (a1) having at least two 5-membered cyclic carbonate structures and a compound (a2) having at least two amino groups.
  • the metal chelate compound (C) crosslinked with the starch-based compound (B), and the content of the starch-based compound (B) with respect to 100 parts by mass of the polyhydroxyurethane resin (A) is 10 to 300.
  • a gas barrier film which is a part by mass.
  • the present invention is a composite resin composition for forming a gas barrier film, in which a compound (a1) having at least two 5-membered cyclic carbonate structures and a compound (a2) having at least two amino groups are polymerized.
  • the starch-based compound (B) contains a crosslinkable metal chelate compound (C), and the content of the starch-based compound (B) with respect to 100 parts by mass of the polyhydroxyurethane resin (A) is 10 to 300 parts by mass. Is provided.
  • X represents a divalent organic group or a direct bond derived from the compound (a1).
  • Y 1 and Y 2 independently represent the following general formula (2).
  • R 1 independently represents a hydrogen atom or a methyl group
  • * 1 is a bond or X with X in the general formula (1.1).
  • the bond with the other Y is represented, and * 2 represents the bond with O in the general formula (1.1).
  • R 2 represents a divalent hydrocarbon group which may contain an oxygen atom and a nitrogen atom in its structure.
  • R 3 , R 4 and R 5 are. Each independently represents an alkylene group having 1 to 10 carbon atoms which may contain an ether bond in its structure.
  • M each independently represents a hydrogen atom or a counter ion for forming a salt structure.
  • A is 0.
  • b represents an integer of 1 to 5.
  • * 3 represents a bond with N in Z 1 in the general formula (1.1)
  • * 4 represents the other bond in Z 1. Representing a hand.
  • the present invention is a gas barrier film made of a composite resin, wherein the composite resin contains a compound (a1) having at least two 5-membered cyclic carbonate structures and a compound (a2) having at least two amino groups.
  • the metal chelate compound (C) crosslinked with the starch-based compound (B), and the content of the starch-based compound (B) with respect to 100 parts by mass of the polyhydroxyurethane resin (A) is 10 to 300.
  • a gas barrier film which is a mass part.
  • the present invention is a composite resin composition for forming a gas barrier film, in which a compound (a1) having at least two 5-membered cyclic carbonate structures and a compound (a2) having at least two amino groups are polymerized.
  • the starch-based compound (B) contains a crosslinkable metal chelate compound (C), and the content of the starch-based compound (B) is 10 to 300 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A).
  • a composite resin composition is provided.
  • X represents a divalent organic group or a direct bond derived from the compound (a1).
  • Y 1 and Y 2 independently represent the following general formula (2). It represents a divalent organic group represented by any of (5), and two or more of them may be mixed in the molecule of the polyhydroxyurethane resin (A). Z 2 may be mixed.
  • R 1 independently represents a hydrogen atom or a methyl group
  • * 1 is a bond or X with X in the general formula (1.2).
  • the bond with the other Y is represented, and * 2 represents the bond with O in the general formula (1.2).
  • R 2 represents a divalent hydrocarbon group which may contain an oxygen atom and a nitrogen atom in its structure.
  • R 6 is independently divalent.
  • W is a divalent, aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 40 carbon atoms, or a carbon number of carbon atoms.
  • ether bond 6 to 40 aromatic hydrocarbon groups, and in the structure of these groups, ether bond, amino bond, sulfonyl bond, ester bond, hydroxyl group, and halogen atom, and alkylene group have 2 to 6 carbon atoms.
  • a polyalkylene glycol chain having a repeating unit of 1 to 30 may be contained.
  • M represents a hydrogen atom or a counter ion for forming a salt structure independently of each.
  • * 5 is the above general formula (1). .2) Represents the bond with N in Z 2 in, and * 6 represents the other bond in Z 2.
  • the present invention it is possible to provide a gas barrier film that does not impair water resistance while being an environment-friendly material using biomass. Further, according to the present invention, it is possible to provide a composite resin composition capable of producing such a gas barrier film.
  • ⁇ Gas barrier film and composite resin composition> The present inventors have made extensive studies for the purpose of providing an environment-friendly gas barrier film having water resistance and easily increasing the degree of biomass. As a result, a composite resin composition containing 100 parts by mass of a specific polyhydroxyurethane resin (A), 10 to 300 parts by mass of a starch-based compound (B) which is a plant-derived material, and a metal chelate compound (C). We have found that the above object can be achieved by using the above, and have arrived at the present invention.
  • the polyhydroxyurethane resin (A) As the polyhydroxyurethane resin (A), as will be described later, an environment-friendly resin that can use carbon dioxide as one of the raw materials can be used.
  • the starch-based compound (B) used in combination with this is a material derived from plant starch and has biodegradability. Therefore, the composite resin composition has an improved de-petroleum resource ratio of the raw material, and further contains 10 to 300 parts by mass of the starch-based compound (B) with respect to 100 parts by mass of the polyhydroxyurethane resin (A). Therefore, it becomes possible to provide an environment-friendly film that can achieve a high degree of biomass.
  • the environment-friendly film formed of the composite resin composition which is a polyhydroxyurethane resin-starch hybrid composition, has good gas barrier properties and water resistance.
  • the present inventors consider the reason as follows. First, since the polyhydroxyurethane resin (A) has many hydroxyl groups in its structure, it exhibits gas barrier properties due to its hydrogen bonds. Further, the polyhydroxyurethane resin (A) and the starch-based compound (B) are crosslinked by the metal chelate compound (C). Specifically, the hydroxyl group in the polyhydroxyurethane resin (A) and the hydroxyl group existing in the structure of the starch-based compound (B) are crosslinked by the metal chelate compound (C) to partially form a covalent bond. It is thought to be a hydrogen bond.
  • the film formed of the composite resin composition containing the above (A) to (C) has a good gas barrier property, and also attracts water solubility and moisture in the starch-based compound (B) and swells. It is considered that the reduced properties have a level of water resistance comparable to that of the film when the starch-based compound (B) is not used.
  • the gas barrier film according to the embodiment of the present invention is made of a composite resin.
  • This composite resin contains a specific polyhydroxyurethane resin (A), a starch-based compound (B), and a metal chelate compound (C) crosslinked with the polyhydroxyurethane resin (A) and the starch-based compound (B).
  • the composite resin has a starch-based compound (B) content of 10 to 300 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A).
  • This gas barrier film made of a composite resin can be easily formed from the following composite resin composition.
  • the composite resin composition for forming a gas barrier film comprises a specific polyhydroxyurethane resin (A), a starch-based compound (B), and a polyhydroxyurethane resin (A) and a starch-based compound.
  • (B) contains a crosslinkable metal chelate compound (C).
  • the content of the starch-based compound (B) is 10 to 300 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A).
  • Polyhydroxyurethane resin (A) At least one of the first aspect and the second aspect described below can be used for the specific polyhydroxyurethane resin (A) described above.
  • the first aspect is a polyhydroxyurethane resin (A) containing a repeating unit represented by the general formula (1.1) described later (hereinafter, this is referred to as "polyhydroxyurethane resin (1A)". There is.).
  • the second aspect is the polyhydroxyurethane resin (A) containing the structural unit represented by the general formula (1.2) described later (hereinafter, this is referred to as "polyhydroxyurethane resin (2A)". There is.).
  • the gas barrier film and the composite resin composition can contain either one or both of the polyhydroxyurethane resin (1A) and the polyhydroxyurethane resin (2A).
  • the polyhydroxyurethane resin (1A) and the polyhydroxyurethane resin (2A) may be described as "polyhydroxyurethane resin (A)" without distinguishing them.
  • the polyhydroxyurethane resin (1A) contains a repeating unit represented by the following general formula (1.1).
  • This repeating unit includes a compound (a1) having at least two 5-membered cyclic carbonate structures (hereinafter, may be simply referred to as “compound (a1)”) and a compound having at least two amino groups (a2). ) (Hereinafter, it may be simply referred to as “compound (a2)”) and the structural unit is the basic structure.
  • the repeating unit represented by the general formula (1.1) has a structural unit in which the compound (a1) and the compound (a2) are polymerized as the basic structure.
  • the repeating unit means that another chemical structure is introduced into the above basic structure.
  • the compound (a2) contains at least the compound (a2-1) described later.
  • X represents a divalent organic group or a direct bond derived from the compound (a1).
  • Y 1 and Y 2 independently represent divalent organic groups represented by any of the following general formulas (2) to (5), and two or more of them are polyhydroxyurethane resins (2 or more of them). It may be mixed in the molecule of 1A).
  • Z 1 represents a divalent organic group represented by the following general formula (6.1).
  • R 1 independently represents a hydrogen atom or a methyl group
  • * 1 is a bond with X in the general formula (1.1) or a direct bond with X.
  • the bond with the other Y is represented
  • * 2 represents the bond with O in the general formula (1.1).
  • R 2 represents a divalent hydrocarbon group that may contain oxygen and nitrogen atoms in its structure.
  • R 3 , R 4 , and R 5 each independently represent an alkylene group having 1 to 10 carbon atoms which may contain an ether bond in its structure.
  • Each M independently represents a hydrogen atom or a counterion for forming a salt structure.
  • a represents an integer of 0 to 3
  • b represents an integer of 1 to 5.
  • * 3 represents the bond with N in Z 1 in the general formula (1.1)
  • * 4 represents the other bond in Z 1.
  • X in the general formula (1.1) is derived from the compound (a1) even if it is a directly bonded or divalent organic group.
  • the divalent organic group derived from the compound (a1) represented by X can take various groups due to the compound (a1).
  • suitable divalent organic groups include an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 40 carbon atoms, and an aromatic hydrocarbon group having 6 to 40 carbon atoms. These hydrocarbon groups have an ether bond, an amino bond, a sulfonyl bond, an ester bond, a hydroxyl group, a halogen atom, and an alkylene group having 2 to 6 carbon atoms and a repeating unit of 1. It may contain a polyalkylene glycol chain of up to 30.
  • the group "derived from” the compound means a group possessed by the compound or a group derived from the group.
  • the "organic group” is a group containing at least a carbon atom, and may contain an atom other than a carbon atom and a hydrogen atom (for example, an oxygen atom, a nitrogen atom, a sulfur atom, a halogen atom, etc.). Refers to a hydrocarbon group.
  • Y 1 and Y 2 in the general formula (1.1) are also groups derived from the compound (a1), and as represented by the general formulas (2) to (5), divalent organic groups containing a hydroxyl group. Is. Since the polyhydroxyurethane resin (1A) contains a hydroxyl group in the repeating unit represented by the general formula (1.1), the film made of a composite resin containing the polyhydroxyurethane resin (1A) has a gas barrier function. It will be possible to bring.
  • Formula (6.1) are represented by R 2 in as oxygen atoms and nitrogen atoms to contain an even better suitably divalent hydrocarbon group, aliphatic hydrocarbon group, alicyclic hydrocarbon group , And aromatic hydrocarbon groups, these hydrocarbon groups may contain oxygen and nitrogen atoms.
  • R 2 more preferably represents a hydrocarbon group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, which may contain an oxygen atom and a nitrogen atom.
  • the alkylene group having 1 to 10 carbon atoms which may contain an ether bond and is represented by R 3 , R 4 , and R 5 in the general formula (6.1), may be a straight chain or a branched chain.
  • a linear alkylene group having 1 to 6 carbon atoms is preferable, a linear alkylene group having 1 to 4 carbon atoms is more preferable, and an ethylene group, an n-propylene group, and an n-butylene group are further preferable. ..
  • Suitable counterions for forming a salt structure are alkali metals such as sodium and potassium; ammonium; and methylammonium, dimethylammonium, trimethylammonium, tetramethyl.
  • Organic ammonium such as ammonium, ethylammonium, triethylammonium, n-propylammonium, n-butylammonium, monoethanolammonium, and triethanolammonium can be mentioned.
  • the polyhydroxyurethane resin (1A) contains a divalent organic group represented by the general formula (6.1) as Z 1 in the repeating unit represented by the general formula (1.1), it has a carboxy group. , Or an anion thereof or a salt thereof (hereinafter, these may be collectively referred to as a "carboxy group”).
  • Z 1 divalent organic group represented by the general formula (6.1)
  • Z 1 is carboxy to a divalent organic group derived from compound (a2) (more preferably compound (a2-1) described later). It is preferable that the group is introduced.
  • the polyhydroxyurethane resin (1A) contains a carboxy group, which is an anionic group, as a hydrophilic group in the repeating unit represented by the general formula (1.1), it should be self-emulsified in an aqueous medium such as water. Is possible. Therefore, the above-mentioned composite resin composition can be suitably used as a form of an aqueous dispersion (emulsion).
  • the polyhydroxyurethane resin (2A) contains a structural unit represented by the following general formula (1.2).
  • This structural unit includes a compound (a1) having at least two 5-membered cyclic carbonate structures (hereinafter, may be simply referred to as “compound (a1)”) and a compound having at least two amino groups (a2).
  • the structural unit in which) and is polymerized is used as the basic structure.
  • the structural unit represented by the general formula (1.2) has the structural unit in which the compound (a1) and the compound (a2) are polymerized as the basic structure. It means that the structural unit is the one in which another chemical structure is introduced into the above basic structure.
  • the compound (a2) contains at least the compound (a2-2) described later.
  • X represents a divalent organic group or a direct bond derived from the compound (a1).
  • Y 1 and Y 2 independently represent divalent organic groups represented by any of the following general formulas (2) to (5), and two or more of them are polyhydroxyurethane resins (2 or more of them). It may be mixed in the molecule of 2A).
  • Z 2 represents a divalent organic group represented by the following general formula (6.2), which contains a structure derived from the compound (a2).
  • R 1 independently represents a hydrogen atom or a methyl group
  • * 1 is a bond with X in the general formula (1.2) or a direct bond with X.
  • the bond with the other Y is represented
  • * 2 represents the bond with O in the general formula (1.2).
  • R 2 represents a divalent hydrocarbon group that may contain oxygen and nitrogen atoms in its structure.
  • R 6 independently represents a divalent aliphatic hydrocarbon group having 1 to 15 carbon atoms, an alicyclic hydrocarbon group having 4 to 15 carbon atoms, or an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • Ether bonds, sulfonyl bonds, hydroxyl groups and halogen atoms may be contained in the structure of these groups.
  • W represents a divalent aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 40 carbon atoms, or an aromatic hydrocarbon group having 6 to 40 carbon atoms, and these groups.
  • * 3 represents the bond with N in Z 2 in the general formula (1.2)
  • * 4 represents the other bond in Z 2.
  • X in the general formula (1.2) is derived from the compound (a1) even if it is a directly bonded or divalent organic group.
  • the divalent organic group derived from the compound (a1) represented by X can take various groups due to the compound (a1).
  • suitable divalent organic groups include an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 4 to 40 carbon atoms, and an aromatic hydrocarbon group having 6 to 40 carbon atoms. These hydrocarbon groups have an ether bond, an amino bond, a sulfonyl bond, an ester bond, a hydroxyl group, a halogen atom, and an alkylene group having 2 to 6 carbon atoms and a repeating unit of 1. It may contain a polyalkylene glycol chain of up to 30.
  • Y 1 and Y 2 in the general formula (1.2) are also groups derived from the compound (a1), and as represented by the general formulas (2) to (5), divalent organic groups containing a hydroxyl group. Is. Since the polyhydroxyurethane resin (2A) contains a hydroxyl group in the structural unit represented by the general formula (1.2), the film made of a composite resin containing the polyhydroxyurethane resin (2A) has a gas barrier function. It will be possible to bring.
  • Formula (6.2) are represented by R 2 in as oxygen atoms and nitrogen atoms to contain an even better suitably divalent hydrocarbon group, aliphatic hydrocarbon group, alicyclic hydrocarbon group , And aromatic hydrocarbon groups, these hydrocarbon groups may contain oxygen and nitrogen atoms.
  • R 2 more preferably represents a hydrocarbon group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, which may contain an oxygen atom and a nitrogen atom.
  • an ether bond, a sulfonyl bond, a hydroxyl group and a halogen atom may be contained, and the divalent carbon number is 1 to 15 (more preferably).
  • a linear alkylene group having 1 to 15 carbon atoms is more preferable, and a linear chain having 2 to 12 carbon atoms such as an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, an octamethylene group, and a dodecamethylene group is preferable.
  • a methylene group is more preferred.
  • Suitable counterions for forming a salt structure are alkali metals such as sodium and potassium; ammonium; and methylammonium, dimethylammonium, trimethylammonium, tetramethyl.
  • Organic ammonium such as ammonium, ethylammonium, triethylammonium, n-propylammonium, n-butylammonium, monoethanolammonium, and triethanolammonium can be mentioned.
  • the polyhydroxyurethane resin (2A) contains a divalent organic group represented by the general formula (6.2) as Z 2 in the structural unit represented by the general formula (1.2), it has a carboxy group. , Or an anion thereof or a salt thereof (hereinafter, these may be collectively referred to as a "carboxy group").
  • Z 2 (a divalent organic group represented by the general formula (6.2)) is carboxy to a divalent organic group derived from the compound (a2) (more preferably the compound (a2-2) described later). It is preferable that the group is introduced.
  • the polyhydroxyurethane resin (2A) contains a carboxy group, which is an anionic group, as a hydrophilic group in the structural unit represented by the general formula (1.2), it should be self-emulsified in an aqueous medium such as water. Is possible. Therefore, the above-mentioned composite resin composition can be suitably used as a form of an aqueous dispersion (emulsion).
  • the basic structure of the polyhydroxyurethane resin (A) is a compound (a1) having at least two 5-membered cyclic carbonate structures in one molecule and a compound having at least two amino groups in one molecule (a compound having at least two amino groups in one molecule). It is obtained by a double addition reaction with a2).
  • the compound (a1) is a compound having two cyclic carbonate structures represented by the following general formula (a1-1), and the compound (a2) is a compound represented by the following general formula (a2).
  • the polymer obtained by the addition reaction has four types of chemical structures represented by the following general formulas (I) to (IV), and these are considered to be present at random positions.
  • the resin containing the repeating unit represented by the following general formulas (I) to (IV) obtained in the example of this reaction model is a divalent organic group represented by the general formula (2) or (3). It has a corresponding structure.
  • X in the general formula (a1-1) and the general formulas (I) to (IV) represents a direct bond or a divalent organic group.
  • R 1 in the general formula (a1-1) and the general formulas (I) to (IV) independently represent a hydrogen atom or a methyl group.
  • Z in the general formula (a2) and the general formulas (I) to (IV) represents a divalent organic group.
  • Examples of the divalent organic group represented by X and Z include a divalent hydrocarbon group (aliphatic hydrocarbon group, which may contain a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. An alicyclic hydrocarbon group or an aromatic hydrocarbon group) can be taken.
  • Z is preferably a divalent organic group containing at least a nitrogen atom, and is a divalent organic group containing at least one secondary amino group (-NH-; may be referred to as an imino group) in the molecule. More preferably it is a group.
  • the compound (a1) is a compound having two cyclic carbonate structures represented by the following general formula (a1-2), and the compound (a2) is a compound represented by the general formula (a2).
  • the polymer obtained by the double addition reaction has four types of chemical structures represented by the following general formulas (V) to (VIII), and these are considered to be present at random positions.
  • the resin containing the repeating unit represented by the following general formulas (V) to (VIII) obtained in the example of this reaction model is a divalent organic group represented by the general formula (4) or (5). It has a corresponding structure.
  • X in the general formula (a1-2) and the general formulas (V) to (VIII) represents a direct bond or a divalent organic group.
  • R 1 in the general formula (a1-2) and the general formulas (V) to (VIII) independently represents a hydrogen atom or a methyl group.
  • Z in the general formulas (V) to (VIII) represents a divalent organic group.
  • Examples of the divalent organic group represented by X and Z include a divalent hydrocarbon group (aliphatic hydrocarbon group, which may contain a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. An alicyclic hydrocarbon group or an aromatic hydrocarbon group) can be taken.
  • Z is preferably a divalent organic group containing at least a nitrogen atom, and is a divalent organic group containing at least one secondary amino group (-NH-; may be referred to as an imino group) in the molecule. More preferably it is a group.
  • the compound (a1) having at least two 5-membered cyclic carbonate structures in one molecule which is one of the raw material components of the polyhydroxyurethane resin (A), is represented by the following general reaction formula (R-ii). It can be obtained by the reaction of an epoxy compound with carbon dioxide as in the model reaction.
  • an epoxy compound (a compound having two or more epoxy groups) as a raw material is pressurized to about atmospheric pressure to 1 MPa at a temperature of 0 to 160 ° C. in the presence of a catalyst for 4 to 24 hours in a carbon dioxide atmosphere. React.
  • X in the general reaction formula (R-ii) represents a divalent organic group, and may contain a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. It can take a hydrocarbon group (an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group).
  • the resin obtained by using the compound (a1) synthesized from carbon dioxide as a raw material has an -O-CO- bond in which carbon dioxide is immobilized in its structure.
  • the content of carbon dioxide-derived -O-CO- bonds (fixed amount of carbon dioxide) in the polyhydroxyurethane resin (A) should be as high as possible from the standpoint of effective utilization of carbon dioxide.
  • carbon dioxide is contained in the structure of the polyhydroxyurethane resin (A) in the range of 1 to 30% by mass (more preferably 1 to 20% by mass). It can contain carbon.
  • the polyhydroxyurethane resin (A) is a resin in which 1 to 30% by mass (more preferably 1 to 20% by mass) of its mass is occupied by the carbon dioxide-derived —O—CO— bond as a raw material. Is preferable.
  • the catalyst used for the reaction between the epoxy compound and carbon dioxide one or more of known catalysts (for example, halogenated salts and quaternary ammonium salts) that can be used for the synthesis of compound (a1) are used. Can be used. The amount of the catalyst used can also be appropriately determined from a known range.
  • the reaction between the epoxy compound and carbon dioxide can also be carried out in the presence of an organic solvent.
