WO2021100201A1 - レーザ加工方法及びレーザ加工装置 - Google Patents

レーザ加工方法及びレーザ加工装置 Download PDF

Info

Publication number
WO2021100201A1
WO2021100201A1 PCT/JP2019/045830 JP2019045830W WO2021100201A1 WO 2021100201 A1 WO2021100201 A1 WO 2021100201A1 JP 2019045830 W JP2019045830 W JP 2019045830W WO 2021100201 A1 WO2021100201 A1 WO 2021100201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
interlayer
laser beam
condition
laser
Prior art date
Application number
PCT/JP2019/045830
Other languages
English (en)
French (fr)
Inventor
呉屋 真之
明子 井上
竜一 成田
奥田 晃久
了太 尾▲崎▼
清水 正彦
宏樹 森
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2019/045830 priority Critical patent/WO2021100201A1/ja
Priority to US17/777,779 priority patent/US20220410319A1/en
Priority to EP19953018.9A priority patent/EP4046742A4/en
Publication of WO2021100201A1 publication Critical patent/WO2021100201A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/003Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Definitions

  • This disclosure relates to a laser processing method and a laser processing apparatus.
  • Patent Document 1 A method for laser machining a composite material for carrying out a second step of reducing the multi-linearity is known (see, for example, Patent Document 1). Further, Patent Document 2 describes an aircraft assembly in which conductive foils made of different materials, an outer plate, and a structural material are laminated.
  • a member in which a plurality of layers having different materials such as Patent Document 2 are laminated may be subjected to laser processing as in Patent Document 1, for example.
  • delamination may occur due to the heat input of the laser beam. Therefore, when laser processing a composite material in which a plurality of layers are laminated, it is required to suppress delamination.
  • the present disclosure is to solve the above-mentioned problems, and an object of the present invention is to provide a laser processing method and a laser processing apparatus capable of suppressing delamination when laser processing a member in which a plurality of layers are laminated. ..
  • the laser processing method according to the present disclosure is laminated on one surface of the first layer and the first layer, and has a thermal expansion coefficient different from that of the first layer.
  • This is a laser processing method in which a base material containing a second layer containing different layers is irradiated with laser light to cut the base material, and the second layer is cut from a position near the interlayer inside the surface in the stacking direction.
  • the step of irradiating the laser beam under the conditions to cut the first interlayer portion, and the laser from the position near the interlayer of the first layer to the inner portion in the stacking direction than the first interlayer condition includes a step of irradiating the laser beam under the first condition where the amount of heat input by the light is high to cut the first layer.
  • the laser processing method is laminated on the surface of the first layer and the first layer, and has a different thermal expansion coefficient from the first layer.
  • a laser processing method in which a base material including a second layer is irradiated with a laser beam to cut the base material, and the second layer is arranged on a side opposite to the side irradiated with the laser light.
  • the second layer is irradiated with the laser beam to cut the second layer.
  • the laser processing apparatus is laminated on one surface of the first layer and the first layer, and has a thermal expansion coefficient different from that of the first layer.
  • a laser processing apparatus that irradiates a base material containing a second layer having a different laser beam to cut the base material, the laser irradiating unit that irradiates the base material with the laser light, and the above.
  • a control unit that controls the operation of the laser irradiation unit is provided, and the control unit interposes between the second layer and the first layer from a position near the layer inside the surface in the stacking direction of the second layer.
  • the laser beam is irradiated to the first interlayer portion up to the position near the interlayer inside the one surface in the stacking direction of the first layer under predetermined first interlayer conditions, and the first interlayer is formed.
  • the portion is cut, and the laser beam is applied to the inner portion in the stacking direction from the position near the interlayer of the first layer under the first condition in which the amount of heat input by the laser beam is higher than that of the first interlayer condition.
  • the first layer is cut.
  • the laser processing apparatus is laminated on the surface of the first layer and the first layer, and has a different thermal expansion coefficient from the first layer.
  • a laser processing device that irradiates a base material including a second layer with a laser beam to perform a cutting process for cutting the base material, the laser irradiation unit that irradiates the base material with the laser light, and the base material.
  • the second unit is provided with a cooling unit that supplies a cooling medium and a control unit that controls the operation of the laser irradiation unit and the cooling unit, and the control unit is on a side opposite to the side on which the laser beam is irradiated.
  • the base material on which the layers are arranged is supplied with the cooling medium to the second layer to cool the second layer, and the first layer is irradiated with the laser beam to provide the first layer. After cutting and cutting the first layer, the second layer is irradiated with the laser beam to cut the second layer.
  • FIG. 1 is a diagram schematically showing a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a schematic block diagram of the control device according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a laser machining method according to the first embodiment.
  • FIG. 4 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 5 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 6 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 7 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 8 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 9 is a schematic view illustrating the laser processing method according to the first embodiment.
  • FIG. 1 is a diagram schematically showing a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a schematic block diagram of the control device according to the first embodiment.
  • FIG. 3 is a flowchart
  • FIG. 10 is a schematic diagram illustrating another example of the laser processing method according to the first embodiment.
  • FIG. 11 is a schematic view illustrating the laser processing method according to the second embodiment.
  • FIG. 12 is a schematic view illustrating the laser processing method according to the third embodiment.
  • FIG. 13 is a diagram schematically showing the laser processing apparatus according to the fourth embodiment.
  • FIG. 14 is a schematic view showing an example of the base material according to the fourth embodiment.
  • FIG. 15 is a schematic view showing an example of the base material according to the fourth embodiment.
  • FIG. 16 is a schematic view showing an example of the base material according to the fourth embodiment.
  • FIG. 17 is a schematic view illustrating the laser processing method according to the fourth embodiment.
  • FIG. 1 is a diagram schematically showing a laser processing apparatus according to the first embodiment.
  • the laser processing apparatus 1 according to the first embodiment can perform cutting processing for cutting the base material 100 by irradiating the base material 100 to be processed with laser light L. It is a device.
  • the base material 100 includes a composite material.
  • the composite material include fiber reinforced plastics such as CFRP (carbon fiber reinforced plastics, Carbon Fiber Reinforced Plastics), GFRP (glass fiber reinforced plastics), and GMT (glass long fiber reinforced plastics). More specifically, the base material 100 is composed of a plurality of layers made of different materials.
  • the base material 100 includes a first layer 101, a second layer 102, and a third layer 103. In the present embodiment, the first layer 101 and the second layer 102 have different coefficients of thermal expansion, and the first layer 101 and the third layer 103 have different coefficients of thermal expansion.
  • the coefficients of thermal expansion of the second layer 102 and the third layer 103 are also different, but the coefficients of thermal expansion of the second layer 102 and the third layer 103 may be the same.
  • the coefficient of thermal expansion here is the coefficient of linear thermal expansion.
  • At least one of the first layer 101, the second layer 102, and the third layer 103 is a layer of a composite material.
  • the first layer 101 is a layer made of a composite material, and more specifically, CFRP.
  • the second layer 102 is a layer having a higher coefficient of thermal expansion than the first layer 101, and is a layer made of a metal such as copper, for example.
  • the third layer 103 is a layer having a higher coefficient of thermal expansion than the first layer 101, and is a layer composed of a composite material having a higher coefficient of thermal expansion than the first layer 101, such as GFRP. Is.
  • the coefficient of thermal expansion of the second layer 102 is higher than the coefficient of thermal expansion of the third layer 103.
  • the coefficient of thermal expansion of the second layer 102 is not limited to being higher than the coefficient of thermal expansion of the third layer 103, and may be the same value, or a value lower than the coefficient of thermal expansion of the third layer 103. May be good.
  • the materials of the first layer 101, the second layer 102, and the third layer 103 are not limited to those described above.
  • the second layer 102 may be made of a composite material having a higher coefficient of thermal expansion than the first layer 101 such as GFRP, or the third layer 103 may be a layer made of a metal such as copper. Good.
  • the second layer 102 and the third layer 103 are different materials in the example of the present embodiment, they may be the same material such that both are GFRP.
  • the second layer 102 is formed on one surface 101A of the first layer 101.
  • one surface 102A is exposed to the outside as one surface of the entire base material 100, and the other surface 102B is joined to the surface 101A of the first layer 101.
  • the third layer 103 is formed on the other surface 101B of the first layer 101.
  • one surface 103A is joined to the surface 101B of the first layer 101, and the other surface 103B is exposed to the outside as the other surface of the entire base material 100.
  • the means for joining the first layer 101 and the second layer 102 and the means for joining the first layer 101 and the third layer 103 are arbitrary, but for example, an adhesive (adhesive layer) formed between the layers may be used. It may be bonded or may be bonded by the resin contained in the composite material in the layer.
  • the base metal 100 is laminated in the order of the third layer 103, the first layer 101, and the second layer 102.
  • the stacking order of the first layer 101, the second layer 102, and the third layer 103 is not limited to this, and is arbitrary.
  • the base material 100 is not limited to including all of the first layer 101, the second layer 102, and the third layer 103, and at least one of the first layer 101, the second layer 102, and the third layer 103. It may include one and the other.
  • the base material 100 may include the first layer 101 and the second layer 102 and may not include the third layer 103, or may include the first layer 101 and the third layer 103 and include the second layer 102. Does not have to be included.
  • the base material 100 is, for example, a member for an aircraft, but is not limited to a member for an aircraft and may be used for any purpose.
  • the laser processing device 1 includes a laser irradiation device 10 as a laser irradiation unit, a scanning optical system 12, a condensing optical system 14, a support base 16, a light receiving unit 18, and a control unit. 20 and the control device 20 of the above.
  • the X direction, the Y direction, and the Z direction are defined.
  • the Y direction is a direction orthogonal to the X direction.
  • the Z direction is a direction orthogonal to the X direction and the Y direction.
  • one of the directions along the Z direction is defined as the Z1 direction
  • the other direction of the directions along the Z direction, that is, the direction opposite to the Z1 direction is defined as the Z2 direction.
  • the X and Y directions are along the horizontal direction
  • the Z1 direction is the upward direction in the vertical direction
  • the Z2 direction is the downward direction in the vertical direction, but the present invention is limited to this. Absent.
  • the laser irradiation device 10 is a device that outputs a laser beam L.
  • the laser irradiation device 10 may output a pulse wave (Continuous Wave) or a continuous wave (CW) as the laser beam L.
  • a laser irradiation device 10 that irradiates a laser beam L that becomes a continuous wave capable of continuously supplying energy.
  • the laser irradiation device 10 may irradiate the laser beam L in a single mode or a multi-mode.
  • the wavelength band of the laser beam L output by the laser irradiation device 10 may be arbitrary, but for example, a wavelength band near 1 ⁇ m, a green wavelength band, a blue wavelength band, an ultraviolet light wavelength band, or the like may be used. Can be mentioned.
  • the laser irradiation device 10 outputs a laser beam L having an output value of 0.1 kW or more and 50 kW or less, but the output value is not limited to this. Further, the laser irradiation device 10 can change the output value of the laser beam L.
  • the scanning optical system 12 is an optical system that scans the laser beam L irradiated from the laser irradiation device 10 on the base material 100.
  • the scanning optical system 12 includes a scanner capable of scanning the laser beam L, and as the scanner, for example, a galvano mirror is used.
  • the scanning optical system 12 scans the laser beam L irradiated on the base material 100, in other words, the irradiation position of the laser beam L on the base material 100 in the Y direction. That is, in the present embodiment, the Y direction is the scanning direction of the laser beam L.