  • any known organic solvent that can be used for synthesizing the compound (a1) can be used as long as it dissolves the above-mentioned catalyst (for example, an amide solvent, an alcohol solvent, and an alcohol solvent).
  • One or more of (ether-based solvent, etc.) can be used.
  • the structure of the above-mentioned compound (a1) is not particularly limited as long as it has two or more five-membered cyclic carbonate structures in one molecule.
  • compounds having a benzene skeleton, an aromatic polycyclic skeleton, a condensed polycyclic aromatic skeleton, or a compound having an aliphatic or alicyclic cyclic carbonate structure can be used.
  • the compounds that can be used are illustrated below.
  • Examples of the compound (a1) having a benzene skeleton, an aromatic polycyclic skeleton, and a condensed polycyclic aromatic skeleton include those having structures represented by the following structural formulas (a1.1) to (a1.6). can do.
  • R in the structural formula (a1.3) and (A1.4) represents H or CH 3.
  • the compound represented by the general formula (a1-3) is a compound represented by the above-mentioned general formula (a1-1), in which X in the general formula (a1-1) is divalent containing two ether bonds. It can be said that R 1 in the general formula (a1-1) is a compound representing a hydrogen atom.
  • R X in the following general formula (a1-3) can be used is a divalent organic group.
  • the divalent organic group may contain, for example, a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
  • a divalent hydrocarbon group (aliphatic hydrocarbon group, alicyclic hydrocarbon). It can take a hydrogen group or an aromatic hydrocarbon group).
  • the polymer obtained by the double addition reaction of the compound represented by the general formula (a1-3) as the compound (a1) and the compound represented by the above general formula (a2) as the compound (a2) is generally described below.
  • Four types of chemical structures represented by the formulas (I-1) to (IV-1) are generated, and these are considered to be present at random positions.
  • R X in following general formula (I-1) ⁇ (IV -1) represents a divalent organic group derived from a compound represented by the general formula (a1-3).
  • the compound (a2) used to obtain the polyhydroxyurethane resin (1A) of the first aspect includes Z in the repeating unit represented by the general formula (1.1) in the polyhydroxyurethane resin (1A). At least one that provides the basic skeleton of 1 (that is, a divalent organic group represented by the general formula (6.1)) is used.
  • a compound (a2) as represented by the following general formula (a2-1), two amino groups (-NH 2 ) and at least one imino group (-NH-) are contained in one molecule.
  • a compound having a compound (in this specification, it may be simply referred to as “compound (a2-1)”) is preferable.
  • R 3 , R 4 , R 5 , a, and b are all synonymous with those in the above general formula (6.1).
  • Examples of the compound represented by the general formula (a2-1) include diaminetriamine, triethylenetetramine, iminobispropylamine, tetraethylenepentamine, N, N'-bis (3-aminopropyl) -1,3-. Examples thereof include propylene diamine and N, N'-bis (3-aminopropyl) -1,4-butylenediamine. It is possible to use one or more of these compounds.
  • the above-mentioned imino group in the compound represented by the general formula (a2-1) does not react with the above-mentioned compound (a1) having at least two cyclic carbonate structures, and the poly containing the imino group in the main chain. Hydroxyurethane can be synthesized. By using this polyhydroxyurethane containing an imino group as an intermediate in the next reaction described later, a polyhydroxyurethane resin (1A) having a structure represented by the general formula (6.1) having a carboxy group can be obtained. Can be done.
  • the reaction conditions of the compound (a1) such as the compound represented by the above general formula (a1-3) and the compound represented by the general formula (a2-1) are, for example, 40 to 200 when both are mixed. The reaction may be carried out at a temperature of ° C. for 4 to 24 hours.
  • the reaction between the compound (a1) and the compound represented by the general formula (a2-1) can be carried out without a solvent, but is preferably carried out in a hydrophilic solvent.
  • Suitable hydrophilic solvents include, for example, tetrahydrofuran, dioxane, dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, methanol, ethanol, propanol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether. , Diethylene glycol monomethyl ether, diethylene glycol dimethyl ether and the like.
  • preferred solvents include tetrahydrofuran, which has a boiling point that facilitates evaporation and distillation after phase inversion emulsification.
  • the reaction between the compound (a1) and the compound represented by the general formula (a2-1) can also be carried out in the presence of a catalyst in order to promote the reaction.
  • Suitable catalysts include, for example, triethylamine, tributylamine, diazabicycloundecene (DBU), triethylenediamine (DABCO); basic catalysts such as pyridine and hydroxypyridine; Lewis acid catalysts such as tetrabutyltin and dibutyltin dilaurate; And so on.
  • the amount of the catalyst used is preferably 0.01 to 10 parts by mass, which corresponds to 100 parts by mass of the total amount of the compound (a1) and the compound represented by the general formula (a2-1).
  • a chemical structure having a carboxy group is introduced into the polyhydroxyurethane (intermediate) containing the above-mentioned imino group in the main chain.
  • a poly having a chemical structural site represented by the general formula (6.1) containing a carboxy group by reacting an intermediate with a cyclic acid anhydride and reacting the imino group with the cyclic acid anhydride in the intermediate.
  • a hydroxyurethane resin (1A) can be obtained.
  • Cyclic acid anhydrides that can be used in the above reaction include, for example, succinic anhydride, maleic anhydride, itaconic acid anhydride, caronic acid anhydride, citraconic acid anhydride, glutaric acid anhydride, diglycolic acid anhydride, and the like.
  • aliphatic acid anhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; phthalic anhydride, trimellitic anhydride, 1,8-naphthalic anhydride, and pyromellitic anhydride and the like.
  • Aromatic acid anhydrides 1,1-cyclohexanediacetate anhydride, 1-cyclohexene-1,2-dicarboxylic acid anhydride, 1,1-cyclopentanediacetate anhydride, and 5-norbornene-2,3- Alicyclic acid anhydrides such as dicarboxylic acid anhydrides; as well as derivatives thereof and the like can be mentioned.
  • One or more of these cyclic acid anhydrides can be used.
  • succinic anhydride and maleic anhydride are preferable because a compound having a low molecular weight exhibits emulsion stability even when used in a small amount.
  • the introduced carboxy group may be left as it is, but when an aqueous dispersion of the polyhydroxyurethane resin (1A) is obtained, a part of the carboxy group or a part of the carboxy group is used to promote ionization in water. It is preferable to neutralize all (preferably all) and leave the polyhydroxyurethane resin (1A) in the form of a neutralizing salt.
  • the basic compound used for neutralization include ethylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, N-methyldiethanolamine, N-phenyldiethanolamine, monoethanolamine, dimethylethanolamine and diethylethanol.
  • Organic amines such as amines, morpholins, N-methylmorpholins, and 2-amino-2-methyl-1-propanol; alkali metals such as lithium, potassium, and sodium; and sodium hydroxide, potassium hydroxide, calcium hydroxide, Examples thereof include potassium hydroxide and inorganic bases such as ammonia, and one or more of these can be used.
  • these basic compounds those that can be volatilized at the time of forming the coating film (film) are preferable because the water resistance of the coating film (film) is improved, and for example, triethylamine is preferable.
  • an aqueous dispersion of the polyhydroxyurethane resin (1A) can be easily obtained.
  • a polyhydroxyurethane resin (1A) having a carboxy group introduced therein is synthesized in the above-mentioned hydrophilic solvent to obtain a solution of the polyhydroxyurethane resin (1A)
  • water is gradually added to the solution. Therefore, it is preferable to invert the phase.
  • an oil-in-water type (O / W type) emulsion can be obtained.
  • the amount of water used for phase inversion can be appropriately determined according to the type of solvent used in the synthesis of the polyhydroxyurethane resin (1A), the resin concentration, the viscosity, and the like.
  • An aqueous dispersion of the polyhydroxyurethane resin (1A) can be obtained by heating the O / W type emulsion obtained by phase inversion emulsification under reduced pressure conditions to volatilize the solvent.
  • the volume-based median diameter (d 50 ) measured using a dynamic light scattering particle size distribution measuring device for the aqueous dispersion of the polyhydroxyurethane resin (1A) shall be about 0.01 to 100 ⁇ m. Is preferable.
  • the polyhydroxyurethane resin (1A) has a hydroxyl group having a structure represented by the above-mentioned general formulas (2) to (5) in the repeating unit represented by the above-mentioned general formula (1.1). It is possible to provide a gas barrier function to a film made of a composite resin containing a polyhydroxyurethane resin (1A), unlike a polyurethane resin generally obtained by an addition reaction of an isocyanate compound and a polyol compound. Become. From the viewpoint of gas barrier property and film suitability, the hydroxyl value of the polyhydroxyurethane resin (1A) is preferably in the range of 150 to 300 mgKOH / g.
  • the hydroxyl value (mgKOH / g) in the present specification is a value measured in accordance with JIS K1557-1.
  • the polyhydroxyurethane resin (1A) contains a carboxy group in the repeating unit represented by the above-mentioned general formula (1.1), the above-mentioned composite resin composition is used as an aqueous dispersion (emulsion). It can be preferably used.
  • the amount of the carboxy group in the polyhydroxyurethane resin (1A) affects the emulsion stability of the emulsion and the water resistance of the film formed of the composite resin composition. From the viewpoint of the emulsion stability and the water resistance of the film, the amount of the carboxy group in the polyhydroxyurethane resin (1A) is such that the acid value of the polyhydroxyurethane resin (1A) is in the range of 10 to 100 mgKOH / g. It is preferable to do so.
  • the weight average molecular weight of the polyhydroxyurethane resin (1A) is preferably in the range of 10,000 to 100,000.
  • the acid value (mgKOH / g) in the present specification is a value measured in accordance with the provisions of JIS K1557-5. Further, the weight average molecular weight in the present specification is determined by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a mobile phase, according to a GPC apparatus (trade name "GPC-8220", manufactured by Tosoh; column). Super AW2500 + AW3000 + AW4000 + AW5000), which is a value measured as a standard polystyrene conversion value.
  • the compound (a2) used to obtain the polyhydroxyurethane resin (2A) of the second aspect includes Z in the structural unit represented by the general formula (1.2) in the polyhydroxyurethane resin (2A). At least a compound having a basic skeleton of 2 (a divalent organic group represented by the general formula (6.2)) is used. As such a compound (a2), a compound (a2-2) represented by the following general formula (a2-2) is preferable.
  • R 6 and W are synonymous with R 6 and W in the above general formula (6.2), respectively.
  • the compound (a2-2) represented by the general formula (a2-2) includes a compound (a2-3) having at least two amino groups in one molecule, which can also be used as the compound (a2), and 1 It is obtained by performing a step of reacting with a compound (a3) having at least two epoxy groups in the molecule (hereinafter, may be referred to as "first reaction step").
  • the first reaction step is carried out under the condition that the amino group is excessive with respect to the epoxy group from the viewpoint that the compound (a2-2) can be easily obtained, and the compound (a2-3) is in an unreacted state. It is preferable to do so so that it remains.
  • R 6 in the following general reaction formula (R-iii) is a divalent organic group derived from the compound (a2-3)
  • W is a divalent organic group derived from a compound having at least two epoxy groups. It is a group and is synonymous with R 6 and W in the general formula (6.2), respectively.
  • any conventionally known compound can be used as the compound (a2-3) that can be used as a raw material for the compound (a2-2).
  • Suitable compounds (a2-3) include, for example, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane (also known as hexamethylenediamine), 1,8-diaminooctane.
  • 1,10-Diaminodecane and chain aliphatic polyamines such as 1,12-diaminododecane; isophoronediamine, norbornandiamine, 1,6-cyclohexanediamine, piperazine, bis (aminopropyl) piperazine, and 2,5- Cyclic aliphatic polyamines such as diaminopyridine; aliphatic polyamines having an aromatic ring such as xylylene diamine; aromatic polyamines such as metaphenylenediamine and diaminodiphenylmethane can be mentioned. One or more of these can be used. Among these, chain aliphatic polyamines are preferable.
  • the epoxy compound (a3) that can be used as a raw material for the compound (a2-2) includes the epoxy compound used as a raw material component for the compound (a1) having at least two 5-membered cyclic carbonate structures described above. It is preferable to use a compound having a similar structure. Specifically, W in the epoxy compound (a3) in the general reaction formula (R-iii) (W in the general formula (6.2)) is the same as X in the general formula (1.2) described above. It is more preferable to use an epoxy compound having a structure.
  • the epoxy compound (a3) is preferably a compound represented by the following general formula (a3-1), the R W in the following general formula (a3-1), R in the above general formula (a1-3) can take divalent organic groups mentioned in X, it is more preferably the same group as R X.
  • the compound (a2-2) represented by the general formula (a2-2) obtained in the first reaction step is at least 2 described above, like the compound (a2-3) used as the raw material thereof. It is possible to carry out a double addition reaction with the compound (a1) having two 5-membered cyclic carbonate structures.
  • the imino group (-NH-) in the compound (a2-2) does not react with the compound (a1), and a polyhydroxyurethane containing the imino group in the main chain can be synthesized.
  • a polyhydroxyurethane resin (2A) containing a structure represented by the general formula (6.2) having a carboxy group. ) Can be obtained.
  • a polyhydroxyurethane intermediate containing a structural unit corresponding to the general formula (1.2), in which Z 2 in 2) has a structure represented by the following general formula (Z M), can be obtained.
  • a hydroxyurethane resin (2A) can be obtained.
  • R 6 and W in the following general formula (Z M ) are synonymous with R 6 and W in the general formula (6.2), respectively.
  • the product of the first reaction step (mixture of compound (a2-2) and compound (a2-3)) is followed by the first reaction step.
  • the structure corresponding to the structural unit in which the compound (a2-2) and the compound (a1) are polymerized (the above-mentioned Z 2 is represented by the general formula (Z M )) corresponding to the general formula (1.2).
  • a polyhydroxyurethane intermediate containing a unit) and a structural unit represented by the following general formula (1.3) in which the compound (a2-3) and the compound (a1) are polymerized can be obtained.
  • the introduction step described later on the imino group (-NH-) in this polyhydroxyurethane intermediate it is represented by the general formula (1.3) together with the structural unit represented by the general formula (1.2).
  • a polyhydroxyurethane resin (2A) containing the above structural units can be obtained.
  • the polyhydroxyurethane resin (2A) is represented by the general formula (1.3). It is preferable that the content ratio of the structural unit to be obtained is higher than the content ratio of the structural unit represented by the general formula (1.2).
  • X, Y 1 , and Y 2 in the general formula (1.3) are synonymous with X, Y 1 , and Y 2 in the general formula (1.2), respectively, and R 6 is the general formula (1). It is synonymous with R 6 in 6.2).
  • Both the reaction conditions in the first reaction step and the second reaction step can be set to, for example, a condition of about 4 to 24 hours at a temperature of 40 to 200 ° C.
  • the reaction in both the first reaction step and the second reaction step can be carried out without a solvent, but it is preferable to carry out the reaction in a hydrophilic solvent in consideration of the reaction of the next step and the emulsification step.
  • Suitable hydrophilic solvents include, for example, tetrahydrofuran, dioxane, dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, methanol, ethanol, propanol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether. , Diethylene glycol monomethyl ether, diethylene glycol dimethyl ether and the like.
  • preferred solvents include tetrahydrofuran, which has a boiling point that facilitates evaporation and distillation after phase inversion emulsification.
  • the first reaction step and the second reaction step can also be carried out in the presence of a catalyst in order to promote the reaction.
  • Suitable catalysts include, for example, triethylamine, tributylamine, diazabicycloundecene (DBU), triethylenediamine (DABCO); basic catalysts such as pyridine and hydroxypyridine; Lewis acid catalysts such as tetrabutyltin and dibutyltin dilaurate; And so on.
  • a step (introduction step) of introducing a chemical structure having a carboxy group into the polyhydroxyurethane intermediate obtained as described above is performed.
  • the polyhydroxyurethane intermediate is reacted with a cyclic acid anhydride, and the reaction between the imino group and the cyclic acid anhydride in the polyhydroxyurethane intermediate causes a general formula (6.2) containing a carboxy group.
  • a polyhydroxyurethane resin (2A) having a chemical structural site represented by is obtained.
  • Cyclic acid anhydrides that can be used in the introduction step include, for example, succinic anhydride, maleic anhydride, itaconic acid anhydride, caronic acid anhydride, citraconic acid anhydride, glutaric acid anhydride, diglycolic acid anhydride, and Alipid acid anhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; such as phthalic anhydride, trimellitic anhydride, 1,8-naphthalic anhydride, and pyromellitic anhydride.
  • Aromatic acid anhydrides 1,1-cyclohexanediacetate anhydride, 1-cyclohexene-1,2-dicarboxylic acid anhydride, 1,1-cyclopentanediacetate anhydride, and 5-norbornene-2,3-dicarboxylic acid
  • Alicyclic acid anhydrides such as acid anhydrides; as well as derivatives thereof and the like can be mentioned.
  • One or more of these cyclic acid anhydrides can be used.
  • succinic anhydride and maleic anhydride are preferable because a compound having a low molecular weight exhibits emulsion stability even when used in a small amount.
  • the introduced carboxy group may be left as it is, but when an aqueous dispersion of the polyhydroxyurethane resin (2A) is obtained, a part of the carboxy group or a part of the carboxy group is used to promote ionization in water. It is preferable to neutralize all (preferably all) and leave the polyhydroxyurethane resin (2A) in the form of a neutralized salt.
  • the basic compound used for neutralization include ethylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, N-methyldiethanolamine, N-phenyldiethanolamine, monoethanolamine, dimethylethanolamine and diethylethanol.
  • Organic amines such as amines, morpholins, N-methylmorpholins, and 2-amino-2-methyl-1-propanol; alkali metals such as lithium, potassium, and sodium; and sodium hydroxide, potassium hydroxide, calcium hydroxide, Examples thereof include potassium hydroxide and inorganic bases such as ammonia, and one or more of these can be used.
  • these basic compounds those that can be volatilized at the time of forming the coating film (film) are preferable because the water resistance of the coating film (film) is improved, and for example, triethylamine is preferable.
  • an aqueous dispersion of a polyhydroxyurethane resin (2A) can be easily obtained. That is, when a polyhydroxyurethane resin (2A) having a chemical structure having a carboxy group introduced therein is synthesized in the above-mentioned hydrophilic solvent to obtain a solution of the polyhydroxyurethane resin (2A), the solution is used. It is preferable to invert the phase by gradually adding water. Thereby, an oil-in-water type (O / W type) emulsion can be obtained.
  • O / W type oil-in-water type
  • the amount of water used for phase inversion can be appropriately determined according to the type of solvent used in the synthesis of the polyhydroxyurethane resin (2A), the resin concentration, the viscosity, and the like. It is preferably about 50 to 200 parts by mass per 100 parts by mass of the resin (solid content) of the resin solution.
  • An aqueous dispersion of the polyhydroxyurethane resin (2A) can be obtained by heating the O / W type emulsion obtained by phase inversion emulsification under reduced pressure conditions to volatilize the solvent.
  • the volume-based median diameter (d 50 ) measured using a dynamic light scattering type particle size distribution measuring device shall be about 0.001 to 10 ⁇ m. Is preferable.
  • the compound (a2) having an imino group into which a carboxy group is introduced in addition to the above-mentioned compound (a2-2), other amino groups at both ends (two terminal amino groups in one molecule; -NH 2 ) and a compound having an imino group (-NH-) inside may be used.
  • Such compounds include, for example, diethylenetriamine, triethylenetetramine, iminobispropylamine, tetraethylenepentamine, N, N'-bis (3-aminopropyl) -1,3-propylene diamine, and N, N'.
  • -Bis (3-aminopropyl) -1,4-butylenediamine and the like can be mentioned.
  • the polyhydroxyurethane resin (2A) has a hydroxyl group having a structure represented by the above-mentioned general formulas (2) to (5) in the structural unit represented by the above-mentioned general formula (1.2). It is possible to provide a gas barrier function to a film made of a composite resin containing a polyhydroxyurethane resin (2A), unlike a polyurethane resin generally obtained by an addition reaction of an isocyanate compound and a polyol compound. Become. From the viewpoint of gas barrier property and film suitability, the hydroxyl value of the polyhydroxyurethane resin (2A) is preferably in the range of 150 to 300 mgKOH / g.
  • the hydroxyl value (mgKOH / g) in the present specification is a value measured in accordance with JIS K1557-1.
  • the polyhydroxyurethane resin (2A) contains a chemical structural portion having a carboxy group represented by the above-mentioned general formula (6.2), the above-mentioned composite resin composition is in the form of an aqueous dispersion (emulsion). Can be suitably used as.
  • the amount of the carboxy group in the polyhydroxyurethane resin (2A) affects the emulsion stability of the emulsion and the water resistance of the film formed of the composite resin composition. From the viewpoint of the emulsion stability and the water resistance of the film, the amount of the carboxy group in the polyhydroxyurethane resin (2A) is such that the acid value of the polyhydroxyurethane resin (2A) is in the range of 15 to 50 mgKOH / g. It is preferable to do so.
  • the weight average molecular weight of the polyhydroxyurethane resin (2A) is preferably in the range of 10,000 to 100,000.
  • the gas barrier film and composite resin composition of one embodiment of the present invention contain a starch-based compound (B) together with the above-mentioned polyhydroxyurethane resin (A).
  • the hydroxyl value of the starch-based compound (B) is preferably 30 to 1500 mgKOH / g.
  • examples of the starch-based compound (B) include high-amylose cornstarch, cornstarch, tapioca starch, sweet potato starch, horse bell starch, wheat starch, high-amylose wheat starch, rice starch, and dextrin, as well as chemical and physical raw materials thereof. , Or processed starch that has been enzymatically processed (decomposed). One or more of these starch-based compounds (B) can be used.
  • Starch is a natural polymer in which a large number of ⁇ -glucose molecules are polymerized by glycosidic bonds and has a hydroxyl group. Therefore, the starch-based compound (B) also has a hydroxyl group.
  • the hydroxyl group contained in the starch-based compound (B) is crosslinked with the metal chelate compound (C) described later, similarly to the hydroxyl group contained in the polyhydroxyurethane resin (A) described above. Therefore, in the composite resin constituting the gas barrier film, the polyhydroxyurethane resin (A) and the starch-based compound (B) are composited in a good state by cross-linking with the metal chelate compound (C).
  • starch-based compound (B) at least one of indigestible glucan obtained by recondensing saccharides of DE70 to 100, which is a decomposition product of starch, and a treated product thereof may be used because of its high solubility and reactivity. preferable.
  • the indigestible glucan and its processed product are, for example, from a sugar condensate obtained by recondensing the saccharides of DE70-100, which is a decomposition product of starch, as described in Japanese Patent Application Laid-Open No. 2016-050173. Become.
  • DE Dextrose Equivalent
  • Indigestible glucan means indigestible glucan (glucose polymer) and is known to have abundant water-soluble dietary fiber fractions. Its chemical structure is a compound having a dendritic structure, and there are various names depending on the binding pattern. Examples of commercially available products include the trade name "Fit Fiber # 80" (manufactured by Nihon Shokuhin Kako Co., Ltd.). This product is a sugar condensate obtained by heat-condensing a starch decomposition product of DE87 using activated carbon as a catalyst.
  • the content of the starch-based compound (B) with respect to 100 parts by mass of the polyhydroxyurethane resin (A) is 10 to 300 parts by mass.
  • the content of the starch-based compound (B) is 20 parts by mass or more from the viewpoint that a sufficient biodegradable effect of the starch-based compound (B) can be easily obtained and the biomass degree of the gas barrier film is increased. It is preferably 30 parts by mass or more, more preferably 50 parts by mass or more.
  • the content of the starch-based compound (B) is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 100 parts by mass. The following is more preferable.
  • the gas barrier film and composite resin composition of one embodiment of the present invention contain a metal chelate compound (C) together with the above-mentioned polyhydroxyurethane resin (A) and starch-based compound (B).
  • the metal chelate compound (C) can be crosslinked with the polyhydroxyurethane resin (A) and the starch-based compound (B), and functions as a crosslinking agent. Therefore, the gas barrier film made of the composite resin contains the polyhydroxyurethane resin (A) and the metal chelate compound (C) crosslinked with the starch-based compound (B).
  • Suitable metals in the metal chelate compound (C) include titanium, zirconium, and aluminum.
  • Suitable metal chelate compounds (C) include, for example, titanium lactate, titanium lactate ammonium salt, titanium diethanol aminated, titanium triethanol amine (eg, titanium diisopropoxybis (triethanol aminate), etc.), titanium aminoethylamino.
  • titanium acetylacetonate eg titanium diisopropoxybis (acetylacetate)
  • titanium octylene glycolate titanium tetraacetylacetonate
  • titanium ethylacetacetate eg titanium diisopropoxybis (ethylacetoacetate)
  • titanium chelating compounds such as dodecylbenzene sulfonate titanium compounds
  • zirconyl compounds such as zirconyl chloride compounds, zirconite ammonium salts, zirconium tetraacetylacetonates, and zirconium tributoxymonoacetylacetonates
  • aluminum tris acetyls
  • Acetate aluminum bisethylacetate acetate monoacetylacetonate
  • aluminum chelate compounds such as aluminum tris (ethylacetacetate) can be mentioned.
  • titanium chelate compounds and zirconium chelate compounds are preferable, and water-soluble titanium chelate compounds (for example, titanium lactate, titanium lactate ammonium salt, titanium diethanol aminate, titanium triethanol aminate, and titanium amino) are preferable. It is more preferred to use at least one of (such as ethylaminoetanolate) and a water-soluble zirconium chelate compound (such as a zirconium chloride compound and a zirconium lactate ammonium salt). Among them, it is more preferable to use at least one of titanium triethanolamineate and zirconium lactate ammonium salt. One or more of the metal chelate compounds listed above can be used.
  • Cross-linking of the hydroxyl groups of the polyhydroxyurethane resin (A) by the metal chelate compound (C) and cross-linking of the hydroxyl groups of the starch-based compound (B) have a short distance between the cross-links, and in particular, crystals of the polyhydroxyurethane resin (A). Does not interfere with sex. From this, it is possible to cause cross-linking by the metal chelate compound (C) without lowering the gas barrier property.
  • the cross-linking by the metal chelate compound (C) includes a single cross-link between the metal chelate compound (C) and the polyhydroxyurethane resin (A) or the starch-based compound (B), and polyhydroxyurethane. It includes both cross-linking between the molecules of the resin (A) and the starch-based compound (B) and the metal chelate compound (C).
  • the composite resin composition of one embodiment of the present invention contains the metal chelate compound (C)
  • a uniform film can be formed by cross-linking the polyhydroxyurethane resin (A) and the starch-based compound (B). Therefore, by using the composite resin composition, it is possible to form a gas barrier film having a uniform film.
  • the starch-based compound (B) that is easily dissolved in water is used. ) Is used, so that the water resistance of the obtained film is low.
  • the composite resin composition further containing the metal chelate compound (C) is used, the polyhydroxyurethane resin (A) and the starch-based compound (B) are crosslinked via the metal chelate compound (C). As a result, a gas barrier film having a uniform film having water resistance can be obtained.
  • the amount of the metal chelate compound (C) used is preferably an amount that leaves a certain amount of the hydroxyl groups of the polyhydroxyurethane resin (A) so as not to reduce the gas barrier property of the formed film. From this point of view, it is preferable to use the polyhydroxyurethane resin (A) in an amount of 50% or less crosslinked with respect to the hydroxyl group. From such a viewpoint, the content of the metal chelate compound (C) in the gas barrier film and the composite resin composition is 1 to 50 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A). It is preferably 5 to 40 parts by mass, more preferably 10 to 30 parts by mass. On the other hand, from the viewpoint of enhancing the gas barrier property and strength (toughness) of the film, the content of the metal chelate compound (C) is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less.
  • a cross-linking agent that reacts with a hydroxyl group may be used together with the metal chelate compound (C) as long as the object of the present invention is not impaired.
  • examples of other cross-linking agents include urea resins, melamine resins, epoxy resins, polyisocyanates, acid anhydrides, silane coupling agents, and metal cross-linking agents such as titanium.
  • the gas barrier film and the composite resin composition of one embodiment of the present invention may contain a layered clay mineral.
  • the layered clay mineral is a mineral having a layered structure containing a layered silicate mineral (phyllosilicate mineral) as a main component.
  • a layered silicate mineral phyllosilicate mineral
  • examples of the layered clay mineral include montmorillonite, saponite, hectorite, vermiculite, kaolinite, and mica. One of these may be used alone or in combination of two or more, and either a natural product or a synthetic product can be used. Of these, montmorillonite, saponite, and mica are preferred.
  • the gas barrier film and the composite resin composition may contain an inorganic filler other than the above-mentioned layered clay mineral.
  • the inorganic filler include silica, calcium carbonate, titanium oxide, glass fiber, and the like, and one or more kinds of inorganic fillers can be used.
  • the gas barrier film of one embodiment of the present invention can be easily produced by applying the above-mentioned composite resin composition.
  • the method for producing this gas barrier film it is preferable to first prepare an aqueous dispersion (emulsion) of the polyhydroxyurethane resin (A) as a resin composition containing the polyhydroxyurethane resin (A). Then, in the aqueous dispersion, 10 to 300 parts by mass of the starch-based compound (B) and a predetermined amount of the metal chelate compound (C) are added to 100 parts by mass of the polyhydroxyurethane resin (A) (solid content of the aqueous dispersion). ) To obtain a composite resin composition (coating liquid). By applying the composite resin composition in the form of this aqueous dispersion and drying it, a gas barrier film composed of a coating film (coating film) of the composite resin composition can be produced.
  • a composite is applied to a substrate such as a polyester film (for example, PET film) by a gravure coater, a knife coater, a reverse coater, a bar coater, a spray coater, a slit coater, or the like.
  • the resin composition may be applied to volatilize water and the remaining solvent.
  • a gas barrier film formed of the composite resin composition can also be obtained by peeling the coating film formed of the composite resin composition from the above-mentioned base material.
  • the conditions are such that a cross-linking reaction by the metal chelate compound (C) sufficiently occurs.
  • a water-soluble titanium chelate compound suitable as the metal chelate compound (C) it is dried at a temperature of about 80 to 140 ° C. for about 10 to 120 minutes from the viewpoint of increasing the productivity of the gas barrier film. It is preferable to do so.
  • the thickness of the gas barrier film is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 1 to 100 ⁇ m, and even more preferably in the range of 10 to 100 ⁇ m.
  • the oxygen permeability of the gas barrier film is preferably 50 mL / m 2 ⁇ day ⁇ atm or less, and more preferably 40 mL / m 2 ⁇ day ⁇ atm or less at a temperature of 23 ° C. and a relative humidity of 65% RH. ..
  • the oxygen permeability (mL / m 2 , day, atm) in the present specification is a value measured using oxygen as a gas in accordance with the provisions of JIS K7126-1.
  • the gas barrier film of one embodiment of the present invention contains a specific polyhydroxyurethane resin (A) and a starch-based compound (B) in a specific ratio, and a metal chelate crosslinked with them.
  • Contains compound (C). Therefore, this gas barrier film is an environment-friendly material that uses a starch-based compound (B), which is a biomass, and can further increase the degree of biomass, but does not impair water resistance and has good gas barrier properties.
  • the gas barrier film of one embodiment of the present invention can have the following configurations.
  • the metal chelate compound (C) crosslinked with the starch-based compound (B) is contained, and the content of the starch-based compound (B) is 10 to 300 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A).
  • a metal chelate compound (C) crosslinked with a starch-based compound (B) is contained, and the content of the starch-based compound (B) is 10 to 300 parts by mass with respect to 100 parts by mass of the polyhydroxyurethane resin (A).
  • the polyhydroxyurethane resin (A) further contains the structural unit represented by the general formula (1.2) in addition to the structural unit represented by the general formula (1.2) [3].
  • the starch-based compound (B) is an indigestible glucan obtained by recondensing a saccharide of DE70-100, which is a decomposition product of starch having a hydroxyl value in the range of 30 to 1500 mgKOH / g, and a treated product thereof.
  • the gas barrier film according to any one of the above [1] to [5], which comprises at least one of them.
  • the thickness is in the range of 0.1 to 100 ⁇ m, and the oxygen permeability at a temperature of 23 ° C. and a relative humidity of 65% RH is 50 mL / m 2 ⁇ day ⁇ atm or less.
  • the gas barrier film according to any one of.
  • the composite resin composition of one embodiment of the present invention can adopt the following constitution.
  • Polyhydroxyurethane resin (A), starch-based compound (B), and the polyhydroxyurethane resin (A) and the starch-based compound which have a basic structure and contain a repeating unit represented by the general formula (1.1).
  • a structural unit in which a compound (a1) having at least two 5-membered cyclic carbonate structures and a compound (a2) having at least two amino groups are polymerized in a composite resin composition for forming a gas barrier film.
  • Resin composition. [14] The composite resin composition according to the above [13], wherein the compound (a2) contains a compound represented by the general formula (a2-2).
  • the polyhydroxyurethane resin (A) further contains the structural unit represented by the general formula (1.2) in addition to the structural unit represented by the general formula (1.2).
  • the starch-based compound (B) is an indigestible glucan obtained by recondensing a saccharide of DE70-100, which is a decomposition product of starch having a hydroxyl value in the range of 30 to 1500 mgKOH / g, and a treated product thereof.
  • the composite resin composition according to any one of the above [11] to [15], which comprises at least one of them.
  • this powder is a compound having a two-membered cyclic carbonate structure represented by the following chemical formula (a11) in which a cyclic carbonate group is introduced by a reaction between an epoxy group and carbon dioxide. This is referred to as compound (a11).
  • the proportion of carbon dioxide-derived components in this compound (a11) was 20.6% (calculated from the molecular weight in the chemical structural formula).
  • Synthesis Example 2 Synthesis of compound (a12) having a cyclic carbonate structure
  • the bisphenol A type epoxy resin used in Synthesis Example 1 was changed to hydroquinone diglycidyl ether (trade name "Denacol EX203", manufactured by Nagase ChemteX Corporation) having an epoxy equivalent of 115.
  • a compound (a12) having a two-membered cyclic carbonate structure represented by the following chemical formula (a12) was synthesized (yield 55%).
  • the obtained compound (a12) was a white crystal and had a melting point of 141 ° C.
  • the particle size distribution of the polyhydroxyurethane resin (1A1) in the aqueous dispersion was measured using a dynamic light scattering type particle size distribution measuring device (trade name "UPA-EX150", manufactured by Nikkiso).
  • the median diameter (d 50 ) was 0.02 ⁇ m.
  • good stability was shown.
  • This aqueous dispersion was uniform in appearance.
  • particle size distribution of the polyhydroxyurethane resin (A1) in the aqueous dispersion was measured using a dynamic light scattering type particle size distribution measuring device (trade name "UPA-EX150", manufactured by Nikkiso), it was based on the volume.
  • the median diameter (d 50 ) was 0.02 ⁇ m.
  • good stability was shown.
  • an aqueous dispersion in which the polyhydroxyurethane resin (2A2) was dispersed in water was obtained.
  • This aqueous dispersion was uniform in appearance.
  • the stability of the obtained aqueous dispersion was stored in a constant temperature bath at 50 ° C. and evaluated, good stability was shown.
  • Example 1-1 Indigestible glucan as a starch-based compound (B) in an aqueous dispersion of the polyhydroxyurethane resin (1A1) obtained in Production Example 1-1 with respect to 100 parts of the solid content (resin (1A1)) of the aqueous dispersion.
  • resin (1A1) solid content of the aqueous dispersion.
  • Tit Fiber # 80 titanium triethanolamine (titanium diisopropoxy-bistri), which is a water-soluble titanium chelate compound, was added as a metal chelate compound (C).
  • Ethanol aminated trade name "Organix TC-400", manufactured by Matsumoto Fine Chemicals Co., Ltd.
  • the composite resin composition (polyhydroxy) containing the polyhydroxyurethane resin (1A1), the starch-based compound (B), and the metal chelate compound (C) is diluted with water so that the total solid content becomes 30%.
  • a coating liquid (urethane resin-starch hybrid composition) was obtained.
  • the coating liquid was uniformly applied to a corona-treated PET film having a thickness of 25 ⁇ m as a base material with a bar coater so that the dry film thickness was 20 ⁇ m, dried at 100 ° C. for 20 minutes, and then subjected to a metal chelate compound (C). ) Was crosslinked with a polyhydroxyurethane resin (1A1) and a starch-based compound (B). In this way, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material (PET film). A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-2 A composite resin composition (polyhydroxyurethane resin-starch hybrid composition) in the same manner as in Example 1-1, except that the amount of indigestible glucan used in Example 1-1 was changed from 100 parts to 50 parts. A coating liquid was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-3 The composite resin composition (polyhydroxyurethane resin-starch hybrid) was prepared in the same manner as in Example 1-1 except that the amount of titanium triethanolamine used in Example 1-1 was changed from 15 parts to 5 parts. A coating solution (composition) was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-4 The composite resin composition (polyhydroxyurethane resin-starch hybrid) was prepared in the same manner as in Example 1-1 except that the amount of titanium triethanolamine used in Example 1-1 was changed from 15 parts to 30 parts. A coating solution (composition) was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-5 Except for the fact that 15 parts of titanium triethanolamine in Example 1-1 was changed to 30 parts of zirconium lactate ammonium salt (trade name "Organix ZC-300", manufactured by Matsumoto Fine Chemical Co., Ltd.), which is a water-soluble zirconium chelate compound. , A coating liquid as a composite resin composition (polyhydroxyurethane resin-starch hybrid composition) was obtained in the same manner as in Example 1-1. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • zirconium lactate ammonium salt trade name "Organix ZC-300", manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Example 1-6 A composite resin composition (polyhydroxyurethane resin-starch hybrid composition) in the same manner as in Example 1-1, except that the amount of indigestible glucan used in Example 1-1 was changed from 100 parts to 300 parts. A coating liquid was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-7 in the same manner as in Example 1-1, except that the aqueous dispersion of the polyhydroxyurethane resin (1A1) used in Example 1-1 was changed to the aqueous dispersion described below.
  • a coating liquid which is each of the composite resin compositions (polyhydroxyurethane resin-starch hybrid composition) of 1-9 was obtained. Further, using these coating liquids, for each of Examples 1-7 to 1-9, a coating film formed of the above composite resin composition was formed on the base material in the same manner as in Example 1-1. (Film made of composite resin) was obtained. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-7 an aqueous dispersion of a polyhydroxyurethane resin (1A2) was used.
  • Example 1-8 an aqueous dispersion of a polyhydroxyurethane resin (1A3) was used.
  • Example 1-9 an aqueous dispersion of a polyhydroxyurethane resin (1A4) was used.
  • Example 1-1 A coating liquid was obtained in the same manner as in Example 1-1, except that the titanium triethanolamineate used as the metal chelate compound (C) in Example 1-1 was not used. Further, using this coating liquid, a coating film (film) formed with the above coating liquid was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 1-2 A coating liquid was obtained in the same manner as in Example 1-1, except that the indigestible glucan used as the starch compound (B) in Example 1-1 was not used. Further, using this coating liquid, a coating film (film) formed with the above coating liquid was obtained on the base material in the same manner as in Example 1-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-1 Indigestible glucan as a starch-based compound (B) in an aqueous dispersion of the polyhydroxyurethane resin (2A1) obtained in Production Example 2-1 with respect to 100 parts of the solid content (resin (2A1)) of the aqueous dispersion.
  • resin (2A1) solid content of the aqueous dispersion.
  • Tit Fiber # 80 titanium triethanolamine (titanium diisopropoxy-bistri), which is a water-soluble titanium chelate compound, was added as a metal chelate compound (C).
  • Ethanol aminated trade name "Organix TC-400", manufactured by Matsumoto Fine Chemicals Co., Ltd.
  • the composite resin composition (polyhydroxy) containing the polyhydroxyurethane resin (2A1), the starch-based compound (B), and the metal chelate compound (C) is diluted with water so that the total solid content becomes 30%.
  • a coating liquid (urethane resin-starch hybrid composition) was obtained.
  • the coating liquid was uniformly applied to a corona-treated PET film having a thickness of 25 ⁇ m as a base material with a bar coater so that the dry film thickness was 20 ⁇ m, dried at 100 ° C. for 20 minutes, and then subjected to a metal chelate compound (C). ) Was crosslinked with a polyhydroxyurethane resin (2A1) and a starch-based compound (B). In this way, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material (PET film). A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-2 A composite resin composition (polyhydroxyurethane resin-starch hybrid composition) in the same manner as in Example 2-1 except that the amount of indigestible glucan used in Example 2-1 was changed from 100 parts to 50 parts. A coating liquid was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-3 The composite resin composition (polyhydroxyurethane resin-starch hybrid) was produced in the same manner as in Example 2-1 except that the amount of titanium triethanolamine used in Example 2-1 was changed from 15 parts to 5 parts. A coating solution (composition) was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-4 The composite resin composition (polyhydroxyurethane resin-starch hybrid) was produced in the same manner as in Example 2-1 except that the amount of titanium triethanolamine used in Example 2-1 was changed from 15 parts to 30 parts. A coating solution (composition) was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-5 Except for the fact that 15 parts of titanium triethanolamine in Example 2-1 was changed to 30 parts of zirconium lactate ammonium salt (trade name "Organix ZC-300", manufactured by Matsumoto Fine Chemicals Co., Ltd.), which is a water-soluble zirconium chelate compound. , A coating liquid as a composite resin composition (polyhydroxyurethane resin-starch hybrid composition) was obtained in the same manner as in Example 2-1. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • zirconium lactate ammonium salt trade name "Organix ZC-300", manufactured by Matsumoto Fine Chemicals Co., Ltd.
  • Example 2-6 A composite resin composition (polyhydroxyurethane resin-starch hybrid composition) in the same manner as in Example 2-1 except that the amount of indigestible glucan used in Example 2-1 was changed from 100 parts to 300 parts. A coating liquid was obtained. Further, using this coating liquid, a coating film (film made of composite resin) formed of the above composite resin composition was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-7 in the same manner as in Example 2-1 except that the aqueous dispersion of the polyhydroxyurethane resin (2A1) used in Example 2-1 was changed to the aqueous dispersion described below.
  • a coating liquid which is each of the composite resin compositions (polyhydroxyurethane resin-starch hybrid composition) of 2-9 was obtained. Further, using these coating liquids, a coating film formed of the above composite resin composition on the base material in the same manner as in Example 2-1 for each of Examples 2-7 to 2-9. (Film made of composite resin) was obtained. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-7 an aqueous dispersion of a polyhydroxyurethane resin (2A2) was used.
  • Example 2-8 an aqueous dispersion of a polyhydroxyurethane resin (2A3) was used.
  • Example 2-9 an aqueous dispersion of a polyhydroxyurethane resin (2A4) was used.
  • Example 2-1 A coating liquid was obtained in the same manner as in Example 2-1 except that the titanium triethanolamineate used as the metal chelate compound (C) in Example 2-1 was not used. Further, using this coating liquid, a coating film (film) formed with the above coating liquid was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • Example 2-2 A coating liquid was obtained in the same manner as in Example 2-1 except that the indigestible glucan used as the starch compound (B) in Example 2-1 was not used. Further, using this coating liquid, a coating film (film) formed with the above coating liquid was obtained on the base material in the same manner as in Example 2-1. A laminate having this base material and the coating film provided on the base material was used for the evaluation described later.
  • biomass degree The biomass degree of each coating film (film) obtained in Examples and Comparative Examples is measured by the mass of the starch-based compound (B) with respect to the mass of the total solid content at the time of drying according to the biomass mark certification method of the Japan Organic Resources Association. Calculated as a percentage (%).
  • Table 1 Table 1-1 and Table 1-2
  • Table 2 Table 2-1 and Table 2 together with the solid content composition (unit: part) of each coating liquid used in Examples and Comparative Examples. It is shown in Table 2-2).
  • the composite resin composition of the example is an environment-friendly material using a starch-based compound which is biomass, but does not impair water resistance and forms a film having good gas barrier properties. was confirmed to be possible.
  • the gas barrier film and the composite resin composition of one embodiment of the present invention provide not only the gas barrier function of the polyhydroxyurethane resin (A) but also a good water resistance function. Can be expected. Therefore, the practicality of the gas barrier film and the composite resin composition is further improved, and their effective utilization is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