  • the scanning optical system 12 preferably sets the moving speed of the laser beam L in the scanning direction, that is, the scanning speed (feed speed) of the laser beam L to 1 m / min or more and 1000 m / min or less, but the scanning speed is limited to this. It may be optional. Further, the scanning optical system 12 can change the scanning speed of the laser beam L.
  • the scanning optical system 12 is not limited to scanning the laser beam L irradiated to the base material 100 in the Y direction, and scans the laser beam L in at least one of the X direction and the Y direction. Good.
  • the condensing optical system 14 is an optical system that condenses the laser light L emitted from the scanning optical system 12 at the focal point and irradiates the base material 100 with the condensed laser light L.
  • the condensing optical system 14 includes an optical member such as a condensing lens. The condensing optical system 14 irradiates the laser beam L incident through the laser irradiation device 10 and the scanning optical system 12 in the Z2 direction.
  • the support base 16 is arranged on the Z2 direction side of the condensing optical system 14.
  • the support base 16 supports the base material 100 at a predetermined position.
  • the support base 16 supports the base material 100 so that the surface of the base material 100 is parallel to the X direction and the Y direction. That is, the base material 100 is supported by the support base 16 so that the stacking direction of the first layer 101, the second layer 102, and the third layer 103 faces the Z direction.
  • the laser beam L emitted from the laser irradiation device 10 in the Z2 direction is irradiated substantially perpendicular to the surface of the base material 100 arranged on the support base 16.
  • the support base 16 is a moving stage for moving the base material 100 in the X direction.
  • the present invention is not limited to this, and the support base 16 may have a structure in which the base material 100 is moved in at least one of the X direction and the Y direction, or the base material 100 may not be moved. ..
  • the light receiving unit 18 is arranged on the Z2 direction side with respect to the condensing optical system 14 and the support base 16.
  • the light receiving unit 18 is arranged on the traveling direction side of the laser beam L from the condensing optical system 14.
  • the light receiving unit 18 is a member that receives the laser light L after being irradiated toward the base material 100, that is, the laser light L transmitted through the base material 100.
  • the light receiving unit 18 absorbs the received laser light L.
  • the light receiving unit 18 is made of a member that absorbs the laser beam L, and is, for example, a plate-shaped member made of iron, but the material is not limited thereto.
  • FIG. 2 is a schematic block diagram of the control device according to the first embodiment.
  • the control device 20 controls the operation of each part of the laser processing device 1.
  • the control device 20 is, for example, a computer, and includes an arithmetic unit, that is, a CPU (Central Processing Unit).
  • the control device 20 includes an irradiation control unit 30, a scanning control unit 32, and a support base control unit 34.
  • the control device 20 realizes the irradiation control unit 30, the scanning control unit 32, and the support base control unit 34 by reading a program from a storage unit (not shown) provided by the CPU and executing the program, and performs processing by the control device 20. Execute.
  • the control device 20 may execute the functions of the irradiation control unit 30, the scanning control unit 32, and the support base control unit 34 by one CPU, or may include a plurality of CPUs and use the plurality of CPUs. You may perform these functions. Further, at least a part of the irradiation control unit 30, the scanning control unit 32, and the support base control unit 34 may be realized by a hardware circuit.
  • the irradiation control unit 30 controls the operation of the laser irradiation device 10.
  • the irradiation control unit 30 controls the output of the laser beam L by the laser irradiation device 10.
  • the irradiation control unit 30 controls the output value of the laser beam L output from the laser irradiation device 10.
  • the scanning control unit 32 controls the operation of the scanning optical system 12. By controlling the scanning optical system 12, the irradiation control unit 30 scans the laser beam L irradiated on the base material 100 in the Y direction, which is the scanning direction. In the present embodiment, the scanning control unit 32 controls the scanning speed of the laser beam L irradiated on the base material 100.
  • the support base control unit 34 controls the operation of the support base 16 as a moving stage.
  • the support base control unit 34 controls the support base 16 to move the base material 100 supported by the support base 16 in the X direction.
  • the laser processing device 1 configured as described above irradiates the laser beam L from the laser irradiation device 10 under the control of the control device 20, and guides the irradiated laser beam L to the scanning optical system 12.
  • the laser processing device 1 changes the irradiation position of the laser beam L on the base material 100 by scanning the laser beam L incident on the scanning optical system 12 under the control of the control device 20.
  • the laser processing apparatus 1 causes the laser beam L emitted from the scanning optical system 12 to enter the focusing optical system 14, and irradiates the base material 100 with the focused laser light L.
  • FIG. 3 is a flowchart illustrating a laser machining method according to the first embodiment.
  • 4 to 9 are schematic views illustrating the laser machining method according to the first embodiment.
  • the base material 100 has a plate thickness of, for example, 10 mm or more.
  • the base material 100 is arranged on the support base 16 and the base material 100 is fixed on the support base 16 (step S10).
  • FIG. 4 shows a state in which the base material 100 is arranged on the support base 16.
  • the base material 100 is fixed to the base material 100. That is, the base material 100 is fixed to the support base 16 so as to be arranged in the order of the third layer 103, the first layer 101, and the second layer 102 in the Z1 direction.
  • the base material 100 is cut and the product 100a is cut out from the base material 100. Therefore, the base material 100 is cut to form a cut-out product 100a and a remaining portion 100b which is the base material 100 after the product 100a is cut out.
  • a machining line I which is a boundary between the product 100a and the balance 100b, is set in advance in the base metal 100 before cutting.
  • the base material 100 is supported by the support base 16 so that at least a part of the portion to be the product 100a overlaps the support base 16 and the processing line I and the portion to be the remaining portion 100b are located outside the support base 16. .
  • the laser irradiation device 10 irradiates the base material 100 with laser light L under the control of the control device 20, and the base material 100 is cut.
  • the control device 20 includes a second layer 102, a first interlayer portion 105 including a portion between the second layer 102 and the first layer 101, a first layer 101, a first layer 101, and a third layer 103.
  • the irradiation conditions of the laser beam L are different for each of the second interlayer portion 106 including the interlayer portion and the third layer 103. As shown in FIG.
  • the first interlayer portion 105 is formed between the layers of the first layer 101, passing through the layers of the second layer 102 and the first layer 101 from the position near the layers 102C of the second layer 102. It is a part up to the vicinity position 101C.
  • the second interlayer portion 106 is formed between the layers of the first layer 101, the layers near the layers 101D, the layers of the first layer 101 and the third layer 103, and the layers of the third layer 103. It is a part up to the vicinity position 103C.
  • the control device 20 irradiates the second layer 102 (more specifically, the portion of the second layer 102 up to the position near the interlayer 102C) with the laser beam L under the second condition to cut the second layer 102.
  • the first interlayer portion 105 is irradiated with laser light L under the first interlayer condition to cut the first interlayer portion 105, and the first layer 101 (more specifically, the portion of the first layer 101 from the interlayer vicinity position 101C).
  • the first layer 101 is cut by irradiating the laser beam L under the first condition.
  • the first interlayer condition is an irradiation condition in which the amount of heat input per unit time by the laser beam L is higher than that of the first condition and the second condition.
  • the amount of heat input to the base material 100 per unit time is determined by the laser light L at the same location of the base material 100 under the first condition and the second condition. It is lower than the amount of heat input to the base material 100 per unit time when irradiated with.
  • at least one of the output value of the laser beam L, the scanning speed of the laser beam L, and the spot diameter of the laser beam L is different from the first interlayer condition and the first condition and the second condition.
  • the scanning speed of the laser light L is higher than that of the first condition and the second condition so that the output value of the laser light L is smaller than that of the first condition and the second condition.
  • the spot diameter is set to be larger than that of the first condition and the second condition.
  • the output value of the laser beam L is smaller than that of the first condition and the second condition
  • the scanning speed of the laser beam L is larger than that of the first condition and the second condition
  • the first condition is the first.
  • the spot diameter may be set larger than the condition and the second condition.
  • the first condition and the second condition and the first interlayer condition may be set so that the amount of heat input per unit time is different, and the output value of the laser beam L, the scanning speed of the laser beam L, and the laser It is not limited to being set so as to be different from the spot diameter of the light L.
  • the amount of heat input per unit time by the laser beam L differs between the first condition and the second condition.
  • the amount of heat input per unit time by the laser beam L in the first condition is the unit by the laser beam L in the second condition. It may be higher than the amount of heat input per hour. That is, the irradiation condition of the laser beam L of the layer having a low coefficient of thermal expansion among the first layer 101 and the second layer 102 is higher than the irradiation condition of the laser beam L of the layer having a high coefficient of thermal expansion per unit time.
  • the amount of heat input may be set high.
  • the present invention is not limited to this, and the amount of heat input per unit time by the laser beam L under the first condition may be lower than that of the second condition, and the amount of heat input per unit time under the first condition and the second condition may be set. May be equal.
  • control device 20 irradiates the second interlayer portion 106 with the laser beam L under the second interlayer condition to cut the second interlayer portion 106, and the third layer 103 (more specifically, the layers of the third layer 103).
  • the third layer 103 is cut by irradiating the laser beam L under the third condition with respect to the portion from the vicinity position 103C).
  • the second interlayer condition is an irradiation condition in which the amount of heat input by the laser beam L per unit time is lower than that of the first condition, the second condition, and the third condition.
  • the amount of heat input to the base material 100 per unit time is the same as that of the base material 100 under the first condition, the second condition, and the third condition. It is lower than the amount of heat input to the base material 100 per unit time when the laser beam L is irradiated to the base material 100.
  • the amount of heat input per unit time by the laser beam L differs between the first condition and the third condition.
  • the amount of heat input per unit time by the laser beam L in the first condition is the unit by the laser beam L in the third condition. It may be higher than the amount of heat input per hour. That is, the irradiation condition of the laser beam L of the layer having a low coefficient of thermal expansion among the first layer 101 and the third layer 103 is higher than the irradiation condition of the laser beam L of the layer having a high coefficient of thermal expansion per unit time.
  • the amount of heat input may be set high.
  • the present invention is not limited to this, and the amount of heat input per unit time by the laser beam L under the first condition may be lower than that of the third condition, and the amount of heat input per unit time under the first condition and the third condition may be set. May be equal.
  • the amount of heat input per unit time by the laser beam L differs between the second condition and the third condition.
  • the second condition is set so that the amount of heat input of the laser beam L is smaller than that of the third condition.
  • the second condition is not limited to the setting so that the amount of heat input of the laser beam L is smaller than that of the third condition.
  • the second condition and the third condition may be set to irradiation conditions in which the heat input amount of the laser beam L is the same, or the second condition has a larger heat input amount of the laser light L than the third condition. It may be set to be.
  • the second layer 102 is irradiated with the laser beam L under the second condition under the control of the control device 20, the second layer 102 is cut (step S12), and the first layer 102 is cut.
  • the interlayer portion 105 is irradiated with the laser beam L under the first interlayer condition, the first interlayer portion 105 is cut (step S14), and the first layer 101 is irradiated with the laser beam L under the first condition to irradiate the first layer 101 with the laser beam L.
  • step S16 the second interlayer portion 106 is irradiated with laser light L under the second interlayer condition, the second interlayer portion 106 is cut (step S18), and the third layer 103 is subjected to the third condition.
  • the third layer 103 is cut by irradiating the laser beam L (step S19).
  • FIG. 5 shows an example of cutting the second layer 102, that is, an example of the detailed contents of step S12 of FIG.
  • the control device 20 irradiates the laser beam L under the second condition from the surface 102A of the second layer 102 to the position near the interlayer 102C, and from the surface 102A of the second layer 102 to the position near the interlayer.
  • the portion up to 102C is removed (cut).
  • the inter-layer neighborhood position 102C is a position of the second layer 102 between the surface 102A and the surface 102B in the Z direction.