バイオマスを使用した環境対応型の材料でありながら、耐水性を損ない難いガスバリア性フィルムを提供する。 複合樹脂製のガスバリア性フィルムである。その複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)及び/又は下記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びにポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、ポリヒドロキシウレタン樹脂(A)100質量部に対する澱粉系化合物(B)の含有量が10~300質量部である。

Description

ガスバリア性フィルム及び複合樹脂組成物
 本発明は、ガスバリア性フィルム、及び複合樹脂組成物に関する。
 ガスバリア性を有するフィルム(以下、「ガスバリア性フィルム」という)は、主に内容物を保護する目的で使用されており、食品用や医薬品用などの包装材料としての使用を中心に、工業材料分野において幅広く使用されている。ガスバリア層の形成材料には、形成した皮膜がガスバリア性を示すガスバリア性フィルム用の樹脂が使用されている。そのような樹脂として、例えば、エチレン-ビニルアルコール共重合樹脂(以下、EVOHと略記)や塩化ビニリデン樹脂(以下、PVDCと略記)が挙げられる。これらのガスバリア性を有する樹脂は、単独でも使用可能である。一般的には、以下に述べるように、他の樹脂材料を用いて多層フィルムを構成し、その中のガスバリア層の形成材料に使用されている。
 例えば、EVOHは、ポリプロピレン(以下、PPと略記)などの樹脂と共押出し成形などを行うことで、複合フィルムに使用されているが、EVOHは、有機溶剤への溶解性に劣るため、コーティング法によるフィルムや塗膜の作製には不向きである。一方、PVDCは、コーティング法による成形が可能であり、各種基材に塗布することができるため、コートフィルムとして食品包装用などに使用されている。しかし、PVDCは、塩素の含有率が高いため、廃棄(焼却)する際にダイオキシンが発生するといった点が指摘されている。
 一方、近年、地球温暖化問題の対応として、石油由来の材料の使用を削減し、バイオマス由来材料(本明細書において、資源を指して単に「バイオマス」と記載することがある。)をポリマーの原材料に使用する検討が進んでいる。例えば、包装材に使用されるポリエチレンテレフタレート(PET)では、バイオマスを用いた製造方法がほぼ確立されるに至っており、また、ポリエチレン(PE)やポリプロピレン(PP)においても、バイオマスを使用する検討が行われている。しかしながら、前述したガスバリア層の形成材料として広く使用されているEVOHやPVDCのような樹脂については、化学構造上、バイオマス由来成分への置き換えが難しく、検討が進んでいないのが現状である。
 その中、水溶性澱粉や水溶性セルロース誘導体をはじめとする多糖類のガスバリア性のコーティング剤も開発されている。これらは天然由来のため、環境的にも安全上の観点からも優れているといえる。しかし、水溶性多糖類のコーティング材料においては、充分な耐水性を有する塗工膜が得られず、実用に耐えられるものではない。
 その一方で、上記したEVOHやPVDCとは化学構造が全く異なる新規な環境対応型のガスバリア性材料として、特許文献1には、ポリヒドロキシウレタン樹脂を、ガスバリア層の形成材料に使用することが提案されている。特許文献1に記載のポリヒドロキシウレタン樹脂は、二酸化炭素由来の-O-CO-結合を樹脂の化学構造中に有する構成にできる点で、環境問題に対応しうる樹脂である。さらに、この樹脂は、ウレタン結合の近接部位に水酸基を有する化学構造に特徴があり、この水酸基を有する化学構造部位によって、従来のポリウレタン樹脂にはないガスバリア性が発現される。
特開2012-172144号公報
 本発明は、バイオマスを使用した環境対応型の材料でありながら、耐水性を損ない難いガスバリア性フィルムを提供しようとするものである。また、本発明は、そのようなガスバリア性フィルムを製造可能な樹脂組成物を提供しようとするものである。
 すなわち、本発明は、複合樹脂製のガスバリア性フィルムであって、前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルムを提供する。
 また、本発明は、ガスバリア性フィルム形成用の複合樹脂組成物であって、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が、10~300質量部である複合樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-I000019
 (前記一般式(1.1)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、下記一般式(6.1)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-I000020
 (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.1)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.1)中のOとの結合手を表す。)
Figure JPOXMLDOC01-appb-I000021
 (前記一般式(6.1)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表す。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。aは0~3の整数を表し、bは1~5の整数を表す。*は前記一般式(1.1)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
 さらに、本発明は、複合樹脂製のガスバリア性フィルムであって、前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルムを提供する。
 また、本発明は、ガスバリア性フィルム形成用の複合樹脂組成物であって、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、複合樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-I000022
 (前記一般式(1.2)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、前記化合物(a2)に由来する構造を含む、下記一般式(6.2)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-I000023
 (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.2)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.2)中のOとの結合手を表す。)
Figure JPOXMLDOC01-appb-I000024
 (前記一般式(6.2)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。Rは、それぞれ独立に、2価の、炭素数1~15の脂肪族炭化水素基、炭素数4~15の脂環式炭化水素基、又は炭素数6~15芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、スルホニル結合、水酸基及びハロゲン原子を含んでいてもよい。Wは、2価の、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、又は炭素数6~40の芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。*は前記一般式(1.2)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
 本発明によれば、バイオマスを使用した環境対応型の材料でありながら、耐水性を損ない難いガスバリア性フィルムを提供することができる。また、本発明によれば、そのようなガスバリア性フィルムを製造可能な複合樹脂組成物を提供することができる。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
<ガスバリア性フィルム及び複合樹脂組成物>
 本発明者らは、耐水性を有し、かつ、バイオマス度を高めやすい環境対応型のガスバリア性フィルムの提供を目的として鋭意検討を重ねた。その結果、特定のポリヒドロキシウレタン樹脂(A)100質量部と、植物由来の材料である澱粉系化合物(B)10~300質量部と、金属キレート化合物(C)とを含有する複合樹脂組成物を用いることによって、上記目的を達成できることを見出し、本発明に至った。
 ポリヒドロキシウレタン樹脂(A)には、後述する通り、二酸化炭素を原料の一つとすることができる環境対応型のものを用いることができる。また、これと併用する澱粉系化合物(B)は植物の澱粉に由来する材料であり、生分解性を有する。そのため、上記複合樹脂組成物は、その原材料の脱石油資源率が向上し、しかも、澱粉系化合物(B)をポリヒドロキシウレタン樹脂(A)100質量部に対して10~300質量部含有することから、高いバイオマス度を達成し得る環境対応型のフィルムを提供することが可能になる。
 さらに、ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物である上記複合樹脂組成物で形成した上記環境対応型のフィルムは、良好なガスバリア性を有し、また、耐水性を有する。その理由について、本発明者らは次のように考えている。まず、ポリヒドロキシウレタン樹脂(A)は、その構造中に多くの水酸基を有するため、その水素結合によってガスバリア性を示す。また、ポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)は、金属キレート化合物(C)によって架橋される。具体的には、ポリヒドロキシウレタン樹脂(A)における水酸基と、澱粉系化合物(B)の構造中に存在する水酸基が、金属キレート化合物(C)によって架橋されて、一部、共有結合を形成及び水素結合すると考えられる。これにより、ポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)とを金属キレート化合物(C)で良好な状態に複合化させた構成のフィルムを形成することが可能となる。そのため、上記(A)~(C)を含有する複合樹脂組成物で形成したフィルムは、良好なガスバリア性を有し、また、澱粉系化合物(B)における水溶性や湿気を呼び込み膨潤するなどの性質が低減されることで、澱粉系化合物(B)を使用しない場合のフィルムと比べても遜色のないレベルの耐水性を有すると考えられる。
 上述の通り、本発明の一実施形態のガスバリア性フィルムは、複合樹脂製である。この複合樹脂は、特定のポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びにポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有する。上記複合樹脂は、ポリヒドロキシウレタン樹脂(A)100質量部に対する澱粉系化合物(B)の含有量が10~300質量部である。この複合樹脂製のガスバリア性フィルムは、以下の複合樹脂組成物から容易に形成することができる。
 すなわち、本発明の一実施形態のガスバリア性フィルム形成用の複合樹脂組成物は、特定のポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びにポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有する。そして、この複合樹脂組成物では、ポリヒドロキシウレタン樹脂(A)100質量部に対する澱粉系化合物(B)の含有量が10~300質量部である。
 次に、ポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、及び金属キレート化合物(C)のそれぞれについて説明し、上記ガスバリア性フィルム及び複合樹脂組成物の好ましい構成などについて説明する。
[ポリヒドロキシウレタン樹脂(A)]
 上記の特定のポリヒドロキシウレタン樹脂(A)には、以下に述べる第一の態様及び第二の態様の少なくとも一方を用いることができる。第一の態様は、後述する一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)である(以下、これを「ポリヒドロキシウレタン樹脂(1A)」と記載することがある。)。第二の態様は、後述する一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)である(以下、これを「ポリヒドロキシウレタン樹脂(2A)」と記載することがある。)。ガスバリア性フィルム及び複合樹脂組成物は、ポリヒドロキシウレタン樹脂(1A)及びポリヒドロキシウレタン樹脂(2A)のいずれか一方又は両方を含むことができる。本明細書において、ポリヒドロキシウレタン樹脂(1A)とポリヒドロキシウレタン樹脂(2A)とを区別することなく、それらに共通する説明事項を「ポリヒドロキシウレタン樹脂(A)」と記載することがある。
 ・ポリヒドロキシウレタン樹脂(1A)
 ポリヒドロキシウレタン樹脂(1A)は、下記一般式(1.1)で表される繰り返し単位を含む。この繰り返し単位は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)(以下、単に「化合物(a1)」と記載することがある。)と、少なくとも2つのアミノ基を有する化合物(a2)(以下、単に「化合物(a2)」と記載することがある。)とが重合した構造単位を基本構造とする。ここで、一般式(1.1)で表される繰り返し単位が、化合物(a1)と化合物(a2)とが重合した構造単位を基本構造とするとは、一般式(1.1)で表される繰り返し単位が、上記基本構造に、別の化学構造が導入されたものであることを意味する。ポリヒドロキシウレタン樹脂(1A)においては、上記化合物(a2)が、少なくとも後述する化合物(a2-1)を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000025
 一般式(1.1)中、Xは、化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上がポリヒドロキシウレタン樹脂(1A)の分子中に混在していてもよい。Zは、下記一般式(6.1)で表される2価の有機基を表す。
Figure JPOXMLDOC01-appb-I000026
 一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、一般式(1.1)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は一般式(1.1)中のOとの結合手を表す。
Figure JPOXMLDOC01-appb-I000027
 一般式(6.1)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表す。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。aは0~3の整数を表し、bは1~5の整数を表す。*は一般式(1.1)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。
 一般式(1.1)中のXは、直接結合又は2価の有機基でも、化合物(a1)に由来する。Xで表される、化合物(a1)に由来する2価の有機基は、化合物(a1)に起因して、様々な基をとり得る。その好適な2価の有機基の例としては、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、及び炭素数6~40の芳香族炭化水素基を挙げることができ、これらの炭化水素基は、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。
 本明細書において、化合物「に由来する」基であるとは、当該化合物が有していた基、又はそれから誘導された基をいう。また、「有機基」とは、少なくとも炭素原子を含む基であって、炭素原子及び水素原子以外の原子(例えば、酸素原子、窒素原子、硫黄原子、及びハロゲン原子など)を含んでいてもよい炭化水素基をいう。
 一般式(1.1)中のY及びYも、化合物(a1)に由来する基であり、一般式(2)~(5)で示されるように、水酸基を含む2価の有機基である。ポリヒドロキシウレタン樹脂(1A)は、一般式(1.1)で表される繰り返し単位中に水酸基を含むため、ポリヒドロキシウレタン樹脂(1A)を含む複合樹脂製のフィルムに、ガスバリア性の機能をもたらすことが可能となる。
 一般式(6.1)中のRで表される、酸素原子及び窒素原子を含んでいてもよい好適な2価の炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基を挙げることができ、これらの炭化水素基は、酸素原子及び窒素原子を含んでいてもよい。これらのなかでも、Rは、酸素原子及び窒素原子を含んでいてもよい、炭素数1~10の炭化水素基又は炭素数6~10の芳香族炭化水素基を表すことがより好ましい。
 一般式(6.1)中のR、R、及びRで表される、エーテル結合を含んでいてもよい炭素数1~10のアルキレン基は、直鎖でも分岐鎖でもよい。アルキレン基としては、炭素数1~6の直鎖のアルキレン基が好ましく、炭素数1~4の直鎖のアルキレン基がより好ましく、エチレン基、n-プロピレン基、及びn-ブチレン基がさらに好ましい。
 一般式(6.1)中のMで表される、塩構造となるための好適な対イオンとしては、ナトリウム及びカリウムなどのアルカリ金属;アンモニウム;並びにメチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、テトラメチルアンモニウム、エチルアンモニウム、トリエチルアンモニウム、n-プロピルアンモニウム、n-ブチルアンモニウム、モノエタノールアンモニウム、及びトリエタノールアンモニウムなどの有機アンモニウムを挙げることができる。
 ポリヒドロキシウレタン樹脂(1A)は、一般式(1.1)で表される繰り返し単位中のZとして、一般式(6.1)で表される2価の有機基を含むため、カルボキシ基、又はその陰イオン若しくはその塩(以下、これらをまとめて単に「カルボキシ基」と記載することがある。)を含む化学構造を有する。Z(一般式(6.1)で表される2価の有機基)は、化合物(a2)(より好ましくは後述する化合物(a2-1))に由来する2価の有機基に、カルボキシ基が導入されたものであることが好ましい。ポリヒドロキシウレタン樹脂(1A)は、一般式(1.1)で表される繰り返し単位中に、親水性基としてアニオン性基であるカルボキシ基を含むため、水などの水性媒体に自己乳化することが可能である。そのため、前述の複合樹脂組成物を水分散体(エマルジョン)の形態として好適に用いることができる。
 ・ポリヒドロキシウレタン樹脂(2A)
 次にポリヒドロキシウレタン樹脂(2A)について説明する。ポリヒドロキシウレタン樹脂(2A)は、下記一般式(1.2)で表される構造単位を含む。この構造単位は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)(以下、単に「化合物(a1)」と記載することがある。)と、少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする。ここで、一般式(1.2)で表される構造単位が、化合物(a1)と化合物(a2)とが重合した構造単位を基本構造とするとは、一般式(1.2)で表される構造単位が、上記基本構造に、別の化学構造が導入されたものであることを意味する。ポリヒドロキシウレタン樹脂(2A)においては、上記化合物(a2)が、少なくとも後述する化合物(a2-2)を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000028
 一般式(1.2)中、Xは、化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上がポリヒドロキシウレタン樹脂(2A)の分子中に混在していてもよい。Zは、化合物(a2)に由来する構造を含む、下記一般式(6.2)で表される2価の有機基を表す。
Figure JPOXMLDOC01-appb-I000029
 一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、一般式(1.2)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は一般式(1.2)中のOとの結合手を表す。
Figure JPOXMLDOC01-appb-I000030
 一般式(6.2)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。Rは、それぞれ独立に、2価の、炭素数1~15の脂肪族炭化水素基、炭素数4~15の脂環式炭化水素基、又は炭素数6~15芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、スルホニル結合、水酸基及びハロゲン原子を含んでいてもよい。Wは、2価の、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、又は炭素数6~40の芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。*は一般式(1.2)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。
 一般式(1.2)中のXは、直接結合又は2価の有機基でも、化合物(a1)に由来する。Xで表される、化合物(a1)に由来する2価の有機基は、化合物(a1)に起因して、様々な基をとり得る。その好適な2価の有機基の例としては、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、及び炭素数6~40の芳香族炭化水素基を挙げることができ、これらの炭化水素基は、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。
 一般式(1.2)中のY及びYも、化合物(a1)に由来する基であり、一般式(2)~(5)で示されるように、水酸基を含む2価の有機基である。ポリヒドロキシウレタン樹脂(2A)は、一般式(1.2)で表される構造単位中に水酸基を含むため、ポリヒドロキシウレタン樹脂(2A)を含む複合樹脂製のフィルムに、ガスバリア性の機能をもたらすことが可能となる。
 一般式(6.2)中のRで表される、酸素原子及び窒素原子を含んでいてもよい好適な2価の炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基を挙げることができ、これらの炭化水素基は、酸素原子及び窒素原子を含んでいてもよい。これらのなかでも、Rは、酸素原子及び窒素原子を含んでいてもよい、炭素数1~10の炭化水素基又は炭素数6~10の芳香族炭化水素基を表すことがより好ましい。
 一般式(6.2)中のRで表される2価の基の中でも、エーテル結合、スルホニル結合、水酸基及びハロゲン原子を含んでいてもよい、2価の炭素数1~15(より好ましくは炭素数2~12)の脂肪族炭化水素基が好ましい。なかでも、炭素数1~15の直鎖状アルキレン基がより好ましく、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、及びドデカメチレン基などの炭素数2~12の直鎖状アルキレン基がさらに好ましい。
 一般式(6.2)中のMで表される、塩構造となるための好適な対イオンとしては、ナトリウム及びカリウムなどのアルカリ金属;アンモニウム;並びにメチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、テトラメチルアンモニウム、エチルアンモニウム、トリエチルアンモニウム、n-プロピルアンモニウム、n-ブチルアンモニウム、モノエタノールアンモニウム、及びトリエタノールアンモニウムなどの有機アンモニウムを挙げることができる。
 ポリヒドロキシウレタン樹脂(2A)は、一般式(1.2)で表される構造単位中のZとして、一般式(6.2)で表される2価の有機基を含むため、カルボキシ基、又はその陰イオン若しくはその塩(以下、これらをまとめて単に「カルボキシ基」と記載することがある。)を含む化学構造を有する。Z(一般式(6.2)で表される2価の有機基)は、化合物(a2)(より好ましくは後述する化合物(a2-2))に由来する2価の有機基に、カルボキシ基が導入されたものであることが好ましい。ポリヒドロキシウレタン樹脂(2A)は、一般式(1.2)で表される構造単位中に、親水性基としてアニオン性基であるカルボキシ基を含むため、水などの水性媒体に自己乳化することが可能である。そのため、前述の複合樹脂組成物を水分散体(エマルジョン)の形態として好適に用いることができる。
(ポリヒドロキシウレタン樹脂(A)における基本構造)
 ここで、ポリヒドロキシウレタン樹脂(1A)及びポリヒドロキシウレタン樹脂(2A)に共通する説明として、まず、ポリヒドロキシウレタン樹脂(A)における基本構造について、ポリヒドロキシウレタン樹脂(A)の製造方法の観点から説明する。ポリヒドロキシウレタン樹脂(A)における基本構造は、上述の通り、1分子中に少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と、1分子中に少なくとも2つのアミノ基を有する化合物(a2)との重付加反応により得られる。
 まず、五員環環状カーボネート(以下、単に「環状カーボネート」と記載することがある。)構造を有する化合物と、アミンとの反応においては、下記の一般反応式(R-i)で表されるモデル反応のように、環状カーボネートの開裂が2種ある。このため、2種類の構造の生成物が得られる。
Figure JPOXMLDOC01-appb-I000031
 したがって、例えば、2官能同士の化合物を反応させた場合、すなわち、2つの環状カーボネート構造を有する化合物と、2つのアミノ基を有する化合物とを反応させた場合には、4種類の構造の生成物が得られる。
 例えば、化合物(a1)として、下記一般式(a1-1)で表される2つの環状カーボネート構造を有する化合物と、化合物(a2)として、下記一般式(a2)で表される化合物との重付加反応により得られる高分子は、下記一般式(I)~(IV)で表される4種類の化学構造が生じ、これらはランダム位に存在すると考えられる。なお、この反応モデルの例で得られる下記一般式(I)~(IV)で表される繰り返し単位を含む樹脂は、一般式(2)又は(3)で表される2価の有機基に対応する構造を有する。
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
 一般式(a1-1)及び一般式(I)~(IV)中のXは直接結合又は2価の有機基を表す。一般式(a1-1)及び一般式(I)~(IV)中のRは、それぞれ独立に、水素原子又はメチル基を表す。一般式(a2)及び一般式(I)~(IV)中のZは2価の有機基を表す。X及びZが表す2価の有機基としては、例えば、酸素原子、窒素原子、硫黄原子、及びハロゲン原子などのヘテロ原子を含んでいてもよい2価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基)をとることができる。Zは、少なくとも窒素原子を含む2価の有機基であることが好ましく、分子内に少なくとも1つの第二級アミノ基(-NH-;イミノ基と称してもよい。)を含む2価の有機基であることがより好ましい。
 また、例えば、化合物(a1)として、下記一般式(a1-2)で表される2つの環状カーボネート構造を有する化合物と、化合物(a2)として、一般式(a2)で表される化合物との重付加反応により得られる高分子は、下記一般式(V)~(VIII)で表される4種類の化学構造が生じ、これらはランダム位に存在すると考えられる。なお、この反応モデルの例で得られる下記一般式(V)~(VIII)で表される繰り返し単位を含む樹脂は、一般式(4)又は(5)で表される2価の有機基に対応する構造を有する。
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000041
 一般式(a1-2)及び一般式(V)~(VIII)中のXは直接結合又は2価の有機基を表す。一般式(a1-2)及び一般式(V)~(VIII)中のRは、それぞれ独立に、水素原子又はメチル基を表す。一般式(V)~(VIII)中のZは2価の有機基を表す。X及びZが表す2価の有機基としては、例えば、酸素原子、窒素原子、硫黄原子、及びハロゲン原子などのヘテロ原子を含んでいてもよい2価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基)をとることができる。Zは、少なくとも窒素原子を含む2価の有機基であることが好ましく、分子内に少なくとも1つの第二級アミノ基(-NH-;イミノ基と称してもよい。)を含む2価の有機基であることがより好ましい。
(少なくとも2つの五員環環状カーボネート構造を有する化合物(a1))
 ポリヒドロキシウレタン樹脂(A)の原料成分の1つである、1分子中に少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)は、下記一般反応式(R-ii)で表されるモデル反応のように、エポキシ化合物と二酸化炭素との反応によって得ることができる。例えば、原材料であるエポキシ化合物(エポキシ基を2以上有する化合物)を、触媒の存在下、0~160℃の温度にて、大気圧~1MPa程度に加圧した二酸化炭素雰囲気下で4~24時間反応させる。この結果、二酸化炭素をエステル部位に固定化した化合物(五員環環状カーボネート構造を2以上有する化合物)を得ることができる。なお、一般反応式(R-ii)中のXは、2価の有機基を表し、例えば、酸素原子、窒素原子、硫黄原子、及びハロゲン原子などのヘテロ原子を含んでいてもよい2価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基)をとることができる。
Figure JPOXMLDOC01-appb-I000042
 二酸化炭素を原料として合成された化合物(a1)を使用することによって得られた樹脂は、その構造中に二酸化炭素が固定化された-O-CO-結合を有したものとなる。ポリヒドロキシウレタン樹脂(A)中の二酸化炭素由来の-O-CO-結合の含有量(二酸化炭素の固定化量)は、二酸化炭素の有効利用の立場からはできるだけ高くなる方がよい。例えば、二酸化炭素を原料として合成された化合物(a1)を用いることで、ポリヒドロキシウレタン樹脂(A)の構造中に1~30質量%(より好ましくは1~20質量%)の範囲で、二酸化炭素を含有させることができる。すなわち、ポリヒドロキシウレタン樹脂(A)は、その質量のうちの1~30質量%(より好ましくは1~20質量%)を原料の二酸化炭素由来の-O-CO-結合が占める樹脂であることが好ましい。
 エポキシ化合物と二酸化炭素との反応に使用される触媒としては、化合物(a1)の合成に使用可能な公知の触媒(例えば、ハロゲン化塩類及び4級アンモニウム塩など)の1種又は2種以上を用いることができる。触媒の使用量も公知の範囲から適宜決めることができる。また、エポキシ化合物と二酸化炭素との反応は、有機溶剤の存在下で行うこともできる。この際に用いる有機溶剤としては、前述の触媒を溶解するものであれば使用可能であり、化合物(a1)の合成に使用可能な公知の有機溶剤(例えば、アミド系溶剤、アルコール系溶剤、及びエーテル系溶剤など)の1種又は2種以上を用いることができる。
 上述した化合物(a1)の構造は、1分子中に2以上の五員環環状カーボネート構造を有していれば、特に制限されない。例えば、ベンゼン骨格、芳香族多環骨格、縮合多環芳香族骨格を持つものや、脂肪族系や脂環式系のいずれの環状カーボネート構造を有する化合物も使用可能である。以下に使用可能な化合物を例示する。
 ベンゼン骨格、芳香族多環骨格、縮合多環芳香族骨格を有する化合物(a1)としては、以下に示す構造式(a1.1)~(a1.6)でそれぞれ表される構造のものを例示することができる。なお、下記構造式(a1.3)及び(a1.4)中のRは、H又はCHを表す。
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
 脂肪族系や脂環式系の構造を有する化合物(a1)としては、以下に示す構造式(a1.7)~(a1.14)でそれぞれ表される構造のものを例示することができる。なお、下記構造式(a1.7)、(a1.10)及び(a1.11)中のRは、H又はCHを表す。
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-I000056
 上述した化合物(a1)のなかでも、下記一般式(a1-3)で表される化合物がさらに好ましい。この一般式(a1-3)で表される化合物は、上述の一般式(a1-1)で表される化合物において、一般式(a1-1)中のXが2つのエーテル結合を含む2価の有機基を表し、一般式(a1-1)中のRが水素原子を表す化合物であるといえる。下記一般式(a1-3)中のRは2価の有機基を表す。その2価の有機基としては、例えば、酸素原子、窒素原子、硫黄原子、及びハロゲン原子などのヘテロ原子を含んでいてもよい2価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、又は芳香族炭化水素基)をとることができる。
Figure JPOXMLDOC01-appb-I000057
 化合物(a1)として一般式(a1-3)で表される化合物と、化合物(a2)として上述の一般式(a2)で表される化合物との重付加反応により得られる高分子は、下記一般式(I-1)~(IV-1)で表される4種類の化学構造が生じ、これらはランダム位に存在すると考えられる。下記一般式(I-1)~(IV-1)中のRは、一般式(a1-3)で表される化合物に由来する2価の有機基を表す。
Figure JPOXMLDOC01-appb-I000058
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
(少なくとも2つのアミノ基を有する化合物(a2))
 次に、ポリヒドロキシウレタン樹脂(A)の原料成分の1つである、1分子中に少なくとも2つのアミノ基を有する化合物(a2)について、第一の態様及び第二の態様のそれぞれの場合に分けて説明する。
 ・第一の態様において好適な化合物(a2)
 第一の態様のポリヒドロキシウレタン樹脂(1A)を得るために使用される化合物(a2)には、ポリヒドロキシウレタン樹脂(1A)における一般式(1.1)で表される繰り返し単位中のZ(すなわち、一般式(6.1)で表される2価の有機基)の基本骨格を与えるものを少なくとも用いる。そのような化合物(a2)としては、下記一般式(a2-1)で表されるように、1分子中に2つのアミノ基(-NH)及び少なくとも1つのイミノ基(-NH-)を有する化合物(本明細書において、単に「化合物(a2-1)」と記載することがある。)が好ましい。下記一般式(a2-1)中、R、R、R、a、及びbはいずれも、上述の一般式(6.1)中のものと同義である。
Figure JPOXMLDOC01-appb-I000062
 一般式(a2-1)で表される化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、イミノビスプロピルアミン、テトラエチレンペンタミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、及びN,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどを挙げることができる。これらの化合物の1種又は2種類以上を使用することが可能である。
 一般式(a2-1)で表される化合物中の上記イミノ基は、上述の少なくとも2つの環状カーボネート構造を有する化合物(a1)との反応が起こらず、当該イミノ基を主鎖に含んだポリヒドロキシウレタンを合成することができる。このイミノ基を含むポリヒドロキシウレタンを中間体として、後述する次反応に用いることで、カルボキシ基を有する一般式(6.1)で表される構造を含むポリヒドロキシウレタン樹脂(1A)を得ることができる。上述の一般式(a1-3)で表される化合物などの化合物(a1)と、一般式(a2-1)で表される化合物との反応条件は、例えば、両者を混合し、40~200℃の温度で4~24時間反応させればよい。
 化合物(a1)と、一般式(a2-1)で表される化合物との反応は、無溶剤で行うことも可能であるが、親水性溶剤中で行うことが好ましい。好適な親水性溶剤としては、例えば、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、ジエチレングリコールモノメチルエーテル、及びジエチレングリコールジメチルエーテルなどが挙げられる。上記に列挙した溶剤の中でも、好ましい溶剤としては、転相乳化後の蒸発留去が容易な沸点を有するものであるテトラヒドロフランが挙げられる。
 化合物(a1)と、一般式(a2-1)で表される化合物との反応は、反応を促進させるために、触媒の存在下で行うことも可能である。好適な触媒としては、例えば、トリエチルアミン、トリブチルアミン、ジアザビシクロウンデセン(DBU)、トリエチレンジアミン(DABCO);ピリジン及びヒドロキシピリジンなどの塩基性触媒;テトラブチル錫及びジブチル錫ジラウレートなどのルイス酸触媒;などを挙げることができる。触媒の使用量は、化合物(a1)及び一般式(a2-1)で表される化合物の総量100質量部に当たり、0.01~10質量部であることが好ましい。
 ・一般式(6.1)中のカルボキシ基の導入
 次に、上述したイミノ基を主鎖に含んだポリヒドロキシウレタン(中間体)に、カルボキシ基を有する化学構造を導入する。例えば、中間体と環状酸無水物とを反応させ、中間体におけるイミノ基と環状酸無水物との反応によって、カルボキシ基を含む一般式(6.1)で表される化学構造部位を有するポリヒドロキシウレタン樹脂(1A)を得ることができる。
 上記の反応に使用可能な環状酸無水物としては、例えば、無水コハク酸、無水マレイン酸、イタコン酸無水物、カロン酸無水物、シトラコン酸無水物、グルタル酸無水物、ジグリコール酸無水物、及び1,2,3,4-ブタンテトラカルボン酸二無水物などの脂肪族酸無水物;無水フタル酸、トリメリット酸無水物、1,8-ナフタル酸無水物、及びピロメリット酸無水物などの芳香族酸無水物;1,1-シクロヘキサン二酢酸無水物、1-シクロヘキセン-1,2-ジカルボン酸無水物、1,1-シクロペンタン二酢酸無水物、及び5-ノルボルネン-2,3-ジカルボン酸無水物などの脂環族酸無水物;並びにそれらの誘導体などを挙げることができる。これらの環状酸無水物の1種又は2種以上を用いることができる。これらのなかでも、分子量の低い化合物が、少量の使用で乳化安定性を示すことから、例えば、無水コハク酸や無水マレイン酸が好ましい。
 導入されたカルボキシ基は、そのままの状態であってもよいが、ポリヒドロキシウレタン樹脂(1A)の水分散体を得る際には、水中でのイオン化を促進するために、カルボキシ基の一部又は全部(好ましくは全部)を中和して、ポリヒドロキシウレタン樹脂(1A)を中和塩の形態としておくことが好ましい。中和に使用する塩基性化合物としては、例えば、エチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-フェニルジエタノールアミン、モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン、N-メチルモルホリン、及び2-アミノ-2-メチル-1-プロパノールなどの有機アミン;リチウム、カリウム、及びナトリウムなどのアルカリ金属;並びに水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化カリウム、及びアンモニアなどの無機塩基などを挙げることができ、これらの1種又は2種以上を用いることができる。これら塩基性化合物のなかでも、塗膜(フィルム)形成時に揮発可能なものが、塗膜(フィルム)の耐水性が向上するため好ましく、例えば、トリエチルアミンが好ましい。
 カルボキシ基を有する化学構造が導入されることで、ポリヒドロキシウレタン樹脂(1A)の水分散体を容易に得ることもできる。カルボキシ基が導入されたポリヒドロキシウレタン樹脂(1A)を、上述した親水性溶剤中で合成して、ポリヒドロキシウレタン樹脂(1A)の溶液を得る場合には、その溶液に水を徐々に添加することで転相させることが好ましい。これにより、水中油型(O/W型)のエマルジョンを得ることができる。転相させる際に添加する水の使用量は、ポリヒドロキシウレタン樹脂(1A)の合成の際に使用した溶剤の種類、樹脂濃度、及び粘度などに応じて適宜決定することが可能であるが、樹脂溶液の樹脂(固形分)100質量部当たり、概ね50~200質量部程度であることが好ましい。転相乳化して得られたO/W型エマルジョンを減圧条件下で加熱して溶剤を揮発させることで、ポリヒドロキシウレタン樹脂(1A)の水分散体を得ることができる。このポリヒドロキシウレタン樹脂(1A)の水分散体について、動的光散乱方式の粒度分布測定装置を用いて測定される体積基準のメディアン径(d50)は、0.01~100μm程度であることが好ましい。
 以上述べた通り、ポリヒドロキシウレタン樹脂(1A)は、前述の一般式(1.1)で表される繰り返し単位中に、前述の一般式(2)~(5)で表される構造による水酸基を含むため、一般にイソシアネート化合物とポリオール化合物とを付加反応して得られるポリウレタン樹脂とは異なり、ポリヒドロキシウレタン樹脂(1A)を含む複合樹脂製のフィルムに、ガスバリア性の機能をもたらすことが可能となる。このガスバリア性の観点及びフィルム適性の観点などから、ポリヒドロキシウレタン樹脂(1A)の水酸基価は、150~300mgKOH/gの範囲であることが好ましい。本明細書における水酸基価(mgKOH/g)は、JIS K1557-1の規定に準拠して測定される値である。
 また、ポリヒドロキシウレタン樹脂(1A)は、前述の一般式(1.1)で表される繰り返し単位中にカルボキシ基を含むため、前述の複合樹脂組成物を水分散体(エマルジョン)の形態として好適に用いることができる。ポリヒドロキシウレタン樹脂(1A)におけるカルボキシ基の量は、上記エマルジョンとした場合の乳化安定性と、複合樹脂組成物で形成したフィルムの耐水性に影響を及ぼす。上記の乳化安定性及びフィルムの耐水性の観点から、ポリヒドロキシウレタン樹脂(1A)におけるカルボキシ基の量は、ポリヒドロキシウレタン樹脂(1A)の酸価が10~100mgKOH/gの範囲となる量とすることが好ましい。また、乳化粒子の安定度は、樹脂の分子量にも影響を受けるため、ポリヒドロキシウレタン樹脂(1A)の重量平均分子量は、10000~100000の範囲であることが好ましい。
 本明細書における酸価(mgKOH/g)は、JIS K1557-5の規定に準拠して測定される値である。また、本明細書における重量平均分子量は、N,N-ジメチルホルムアミド(DMF)を移動相としたゲルパーミエーションクロマトグラフィー(GPC)により、GPC装置(商品名「GPC-8220」、東ソー製;カラムSuper AW2500+AW3000+AW4000+AW5000)を用いて、標準ポリスチレン換算値として測定される値である。
 ・第二の態様において好適な化合物(a2)
 第二の態様のポリヒドロキシウレタン樹脂(2A)を得るために使用される化合物(a2)には、ポリヒドロキシウレタン樹脂(2A)における一般式(1.2)で表される構造単位中のZ(一般式(6.2)で表される2価の有機基)の基本骨格を与える化合物を少なくとも用いる。そのような化合物(a2)としては、下記一般式(a2-2)で表される化合物(a2-2)が好ましい。下記一般式(a2-2)中、R及びWは、それぞれ、上述の一般式(6.2)中のR及びWと同義である。
Figure JPOXMLDOC01-appb-I000063
 一般式(a2-2)で表される化合物(a2-2)は、化合物(a2)としても用いることが可能な1分子中に少なくとも2つのアミノ基を有する化合物(a2-3)と、1分子中に少なくとも2つのエポキシ基を有する化合物(a3)とを反応させる工程(以下、「第1の反応工程」と記載することがある。)を行うことで得られる。
 上記第1の反応工程は、化合物(a2-2)が得られやすい観点から、アミノ基がエポキシ基に対して過剰量となる条件下で行い、化合物(a2-3)が未反応の状態で残るように行うことが好ましい。アミノ基の過剰量条件としては、例えば、アミノ基とエポキシ基の当量比がアミノ基/エポキシ基=4/1以上の条件が好ましい。これにより、上記当量比が4/1の場合についての下記一般反応式(R-iii)で表されるモデル反応に例示するように、上記化合物(a2-2)と、未反応で残った化合物(a2-3)との混合物を得ることができる。下記一般反応式(R-iii)中のRは、化合物(a2-3)に由来する2価の有機基であり、Wは、少なくとも2つのエポキシ基を有する化合物に由来する2価の有機基であり、それぞれ、一般式(6.2)中のR及びWと同義である。
Figure JPOXMLDOC01-appb-I000064
 化合物(a2-2)の原料として用いることが可能な化合物(a2-3)には、従来公知のいずれのものも使用できる。好適な化合物(a2-3)としては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノへキサン(別名:ヘキサメチレンジアミン)、1,8-ジアミノオクタン、1,10-ジアミノデカン、及び1,12-ジアミノドデカンなどの鎖状脂肪族ポリアミン;イソホロンジアミン、ノルボルナンジアミン、1,6-シクロヘキサンジアミン、ピペラジン、ビス(アミノプロピル)ピペラジン、及び2,5-ジアミノピリジンなどの環状脂肪族ポリアミン;キシリレンジアミンなどの芳香環を持つ脂肪族ポリアミン;メタフェニレンジアミン、及びジアミノジフェニルメタンなどの芳香族ポリアミンを挙げることができる。これらの1種又は2種以上を用いることができる。これらのなかでも、鎖状脂肪族ポリアミンが好ましい。
 また、化合物(a2-2)の原料として用いることが可能なエポキシ化合物(a3)には、前述の少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)の原料成分に使用したエポキシ化合物と同様の構造を有する化合物を用いることが好ましい。具体的には、一般反応式(R-iii)におけるエポキシ化合物(a3)中のW(一般式(6.2)中のW)が、上述の一般式(1.2)中のXと同じ構造をとるエポキシ化合物を用いることがより好ましい。エポキシ化合物(a3)としては、下記一般式(a3-1)で表される化合物が好ましく、下記一般式(a3-1)中のRは、前述の一般式(a1-3)中のRで述べた2価の有機基をとることができ、Rと同じ基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-I000065
 上述のように第1の反応工程で得られた一般式(a2-2)で表される化合物(a2-2)は、その原料に用いた化合物(a2-3)と同様、前述の少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と重付加反応することが可能である。化合物(a2-2)中のイミノ基(-NH-)は、化合物(a1)との反応が起こらず、当該イミノ基を主鎖に含んだポリヒドロキシウレタンを合成することができる。このイミノ基を含むポリヒドロキシウレタンを中間体として、後述する次反応(導入工程)に用いることで、カルボキシ基を有する一般式(6.2)で表される構造を含むポリヒドロキシウレタン樹脂(2A)を得ることができる。
 すなわち、少なくとも化合物(a2-2)と、化合物(a1)とを重付加反応させる工程(以下、「第2の反応工程」と記載することがある。)を行うことにより、一般式(1.2)中のZが下記一般式(Z)で表される構造を有する、一般式(1.2)に対応した構造単位を含むポリヒドロキシウレタン中間体を得ることができる。このポリヒドロキシウレタン中間体におけるイミノ基(-NH-)に、後述する導入工程によって、カルボキシ基を有する化学構造を導入することで、一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(2A)を得ることができる。下記一般式(Z)中のR及びWは、それぞれ、一般式(6.2)中のR及びWと同義である。
Figure JPOXMLDOC01-appb-I000066
 上記のポリヒドロキシウレタン中間体を得る第2の反応工程においては、第1の反応工程に次いで、第1の反応工程の生成物(化合物(a2-2)と化合物(a2-3)の混合物)に対して、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)を重付加反応させることがより好ましい。第1の反応工程の生成物を用いれば、化合物(a2-2)を単離する作業などを省略でき、生産効率を高めることが可能であるとともに、カルボキシ基を適度な量で導入することができる。この方法により、化合物(a2-2)と化合物(a1)とが重合した構造単位(上述したZが一般式(Z)で表されるところの一般式(1.2)に対応した構造単位)と、化合物(a2-3)と化合物(a1)とが重合した、下記一般式(1.3)で表される構造単位とを含むポリヒドロキシウレタン中間体を得ることができる。このポリヒドロキシウレタン中間体におけるイミノ基(-NH-)に、後述する導入工程を行うことで、一般式(1.2)で表される構造単位とともに、一般式(1.3)で表される構造単位をさらに含むポリヒドロキシウレタン樹脂(2A)を得ることができる。この場合、上述の通り、化合物(a2-2)を得るには化合物(a2-3)の過剰量条件が好ましいことから、ポリヒドロキシウレタン樹脂(2A)中、一般式(1.3)で表される構造単位の含有割合の方が、一般式(1.2)で表される構造単位の含有割合よりも多いことが好ましい。