  • the interlayer neighborhood position 102C is preferably a portion of the second layer 102 near the interlayer (surface 102B) between the second layer 102 and the first layer 101, in other words, the interlayer neighborhood in the Z direction. It is preferable that the distance between the position 102C and the surface 102B is shorter than the distance between the interlayer neighborhood position 102C and the surface 102A in the Z direction.
  • the distance between the interlayer proximity position 102C and the surface 102B in the Z direction is preferably 0.2 mm or more and 1.0 mm or less.
  • the control device 20 sets a plurality of machining paths on the second layer 102.
  • the processing pass refers to the locus of the laser beam L to irradiate the base material 100, in other words, the laser beam L is irradiated on the processing path.
  • the plurality of processing paths are set so as to be arranged in the X direction (width direction) orthogonal to the Y direction which is the scanning direction and the Z direction which is the stacking direction (depth direction).
  • the plurality of machining paths are set side by side in the X direction with a predetermined pitch interval P from the machining line I side to the remaining portion 100b side with the machining line I side as a reference. Further, as shown in FIG.
  • the focal point O of the laser beam L is located inside the base material 100 (here, the second layer 102), and the optical axis A of the laser beam L is along the Z direction.
  • a plurality of processing paths set side by side in the X direction will be appropriately described as a group of processing paths.
  • the control device 20 irradiates the second layer 102 on the processing path with the laser beam L under the second condition toward each of the group of processing paths set on the second layer 102 in this way. Irradiate the laser beam L under the conditions.
  • the control device 20 sequentially irradiates the laser beam L from the processing path on the processing line I side to the processing path on the remaining 100b side. That is, the control device 20 irradiates the laser beam L while scanning it in the Y direction while fixing the irradiation position of the laser beam L in the X direction on the machining path closest to the machining line I.
  • the laser beam L is irradiated to the second layer 102 along the processing path on the most processing line I side, and the portion overlapping the processing path of the second layer 102 is removed.
  • the control device 20 moves the base material 100 to the processing line I side by controlling, for example, the support base 16, thereby moving the irradiation position of the laser light L in the X direction to the remaining portion 100b side, and the laser light. L is irradiated while scanning in the Y direction.
  • the second layer 102 is irradiated with the laser beam L along the processing path, and the portion overlapping the processing path of the second layer 102 is removed.
  • the control device 20 repeats the same control at the transition, and irradiates each of the group of processing paths with the laser beam L. As a result, the second layer 102 is removed by a predetermined thickness over a group of processing passes.
  • the control device 20 finishes irradiating the group of processing paths with the laser beam L, the control device 20 sets the next group of processing paths on the Z2 direction side as shown in step S12B, and sets each of the group of processing paths in each of the group of processing paths.
  • the laser beam L is irradiated under the second condition. That is, a new group of processing paths is set on the Z2 direction side of the previously set group of processing paths, and the new group of processing paths is irradiated with the laser beam L.
  • the focal point O of the laser beam L irradiated toward the new group of machining paths will be located on the Z2 direction side with respect to the focal point O of the laser beam L irradiated toward the previous group of machining paths. ..
  • the number of machining passes in a group is set to be smaller than the number of machining passes in the previous group. That is, the number of processing passes on the deep side (Z2 direction side) in the thickness direction of the base metal 100 is smaller than the number of processing passes on the shallow side. Furthermore, the position of the machining path on the most remaining 100b side of the group of machining passes is closer to the product 100a than the position of the machining pass on the most remaining 100b side of the previous (shallow side) group of machining passes. It is set to be located in.
  • the machining path on the machining line I side is set to be a constant position in the X direction regardless of the Z direction.
  • the processing path in cutting processing, when the pitch interval P in each laser irradiation process is the same, the cutting width in the X direction is from the front surface side (shallow side) to the back surface side of the base material 100.
  • the base material 100 is irradiated with the laser beam L so as to become narrower toward (deep side).
  • the control device 20 repeats this laser irradiation step, that is, a step of irradiating the laser beam L for each group of processing passes to remove the second layer 102 by a predetermined thickness.
  • this laser irradiation step that is, a step of irradiating the laser beam L for each group of processing passes to remove the second layer 102 by a predetermined thickness.
  • step S12B of FIG. 5 the portion overlapping the processing path of the second layer 102 is removed from the surface 102A to the near-interlayer position 102C, and the near-interlayer position from the surface 102A of the second layer 102.
  • the portion up to 102C is cut.
  • the setting of the group of machining paths is repeated a plurality of times, that is, the removal of the second layer 102 by a predetermined thickness is repeated a plurality of times in the Z2 direction side to form the second layer 102. I'm disconnected.
  • the number of times a group of processing passes are set, in other words, the number of times a predetermined thickness of the second layer 102 is removed is determined based on the thickness from the surface 102A to the position near the interlayer 102C and the second condition. It may be once or multiple times.
  • FIG. 6 shows an example in which the first interlayer portion 105 is cut, that is, an example of the detailed contents of step S14 in FIG.
  • the control device 20 irradiates the first interlayer portion 105 with the laser beam L under the first interlayer condition to remove (cut) the first interlayer portion 105.
  • the first interlayer portion 105 is a portion from the interlayer neighborhood position 102C of the second layer 102 to the interlayer neighborhood position 101C of the first layer 101 via the interlayer between the second layer 102 and the first layer 101. It can be said that the layer between the second layer 102 and the first layer 101 is a portion where the surface 102B of the second layer 102 and the surface 101A of the first layer 101 are in contact with each other.
  • the interlayer neighborhood position 101C is a position of the first layer 101 between the surface 101A and the surface 101B in the Z direction. Furthermore, the interlayer neighborhood position 101C is preferably a portion of the first layer 101 near the interlayer (surface 101A) between the first layer 101 and the second layer 102, in other words, the interlayer neighborhood in the Z direction. It is preferable that the distance between the position 101C and the surface 101A is shorter than the distance between the interlayer neighborhood position 101C and the surface 101B in the Z direction. For example, the distance between the interlayer neighborhood position 101C and the surface 101A in the Z direction is preferably 0.2 mm or more and 1.0 mm or less.
  • the first interlayer portion 105 includes a portion extending from the interlayer neighborhood position 102C of the second layer 102 to the surface 102B of the second layer 102, and a portion including a portion extending from the surface 101A of the first layer 101 to the interlayer neighborhood position 101C. I can say.
  • the control device 20 Based on the thickness of the second layer 102, the second condition, and the like, the control device 20 sets in advance the number of times a group of machining paths required to cut the portion of the second layer 102 from the surface 102A to the position near the interlayer 102C is set. calculate. Then, when the control device 20 finishes irradiating the group of processing paths for the set number of times with the laser beam L, the control device 20 determines that the cutting to the position near the interlayer 102C is completed, and cuts the first interlayer portion 105. Move to. As shown in step S14A of FIG.
  • the control device 20 determines that the cutting to the interlayer proximity position 102C is completed, the control device 20 sets a group of processing paths on the interlayer proximity position 102C of the first interlayer portion 105. , The laser beam L is irradiated under the first interlayer condition along each processing path. As a result, the portion overlapping the processing path of the first interlayer portion 105 is removed by a predetermined thickness.
  • the control device 20 sets the next group of processing paths on the Z2 direction side, and the first interlayer condition is applied to each of the processing paths of the group. Is irradiated with the laser beam L.
  • the portion of the first interlayer portion 105 that overlaps the next processing path is removed by a predetermined thickness.
  • the control device 20 repeats this step, that is, a step of irradiating the laser beam L for each group of processing passes to remove the first interlayer portion 105 by a predetermined thickness.
  • steps S14B and S14C of FIG. 6 the portion overlapping the processing path passes between the layers near the layers 102C, between the layers 102 and the first layer 101, and between the layers of the first layer 101.
  • the first interlayer portion 105 is cut by being removed up to the vicinity position 101C.
  • the portion of the first layer 101 near the interlayer portion 101C that overlaps with the conventional processing path is exposed to the outside.
  • the method of setting the processing path on the first layer portion 105 and the method of irradiating the processing path with the laser beam L are the same as the method in the second layer 102 except that the irradiation condition is the first layer condition. is there.
  • FIG. 7 shows an example of cutting the first layer 101, that is, an example of the detailed contents of step S16 of FIG.
  • the control device 20 irradiates the laser beam L under the first condition from the interlayer neighborhood position 101C of the first layer 101 to the interlayer neighborhood position 101D, and irradiates the laser beam L under the first condition to the interlayer neighborhood position 101C of the first layer 101.
  • the portion up to the position near the interlayer 101D is removed (cut).
  • the interlayer neighborhood position 101D is a position of the first layer 101 between the interlayer neighborhood position 101C and the surface 101B in the Z direction.
  • the interlayer neighborhood position 101D is preferably a portion of the first layer 101 near the interlayer (surface 101B) between the first layer 101 and the third layer 103, in other words, the interlayer neighborhood in the Z direction. It is preferable that the distance between the position 101D and the surface 101B is shorter than the distance between the interlayer neighborhood position 101D and the surface 101A in the Z direction.
  • the distance between the interlayer neighborhood position 101D and the surface 101B in the Z direction is preferably 0.2 mm or more and 1.0 mm or less.
  • the control device 20 calculates in advance the number of times a group of processing passes required to cut the first interlayer portion 105 is set based on the thickness of the first interlayer portion 105, the conditions of the first interlayer portion, and the like. Then, when the control device 20 finishes irradiating the group of processing paths for the set number of times with the laser beam L, the control device 20 determines that the cutting of the first interlayer portion 105 is completed, and performs the cutting processing of the first layer 101. Transition. As shown in step S16A of FIG. 7, when the control device 20 determines that the cutting of the first interlayer portion 105 is completed, the control device 20 sets a group of processing paths on the interlayer proximity position 101C of the first layer 101.
  • the laser beam L is irradiated under the first condition along each processing path. As a result, the portion overlapping the processing path of the first layer 101 is removed by a predetermined thickness.
  • the control device 20 sets the next group of processing paths on the Z2 direction side, and for each of the processing paths of the group under the first condition. Irradiate the laser beam L. As a result, the portion of the first layer 101 that overlaps with the next processing path is removed by a predetermined thickness.
  • the control device 20 repeats this step, that is, a step of irradiating the laser beam L for each group of processing passes to remove the first layer 101 by a predetermined thickness.
  • step S16B of FIG. 7 the portion overlapping the processing path of the first layer 101 is removed from the interlayer neighborhood position 101C to the interlayer neighborhood position 101D, and the interlayer neighborhood position 101C of the first layer 101 is removed.
  • the portion from to the position near the interlayer 101D is cut.
  • the method for setting the processing path on the first layer 101 and the method for irradiating the processing path with the laser beam L are the same as the method for the second layer 102, except that the irradiation condition is the first condition.
  • FIG. 8 shows an example in the case of cutting the second interlayer portion 106, that is, an example of the detailed contents of step S18 in FIG.
  • the control device 20 irradiates the second interlayer portion 106 with the laser beam L under the second interlayer condition to remove (cut) the second interlayer portion 106.
  • the second interlayer portion 106 is a portion from the interlayer neighborhood position 101D of the first layer 101 to the interlayer neighborhood position 103C of the third layer 103 via the interlayer between the first layer 101 and the third layer 103. It can be said that the layer between the first layer 101 and the third layer 103 is a portion where the surface 101B of the first layer 101 and the surface 103A of the third layer 103 are in contact with each other.
  • the position near the interlayer 103C is a position of the third layer 103 between the surface 103A and the surface 103B in the Z direction.
  • the interlayer neighborhood position 103C is preferably a portion of the third layer 103 near the interlayer (surface 103A) between the third layer 103 and the first layer 101, in other words, the interlayer neighborhood in the Z direction. It is preferable that the distance between the position 103C and the surface 103A is shorter than the distance between the interlayer neighborhood position 103C and the surface 103B in the Z direction.
  • the distance between the interlayer neighborhood position 103C and the surface 103A in the Z direction is preferably 0.2 mm or more and 1.0 mm or less.
  • the second interlayer portion 106 includes a portion extending from the interlayer neighborhood position 101D of the first layer 101 to the surface 101B of the first layer 101 and a portion including a portion extending from the surface 103A of the third layer 103 to the interlayer neighborhood position 103C. I can say.
  • the control device 20 sets the number of times a group of machining paths required to cut the portion of the first layer 101 from the interlayer neighborhood position 101C to the interlayer neighborhood position 101D based on the thickness of the first layer 101, the first condition, and the like. Is calculated in advance. Then, when the control device 20 finishes irradiating the group of processing paths for the set number of times with the laser beam L, the control device 20 determines that the cutting to the position near the interlayer 101D is completed, and cuts the second interlayer portion 106. Move to. As shown in step S18A of FIG. 8, when the control device 20 determines that the cutting to the interlayer neighborhood position 101D is completed, the control device 20 sets a group of processing paths on the interlayer neighborhood position 101D of the second interlayer portion 106.
  • the laser beam L is irradiated along the respective processing paths under the second interlayer condition.
  • the portion overlapping the processing path of the second interlayer portion 106 is removed by a predetermined thickness.
  • the control device 20 sets the next group of processing paths on the Z2 direction side, and the second interlayer condition is applied to each of the processing paths of the group. Is irradiated with the laser beam L.
  • the portion of the second interlayer portion 106 that overlaps with the next processing path is removed by a predetermined thickness.
  • the control device 20 repeats this step, that is, a step of irradiating the laser beam L for each group of processing passes to remove the second interlayer portion 106 by a predetermined thickness.
  • steps S18B and S18C of FIG. 8 the portion overlapping the processing path passes between the layers near the layers 101D, between the layers 101 and the third layer 103, and between the layers of the third layer 103.
  • the second interlayer portion 106 is cut by being removed up to the vicinity position 103C. By cutting the second interlayer portion 106 in this way, the portion of the third layer 103 near the interlayer portion 103C that overlaps with the conventional processing path is exposed to the outside.
  • the method of setting the processing path on the second layer portion 106 and the method of irradiating the processing path with the laser beam L are the same as the method of the second layer 102 except that the irradiation condition is the second layer condition. is there.
  • FIG. 9 shows an example of cutting the third layer 103, that is, an example of the detailed contents of step S19 of FIG.
  • the control device 20 irradiates the laser beam L under the third condition from the interlayer neighborhood position 103C of the third layer 103 to the surface 103B, and from the interlayer neighborhood position 103C of the third layer 103 to the surface.
  • the portion up to 103B is removed (cut).
  • the control device 20 calculates in advance the number of times a group of processing passes required to cut the second interlayer portion 106 are set, based on the thickness of the second interlayer portion 106, the conditions of the second interlayer portion, and the like. Then, when the control device 20 finishes irradiating the group of processing paths for the set number of times with the laser beam L, the control device 20 determines that the cutting of the second interlayer portion 106 is completed, and performs the cutting processing of the third layer 103. Transition. As shown in step S19A of FIG. 9, when the control device 20 determines that the cutting of the second interlayer portion 106 is completed, the control device 20 sets a group of processing paths on the interlayer proximity position 103C of the third layer 103.
  • the laser beam L is irradiated under the third condition along each processing path. As a result, the portion overlapping the processing path of the third layer 103 is removed by a predetermined thickness.
  • the control device 20 sets the next group of processing paths on the Z2 direction side, and for each of the processing paths of the group under the third condition. Irradiate the laser beam L. As a result, the portion of the third layer 103 that overlaps the next processing path is removed by a predetermined thickness.
  • the control device 20 repeats this step, that is, a step of irradiating the laser beam L for each group of processing passes to remove the third layer 103 by a predetermined thickness.
  • step S19B of FIG. 9 the portion overlapping the processing path of the third layer 103 is removed from the position near the interlayer 103C to the surface 103B, and the third layer 103 is cut.
  • the method of setting the processing path on the third layer 103 and the method of irradiating the processing path with the laser beam L are the methods of the second layer 102 and the first layer 101, except that the irradiation condition is the third condition. Is similar to.
  • the base material 100 is cut, and the product 100a and the balance are cut. It is separated from 100b.
  • the processed surface irradiated with the laser beam L is formed as a surface following the processing line I.
  • the control device 20 determines that the cutting of the second layer 102, the first layer 101, etc. is completed when the irradiation of the laser beam L to the set number of processing paths calculated in advance is completed.
  • the method of determining that the layer cutting is completed is not limited to this.
  • the operator may visually check the base material 100, and the operator may input the fact to the control device 20 before the next layer is exposed.
  • the control device 20 detects the input by the operator, it may determine that the cutting of one layer is completed.
  • the base material 100 in which a plurality of layers having different materials are laminated is heated by the laser light L when irradiated with the laser light L for cutting processing, and each layer of the base material 100 expands.
  • the amount of expansion is different from each other. Since the expansion amount of the base material 100 is different for each layer in this way, tensile stress may be generated between the layers and delamination may occur.
  • the amount of heat input of the laser light L to the inter-layer portion (here, the first inter-layer portion 105) is applied to the portion inside the inter-layer portion (here, the first layer 101).
  • the amount of heat input is smaller than that of the first interlayer portion 105 including the portion between the first layer 101 and the second layer 102 having different coefficients of thermal expansion.
  • the amount of thermal expansion between the layers of the second layer 102 and the first layer 101 is suppressed, and the tensile stress between the layers is suppressed.
  • the base metal 100 can be appropriately cut while suppressing delamination.
  • the amount of heat input to the first layer 101 larger than the amount of heat input to the first interlayer portion 105, it is possible to process the first layer 101 having a low thermal expansion amount at high speed.
  • the laser processing apparatus 1 irradiates the first interlayer portion 105 with the laser beam L so that the amount of heat input is small, thereby appropriately using the base material 100 while suppressing delamination. Can be cut into.
  • FIG. 10 is a schematic diagram illustrating another example of the laser processing method according to the first embodiment.
  • the laser processing apparatus 1 may irradiate the base material 100 with the laser beam L while inclining the optical axis A of the laser beam L with respect to the Z direction, which is the stacking direction.
  • the laser processing apparatus 1 preferably irradiates the base material 100 with the laser beam L so that the optical axis A of the laser beam L is inclined toward the balance 100b side with respect to the Z direction in the X direction. More specifically, the laser beam L is focused at a predetermined angle ⁇ with respect to the optical axis A. Then, the optical axis A of the laser beam L is inclined with respect to the processing line I along the Z direction.
  • the laser beam L sets the inclination angle of the optical axis A with respect to the processing line I along the Z direction in consideration of the predetermined angle ⁇ that is focused.
  • This inclination angle is set in a range of 0.1 or more and 5 ° or less, preferably in a range of 0.1 or more and 2 ° or less, and more preferably in a range of 0.1 or more and 1 ° or less.
  • the irradiation condition of the laser beam L from the surface 102A of the second layer 102 to the position 102C near the interlayer is set as the second condition in which the amount of heat input is higher than the condition of the first interlayer.
  • the irradiation condition of the laser beam L from the surface 102A of the second layer 102 to the position near the interlayer 102C may be set to the first interlayer condition in the same manner as the first interlayer portion 105. That is, in this case, the laser beam L is irradiated under the condition of the first layer from the surface 102A of the second layer 102, through the layers between the second layer 102 and the first layer 101, and to the position 101C near the layers of the first layer 101. To do.
  • the portion of the second layer 102 from the surface 102A to the position near the interlayer 102C is irradiated with the laser beam L under the condition of the first interlayer, and the second layer 102 May include the step of cutting the laser.
  • the laser beam L By irradiating the laser beam L under the first interlayer condition from the second layer 102 to the first interlayer portion 105 in this way, for example, when the second layer 102 is thinly formed, the first layer 101 and the second layer 101 and the second layer 102.
  • the amount of heat input to the interlayer portion with the layer 102 can be suppressed, and delamination can be more preferably suppressed.
  • the laser beam L may be irradiated from the second layer 102 to the first interlayer portion 105 under the condition of the first interlayer.
  • the irradiation condition of the laser beam L from the position 103C near the interlayer of the third layer 103 to the surface 103B is set as the third condition in which the amount of heat input is higher than the condition of the second interlayer.
  • the irradiation condition of the laser beam L from the position 103C near the interlayer of the third layer 103 to the surface 103B may be set to the second interlayer condition in the same manner as the second interlayer portion 106. That is, in this case, the laser beam L is irradiated under the condition of the second layer from the position 101D near the layer of the first layer 101, through the layer between the first layer 101 and the third layer 103, and to the surface 103B of the third layer 103.
  • the portion of the third layer 103 from the position near the interlayer 103C to the surface 103B is irradiated with the laser beam L under the condition of the second interlayer, and the third layer 103 May include the step of cutting the laser.
  • the laser beam L may be irradiated from the second interlayer portion 106 to the third layer 103 under the second interlayer condition.
  • the second embodiment when the first interlayer portion 105 is irradiated with the laser beam, the laser beam L is irradiated to the machining path on the remaining 100b side of the machining path along the machining line I under the second condition. In that respect, it differs from the first embodiment.
  • the description of the parts having the same configuration as that of the first embodiment in the second embodiment will be omitted.
  • FIG. 11 is a schematic view illustrating the laser processing method according to the second embodiment.
  • the base material 100 is fixed on the support base 16 so that the second layer 102 is located on the Z1 direction side as in the first embodiment. ..
  • the control device 20 sets a machining path at a position along the machining line I on the second layer 102.
  • the machining path set along the machining line I will be referred to as a line machining path.
  • the control device 20 irradiates the line processing path with the laser beam L under the first interlayer condition, so that the second layer 102 (more specifically, the portion of the second layer 102 up to the position near the interlayer 102C) and the second layer 102 overlapping the line processing path) and
  • the first interlayer portion 105 is irradiated with the laser beam L under the first interlayer condition to remove the portion of the second layer 102 and the first interlayer portion 105 that overlaps the line processing path.
  • the portion of the first layer 101 that overlaps the line processing path at the position 101C near the interlayer is exposed.
  • the second layer 102 and the first interlayer portion 105 on the product 100a side and the remaining portion 100b are separated by the line processing path.
  • the second layer 102 and the first interlayer portion 105 on the side are separated from each other.
  • a plurality of line processing paths may be set in the Z direction.
  • the control device 20 irradiates the first line processing path with the laser beam L, and then irradiates the line processing path set on the Z2 direction side with respect to the line processing path with the laser light L.
  • the portion of the second layer 102 and the first interlayer portion 105 that overlaps the line processing path is gradually removed at predetermined thickness intervals.
  • a plurality of line processing paths may be set in the X direction.
  • the control device 20 irradiates the line processing path along the processing line I with the laser light L, and then irradiates the line processing path on the remaining 100b side of the line processing path with the laser light. Irradiate L.
  • the line processing path is irradiated with the laser beam L under the second condition, as shown in step S22 of FIG. 11, on the second layer 102 and the first interlayer portion 105 on the remaining 100b side in the X direction from the line processing path.