Figure JPOXMLDOC01-appb-I000067
 一般式(1.3)中のX、Y、及びYは、それぞれ、一般式(1.2)中のX、Y、及びYと同義であり、Rは、一般式(6.2)中のRと同義である。
 上記第1の反応工程及び第2の反応工程における反応条件はいずれも、例えば、40~200℃の温度で4~24時間程度の条件とすることができる。第1の反応工程及び第2の反応工程における反応は、いずれも無溶剤で行うことも可能であるが、次工程の反応及び乳化工程を考慮して、親水性溶剤中で行うことが好ましい。好適な親水性溶剤としては、例えば、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、ジエチレングリコールモノメチルエーテル、及びジエチレングリコールジメチルエーテルなどが挙げられる。上記に列挙した溶剤の中でも、好ましい溶剤としては、転相乳化後の蒸発留去が容易な沸点を有するものであるテトラヒドロフランが挙げられる。
 第1の反応工程及び第2の反応工程では、反応を促進させるために、触媒の存在下で行うことも可能である。好適な触媒としては、例えば、トリエチルアミン、トリブチルアミン、ジアザビシクロウンデセン(DBU)、トリエチレンジアミン(DABCO);ピリジン及びヒドロキシピリジンなどの塩基性触媒;テトラブチル錫及びジブチル錫ジラウレートなどのルイス酸触媒;などを挙げることができる。
 ・一般式(6.2)中のカルボキシ基の導入
 次に、上述のようにして得られるポリヒドロキシウレタン中間体に、カルボキシ基を有する化学構造を導入する工程(導入工程)を行う。この導入工程では、ポリヒドロキシウレタン中間体と環状酸無水物とを反応させて、ポリヒドロキシウレタン中間体におけるイミノ基と環状酸無水物との反応によって、カルボキシ基を含む一般式(6.2)で表される化学構造部位を有するポリヒドロキシウレタン樹脂(2A)を得ることができる。
 導入工程で使用可能な環状酸無水物としては、例えば、無水コハク酸、無水マレイン酸、イタコン酸無水物、カロン酸無水物、シトラコン酸無水物、グルタル酸無水物、ジグリコール酸無水物、及び1,2,3,4-ブタンテトラカルボン酸二無水物などの脂肪族酸無水物;無水フタル酸、トリメリット酸無水物、1,8-ナフタル酸無水物、及びピロメリット酸無水物などの芳香族酸無水物;1,1-シクロヘキサン二酢酸無水物、1-シクロヘキセン-1,2-ジカルボン酸無水物、1,1-シクロペンタン二酢酸無水物、及び5-ノルボルネン-2,3-ジカルボン酸無水物などの脂環族酸無水物;並びにそれらの誘導体などを挙げることができる。これらの環状酸無水物の1種又は2種以上を用いることができる。これらのなかでも、分子量の低い化合物が、少量の使用で乳化安定性を示すことから、例えば、無水コハク酸や無水マレイン酸が好ましい。
 導入されたカルボキシ基は、そのままの状態であってもよいが、ポリヒドロキシウレタン樹脂(2A)の水分散体を得る際には、水中でのイオン化を促進するために、カルボキシ基の一部又は全部(好ましくは全部)を中和して、ポリヒドロキシウレタン樹脂(2A)を中和塩の形態としておくことが好ましい。中和に使用する塩基性化合物としては、例えば、エチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-フェニルジエタノールアミン、モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン、N-メチルモルホリン、及び2-アミノ-2-メチル-1-プロパノールなどの有機アミン;リチウム、カリウム、及びナトリウムなどのアルカリ金属;並びに水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化カリウム、及びアンモニアなどの無機塩基などを挙げることができ、これらの1種又は2種以上を用いることができる。これら塩基性化合物のなかでも、塗膜(フィルム)形成時に揮発可能なものが、塗膜(フィルム)の耐水性が向上するため好ましく、例えば、トリエチルアミンが好ましい。
 カルボキシ基を有する化学構造が導入されることで、ポリヒドロキシウレタン樹脂(2A)の水分散体を容易に得ることもできる。すなわち、カルボキシ基を有する化学構造が導入されたポリヒドロキシウレタン樹脂(2A)を、上述した親水性溶剤中で合成して、ポリヒドロキシウレタン樹脂(2A)の溶液を得る場合には、その溶液に水を徐々に添加することで転相させることが好ましい。これにより、水中油型(O/W型)のエマルジョンを得ることができる。転相させる際に添加する水の使用量は、ポリヒドロキシウレタン樹脂(2A)の合成の際に使用した溶剤の種類、樹脂濃度、及び粘度などに応じて適宜決定することが可能であるが、樹脂溶液の樹脂(固形分)100質量部当たり、概ね50~200質量部程度であることが好ましい。転相乳化して得られたO/W型エマルジョンを減圧条件下で加熱して溶剤を揮発させることで、ポリヒドロキシウレタン樹脂(2A)の水分散体を得ることができる。このポリヒドロキシウレタン樹脂(2A)の水分散体について、動的光散乱方式の粒度分布測定装置を用いて測定される体積基準のメディアン径(d50)は、0.001~10μm程度であることが好ましい。
 なお、カルボキシ基が導入されるイミノ基を有する化合物(a2)として、上述の化合物(a2-2)に加えて、それ以外の、両末端にアミノ基(1分子中に2つの末端アミノ基;-NH)と、内部にイミノ基(-NH-)を有する化合物を用いてもよい。そのような化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、イミノビスプロピルアミン、テトラエチレンペンタミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、及びN,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどを挙げることができる。
 以上述べた通り、ポリヒドロキシウレタン樹脂(2A)は、前述の一般式(1.2)で表される構造単位中に、前述の一般式(2)~(5)で表される構造による水酸基を含むため、一般にイソシアネート化合物とポリオール化合物とを付加反応して得られるポリウレタン樹脂とは異なり、ポリヒドロキシウレタン樹脂(2A)を含む複合樹脂製のフィルムに、ガスバリア性の機能をもたらすことが可能となる。このガスバリア性の観点及びフィルム適性の観点などから、ポリヒドロキシウレタン樹脂(2A)の水酸基価は、150~300mgKOH/gの範囲であることが好ましい。本明細書における水酸基価(mgKOH/g)は、JIS K1557-1の規定に準拠して測定される値である。
 また、ポリヒドロキシウレタン樹脂(2A)は、前述の一般式(6.2)で表されるカルボキシ基を有する化学構造部位を含むため、前述の複合樹脂組成物を水分散体(エマルジョン)の形態として好適に用いることができる。ポリヒドロキシウレタン樹脂(2A)におけるカルボキシ基の量は、上記エマルジョンとした場合の乳化安定性と、複合樹脂組成物で形成したフィルムの耐水性に影響を及ぼす。上記の乳化安定性及びフィルムの耐水性の観点から、ポリヒドロキシウレタン樹脂(2A)におけるカルボキシ基の量は、ポリヒドロキシウレタン樹脂(2A)の酸価が15~50mgKOH/gの範囲となる量とすることが好ましい。また、乳化粒子の安定度は、樹脂の分子量にも影響を受けるため、ポリヒドロキシウレタン樹脂(2A)の重量平均分子量は、10000~100000の範囲であることが好ましい。
[澱粉系化合物(B)]
 本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物は、前述のポリヒドロキシウレタン樹脂(A)とともに、澱粉系化合物(B)を含有する。澱粉系化合物(B)の水酸基価は、30~1500mgKOH/gであることが好ましい。澱粉系化合物(B)としては、例えば、ハイアミロースコーンスターチ、コーンスターチ、タピオカ澱粉、甘藷澱粉、馬鈴薯澱粉、小麦澱粉、ハイアミロース小麦澱粉、米澱粉、及びデキストリン、並びにこれらの原料を化学的、物理的、又は酵素的に加工(分解)した加工澱粉などを挙げることができる。これらの澱粉系化合物(B)の1種又は2種以上を用いることができる。
 澱粉は、多数のα-グルコース分子がグリコシド結合によって重合した天然高分子であり、水酸基を有することから、澱粉系化合物(B)もまた、水酸基を有する。澱粉系化合物(B)に含まれる水酸基は、前述のポリヒドロキシウレタン樹脂(A)に含まれる水酸基と同様、後述する金属キレート化合物(C)で架橋する。そのため、ガスバリア性フィルムを構成する複合樹脂では、金属キレート化合物(C)による架橋によって、ポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)とが良好な状態で複合化している。
 澱粉系化合物(B)としては、溶解性や反応性の高さから、澱粉の分解物であるDE70~100の糖類を再縮合させた難消化性グルカン及びその処理物の少なくとも一方を用いることが好ましい。難消化性グルカン及びその処理物は、例えば、特開2016-050173号公報に記載されているように、澱粉の分解物であるDE70~100の糖類を再縮合させることで得られる糖縮合物からなる。ここで、「DE(Dextrose Equivalent)」とは、澱粉分解物の分解度合いの指標であり、試料中の還元糖をブドウ糖として固形分に対する百分率で示した値である。難消化性グルカンは、難消化性のグルカン(グルコースポリマー)を意味し、水溶性食物繊維画分を豊富に有していることが知られている。その化学構造が樹状構造を有した化合物であり、結合パターンによって、種々の呼び名がある。市販品としては、例えば、商品名「フィットファイバー#80」(日本食品化工社製)などがある。この製品は、DE87の澱粉分解物を、活性炭を触媒として加熱縮合させることで得られた糖縮合物である。
 本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物では、ポリヒドロキシウレタン樹脂(A)100質量部に対する澱粉系化合物(B)の含有量は、10~300質量部である。澱粉系化合物(B)による生分解性の十分な効果が得られやすい観点、及びガスバリア性フィルムのバイオマス度が高まる観点から、上記澱粉系化合物(B)の含有量は、20質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることがさらに好ましい。一方、ガスバリア性フィルムの耐水性及び強度の観点から、上記澱粉系化合物(B)の含有量は、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、100質量部以下であることがさらに好ましい。
[金属キレート化合物(C)]
 本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物は、前述のポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)とともに、金属キレート化合物(C)を含有する。金属キレート化合物(C)は、前述の通り、ポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)に架橋可能であり、架橋剤として機能するものである。したがって、複合樹脂製のガスバリア性フィルムには、ポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)に架橋した金属キレート化合物(C)が含有されている。
 金属キレート化合物(C)における好適な金属としては、チタン、ジルコニウム、及びアルミニウムなどを挙げることができる。好適な金属キレート化合物(C)としては、例えば、チタンラクテート、チタンラクテートアンモニウム塩、チタンジエタノールアミネート、チタントリエタノールアミネート(例えばチタンジイソプロポキシビス(トリエタノールアミネート)など)、チタンアミノエチルアミノエタノレート、チタンアセチルアセトネート(例えばチタンジイソプロポキシビス(アセチルアセトネート)など)、チタンオクチレングリコレート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート(例えばチタンジイソプロポキシビス(エチルアセトアセテート)など)、及びドデシルベンゼンスルホン酸チタン化合物などのチタンキレート化合物;塩化ジルコニル化合物、ジルコニウムラクテートアンモニウム塩、ジルコニウムテトラアセチルアセトネート、及びジルコニウムトリブトキシモノアセチルアセトネートなどのジルコニウムキレート化合物;並びにアルミニウムトリス(アセチルアセトネート)、アルミニウムビスエチルアセトアセテートモノアセチルアセトネート、及びアルミニウムトリス(エチルアセトアセテート)などのアルミニウムキレート化合物などを挙げることができる。
 上記に挙げた金属キレート化合物のなかでも、チタンキレート化合物及びジルコニウムキレート化合物が好ましく、水溶性チタンキレート化合物(例えば、チタンラクテート、チタンラクテートアンモニウム塩、チタンジエタノールアミネート、チタントリエタノールアミネート、及びチタンアミノエチルアミノエタノレートなど)、並びに水溶性ジルコニウムキレート化合物(例えば、塩化ジルコニル化合物及びジルコニウムラクテートアンモニウム塩など)の少なくとも一方を用いることがより好ましい。それらのなかでも、チタントリエタノールアミネート及びジルコニウムラクテートアンモニウム塩の少なくとも一方を用いることがさらに好ましい。上記に挙げた金属キレート化合物の1種又は2種以上を用いることができる。
 金属キレート化合物(C)による、ポリヒドロキシウレタン樹脂(A)の水酸基の架橋や、澱粉系化合物(B)の水酸基の架橋は、架橋間の距離が短く、特にポリヒドロキシウレタン樹脂(A)の結晶性を阻害しない。このことから、ガスバリア性を低下させずに、金属キレート化合物(C)による架橋を生じさせることができる。本明細書において、金属キレート化合物(C)による架橋には、金属キレート化合物(C)と、ポリヒドロキシウレタン樹脂(A)又は澱粉系化合物(B)との間の単独の架橋、並びにポリヒドロキシウレタン樹脂(A)及び澱粉系化合物(B)のそれぞれの分子間と金属キレート化合物(C)との架橋のいずれも含む。
 本発明の一実施形態の複合樹脂組成物は、金属キレート化合物(C)を含有するため、ポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)の架橋による均一皮膜を形成することができる。したがって、その複合樹脂組成物を用いることによって、均一皮膜のガスバリア性フィルムを形成することが可能である。一方、金属キレート化合物(C)を用いずに、ポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)とを単に混合させた樹脂組成物を用いると、水に溶解し易い澱粉系化合物(B)を使用しているために、得られるフィルムの耐水性は低いものとなる。これに対し、さらに金属キレート化合物(C)を含有する上記複合樹脂組成物を用いれば、ポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)が金属キレート化合物(C)を介して架橋結合することで、耐水性を有する均一皮膜のガスバリア性フィルムを得ることができる。
 金属キレート化合物(C)の使用量としては、形成したフィルムのガスバリア性を低下させないために、ポリヒドロキシウレタン樹脂(A)のもつ水酸基を一定量残す量であることが好ましい。この観点から、ポリヒドロキシウレタン樹脂(A)のもつ水酸基に対して50%以下で架橋する量で使用することが好ましい。そのような観点から、ガスバリア性フィルム及び複合樹脂組成物中の金属キレート化合物(C)の含有量は、ポリヒドロキシウレタン樹脂(A)100質量部に対して、1~50質量部であることが好ましく、5~40質量部であることがより好ましく、10~30質量部であることがさらに好ましい。一方、フィルムのガスバリア性及び強度(靱性)を高める観点から、金属キレート化合物(C)の上記含有量は、30質量部以下であることが好ましく、25質量部以下であることがさらに好ましい。
[その他の成分]
 なお、本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物においては、本発明の目的を損なわない範囲で、金属キレート化合物(C)とともに、水酸基と反応するその他の架橋剤を用いてもよい。その他の架橋剤としては、例えば、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリイソシアネート、酸無水物、シランカップリング剤、及びチタンなどの金属架橋剤などを挙げることができる。
 また、本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物は、層状粘土鉱物を含有してもよい。ガスバリア性フィルム及び複合樹脂組成物に層状粘土鉱物を含有させることで、ガスバリア性のさらなる向上が期待できる。層状粘土鉱物は、層状珪酸塩鉱物(フィロケイ酸塩鉱物)を主成分とする、層状構造を有する鉱物である。層状粘土鉱物としては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バーミキュライト、カオリナイト、及びマイカなどを挙げることができる。これらのうちの1種を単独で用いても2種以上を併用してもよく、天然物でも合成物でも用いることができる。これらのなかでも、モンモリロナイト、サポナイト、及びマイカが好ましい。さらに、ガスバリア性フィルム及び複合樹脂組成物は、上記層状粘土鉱物以外の無機フィラーを含有してもよい。無機フィラーとしては、例えば、シリカ、炭酸カルシウム、酸化チタン、及びガラス繊維などを挙げることができ、1種又は2種以上の無機フィラーを用いることができる。
[ガスバリア性フィルムの製造方法]
 本発明の一実施形態のガスバリア性フィルムは、前述の複合樹脂組成物を塗布することで容易に製造することができる。このガスバリア性フィルムの製造方法においては、まず、ポリヒドロキシウレタン樹脂(A)を含有する樹脂組成物として、ポリヒドロキシウレタン樹脂(A)の水分散体(エマルジョン)を用意することが好ましい。そして、その水分散体に、ポリヒドロキシウレタン樹脂(A)(水分散体の固形分)100質量部に対し、澱粉系化合物(B)10~300質量部、及び所定量の金属キレート化合物(C)を配合し、複合樹脂組成物(塗工液)を得ることが好ましい。この水分散体の形態の複合樹脂組成物を塗布し、乾燥させることで、複合樹脂組成物の塗膜(コーティングフィルム)からなるガスバリア性フィルムを製造することができる。
 上記の複合樹脂組成物を塗布する方法としては、例えば、ポリエステルフィルム(例えばPETフィルム)などの基材に、グラビアコーター、ナイフコーター、リバースコーター、バーコーター、スプレーコーター、及びスリットコーターなどによって、複合樹脂組成物を塗布し、水及び残存している溶剤を揮発させることが挙げられる。このようにして、基材と、基材の少なくとも一方の表面に複合樹脂組成物で形成された塗膜(ガスバリアフィルム)とを備えるラミネートフィルムを得ることができる。また、上記基材から、複合樹脂組成物で形成された塗膜を剥離することで、複合樹脂組成物で形成されたガスバリア性フィルムを得ることもできる。
 塗布した複合樹脂組成物を乾燥させる際には、金属キレート化合物(C)による架橋反応が十分に生じる条件とすることが好ましい。例えば、金属キレート化合物(C)として好適な水溶性チタンキレート化合物を用いる場合、ガスバリア性フィルムの生産性を高める観点から、80~140℃程度の温度で、10~120分程度の時間、乾燥を行うことが好ましい。
 ガスバリア性フィルムの厚さは、0.1~100μmの範囲であることが好ましく、1~100μmの範囲であることがより好ましく、10~100μmの範囲であることがさらに好ましい。ガスバリア性フィルムの酸素透過度は、温度23℃及び相対湿度65%RHにおいて、50mL/m・day・atm以下であることが好ましく、40mL/m・day・atm以下であることがより好ましい。本明細書における酸素透過度(mL/m・day・atm)は、JIS K7126-1の規定に準拠して、ガスとして酸素を用いて測定される値である。
 以上詳述した通り、本発明の一実施形態のガスバリア性フィルムは、特定のポリヒドロキシウレタン樹脂(A)と澱粉系化合物(B)とを特定の割合で含有するとともに、それらに架橋した金属キレート化合物(C)を含有する。そのため、このガスバリア性フィルムは、バイオマスである澱粉系化合物(B)を使用した、バイオマス度をより高めることが可能な環境対応型の材料でありながら、耐水性を損ない難く、良好なガスバリア性を有する。
 なお、本発明の一実施形態のガスバリア性フィルムは、以下の構成を採ることが可能である。
 [1]複合樹脂製のガスバリア性フィルムであって、前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、上記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルム。
 [2]前記化合物(a2)は、上記一般式(a2-1)で表される化合物を含む上記[1]に記載のガスバリア性フィルム。
 [3]複合樹脂製のガスバリア性フィルムであって、前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、上記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルム。
 [4]前記化合物(a2)は、上記一般式(a2-2)で表される化合物を含む上記[3]に記載のガスバリア性フィルム。
 [5]前記ポリヒドロキシウレタン樹脂(A)は、上記一般式(1.2)で表される構造単位とともに、上記一般式(1.3)で表される構造単位をさらに含む上記[3]又は[4]に記載のガスバリア性フィルム。
 [6]前記澱粉系化合物(B)は、水酸基価が30~1500mgKOH/gの範囲である澱粉の分解物であるDE70~100の糖類を再縮合させた難消化性グルカン、及びその処理物の少なくとも一方を含む上記[1]~[5]のいずれかに記載のガスバリア性フィルム。
 [7]前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記金属キレート化合物(C)の含有量が1~50質量部である上記[1]~[6]のいずれかに記載のガスバリア性フィルム。
 [8]前記金属キレート化合物(C)は、水溶性チタンキレート化合物及び水溶性ジルコニウムキレート化合物の少なくとも一方を含む上記[1]~[7]のいずれかに記載のガスバリア性フィルム。
 [9]前記金属キレート化合物(C)は、チタントリエタノールアミネート及びジルコニウムラクテートアンモニウム塩の少なくとも一方を含む上記[1]~[8]のいずれかに記載のガスバリア性フィルム。
 [10]厚さが0.1~100μmの範囲であり、かつ、温度23℃及び相対湿度65%RHにおける酸素透過度が50mL/m・day・atm以下である上記[1]~[9]のいずれかに記載のガスバリア性フィルム。
 また、本発明の一実施形態の複合樹脂組成物は、以下の構成を採ることが可能である。
 [11]ガスバリア性フィルム形成用の複合樹脂組成物であって、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、上記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が、10~300質量部である複合樹脂組成物。
 [12]前記化合物(a2)は、上記一般式(a2-1)で表される化合物を含む上記[11]に記載の複合樹脂組成物。
 [13]ガスバリア性フィルム形成用の複合樹脂組成物であって、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、上記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、複合樹脂組成物。
 [14]前記化合物(a2)は、上記一般式(a2-2)で表される化合物を含む上記[13]に記載の複合樹脂組成物。
 [15]前記ポリヒドロキシウレタン樹脂(A)は、上記一般式(1.2)で表される構造単位とともに、上記一般式(1.3)で表される構造単位をさらに含む上記[13]又は[14]に記載の複合樹脂組成物。
 [16]前記澱粉系化合物(B)は、水酸基価が30~1500mgKOH/gの範囲である澱粉の分解物であるDE70~100の糖類を再縮合させた難消化性グルカン、及びその処理物の少なくとも一方を含む上記[11]~[15]のいずれかに記載の複合樹脂組成物。