  • the control device 20 irradiates the group of processing paths on the second layer 102 and the first interlayer portion 105 with the laser beam L under the second condition, so that the processing path of the group of the second layer 102 and the first interlayer portion 105 is applied.
  • the portion overlapping the above, that is, the portion of the second layer 102 and the first interlayer portion 105 on the remaining 100b side of the line processing path is removed.
  • the length of the region irradiated with the laser beam L under the second condition in the X direction is defined as the length D1
  • the length of the region irradiated with the laser beam L under the first interlayer condition is defined as the length D2.
  • the length D1 can be said to be the length in the entire X direction of the entire group of processing paths irradiated with the laser beam L under the first condition
  • the length D2 can be said to be the length of the entire line processing path in the X direction.
  • the length D1 is set longer than the length D2.
  • the first layer 101 is processed in the same manner as in the first embodiment as shown in step S24 of FIG.
  • a path is set and the laser beam L is irradiated to remove the first layer 101
  • a processing path is set for the second interlayer portion 106 in the same manner as in the first embodiment and the laser beam L is irradiated to the first layer.
  • the layer 101 is removed, a processing path is set for the third layer 103 in the same manner as in the first embodiment, and the laser beam L is irradiated to remove the third layer 103.
  • the second embodiment is different from the first embodiment in that the second interlayer portion 106 is irradiated with the laser beam L under the first condition or the third condition.
  • the portion of the second layer 102 and the first interlayer portion 105 that overlaps the line processing path is irradiated with the laser beam L under the first interlayer condition, and the remaining portion 100b side of the line processing path.
  • the portion of is irradiated with the laser beam L under the second condition.
  • the product 100a side of the second layer 102 and the first interlayer portion 105 is separated from the remaining portion 100b side, so that the remaining portion 100b Even if the laser beam L is irradiated to the side under the first condition, the heat input to the second layer 102 and the first interlayer portion 105 of the product 100a can be suppressed, and the delamination of the product 100a can be suppressed.
  • delamination on the product 100a side is suppressed by irradiating the portion along the processing line I (line processing path) with a laser under the first interlayer condition. While doing so, the base material 100 can be appropriately cut. Further, by irradiating the remaining portion 100b from the line processing path with the laser under the second condition, the processing under the first interlayer condition in which the amount of heat input is small is limited to the portion along the processing line I (line processing path). It is possible to prevent the processing time from becoming long.
  • the third embodiment is different from the first embodiment in that after irradiating the second layer 102 with the laser beam L, the base material 100 is turned over and the third layer 103 is irradiated with the laser beam L.
  • the description of the parts having the same configuration as that of the first embodiment in the third embodiment will be omitted.
  • the third embodiment is also applicable to the second embodiment.
  • FIG. 12 is a schematic view illustrating the laser processing method according to the third embodiment.
  • the base material 100 is fixed on the support base 16 so that the second layer 102 is located on the Z1 direction side as in the first embodiment. ..
  • the control device 20 sets the machining path on the second layer 102 and sets the machining path to the second.
  • the second layer 102 (more specifically, the portion of the second layer 102 up to the position near the interlayer 102C) is removed.
  • the control device 20 sets a machining path on the first interlayer portion 105 and irradiates the machining path with the laser beam L under the conditions of the first interlayer portion to remove the first interlayer portion 105.
  • the portion of the first layer 101 near the interlayer position 101C that overlaps the processing path is exposed to the outside.
  • the base material 100 is removed from the support base 16 and the base material 100 is fixed to the support base 16 in the opposite direction. cure.
  • the mother is placed on the support base 16 so that the third layer 103 of the base material 100 is located on the Z1 direction side, in other words, the third layer 103 is located on the side irradiated with the laser beam L.
  • the material 100 is fixed. That is, the base material 100 is fixed to the support base 16 so as to be arranged in the order of the second layer 102, the first layer 101, and the third layer 103 in the Z1 direction.
  • a processing path is set on the third layer 103, and the processing path is irradiated with the laser beam L under the third condition.
  • the third layer 103 (more specifically, the portion of the third layer 103 up to the position near the interlayer 103C) is removed.
  • the control device 20 sets a machining path on the second interlayer portion 106 and irradiates the machining path with the laser beam L under the second interlayer condition to remove the second interlayer portion 106.
  • the portion of the first layer 101 near the interlayer position 101D that overlaps the processing path is exposed to the outside.
  • a processing path is set on the first layer 101, and the processing path is irradiated with the laser beam L under the first condition. This removes the first layer 101. As a result, the second layer 102, the third layer 103, and the first layer 101 are removed in this order, and the base material 100 is cut.
  • the third layer 103 and the first layer 101 are formed by arranging the third layer 103 on the side irradiated with the laser beam L and performing the cutting process.
  • the boundary between the two layers 103 and the first layer 101 can be easily visually recognized, and the third layer 103 and the first layer 101 can be cut under appropriate laser irradiation conditions suitable for each.
  • the second layer 102 and the third layer 103 are cut under the same laser irradiation conditions, and then the first layer 101 It suffices to process under the laser irradiation conditions of. In this case, since the laser irradiation conditions can be changed only once, the cutting process can be facilitated.
  • the fourth embodiment is different from the first embodiment in that the cutting process is performed while supplying the cooling medium F to the surface of the base material 100 on the Z2 direction side.
  • the description of the parts having the same configuration as that of the first embodiment in the fourth embodiment will be omitted.
  • the fourth embodiment is also applicable to the second embodiment.
  • FIG. 13 is a diagram schematically showing the laser processing apparatus according to the fourth embodiment.
  • the laser processing device 1a according to the fourth embodiment includes a control device 20a and a cooling device 22 as a cooling unit.
  • the cooling device 22 is a device that supplies the cooling medium F from the supply port 22A.
  • the cooling medium F is a gas, and may be, for example, air, low-temperature carbon dioxide, an inert gas such as nitrogen, or the like. However, the cooling medium F may be any medium as long as it can cool the base material 100, and may be, for example, a liquid.
  • the cooling device 22 discharges the cooling medium F from the supply port 22A by being controlled by the control device 20a.
  • the supply port 22A is provided on the Z2 direction side of the support base 16 at a position facing the surface 103A of the base material 100 fixed to the support base 16 on the Z2 direction side. Furthermore, the supply port 22A opens toward the remaining portion 100b on the product 100a side of the base material 100 fixed to the support base 16 in the X direction. Therefore, the cooling medium F discharged from the supply port 22A hits the surface 103A of the base material 100 on the product 100a side, and flows along the surface 103A from the product 100a side toward the balance 100b side in the X direction.
  • FIGS. 14 to 16 are schematic views showing an example of the base material according to the fourth embodiment.
  • the base material 100 according to the fourth embodiment includes a region AR1 in which the second layer 102 is laminated and a region AR2 in which the second layer 102 is not laminated.
  • the region AR1 and the region AR2 are adjacent to each other in the Y direction.
  • FIG. 15 is a cross-sectional view taken along the line D1-D1 of FIG. 14, showing a cross-sectional view of the base metal 100 in the region AR1.
  • FIG. 16 is a cross-sectional view taken along the line D2-D2 of FIG. 14, showing a cross-sectional view of the base metal 100 in the region AR2.
  • the third layer 103, the first layer 101, and the second layer 102 are laminated in this order in the region AR1.
  • the third layer 103 and the first layer 101 are laminated in this order, and the second layer 102 is not laminated. That is, in the base material 100, the third layer 103 and the first layer 101 are laminated from the region AR1 to the region AR2, while the second layer 102 is laminated only on the region AR1.
  • the base material 100 according to the fourth embodiment is, for example, a member for an aircraft, and the region AR2 is used as a tip portion of the main wing, and the region AR1 is used as a portion on the proximal end side of the tip of the main wing.
  • the use of the base material 100 according to the fourth embodiment is not limited to this, and is arbitrary.
  • the base material 100 in the fourth embodiment is not limited to the laminated structure described with reference to FIGS. 14 to 16, and may have the same laminated structure as in the first embodiment.
  • the third layer 103, the first layer 101, and the second layer 102 may be laminated over the entire area, or the third layer 103 and the first layer 101 may be laminated over the entire area.
  • the second layer 102 may not be laminated.
  • FIG. 17 is a schematic view illustrating the laser processing method according to the fourth embodiment.
  • the second layer 102 of the region AR1 is located on the Z1 direction side, that is, the third layer 103, the first layer 101, and the second layer 102 are located.
  • the base material 100 is fixed on the support base 16 so as to be arranged in this order in the Z1 direction. Therefore, the third layer 103 is arranged on the side opposite to the side irradiated with the laser beam L, that is, on the Z2 direction side. At least a part of the surface 103B of the third layer 103 on the product 100a side is exposed without being covered by the support base 16.
  • the surface 103B of the third layer 103 faces the supply port 22A of the cooling device 22. Then, as shown in step S40 of FIG. 17, the control device 20 sets a machining path on the second layer 102 of the region AR1 and irradiates the machining path with the laser beam L under the second condition to obtain the region.
  • the second layer 102 of AR1 (more specifically, the portion of the second layer 102 up to the position near the interlayer 102C) is removed. Then, the control device 20 sets a machining path on the first interlayer portion 105 and irradiates the machining path with the laser beam L under the conditions of the first interlayer portion to remove the first interlayer portion 105.
  • the control device 20 irradiates the second layer 102 and the first interlayer portion 105 of the region AR1 with the laser beam L from the supply port 22A of the cooling device 22 toward the surface 103B of the third layer 103.
  • the cooling medium F is supplied.
  • the second layer 102 and the first interlayer portion 105 can be removed while the third layer 103 is cooled by the cooling medium F. Since the second layer 102 is not formed in the region AR2 of the base material 100, the laser beam L under the second condition is not irradiated.
  • the control device 20 sets a machining path on the interlayer neighborhood position 101C of the first layer 101 as shown in step S42 of FIG. Then, by irradiating the processing path with the laser beam L under the first condition, the portion of the first layer 101 from the position near the interlayer 101C is removed. Since the first layer 101 is provided in both the region AR1 and the region AR2, the first layer 101 of both the region AR1 and the region AR2 is removed. After removing the first layer 101, the control device 20 sets a machining path in the third layer 103 and irradiates the machining path with the laser beam L under the first condition to remove the third layer 103.
  • the third layer 103 is also provided in both the region AR1 and the region AR2, the third layer 103 of both the region AR1 and the region AR2 is removed. This completes the cutting of the base metal 100.
  • the cooling medium F is supplied from the supply port 22A of the cooling device 22 toward the surface 103B of the third layer 103. To do.
  • the first layer 101 and the third layer 103 can be removed while cooling the third layer 103.
  • the heating between the first layer 101 and the third layer 103 is suppressed by cooling the third layer 103.
  • the laser beam L is irradiated to the entire area of the first layer 101 from the position near the layer 101C under the first condition without using the second layer condition for the second layer portion 106.
  • the entire three-layer 103 may be irradiated with the laser beam L under the third condition.
  • the laser processing apparatus 1a according to the fourth embodiment supplies the cooling medium F to the third layer 103 to cool the third layer 103, and performs cutting processing by irradiating the laser beam L. Therefore, according to the laser processing apparatus 1a according to the fourth embodiment, the conditions for irradiating the layers of the first layer 101 and the third layer 103 with the laser beam L by cooling the third layer 103 having a high coefficient of thermal expansion. It is possible to suppress the thermal expansion between the layers and suppress the peeling between the first layer 101 and the third layer 103 without setting the condition that the amount of heat input is small.
  • the cooling medium F may be supplied to the third layer 103 while irradiating the second interlayer portion 106 with the laser beam L under the second interlayer condition. ..
  • a third layer 103 having a coefficient of thermal expansion different from that of the first layer 101 is formed on the other surface 101B of the first layer 101. ..
  • the cooling medium F is supplied to the third layer 103 to cool the third layer 103.
  • such a laser machining method may be executed over the entire area.
  • the thermal expansion of the third layer 103 is suppressed and the third layer 103 is peeled off. Can be suppressed.
  • the third layer 103 (second layer) which is laminated on the surfaces of the first layer 101 and the first layer 101 and has a coefficient of thermal expansion different from that of the first layer 101. ) Is irradiated with the laser beam L, and the base material 100 is cut.
  • the laser processing method includes a step of arranging the third layer 103 on the side opposite to the side irradiated with the laser beam L, and a first step of supplying the cooling medium F to the third layer 103 to cool the third layer 103.
  • a laser machining method may be executed over the entire area.
  • the laser processing method according to the fourth embodiment by performing the cutting process while cooling the third layer 103 having a high coefficient of thermal expansion, the thermal expansion of the third layer 103 is suppressed and the third layer 103 is peeled off. Can be suppressed.
  • the thermal expansion of the third layer 103 is suppressed by performing the cutting process while cooling the third layer 103 having a high coefficient of thermal expansion, and the third layer The peeling of 103 can be suppressed.
  • the laser processing apparatus 1a flows the cooling medium F from the product 100a side toward the remaining portion 100b side on the surface 103A. As a result, the laser processing apparatus 1a can appropriately cool the product 100a and suppress delamination.
  • the laser processing method includes the first layer 101 and the second layer 102 which is laminated on the surface 101A of the first layer 101 and has a coefficient of thermal expansion different from that of the first layer 101.
  • the base material 100 is irradiated with the laser beam L to perform a cutting process for cutting the base material 100.
  • This laser processing method includes a step of irradiating the first interlayer portion 105 with laser light L under predetermined first interlayer conditions to cut the first interlayer portion 105.
  • the first interlayer portion 105 of the first layer 101 passes through the interlayer between the second layer 102 and the first layer 101 from the position 102C near the interlayer inside the surface 102A in the stacking direction (Z direction) of the second layer 102.
  • the first interlayer condition is a condition in which the amount of heat input by the laser beam L is lower than that of the first condition.
  • the laser beam L is such that the amount of heat input is small with respect to the first interlayer portion 105 including the portion between the first layer 101 and the second layer 102 having different coefficients of thermal expansion.
  • the base metal 100 can be appropriately cut while suppressing delamination. Further, by making the amount of heat input to the first layer 101 larger than the amount of heat input to the first interlayer portion 105, it is possible to process the first layer 101 having a low thermal expansion amount at high speed.
  • the portion of the second layer 102 from the surface 102A in the stacking direction to the position near the interlayer 102C is irradiated with the laser beam L under the second condition, and the second layer 102 Further includes the step of cutting the laser.
  • the first interlayer condition is a condition in which the amount of heat input by the laser beam L is lower than that of the second condition.
  • the amount of heat input when cutting the second layer 102 on the surface is made larger than the amount of heat input to the first interlayer portion 105, so that the base metal 100 is formed while suppressing delamination. Can be cut properly.
  • the amount of heat input by the laser beam L is different between the first condition and the second condition.
  • the laser processing method is a step of irradiating the portion of the second layer 102 from the surface 102A to the position near the interlayer 102C with the laser beam L under the condition of the first interlayer to cut the second layer 102. May include. By irradiating the laser beam L under the first interlayer condition from the second layer 102 to the first interlayer portion 105 in this way, for example, when the second layer 102 is thinly formed, the first layer 101 and the second layer 101 and the second layer 102. The amount of heat input to the interlayer portion with the layer 102 can be suppressed, and delamination can be more preferably suppressed.
  • a machining line I is set on the base metal 100 before cutting, which is a boundary between the product 100a to be cut out and the remaining portion 100b which is the base metal 100 after the product 100a is cut out. Including further steps to do.
  • the second layer 102 and the first interlayer portion 105 are processed by irradiating the second layer 102 and the first interlayer portion 105 with laser light L under the first interlayer condition along the processing line I (line processing path).
  • a second condition is applied to the second layer 102 and the first interlayer portion 105 on the remaining 100b side of the machining line I (line machining path) by cutting the second layer 102 and the first interlayer portion 105 along the line I.
  • the portion along the processing line I (line processing path) is irradiated with a laser under the first interlayer condition, so that the base metal 100 is suppressed from delamination on the product 100a side. Can be cut properly. Further, by irradiating the remaining portion 100b from the line processing path with the laser under the second condition, the processing under the first interlayer condition in which the amount of heat input is small is limited to the portion along the processing line I (line processing path). It is possible to prevent the processing time from becoming long.
  • a third layer 103 having a coefficient of thermal expansion different from that of the first layer 101 may be formed on the other surface 101B of the first layer 101.
  • the laser processing method according to the present embodiment further includes a step of cutting the second interlayer portion 106.
  • the second interlayer portion 106 is formed from the position 101D in the vicinity of the interlayer inside the surface 101B in the stacking direction of the first layer 101, passed between the layers between the first layer 101 and the third layer 103, and is inside the surface 103B of the third layer 103. It is a part up to the position 103C in the vicinity of the interlayer.
  • the second interlayer condition is a condition in which the amount of heat input by the laser beam L is lower than that of the first condition. In the laser processing method according to the present embodiment, the amount of heat input when cutting between the layers of the third layer 103 and the first layer 101 on the back surface is reduced, so that the base material 100 can be appropriately used while suppressing delamination. Can be disconnected.
  • the laser beam L is applied to the portion of the third layer 103 from the interlayer proximity position 103C under the third condition in which the amount of heat input by the laser beam L is higher than that in the second interlayer condition. It further comprises the step of irradiating and cutting the third layer 103.
  • the amount of heat input when cutting the third layer 103 on the back surface is made larger than the amount of heat input to the second interlayer portion 106, so that the base metal 100 is formed while suppressing delamination. Can be cut properly.
  • the steps of cutting the second layer 102, the first interlayer portion 105, the first layer 101, the second interlayer portion 106, and the third layer 103 are executed in this order.
  • the base metal 100 can be appropriately cut while suppressing delamination.
  • the step of cutting the second layer 102 and the first interlayer portion 105 is executed in a state where the second layer 102 is arranged on the side irradiated with the laser beam L.
  • the third layer 103 is then arranged on the side irradiated with the laser beam L, and the step of cutting the third layer 103 and the second interlayer portion 106 is executed.
  • the laser processing method according to the present embodiment then executes a step of cutting the first layer 101 with respect to the first layer 101 exposed by cutting.
  • the base material 100 is turned over and then the third layer 103 and the second interlayer portion 106 are removed. After that, the first layer 101 is removed.
  • the third layer 103 is arranged on the side irradiated with the laser beam L and performing the cutting process in this way, the boundary between the third layer 103 and the first layer 101 becomes easy to see, and the third layer 103 becomes easier to see.
  • the first layer 101 can be cut under appropriate laser irradiation conditions suitable for each.
  • the second layer 102 and the third layer 103 are cut under the same laser irradiation conditions, and then the first layer 101 It suffices to process under the laser irradiation conditions of. In this case, since the laser irradiation conditions can be changed only once, the cutting process can be facilitated.
  • a third layer 103 having a coefficient of thermal expansion different from that of the first layer 101 is formed on the other surface 101B of the first layer 101.
  • the cooling medium F is supplied to the third layer 103 to cool the third layer 103.
  • the thermal expansion of the third layer 103 is suppressed and the third layer 103 is peeled off. Can be suppressed.
  • At least one of the output of the laser beam L, the scanning speed of the laser beam L, and the spot diameter of the laser beam L is different between the first interlayer condition and the first condition.
  • the output of the laser beam L, the scanning speed of the laser beam L, and at least one of the spot diameters of the laser beam L are different from each other, thereby appropriately setting the first interlayer condition and the first condition. Can be set.
  • the laser processing method of the present embodiment is applied to the base material 100 including the first layer 101 and the third layer 103 (second layer) which is laminated on the surface of the first layer 101 and has a coefficient of thermal expansion different from that of the first layer 101.
  • a cutting process is performed to cut the base material 100 by irradiating the laser beam L.
  • the laser processing method includes a step of arranging the third layer 103 on the side opposite to the side irradiated with the laser beam L, and a first step of supplying the cooling medium F to the third layer 103 to cool the third layer 103.
  • the laser processing method according to the present embodiment by performing the cutting process while cooling the third layer 103 having a high coefficient of thermal expansion, the thermal expansion of the third layer 103 is suppressed and the third layer 103 is peeled off. Can be suppressed.
  • the laser processing apparatus 1 is a base material 100 including a first layer 101 and a second layer 102 laminated on the surface 101A of the first layer 101 and having a coefficient of thermal expansion different from that of the first layer 101. Is irradiated with a laser beam L to perform a cutting process for cutting the base material 100.
  • the laser processing device 1 includes a laser irradiation device 10 that irradiates the base material 100 with the laser beam L, and a control device 20 that controls the operation of the laser irradiation device 10.
  • the control device 20 irradiates the first interlayer portion 105 with laser light L under predetermined first interlayer conditions, cuts the first interlayer portion 105, and forms a stacking direction from the interlayer vicinity position 101C of the first layer 101.
  • the inner portion in the (Z direction) is irradiated with the laser beam L under the first condition to cut the first layer 101.
  • the first interlayer condition is a condition in which the amount of heat input by the laser beam L is lower than that of the first condition.
  • the laser processing apparatus 1 according to the present embodiment appropriately cuts the base material 100 while suppressing delamination by irradiating the first interlayer portion 105 with laser light L so that the amount of heat input is small. can do.
  • the laser processing apparatus 1a includes a first layer 101 and a third layer 103 (second layer) laminated on the surface of the first layer 101 and having a coefficient of thermal expansion different from that of the first layer 101.
  • the base material 100 is irradiated with the laser beam L to perform a cutting process for cutting the base material 100.
  • the laser processing device 1 controls the operations of the laser irradiation device 10 that irradiates the base material 100 with the laser beam L, the cooling device 22 that supplies the cooling medium F to the base material 100, and the laser irradiation device 10 and the cooling device 22.
  • a control device 20 is provided.
  • the control device 20 cools the third layer 103 by supplying the cooling medium F to the third layer 103 with respect to the base material 100 in which the third layer 103 is arranged on the side opposite to the side irradiated with the laser beam L. At the same time, the first layer 101 is irradiated with the laser beam L to cut the first layer 101. Then, after cutting the first layer 101, the control device 20 irradiates the third layer 103 with the laser beam L to cut the third layer 103. According to the laser processing apparatus 1a according to the present embodiment, by performing cutting while cooling the third layer 103 having a high coefficient of thermal expansion, the thermal expansion of the third layer 103 is suppressed and the third layer 103 is peeled off. Can be suppressed.
  • the embodiments of the present invention have been described above, the embodiments are not limited by the contents of the embodiments. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those having a so-called equal range. Furthermore, the components described above can be combined as appropriate. Further, various omissions, replacements or changes of the components can be made without departing from the gist of the above-described embodiment.