 [17]前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記金属キレート化合物(C)の含有量が1~50質量部である上記[11]~[16]のいずれかに記載の複合樹脂組成物。
 [18]前記金属キレート化合物(C)は、水溶性チタンキレート化合物及び水溶性ジルコニウムキレート化合物の少なくとも一方を含む上記[11]~[17]のいずれかに記載の複合樹脂組成物。
 [19]前記金属キレート化合物(C)は、チタントリエタノールアミネート及びジルコニウムラクテートアンモニウム塩の少なくとも一方を含む上記[11]~[18]のいずれかに記載の複合樹脂組成物。
 以下、実施例及び比較例を挙げて、本発明の一実施形態の複合樹脂組成物及びガスバリア性フィルムをさらに具体的に説明するが、それらは以下の実施例に限定されるものではない。なお、以下の文中において、「部」及び「%」との記載は、特に断らない限り、質量基準(それぞれ「質量部」及び「質量%」)である。
[合成例1:環状カーボネート構造を有する化合物(a11)の合成]
 エポキシ当量187のビスフェノールA型エポキシ樹脂(商品名「エポトート YD-128」、日鉄ケミカル&マテリアル社製)100部と、ヨウ化ナトリウム(富士フィルム和光純薬社製)20部と、N-メチル-2-ピロリドン150部とを、撹拌装置及び大気解放口のある還流器を備えた反応容器内に仕込んだ。次いで、撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間の反応を行った。そして、反応終了後の溶液に300部の水を加え、生成物を析出させ、ろ別した。得られた白色粉末をトルエンにて再結晶を行い、白色の粉末52部(収率42%)を得た。
 上記で得られた化合物を、フーリエ変換赤外分光光度計(FT-IR;商品名「IRAffinty-1」、島津製作所社製)を用いて分析したところ、910cm-1付近の原材料のエポキシ基由来の吸収(ピーク)は消失しており、1800cm-1付近に原材料には存在しないカーボネート基のカルボニル基由来の吸収(ピーク)が確認された。また、高速液体クロマトグラフ(HPLC;商品名「LC-2000」、日本分光社製、カラム:FinePakSIL C18-T5、移動相:アセトニトリル+水)による分析の結果、原材料のピークは消失し、高極性側に新たなピークが出現し、その純度は98%であった。また、示差走査熱量計(DSC)を用いた測定の結果、融点は178℃であり、融点の範囲は±5℃であった。
 以上のことから、この粉末は、エポキシ基と二酸化炭素の反応により環状カーボネート基が導入された、下記化学式(a11)で表される2つの五員環環状カーボネート構造を有する化合物と確認された。これを化合物(a11)と記す。この化合物(a11)中に占める二酸化炭素由来の成分の割合は、20.6%であった(化学構造式上の分子量からの計算値である)。
Figure JPOXMLDOC01-appb-I000068
[合成例2:環状カーボネート構造を有する化合物(a12)の合成]
 合成例1で使用したビスフェノールA型エポキシ樹脂を、エポキシ当量115のハイドロキノンジグリシジルエーテル(商品名「デナコールEX203」、ナガセケムテックス社製)に変更したこと以外は、合成例1と同様の方法により、下記化学式(a12)で表される、2つの五員環環状カーボネート構造を有する化合物(a12)を合成した(収率55%)。得られた化合物(a12)は、白色の結晶であり、融点は141℃であった。FT-IR分析の結果は、合成例1で得られた化合物(a11)と同様に910cm-1付近の原材料のエポキシ基由来の吸収は消失しており、1800cm-1付近に原材料には存在しないカーボネート基のカルボニル基由来の吸収が確認された。HPLC分析による純度は97%であった。化合物(a12)中に占める二酸化炭素由来の成分の割合は、28.0%であった(計算値)。
Figure JPOXMLDOC01-appb-I000069
[製造例1-1:ポリヒドロキシウレタン樹脂(1A1)の合成]
 撹拌装置及び大気開放口のある還流器を備えた反応容器内に、合成例1で得た化合物(a11)を42.8部、ジエチレントリアミン(東京化成工業社製)を9.86部、さらに、反応溶媒としてテトラヒドロフラン(THF)を79.0部加え、60℃の温度で撹拌しながら、24時間反応を行った。反応後の溶液の一部をサンプリングして上記FT-IRで分析した。その結果、1800cm-1付近のカーボネート基のカルボニル基に由来する吸収(ピーク)が消失していることを確認して反応を終了した。次いで、この樹脂溶液にテトラヒドロフラン124部を加えて希釈した後に、無水マレイン酸(東京化成工業社製)9.4部を加え、室温(25℃;以下の室温も同じ。)にて反応を行った。上記FT-IRにて酸無水物カルボニル由来の1800cm-1のピークが消失したことを確認して反応を終了し、ポリヒドロキシウレタン樹脂の溶液(溶媒:THF)を得た。
 上記ポリヒドロキシウレタン樹脂溶液を得た反応容器内に、トリエチルアミン9.7部を仕込んだ。そして、室温にて撹拌しながらイオン交換水144部を徐々に添加し、転相乳化を行った。次に、反応容器内を50℃に加温、減圧し、THFを留去した。その後、固形分が30%となるようにイオン交換水で調整し、水中に、一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(1A)に該当するポリヒドロキシウレタン樹脂(1A1)が分散した水分散体を得た。この水分散体は、外観上均一であった。動的光散乱方式の粒度分布測定装置(商品名「UPA-EX150」、日機装製)を用いて、上記水分散体中のポリヒドロキシウレタン樹脂(1A1)の粒度分布を測定したところ、体積基準のメディアン径(d50)は0.02μmであった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例1-2:ポリヒドロキシウレタン樹脂(1A2)の合成]
 撹拌装置及び大気開放口のある還流器を備えた反応容器内に、合成例2で得た化合物(a12)を32.7部、ジエチレントリアミン(東京化成工業社製)を9.86部、さらに、反応溶媒としてTHFを64.4部加え、60℃の温度で撹拌しながら、24時間反応を行った。反応後の溶液の一部をサンプリングして上記FT-IRで分析した。その結果、1800cm-1付近のカーボネート基のカルボニル基に由来する吸収(ピーク)が消失していることを確認して反応を終了した。次いで、この樹脂溶液にTHF124部を加えて希釈した後に、無水マレイン酸(東京化成工業社製)9.4部を加え、室温にて反応を行った。上記FT-IRにて酸無水物カルボニル由来の1800cm-1のピークが消失したことを確認して反応を終了し、ポリヒドロキシウレタン樹脂の溶液(溶媒:THF)を得た。その後は製造例1-1で述べた方法と同様にして、転相乳化などを行い、一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(1A)に該当するポリヒドロキシウレタン樹脂(1A2)が水中に分散した水分散体を得た。この水分散体は、外観上均一であった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例1-3:ポリヒドロキシウレタン樹脂(1A3)の合成]
 製造例1-1で使用した無水マレイン酸9.4部を、無水フタル酸14.2部に変更したこと以外は、製造例1-1と同様の方法及び分析を経て、一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(1A)に該当するポリヒドロキシウレタン樹脂(1A3)が水中に分散した水分散体を得た。この水分散体は、外観上均一であった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例1-4:ポリヒドロキシウレタン樹脂(1A4)の合成]
 製造例1-1で使用したジエチレントリアミン9.86部を、トリエチレンテトラミン13.98部に変更したこと以外は、製造例1-1と同様の方法及び分析を経て、一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(1A)に該当するポリヒドロキシウレタン樹脂(1A4)が水中に分散した水分散体を得た。この水分散体は、外観上均一であった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例2-1:ポリヒドロキシウレタン樹脂(2A1)の合成]
 撹拌装置及び大気開放口のある還流器を備えた反応容器内に、ビスフェノールAジグリシジルエーテル(商品名「jER828」、三菱ケミカル社製)10部、ヘキサメチレンジアミン(東京化成工業社製)30.1部、さらに反応溶媒としてテトラヒドロフラン(THF)99部を加え、60℃の温度で撹拌しながら12時間の反応を行った。このようにして、ビスフェノールAジグリシジルエーテルとヘキサメチレンジアミンとの反応物として上述の一般式(a2-2)に該当する化合物と、未反応で残ったヘキサメチレンジアミンとの混合物を得た。次にその混合物に、合成例1で得た化合物(a11)を100部投入し、60℃の温度で撹拌しながら24時間の反応を行い、樹脂溶液を得た。反応後の樹脂溶液をFT-IRにて分析したところ、1800cm-1付近に観察されていた環状カーボネートのカルボニル基由来の吸収が完全に消失しており、新たに1760cm-1付近にウレタン結合のカルボニル基由来の吸収が確認された。得られた樹脂溶液を用いて測定したアミン価は、樹脂分100%の換算値として20.1mgKOH/gであった。
 次いで、上記樹脂溶液にTHF124部を加え希釈した後に、無水マレイン酸(東京化成工業社製)5.2部を加え、室温(25℃;以下の室温も同じ。)にて反応を行い、FT-IRにて酸無水物カルボニル由来の1800cm-1のピークが消失したことを確認して反応を終了し、ポリヒドロキシウレタン樹脂の溶液(溶媒:THF)を得た。
 上記ポリヒドロキシウレタン樹脂溶液を得た反応容器内に、トリエチルアミン5.3部を仕込んだ。そして、室温にて撹拌しながらイオン交換水339部を徐々に添加し、転相乳化を行った。次に、反応容器内を50℃に加温、減圧し、THFを留去した。その後、固形分が30%となるようにイオン交換水で調整し、水中に、一般式(1.2)で表される構造単位及び一般式(1.3)で表される構造単位を含むポリヒドロキシウレタン樹脂(2A)に該当するポリヒドロキシウレタン樹脂(2A1)が分散した水分散体を得た。この水分散体は、外観上均一であった。動的光散乱方式の粒度分布測定装置(商品名「UPA-EX150」、日機装製)を用いて、上記水分散体中のポリヒドロキシウレタン樹脂(A1)の粒度分布を測定したところ、体積基準のメディアン径(d50)は0.02μmであった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例2-2:ポリヒドロキシウレタン樹脂(2A2)の合成]
 撹拌装置及び大気開放口のある還流器を備えた反応容器内に、ハイドロキノンジグリシジルエーテル(商品名「デナコールEX203」、ナガセケミテックス社製)8.2部、ヘキサメチレンジアミン41.6部、さらに反応溶媒としてTHF100部を加え、60℃の温度で撹拌しながら12時間の反応を行った。このようにして、ハイドロキノンジグリシジルエーテルとヘキサメチレンジアミンとの反応物として上述の一般式(a2-2)に該当する化合物と、未反応で残ったヘキサメチレンジアミンとの混合物を得た。次にその混合物に、合成例2で得た化合物(a12)を100部投入し、60℃の温度で撹拌しながら24時間の反応を行い、樹脂溶液を得た。反応後の樹脂溶液をFT-IRにて分析したところ、製造例2-1で述べたことと同じ結果が確認された。得られた樹脂溶液を用いて測定したアミン価は、樹脂分100%の換算値として26.2mgKOH/gであった。
 次いで、上記樹脂溶液にTHF125部を加え希釈した後に、無水マレイン酸7.0部を加え、室温にて反応を行い、FT-IRにて酸無水物カルボニル由来の1800cm-1のピークが消失したことを確認して反応を終了し、ポリヒドロキシウレタン樹脂の溶液(溶媒:THF)を得た。このポリヒドロキシウレタン樹脂の溶液を、製造例2-1で述べた方法と同様にして、転相乳化などを行い、一般式(1.2)で表される構造単位及び一般式(1.3)で表される構造単位を含むポリヒドロキシウレタン樹脂(2A)に該当するポリヒドロキシウレタン樹脂(2A2)が水中に分散した水分散体を得た。この水分散体は、外観上均一であった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例2-3:ポリヒドロキシウレタン樹脂(2A3)の合成]
 製造例2-1で使用した無水マレイン酸5.2部を、無水フタル酸7.9部に変更したこと以外は、製造例2-1と同様の方法及び分析を経て、一般式(1.2)で表される構造単位及び一般式(1.3)で表される構造単位を含むポリヒドロキシウレタン樹脂(2A)に該当するポリヒドロキシウレタン樹脂(2A3)が水中に分散した水分散体を得た。この水分散体は、外観上均一であった。また、得られた水分散体の安定性を、50℃の恒温槽中で保存し、評価したところ、良好な安定性を示した。
[製造例2-4:ポリヒドロキシウレタン樹脂(2A4)の合成]
 製造例2-1で使用したヘキサメチレンジアミン30.1部を、メタキシリレンジアミン(三菱ガス化学社製)35.3部に変更したこと以外は、製造例2-1と同様の方法及び分析を経て、一般式(1.2)で表される構造単位及び一般式(1.3)で表される構造単位を含むポリヒドロキシウレタン樹脂(2A)に該当するポリヒドロキシウレタン樹脂(2A4)が水中に分散した水分散体を得た。なお、転相乳化する前、及び無水マレイン酸によるカルボキシ基導入前の樹脂溶液を用いて測定したアミン価は、樹脂分100%の換算値として19.4mgKOH/gであった。
[実施例1-1]
 製造例1-1で得たポリヒドロキシウレタン樹脂(1A1)の水分散体に、その水分散体の固形分(樹脂(1A1))100部に対し、澱粉系化合物(B)として難消化性グルカン(商品名「フィットファイバー#80」、日本食品化工社製)を100部添加し、さらに、金属キレート化合物(C)として水溶性チタンキレート化合物であるチタントリエタノールアミネート(チタンジイソプロポキシ-ビストリエタノールアミネート;商品名「オルガチックス TC-400」、マツモトファインケミカル社製)を15部添加した。そして、総固形分が30%になるように水で希釈して、ポリヒドロキシウレタン樹脂(1A1)、澱粉系化合物(B)、及び金属キレート化合物(C)を含有する複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。
 基材としての厚さ25μmのコロナ処理PETフィルムに、上記塗工液を乾燥膜厚が20μmとなるようにバーコーターで均一に塗布し、100℃で20分間乾燥を行い、金属キレート化合物(C)をポリヒドロキシウレタン樹脂(1A1)及び澱粉系化合物(B)に架橋させた。このようにして、基材(PETフィルム)上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-2]
 実施例1-1における難消化性グルカンの使用量を100部から50部に変更したこと以外は、実施例1-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-3]
 実施例1-1におけるチタントリエタノールアミネートの使用量を15部から5部に変更したこと以外は、実施例1-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-4]
 実施例1-1におけるチタントリエタノールアミネートの使用量を15部から30部に変更したこと以外は、実施例1-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-5]
 実施例1-1におけるチタントリエタノールアミネート15部を、水溶性ジルコニウムキレート化合物であるジルコニウムラクテートアンモニウム塩(商品名「オルガチックス ZC-300」、マツモトファインケミカル社製)30部に変更したこと以外は、実施例1-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-6]
 実施例1-1における難消化性グルカンの使用量を100部から300部に変更したこと以外は、実施例1-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例1-7~1-9]
 実施例1-1で使用したポリヒドロキシウレタン樹脂(1A1)の水分散体を、以下に述べる水分散体に変更したこと以外は、実施例1-1と同様の方法で、実施例1-7~1-9のそれぞれの複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、これら塗工液を用いて、実施例1-7~1-9のそれぞれについて、実施例1-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
 実施例1-7では、ポリヒドロキシウレタン樹脂(1A2)の水分散体を用いた。実施例1-8ではポリヒドロキシウレタン樹脂(1A3)の水分散体を用いた。実施例1-9ではポリヒドロキシウレタン樹脂(1A4)の水分散体を用いた。
[比較例1-1]
 実施例1-1において金属キレート化合物(C)として使用したチタントリエタノールアミネートを使用しなかったこと以外は、実施例1-1と同様の方法で、塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記塗工液で形成された塗膜(フィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[比較例1-2]
 実施例1-1において澱粉系化合物(B)として使用した難消化性グルカンを使用しなかったこと以外は、実施例1-1と同様の方法で、塗工液を得た。また、この塗工液を用いて、実施例1-1と同様の方法で、基材上に、上記塗工液で形成された塗膜(フィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-1]
 製造例2-1で得たポリヒドロキシウレタン樹脂(2A1)の水分散体に、その水分散体の固形分(樹脂(2A1))100部に対し、澱粉系化合物(B)として難消化性グルカン(商品名「フィットファイバー#80」、日本食品化工社製)を100部添加し、さらに、金属キレート化合物(C)として水溶性チタンキレート化合物であるチタントリエタノールアミネート(チタンジイソプロポキシ-ビストリエタノールアミネート;商品名「オルガチックス TC-400」、マツモトファインケミカル社製)を15部添加した。そして、総固形分が30%になるように水で希釈して、ポリヒドロキシウレタン樹脂(2A1)、澱粉系化合物(B)、及び金属キレート化合物(C)を含有する複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。
 基材としての厚さ25μmのコロナ処理PETフィルムに、上記塗工液を乾燥膜厚が20μmとなるようにバーコーターで均一に塗布し、100℃で20分間乾燥を行い、金属キレート化合物(C)をポリヒドロキシウレタン樹脂(2A1)及び澱粉系化合物(B)に架橋させた。このようにして、基材(PETフィルム)上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-2]
 実施例2-1における難消化性グルカンの使用量を100部から50部に変更したこと以外は、実施例2-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-3]
 実施例2-1におけるチタントリエタノールアミネートの使用量を15部から5部に変更したこと以外は、実施例2-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-4]
 実施例2-1におけるチタントリエタノールアミネートの使用量を15部から30部に変更したこと以外は、実施例2-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-5]
 実施例2-1におけるチタントリエタノールアミネート15部を、水溶性ジルコニウムキレート化合物であるジルコニウムラクテートアンモニウム塩(商品名「オルガチックス ZC-300」、マツモトファインケミカル社製)30部に変更したこと以外は、実施例2-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-6]
 実施例2-1における難消化性グルカンの使用量を100部から300部に変更したこと以外は、実施例2-1と同様の方法で、複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[実施例2-7~2-9]
 実施例2-1で使用したポリヒドロキシウレタン樹脂(2A1)の水分散体を、以下に述べる水分散体に変更したこと以外は、実施例2-1と同様の方法で、実施例2-7~2-9のそれぞれの複合樹脂組成物(ポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物)である塗工液を得た。また、これら塗工液を用いて、実施例2-7~2-9のそれぞれについて、実施例2-1と同様の方法で、基材上に、上記複合樹脂組成物で形成された塗膜(複合樹脂製のフィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
 実施例2-7ではポリヒドロキシウレタン樹脂(2A2)の水分散体を用いた。実施例2-8ではポリヒドロキシウレタン樹脂(2A3)の水分散体を用いた。実施例2-9ではポリヒドロキシウレタン樹脂(2A4)の水分散体を用いた。
[比較例2-1]
 実施例2-1において金属キレート化合物(C)として使用したチタントリエタノールアミネートを使用しなかったこと以外は、実施例2-1と同様の方法で、塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記塗工液で形成された塗膜(フィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[比較例2-2]
 実施例2-1において澱粉系化合物(B)として使用した難消化性グルカンを使用しなかったこと以外は、実施例2-1と同様の方法で、塗工液を得た。また、この塗工液を用いて、実施例2-1と同様の方法で、基材上に、上記塗工液で形成された塗膜(フィルム)を得た。この基材と、基材に設けられた塗膜とを備える積層体を後述する評価に用いた。
[バイオマス度]
 実施例及び比較例で得られた各塗膜(フィルム)のバイオマス度を、日本有機資源協会のバイオマスマークの認定方法にしたがって、乾燥時の全固形分の質量に対する澱粉系化合物(B)の質量割合(%)で算出した。
[評価]
(酸素透過度)
 実施例及び比較例で得られた各積層体(基材と塗膜とを備える積層体)、及び基材(PETフィルム)のそれぞれについて、JIS K7126-1に準拠した方法によって、温度23℃及び相対湿度65%RHにおける酸素透過度(mL/m・day・atm)を測定した。そして、積層体についての測定値から、基材についての測定値を差し引くことで、塗膜の酸素透過度を求めた。酸素透過度の測定には、酸素透過率測定装置(商品名「OX-TRAN2/21ML」、MOCON社製)を使用した。酸素透過度の値が低いほど、酸素を透過し難いこと、したがって、ガスバリア性が高いことを表す。
(耐水性)
 実施例及び比較例で得られた各積層体(大きさ:5cm四方)の塗膜上に水を1滴(約40μL)滴下し、25℃で1時間静置した後、ウエスで軽く拭き取り、塗膜(フィルム)の外観を目視で観察し、以下の評価基準にしたがって、塗膜の耐水性を評価した。
 A:塗膜にほとんど変化はなかった。
 B:塗膜に若干の白化が確認された。
 C:塗膜に目立つ白化が確認された。
 以上の評価結果を、実施例及び比較例で使用した各塗工液の固形分組成(単位:部)とともに表1(表1-1及び表1-2)並びに表2(表2-1及び表2-2)に示す。
Figure JPOXMLDOC01-appb-I000070
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-I000073
 表1に示す通り、実施例の複合樹脂組成物は、バイオマスである澱粉系化合物を使用した環境対応型の材料でありながら、耐水性を損ない難く、良好なガスバリア性を有するフィルムを形成することが可能であることが確認された。
 以上の実施例の結果から、本発明の一実施形態のガスバリア性フィルム及び複合樹脂組成物は、ポリヒドロキシウレタン樹脂(A)によるガスバリア性の機能だけでなく、良好な耐水性の機能をもたらすことが期待できる。そのため、ガスバリア性フィルム及び複合樹脂組成物の実用性がより向上し、それらの有効利用が期待される。