  • Laser processing device 10
  • Laser irradiation device (laser irradiation unit) 12
  • Scanning optical system 14
  • Condensing optical system 16
  • Support base 20
  • Control device (control unit)
  • Base material 100
  • Product 100b Remaining 101 1st layer 102 2nd layer 103 3rd layer 105 1st interlayer part 106 2nd interlayer part L
  • Laser beam 100b

Abstract

層間剥離を抑制する。レーザ加工方法は、第1層、及び、前記第1層の一方の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工方法であって、前記第2層の表面より内側の層間近傍位置から、前記第2層と前記第1層との層間を経て、前記第1層の前記一方の表面より内側の層間近傍位置までの、第1層間部分に対して、所定の第1層間条件で前記レーザ光を照射して、前記第1層間部分を切断するステップと、前記第1層の層間近傍位置から内側の部分に対して、第1条件で前記レーザ光を照射して、前記第1層を切断するステップと、を含み、前記第1層間条件は、前記第1条件よりも前記レーザ光による入熱量が低い条件である。

Description

レーザ加工方法及びレーザ加工装置
 本開示は、レーザ加工方法及びレーザ加工装置に関する。
 従来、複合材の加工部位に対して、高出力パワーレーザビームを多重線状に高速掃引速度で複数パス照射する第一工程と、第一工程の進展に従い、加工深さが順次深くなってきた際に多重線度を低減させる第二工程と、を実行する複合材のレーザ加工方法が知られている(例えば、特許文献1参照)。また、特許文献2には、互いに材料が異なる導電箔と外板と構造材とが積層された、航空機組立品が記載されている。
特開2016-107574号公報 特開2009-227166号公報
 ここで、例えば特許文献2のような材料が異なる複数の層が積層された部材に対し、例えば特許文献1のようなレーザ加工を施す場合がある。この場合、部材の各層での熱膨張係数の差に起因して、レーザ光の入熱によって層間剥離が生じるおそれがある。そのため、複数の層が積層された複合材料をレーザ加工する場合において、層間剥離を抑制することが求められている。
 本開示は、上述した課題を解決するものであり、複数の層が積層された部材をレーザ加工する際に、層間剥離を抑制可能なレーザ加工方法及びレーザ加工装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ加工方法は、第1層、及び、前記第1層の一方の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工方法であって、前記第2層の積層方向における表面より内側の層間近傍位置から、前記第2層と前記第1層との層間を経て、前記第1層の積層方向における前記一方の表面より内側の層間近傍位置までの、第1層間部分に対して、所定の第1層間条件で前記レーザ光を照射して、前記第1層間部分を切断するステップと、前記第1層の層間近傍位置から前記積層方向の内側の部分に対して、前記第1層間条件よりも前記レーザ光による入熱量が高い第1条件で前記レーザ光を照射して、前記第1層を切断するステップと、を含む。
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ加工方法は、第1層、及び、前記第1層の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工方法であって、 前記第2層を前記レーザ光が照射される側と反対側に配置するステップと、前記第2層に冷却媒体を供給して前記第2層を冷却しつつ、前記第1層に前記レーザ光を照射して、前記第1層を切断するステップと、前記第1層を切断した後に、前記第2層に前記レーザ光を照射して、前記第2層を切断するステップと、を含む。
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ加工装置は、第1層、及び、前記第1層の一方の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工装置であって、前記母材に前記レーザ光を照射するレーザ照射部と、前記レーザ照射部の動作を制御する制御部と、を備え、前記制御部は、前記第2層の積層方向における表面より内側の層間近傍位置から、前記第2層と前記第1層との層間を経て、前記第1層の積層方向における前記一方の表面より内側の層間近傍位置までの、第1層間部分に対して、所定の第1層間条件で前記レーザ光を照射させて、前記第1層間部分を切断し、前記第1層の層間近傍位置から前記積層方向の内側の部分に対して、前記第1層間条件よりも前記レーザ光による入熱量が高い第1条件で前記レーザ光を照射させて、前記第1層を切断する。
 上述した課題を解決し、目的を達成するために、本開示に係るレーザ加工装置は、第1層、及び、前記第1層の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工装置であって、前記母材に前記レーザ光を照射するレーザ照射部と、前記母材に冷却媒体を供給する冷却部と、前記レーザ照射部及び前記冷却部の動作を制御する制御部と、を備え、前記制御部は、前記レーザ光が照射される側と反対側に前記第2層が配置された前記母材に対し、前記第2層に前記冷却媒体を供給させて前記第2層を冷却しつつ、前記第1層に前記レーザ光を照射させて、前記第1層を切断し、前記第1層を切断した後に、前記第2層に前記レーザ光を照射させて、前記第2層を切断する。
 本発明によれば、層間剥離を抑制することができる。
図1は、第1実施形態に係るレーザ加工装置を模式的に示す図である。 図2は、第1実施形態に係る制御装置の模式的なブロック図である。 図3は、第1実施形態に係るレーザ加工方法を説明するフローチャートである。 図4は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図5は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図6は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図7は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図8は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図9は、第1実施形態に係るレーザ加工方法を説明する模式図である。 図10は、第1実施形態に係るレーザ加工方法の他の例を説明する模式図である。 図11は、第2実施形態係るレーザ加工方法を説明する模式図である。 図12は、第3実施形態係るレーザ加工方法を説明する模式図である。 図13は、第4実施形態に係るレーザ加工装置を模式的に示す図である。 図14は、第4実施形態に係る母材の一例を示す模式図である。 図15は、第4実施形態に係る母材の一例を示す模式図である。 図16は、第4実施形態に係る母材の一例を示す模式図である。 図17は、第4実施形態係るレーザ加工方法を説明する模式図である。
 以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
 (第1実施形態)
 図1は、第1実施形態に係るレーザ加工装置を模式的に示す図である。図1に示すように、第1実施形態1に係るレーザ加工装置1は、加工対象物となる母材100にレーザ光Lを照射して、母材100を切断する切断加工を行うことが可能な装置となっている。
 (母材の構成)
 母材100は、複合材料を含む。複合材料としては、例えば、CFRP(炭素繊維強化プラスチック、Carbon Fiber Reinforced Plastics)、GFRP(ガラス繊維強化プラスチック)、GMT(ガラス長繊維強化プラスチック)等の繊維強化プラスチックが挙げられる。より詳しくは、母材100は、材料が異なる複数の層で構成されている。母材100は、第1層101と、第2層102と、第3層103と、を含む。本実施形態では、第1層101と第2層102とは熱膨張係数が異なり、第1層101と第3層103とは熱膨張係数が異なる。本実施形態では、第2層102と第3層103との熱膨張係数も異なるが、第2層102と第3層103との熱膨張係数は等しくてもよい。ここでの熱膨張係数は、線熱膨張係数である。
 第1層101と第2層102と第3層103との少なくとも1つは、複合材料の層である。本実施形態では、第1層101は、複合材料で構成される層であり、さらに言えばCFRPである。また、本実施形態では、第2層102は、第1層101よりも熱膨張係数が高い層であり、例えば銅などの金属で構成される層である。また、本実施形態では、第3層103は、第1層101よりも熱膨張係数が高い層であり、例えばGFRPなど、第1層101よりも熱膨張係数が高い複合材料で構成される層である。本実施形態の例では、第2層102の熱膨張係数は、第3層103の熱膨張係数より高い。ただし、第2層102の熱膨張係数は、第3層103の熱膨張係数より高いことに限られず、同じ値であってもよいし、第3層103の熱膨張係数より低い値であってもよい。なお、第1層101、第2層102及び第3層103の材料は上記のものに限られない。例えば第2層102が、GFRPなど、第1層101よりも熱膨張係数が高い複合材料で構成されてもよいし、第3層103が、銅などの金属で構成される層であってもよい。さらに言えば、本実施形態の例では第2層102と第3層103とは異なる材料であるが、双方がGFRPとなるなど、同じ材料であってもよい。
 第2層102は、第1層101の一方の表面101Aに形成されている。第2層102は、一方の表面102Aが、母材100全体の一方の表面として外部に露出しており、他方の表面102Bが、第1層101の表面101Aに接合されている。また、第3層103は、第1層101の他方の表面101Bに形成されている。第3層103は、一方の表面103Aが、第1層101の表面101Bに接合されており、他方の表面103Bが、母材100全体の他方の表面として外部に露出している。なお、第1層101と第2層102との接合手段、及び第1層101と第3層103との接合手段は任意であるが、例えば、層間に形成された接着剤(接着層)により接合されていてもよいし、層中の複合材料に含まれる樹脂により接合されていてもよい。
 このように、母材100は、第3層103、第1層101、第2層102の順で積層されている。ただし、第1層101、第2層102及び第3層103の積層順はこれに限られず任意である。さらに、母材100は、第1層101、第2層102及び第3層103の全てを含むことに限られず、第1層101と、第2層102及び第3層103のうちの少なくとも1つと、を含むものであってよい。言い換えれば、母材100は、第1層101及び第2層102を含んで第3層103を含んでいなくてもよいし、第1層101及び第3層103を含んで第2層102を含んでいなくてもよい.なお、母材100は、例えば航空機用の部材であるが、航空機用の部材に限られず任意の用途に用いられてよい。
 (レーザ加工装置の全体構成)
 図1に示すように、レーザ加工装置1は、レーザ照射部としてのレーザ照射装置10と、走査光学系12と、集光光学系14と、支持台16と、受光部18と、制御部としての制御装置20と、を含む。以下、X方向と、Y方向と、Z方向とを定義する。Y方向は、X方向に直交する方向である。Z方向は、X方向及びY方向に直交する方向である。また、Z方向に沿った方向のうちの一方の方向を、Z1方向とし、Z方向に沿った方向のうちの他方の方向、すなわちZ1方向と反対方向を、Z2方向とする。本実施形態では、X方向及びY方向が水平方向に沿った方向であり、Z1方向が鉛直方向の上方に向かう方向であり、Z2方向が鉛直方向の下方に向かう方向であるが、それに限られない。
 レーザ照射装置10は、レーザ光Lを出力する装置である。レーザ照射装置10は、レーザ光Lとして、パルス波(Continuous Wave)または連続波(CW)を出力してよい。本実施形態では、エネルギーを連続して供給可能な連続波となるレーザ光Lを照射するレーザ照射装置10を用いることが好ましい。また、レーザ照射装置10は、シングルモードまたはマルチモードでレーザ光Lを照射してもよい。本実施形態では、集光性の高いシングルモードでレーザ光Lを照射するレーザ照射装置10を用いることが好ましい。レーザ照射装置10が出力するレーザ光Lの波長帯は、任意であってよいが、例えば、1μm近傍の波長帯や、緑色の波長帯や、青色の波長帯や、紫外光の波長帯などが挙げられる。レーザ照射装置10は、0.1kW以上50kW以下の出力値のレーザ光Lを出力するが、出力の値はこれに限られない。また、レーザ照射装置10は、レーザ光Lの出力値を変化可能である。