Claims (19)

  1.  複合樹脂製のガスバリア性フィルムであって、
     前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-I000001
     (前記一般式(1.1)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、下記一般式(6.1)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-I000002
     (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.1)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.1)中のOとの結合手を表す。)
    Figure JPOXMLDOC01-appb-I000003
     (前記一般式(6.1)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表す。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。aは0~3の整数を表し、bは1~5の整数を表す。*は前記一般式(1.1)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
  2.  前記化合物(a2)は、下記一般式(a2-1)で表される化合物を含む請求項1に記載のガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-I000004
     (前記一般式(a2-1)中、R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表し、aは0~3の整数を表し、bは1~5の整数を表す。)
  3.  複合樹脂製のガスバリア性フィルムであって、
     前記複合樹脂は、少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、澱粉系化合物(B)、並びに前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋した金属キレート化合物(C)を含有し、かつ、前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、ガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-I000005
     (前記一般式(1.2)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、前記化合物(a2)に由来する構造を含む、下記一般式(6.2)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-I000006
     (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.2)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.2)中のOとの結合手を表す。)
    Figure JPOXMLDOC01-appb-I000007
     (前記一般式(6.2)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。Rは、それぞれ独立に、2価の、炭素数1~15の脂肪族炭化水素基、炭素数4~15の脂環式炭化水素基、又は炭素数6~15芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、スルホニル結合、水酸基及びハロゲン原子を含んでいてもよい。Wは、2価の、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、又は炭素数6~40の芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。*は前記一般式(1.2)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
  4.  前記化合物(a2)は、下記一般式(a2-2)で表される化合物を含む請求項3に記載のガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-I000008
     (前記一般式(a2-2)中、R及びWは、それぞれ、前記一般式(6.2)中のR及びWと同義である。)
  5.  前記ポリヒドロキシウレタン樹脂(A)は、前記一般式(1.2)で表される構造単位とともに、下記一般式(1.3)で表される構造単位をさらに含む請求項3又は4に記載のガスバリア性フィルム。
    Figure JPOXMLDOC01-appb-I000009
     (前記一般式(1.3)中、X、Y、及びYは、それぞれ、前記一般式(1.2)中のX、Y、及びYと同義であり、Rは、前記一般式(6.2)中のRと同義である。)
  6.  前記澱粉系化合物(B)は、水酸基価が30~1500mgKOH/gの範囲である澱粉の分解物であるDE70~100の糖類を再縮合させた難消化性グルカン、及びその処理物の少なくとも一方を含む請求項1~5のいずれか1項に記載のガスバリア性フィルム。
  7.  前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記金属キレート化合物(C)の含有量が1~50質量部である請求項1~6のいずれか1項に記載のガスバリア性フィルム。
  8.  前記金属キレート化合物(C)は、水溶性チタンキレート化合物及び水溶性ジルコニウムキレート化合物の少なくとも一方を含む請求項1~7のいずれか1項に記載のガスバリア性フィルム。
  9.  前記金属キレート化合物(C)は、チタントリエタノールアミネート及びジルコニウムラクテートアンモニウム塩の少なくとも一方を含む請求項1~8のいずれか1項に記載のガスバリア性フィルム。
  10.  厚さが0.1~100μmの範囲であり、かつ、温度23℃及び相対湿度65%RHにおける酸素透過度が50mL/m・day・atm以下である請求項1~9のいずれか1項に記載のガスバリア性フィルム。
  11.  ガスバリア性フィルム形成用の複合樹脂組成物であって、
     少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.1)で表される繰り返し単位を含むポリヒドロキシウレタン樹脂(A)、
     澱粉系化合物(B)、並びに
     前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、
     前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が、10~300質量部である複合樹脂組成物。
    Figure JPOXMLDOC01-appb-I000010
     (前記一般式(1.1)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、下記一般式(6.1)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-I000011
     (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.1)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.1)中のOとの結合手を表す。)
    Figure JPOXMLDOC01-appb-I000012
     (前記一般式(6.1)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表す。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。aは0~3の整数を表し、bは1~5の整数を表す。*は前記一般式(1.1)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
  12.  前記化合物(a2)は、下記一般式(a2-1)で表される化合物を含む請求項11に記載の複合樹脂組成物。
    Figure JPOXMLDOC01-appb-I000013
     (前記一般式(a2-1)中、R、R、及びRは、それぞれ独立に、その構造中にエーテル結合を含んでいてもよい炭素数1~10のアルキレン基を表し、aは0~3の整数を表し、bは1~5の整数を表す。)
  13.  ガスバリア性フィルム形成用の複合樹脂組成物であって、
     少なくとも2つの五員環環状カーボネート構造を有する化合物(a1)と少なくとも2つのアミノ基を有する化合物(a2)とが重合した構造単位を基本構造とする、下記一般式(1.2)で表される構造単位を含むポリヒドロキシウレタン樹脂(A)、
     澱粉系化合物(B)、並びに
     前記ポリヒドロキシウレタン樹脂(A)及び前記澱粉系化合物(B)に架橋可能な金属キレート化合物(C)を含有し、
     前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記澱粉系化合物(B)の含有量が10~300質量部である、複合樹脂組成物。
    Figure JPOXMLDOC01-appb-I000014
     (前記一般式(1.2)中、Xは、前記化合物(a1)に由来する2価の有機基又は直接結合を表す。Y及びYは、それぞれ独立に、下記一般式(2)~(5)のいずれかで表される2価の有機基を表し、かつ、それらのうちの2以上が前記ポリヒドロキシウレタン樹脂(A)の分子中に混在していてもよい。Zは、前記化合物(a2)に由来する構造を含む、下記一般式(6.2)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-I000015
     (前記一般式(2)~(5)中、Rはそれぞれ独立に、水素原子又はメチル基を表し、*は、前記一般式(1.2)中のXとの結合手又はXが直接結合の場合は他方のYとの結合手を表し、*は前記一般式(1.2)中のOとの結合手を表す。)
    Figure JPOXMLDOC01-appb-I000016
     (前記一般式(6.2)中、Rは、その構造中に酸素原子及び窒素原子を含んでいてもよい2価の炭化水素基を表す。Rは、それぞれ独立に、2価の、炭素数1~15の脂肪族炭化水素基、炭素数4~15の脂環式炭化水素基、又は炭素数6~15芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、スルホニル結合、水酸基及びハロゲン原子を含んでいてもよい。Wは、2価の、炭素数1~30の脂肪族炭化水素基、炭素数4~40の脂環式炭化水素基、又は炭素数6~40の芳香族炭化水素基を表し、これらの基の構造中に、エーテル結合、アミノ結合、スルホニル結合、エステル結合、水酸基、及びハロゲン原子、並びにアルキレン基の炭素数が2~6であり、かつ、繰り返し単位が1~30であるポリアルキレングリコール鎖を含んでいてもよい。Mはそれぞれ独立に、水素原子又は塩構造となるための対イオンを表す。*は前記一般式(1.2)中のZにおけるNとの結合手を表し、*はZにおける他方の結合手を表す。)
  14.  前記化合物(a2)は、下記一般式(a2-2)で表される化合物を含む請求項13に記載の複合樹脂組成物。
    Figure JPOXMLDOC01-appb-I000017
     (前記一般式(a2-2)中、R及びWは、それぞれ、前記一般式(6.2)中のR及びWと同義である。)
  15.  前記ポリヒドロキシウレタン樹脂(A)は、前記一般式(1.2)で表される構造単位とともに、下記一般式(1.3)で表される構造単位をさらに含む請求項13又は14に記載の複合樹脂組成物。
    Figure JPOXMLDOC01-appb-I000018
     (前記一般式(1.3)中、X、Y、及びYは、それぞれ、前記一般式(1.2)中のX、Y、及びYと同義であり、Rは、前記一般式(6.2)中のRと同義である。)
  16.  前記澱粉系化合物(B)は、水酸基価が30~1500mgKOH/gの範囲である澱粉の分解物であるDE70~100の糖類を再縮合させた難消化性グルカン、及びその処理物の少なくとも一方を含む請求項11~15のいずれか1項に記載の複合樹脂組成物。
  17.  前記ポリヒドロキシウレタン樹脂(A)100質量部に対する前記金属キレート化合物(C)の含有量が1~50質量部である請求項11~16のいずれか1項に記載の複合樹脂組成物。
  18.  前記金属キレート化合物(C)は、水溶性チタンキレート化合物及び水溶性ジルコニウムキレート化合物の少なくとも一方を含む請求項11~17のいずれか1項に記載の複合樹脂組成物。
  19.  前記金属キレート化合物(C)は、チタントリエタノールアミネート及びジルコニウムラクテートアンモニウム塩の少なくとも一方を含む請求項11~18のいずれか1項に記載の複合樹脂組成物。

     
PCT/JP2020/041110 2019-11-20 2020-11-02 ガスバリア性フィルム及び複合樹脂組成物 WO2021100453A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021558266A JP7263547B2 (ja) 2019-11-20 2020-11-02 ガスバリア性フィルム及び複合樹脂組成物
EP20891130.5A EP4063437A4 (en) 2019-11-20 2020-11-02 GAS BARRIER FILM AND COMPOSITE RESIN COMPOSITION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-209975 2019-11-20
JP2019209976 2019-11-20
JP2019-209976 2019-11-20
JP2019209975 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100453A1 true WO2021100453A1 (ja) 2021-05-27

Family

ID=75980646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041110 WO2021100453A1 (ja) 2019-11-20 2020-11-02 ガスバリア性フィルム及び複合樹脂組成物

Country Status (4)

Country Link
EP (1) EP4063437A4 (ja)
JP (1) JP7263547B2 (ja)
TW (1) TWI821611B (ja)
WO (1) WO2021100453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033636B1 (ja) 2020-10-02 2022-03-10 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、及びガスバリア性フィルム、並びにポリヒドロキシウレタン樹脂の水分散体の製造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188402A (ja) * 1984-03-08 1985-09-25 Hayashibara Biochem Lab Inc β−グルカンとその製造方法及び用途
JPH0592507A (ja) * 1991-09-30 1993-04-16 Nippon Synthetic Chem Ind Co Ltd:The デンプン系高分子積層構造物
JPH07266441A (ja) * 1994-03-30 1995-10-17 Kureha Chem Ind Co Ltd ガスバリヤー性フイルムの製造方法
JPH0841218A (ja) * 1994-07-27 1996-02-13 Kureha Chem Ind Co Ltd ガスバリヤー性フィルム及びその製造方法
JPH10237180A (ja) * 1996-12-27 1998-09-08 Kureha Chem Ind Co Ltd 樹脂組成物及びそれからなるガスバリヤー性フィルム
JP2001187857A (ja) * 1999-06-04 2001-07-10 Jsr Corp ガスバリアコーティング組成物、その製造方法およびガスバリアコーティングフィルム
JP2003053909A (ja) * 2001-08-22 2003-02-26 Kuraray Co Ltd ガスバリアー性フィルム
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
JP2006198842A (ja) * 2005-01-19 2006-08-03 Sanwa Denpun Kogyo Kk ガス遮断性複合フィルム
WO2008026672A1 (fr) * 2006-08-30 2008-03-06 Unitika Ltd. Matériau de revêtement destiné à former une couche barrière contre les gaz et corps multicouche barrière contre les gaz
JP2012172144A (ja) 2011-02-24 2012-09-10 Dainichiseika Color & Chem Mfg Co Ltd ガスバリア性フィルムおよび該ガスバリア性フィルムの製造方法
JP2016050173A (ja) 2014-08-28 2016-04-11 日本食品化工株式会社 難消化性グルカンを含有する整腸剤およびその製造方法
JP2016194029A (ja) * 2015-03-31 2016-11-17 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、水分散体の製造方法及び該水分散体を用いてなるガスバリア性フィルム
JP2016204592A (ja) * 2015-04-28 2016-12-08 大日精化工業株式会社 ポリヒドロキシウレタン水分散体組成物、及び該水分散体組成物を用いてなるガスバリア性水性コーティング剤、ガスバリア性フィルム
WO2018084102A1 (ja) * 2016-11-02 2018-05-11 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、該水分散体の製造方法、該水分散体を用いてなるガスバリア性樹脂フィルム、粘土鉱物含有のポリヒドロキシウレタン樹脂水分散体組成物、該組成物を用いてなるガスバリア性コーティング剤及びガスバリア性樹脂フィルム
JP2019127548A (ja) * 2018-01-25 2019-08-01 大日精化工業株式会社 ヒドロキシポリウレタン樹脂の水分散体、該水分散体を用いてなるガスバリア性フィルム及びヒドロキシポリウレタン樹脂の水分散体の製造方法
JP2019127574A (ja) * 2018-01-26 2019-08-01 大日精化工業株式会社 ヒドロキシポリウレタン樹脂の水分散体組成物、これを用いたガスバリア性コーティング剤及びガスバリア性フィルム
JP2020122056A (ja) * 2019-01-29 2020-08-13 大日精化工業株式会社 ガスバリア性フィルム及びポリヒドロキシウレタン樹脂−澱粉ハイブリッド組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521072B1 (ko) * 2011-02-24 2015-05-15 다이니치 세이카 고교 가부시키가이샤 가스 배리어층을 형성하기 위한 도료 조성물, 가스 배리어성 필름, 및 가스 배리어성 필름의 제조방법
WO2015016069A1 (ja) * 2013-07-30 2015-02-05 三井化学株式会社 ポリウレタンディスパージョンおよびポリウレタン積層体

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188402A (ja) * 1984-03-08 1985-09-25 Hayashibara Biochem Lab Inc β−グルカンとその製造方法及び用途
JPH0592507A (ja) * 1991-09-30 1993-04-16 Nippon Synthetic Chem Ind Co Ltd:The デンプン系高分子積層構造物
JPH07266441A (ja) * 1994-03-30 1995-10-17 Kureha Chem Ind Co Ltd ガスバリヤー性フイルムの製造方法
JPH0841218A (ja) * 1994-07-27 1996-02-13 Kureha Chem Ind Co Ltd ガスバリヤー性フィルム及びその製造方法
JPH10237180A (ja) * 1996-12-27 1998-09-08 Kureha Chem Ind Co Ltd 樹脂組成物及びそれからなるガスバリヤー性フィルム
JP2001187857A (ja) * 1999-06-04 2001-07-10 Jsr Corp ガスバリアコーティング組成物、その製造方法およびガスバリアコーティングフィルム
JP2003053909A (ja) * 2001-08-22 2003-02-26 Kuraray Co Ltd ガスバリアー性フィルム
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
JP2006198842A (ja) * 2005-01-19 2006-08-03 Sanwa Denpun Kogyo Kk ガス遮断性複合フィルム
WO2008026672A1 (fr) * 2006-08-30 2008-03-06 Unitika Ltd. Matériau de revêtement destiné à former une couche barrière contre les gaz et corps multicouche barrière contre les gaz
JP2012172144A (ja) 2011-02-24 2012-09-10 Dainichiseika Color & Chem Mfg Co Ltd ガスバリア性フィルムおよび該ガスバリア性フィルムの製造方法
JP2016050173A (ja) 2014-08-28 2016-04-11 日本食品化工株式会社 難消化性グルカンを含有する整腸剤およびその製造方法
JP2016194029A (ja) * 2015-03-31 2016-11-17 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、水分散体の製造方法及び該水分散体を用いてなるガスバリア性フィルム
JP2016204592A (ja) * 2015-04-28 2016-12-08 大日精化工業株式会社 ポリヒドロキシウレタン水分散体組成物、及び該水分散体組成物を用いてなるガスバリア性水性コーティング剤、ガスバリア性フィルム
WO2018084102A1 (ja) * 2016-11-02 2018-05-11 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、該水分散体の製造方法、該水分散体を用いてなるガスバリア性樹脂フィルム、粘土鉱物含有のポリヒドロキシウレタン樹脂水分散体組成物、該組成物を用いてなるガスバリア性コーティング剤及びガスバリア性樹脂フィルム
JP2019127548A (ja) * 2018-01-25 2019-08-01 大日精化工業株式会社 ヒドロキシポリウレタン樹脂の水分散体、該水分散体を用いてなるガスバリア性フィルム及びヒドロキシポリウレタン樹脂の水分散体の製造方法
JP2019127574A (ja) * 2018-01-26 2019-08-01 大日精化工業株式会社 ヒドロキシポリウレタン樹脂の水分散体組成物、これを用いたガスバリア性コーティング剤及びガスバリア性フィルム
JP2020122056A (ja) * 2019-01-29 2020-08-13 大日精化工業株式会社 ガスバリア性フィルム及びポリヒドロキシウレタン樹脂−澱粉ハイブリッド組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033636B1 (ja) 2020-10-02 2022-03-10 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、及びガスバリア性フィルム、並びにポリヒドロキシウレタン樹脂の水分散体の製造方法
JP2022059860A (ja) * 2020-10-02 2022-04-14 大日精化工業株式会社 ポリヒドロキシウレタン樹脂の水分散体、及びガスバリア性フィルム、並びにポリヒドロキシウレタン樹脂の水分散体の製造方法

Also Published As

Publication number Publication date
EP4063437A1 (en) 2022-09-28
TW202128859A (zh) 2021-08-01
JP7263547B2 (ja) 2023-04-24
JPWO2021100453A1 (ja) 2021-05-27
TWI821611B (zh) 2023-11-11
EP4063437A4 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
JP6563242B2 (ja) ポリヒドロキシウレタン樹脂の水分散体、水分散体の製造方法及び該水分散体を用いてなるガスバリア性フィルム
JP6298421B2 (ja) ポリヒドロキシウレタン水分散体組成物、及び該水分散体組成物を用いてなるガスバリア性水性コーティング剤、ガスバリア性フィルム
KR101521072B1 (ko) 가스 배리어층을 형성하기 위한 도료 조성물, 가스 배리어성 필름, 및 가스 배리어성 필름의 제조방법
US10689543B2 (en) Aqueous polyhydroxyurethane resin dispersion, method for producing said aqueous dispersion, gas-barrier resin film produced using said aqueous dispersion, aqueous polyhydroxyurethane resin dispersion composition containing clay mineral, gas-barrier coating agent comprising said composition, and gas-barrier resin film
Illy et al. The influence of formulation and processing parameters on the thermal properties of a chitosan–epoxy prepolymer system
JP7263547B2 (ja) ガスバリア性フィルム及び複合樹脂組成物
JP6861174B2 (ja) ヒドロキシポリウレタン樹脂の水分散体、該水分散体を用いてなるガスバリア性フィルム及びヒドロキシポリウレタン樹脂の水分散体の製造方法
JP6377017B2 (ja) ポリヒドロキシウレタン樹脂−シリカハイブリッド組成物、ポリヒドロキシウレタン樹脂−シリカハイブリッド溶液の製造方法
Alam et al. Development of ambient cured polyesteramide coatings from linseed oil: a sustainable resource
Yin et al. Biobased Linear and Crystallizable Polyhydroxy (amide-urethane) s from Diglycerol Bis (cyclic carbonate) and the Polyamides of Dimer Fatty Acids
US9624330B2 (en) NCC as a functional scaffold for amine-cured epoxy nanocomposite materials of tunable properties
JP6994476B2 (ja) ガスバリア性フィルム及びポリヒドロキシウレタン樹脂-澱粉ハイブリッド組成物
JP6813337B2 (ja) ポリヒドロキシウレタン樹脂の水分散体、該水分散体の製造方法及び該水分散体を用いてなるガスバリア性樹脂フィルム
JP2021042267A (ja) ポリヒドロキシウレタン樹脂及びポリヒドロキシウレタン樹脂の製造方法
JP6808664B2 (ja) ヒドロキシポリウレタン樹脂の水分散体組成物、これを用いたガスバリア性コーティング剤及びガスバリア性フィルム
JP7033636B1 (ja) ポリヒドロキシウレタン樹脂の水分散体、及びガスバリア性フィルム、並びにポリヒドロキシウレタン樹脂の水分散体の製造方法
JP6803680B2 (ja) カルボキシル基含有ポリヒドロキシウレタン樹脂、ポリヒドロキシウレタン樹脂の水分散体及びポリヒドロキシウレタン樹脂水分散体の製造方法
JP6813338B2 (ja) 粘土鉱物含有のポリヒドロキシウレタン樹脂水分散体組成物、該水分散体組成物を用いてなるガスバリア性コーティング剤及びガスバリア性樹脂フィルム
Bruce et al. Paper‐sheet biocomposites based on wood pulp grafted with poly (ε‐caprolactone)
JP6960422B2 (ja) 接着剤組成物及び積層体
JP2019026799A (ja) ポリヒドロキシウレタン樹脂組成物、該組成物を用いたガスバリア性コーティング剤及びガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891130

Country of ref document: EP

Effective date: 20220620