 走査光学系12は、レーザ照射装置10から照射されたレーザ光Lを、母材100上において走査させる光学系である。走査光学系12は、レーザ光Lを走査可能なスキャナを含み、スキャナとしては、例えば、ガルバノミラーが用いられる。本実施形態では、走査光学系12は、母材100に照射されるレーザ光Lを、言い換えれば母材100上でのレーザ光Lの照射位置を、Y方向に走査する。すなわち、本実施形態では、Y方向が、レーザ光Lの走査方向である。走査光学系12は、走査方向におけるレーザ光Lの移動速度、すなわちレーザ光Lの走査速度(送り速度)を、1m/min以上1000m/min以下とすることが好ましいが、走査速度はこれに限られず任意であってよい。また、走査光学系12は、レーザ光Lの走査速度を変化可能である。なお、走査光学系12は、母材100に照射されるレーザ光LをY方向に走査することに限られず、レーザ光Lを、X方向及びY方向のうちの少なくともに一方向に走査してよい。
 集光光学系14は、走査光学系12から出射されたレーザ光Lを焦点において集光し、集光したレーザ光Lを母材100に照射する光学系である。集光光学系14は、集光レンズ等の光学部材を含んで構成されている。集光光学系14は、レーザ照射装置10及び走査光学系12を経て入射されたレーザ光Lを、Z2方向に向けて照射する。
 支持台16は、集光光学系14のZ2方向側に配置される。支持台16は、母材100を所定位置に支持する。本実施形態では、支持台16は、母材100の表面をX方向及びY方向に平行となるように、母材100を支持する。すなわち、母材100は、第1層101、第2層102及び第3層103の積層方向がZ方向に向くように、支持台16に支持される。レーザ照射装置10からZ2方向に向けて照射されたレーザ光Lは、支持台16に配置された母材100の表面に対して、ほぼ垂直に照射される。
 本実施形態では、支持台16は、母材100をX方向に移動させる移動ステージである。ただし、それに限られず、支持台16は、母材100をX方向及びY方向のうちの少なくともに一方向に移動させるものであってもよいし、母材100を移動させない構成であってもよい。
 受光部18は、集光光学系14及び支持台16よりもZ2方向側に配置されている。受光部18は、集光光学系14からのレーザ光Lの進行方向側に配置されている。受光部18は、母材100に向けて照射された後のレーザ光L、すなわち母材100を透過したレーザ光Lを受光する部材である。受光部18は、受光したレーザ光Lを吸収する。受光部18は、レーザ光Lを吸収される部材で構成されており、例えば鉄で構成される板状部材であるが、材料はそれに限られない。
 図2は、第1実施形態に係る制御装置の模式的なブロック図である。制御装置20は、レーザ加工装置1の各部の動作を制御する。制御装置20は、例えばコンピュータであり、演算装置、すなわちCPU(Central Processing Unit)を含む。図2に示すように、制御装置20は、照射制御部30と、走査制御部32と、支持台制御部34とを含む。制御装置20は、CPUにより、自身が備える図示しない記憶部からプログラムを読み出して実行することで、照射制御部30と走査制御部32と支持台制御部34とを実現して、それらによる処理を実行する。なお、制御装置20は、1つのCPUによって照射制御部30と走査制御部32と支持台制御部34との機能を実行してもよいし、複数のCPUを備えて、それらの複数のCPUでこれらの機能を実行してもよい。また、照射制御部30と走査制御部32と支持台制御部34との少なくとも一部を、ハードウェア回路で実現してもよい。
 照射制御部30は、レーザ照射装置10の動作を制御する。照射制御部30は、レーザ照射装置10によるレーザ光Lの出力を制御する。本実施形態では、照射制御部30は、レーザ照射装置10から出力されるレーザ光Lの出力値を制御する。
 走査制御部32は、走査光学系12の動作を制御する。照射制御部30は、走査光学系12を制御することで、母材100に照射されるレーザ光Lを、走査方向であるY方向に走査する。本実施形態では、走査制御部32は、母材100に照射されるレーザ光Lの走査速度を制御する。
 支持台制御部34は、移動ステージとしての支持台16の動作を制御する。支持台制御部34は、支持台16を制御することで、支持台16に支持されている母材100を、X方向に移動させる。
 以上のように構成されるレーザ加工装置1は、制御装置20の制御により、レーザ照射装置10からレーザ光Lを照射させ、照射されたレーザ光Lを、走査光学系12に案内する。レーザ加工装置1は、制御装置20の制御により、走査光学系12に入射したレーザ光Lを走査させることで、母材100上におけるレーザ光Lの照射位置を変化させる。レーザ加工装置1は、走査光学系12から出射したレーザ光Lを、集光光学系14に入射させ、集光したレーザ光Lを、母材100に照射する。
 (加工方法)
 次に、レーザ加工装置1による、母材100を切断するレーザ加工方法について説明する。図3は、第1実施形態に係るレーザ加工方法を説明するフローチャートである。図4から図9は、第1実施形態に係るレーザ加工方法を説明する模式図である。ここで、母材100は、例えば、10mm以上となる板厚となっている。
 図3に示すように、本実施形態に係るレーザ加工方法においては、母材100を支持台16に配置して、母材100を支持台16上に固定する(ステップS10)。図4は、母材100を支持台16に配置した状態を示している。図4に示すように、母材100の第2層102がZ1方向側に位置するように、言い換えれば第2層102がレーザ光Lの照射される側に位置するように、支持台16上に母材100を固定する。すなわち、母材100は、Z1方向に向けて、第3層103、第1層101、第2層102の順に並ぶように、支持台16に固定される。
 本実施形態に係るレーザ加工方法では、母材100を切断する切断加工を行って、母材100から製品100aを切り出している。このため、母材100は、切断加工されることにより、切り出された製品100aと、製品100aが切り出された後の母材100である残部100bとが形成される。本実施形態に係るレーザ加工方法では、切断加工前の母材100には、製品100aと残部100bとの境界となる加工ラインIを予め設定する。母材100は、製品100aとなる部分の少なくとも一部が支持台16上に重なり、加工ラインIや残部100bとなる部分が支持台16の外部に位置するように、支持台16に支持される。
 本実施形態に係るレーザ加工方法では、母材100を支持台16に配置したら、制御装置20の制御により、レーザ照射装置10から母材100にレーザ光Lを照射して、母材100の切断加工を開始する。制御装置20は、第2層102と、第2層102と第1層101との層間の部分を含む第1層間部分105と、第1層101と、第1層101と第3層103との層間の部分を含む第2層間部分106と、第3層103とのそれぞれに対する、レーザ光Lの照射条件を異ならせる。なお、第1層間部分105は、後述の図6に示すように、第2層102の層間近傍位置102Cから、第2層102と第1層101との層間を経て、第1層101の層間近傍位置101Cまでの部分である。また、第2層間部分106は、後述の図8に示すように、第1層101の層間近傍位置101Dから、第1層101と第3層103との層間を経て、第3層103の層間近傍位置103Cまでの部分である。
 すなわち、制御装置20は、第2層102(より詳しくは第2層102の層間近傍位置102Cまでの部分)に対して第2条件でレーザ光Lを照射して第2層102を切断し、第1層間部分105に対して第1層間条件でレーザ光Lを照射して第1層間部分105を切断し、第1層101(より詳しくは第1層101の層間近傍位置101Cからの部分)に対して第1条件でレーザ光Lを照射して第1層101を切断する。第1層間条件は、第1条件及び第2条件よりも、レーザ光Lによる単位時間当たりの入熱量が高くなる照射条件である。すなわち、第1層間条件で母材100にレーザ光Lを照射した場合の母材100への単位時間当たりの入熱量は、第1条件及び第2条件で母材100の同じ箇所にレーザ光Lを照射した場合の母材100への単位時間当たりの入熱量よりも、低くなる。本実施形態では、第1層間条件と、第1条件及び第2条件とは、レーザ光Lの出力値とレーザ光Lの走査速度とレーザ光Lのスポット径との、少なくとも1つが異なる。さらに言えば、第1層間条件は、第1条件及び第2条件よりもレーザ光Lの出力値が小さくなるように、第1条件及び第2条件よりもレーザ光Lの走査速度が大きくなるように、又は、第1条件及び第2条件よりもスポット径が大きくなるように設定されている。また、第1層間条件は、第1条件及び第2条件よりもレーザ光Lの出力値が小さく、かつ、第1条件及び第2条件よりもレーザ光Lの走査速度が大きく、かつ、第1条件及び第2条件よりもスポット径が大きく設定されていてもよい。レーザ光Lの出力値を小さくしたりレーザ光Lの走査速度を大きくしたりスポット径を大きくすることで、単位時間当たりの入熱量を小さくできる。ただし、第1条件及び第2条件と、第1層間条件とは、単位時間当たりの入熱量が異なるように設定されていればよく、レーザ光Lの出力値とレーザ光Lの走査速度とレーザ光Lのスポット径とが異なるように設定されることに限られない。なお、以降の説明における照射条件において、レーザ光Lによる単位時間当たりの入熱量を他の条件と異ならせる場合も、同様である。
 また、本実施形態では、第1条件と第2条件との、レーザ光Lによる単位時間当たりの入熱量が異なる。例えば、本実施形態では、第2層102よりも第1層101の熱膨張係数が低いため、第1条件におけるレーザ光Lによる単位時間当たりの入熱量を、第2条件におけるレーザ光Lによる単位時間当たりの入熱量より高くしてよい。すなわち、第1層101と第2層102とのうち、熱膨張係数が低い層のレーザ光Lの照射条件を、熱膨張係数が高い層のレーザ光Lの照射条件よりも、単位時間当たりの入熱量を高く設定してよい。ただし、それに限られず、第1条件におけるレーザ光Lによる単位時間当たりの入熱量を、第2条件よりも低くしてもよいし、第1条件と第2条件とで単位時間当たりの入熱量を等しくしてもよい。
 また、制御装置20は、第2層間部分106に対して第2層間条件でレーザ光Lを照射して第2層間部分106を切断し、第3層103(より詳しくは第3層103の層間近傍位置103Cからの部分)に対して第3条件でレーザ光Lを照射して第3層103を切断する。第2層間条件は、第1条件、第2条件及び第3条件よりも、レーザ光Lによる単位時間当たりの入熱量が低くなる照射条件である。すなわち、第2層間条件で母材100にレーザ光Lを照射した場合の母材100への単位時間当たりの入熱量は、第1条件、第2条件及び第3条件で母材100の同じ箇所にレーザ光Lを照射した場合の母材100への単位時間当たりの入熱量よりも、低くなる。
 また、本実施形態では、第1条件と第3条件との、レーザ光Lによる単位時間当たりの入熱量が異なる。例えば、本実施形態では、第3層103よりも第1層101の熱膨張係数が低いため、第1条件におけるレーザ光Lによる単位時間当たりの入熱量を、第3条件におけるレーザ光Lによる単位時間当たりの入熱量より高くしてよい。すなわち、第1層101と第3層103とのうち、熱膨張係数が低い層のレーザ光Lの照射条件を、熱膨張係数が高い層のレーザ光Lの照射条件よりも、単位時間当たりの入熱量を高く設定してよい。ただし、それに限られず、第1条件におけるレーザ光Lによる単位時間当たりの入熱量を、第3条件よりも低くしてもよいし、第1条件と第3条件とで単位時間当たりの入熱量を等しくしてもよい。
 また、本実施形態では、第2条件と第3条件との、レーザ光Lによる単位時間当たりの入熱量が異なる。本実施形態では、第2層102の熱膨張係数は、第3層103の熱膨張係数より高いため、第2条件は、第3条件よりもレーザ光Lの入熱量が小さくなるように、設定されている。すなわち、本実施形態では、熱膨張係数が小さい層ほど、レーザ光Lの入熱量が小さくなるように、各層へのレーザ光Lの照射条件が設定されているといえる。ただし、第2条件は、第3条件よりもレーザ光Lの入熱量が小さくなるように設定されていることに限られない。例えば、第2条件と第3条件とは、レーザ光Lの入熱量が同じとなる照射条件に設定されていてもよいし、第2条件が第3条件よりもレーザ光Lの入熱量が大きくなるように設定されていてもよい。
 本実施形態では、図3に示すように、制御装置20の制御により、第2層102に第2条件でレーザ光Lを照射して、第2層102を切断し(ステップS12)、第1層間部分105に第1層間条件でレーザ光Lを照射して、第1層間部分105を切断し(ステップS14)、第1層101に第1条件でレーザ光Lを照射して、第1層101を切断し(ステップS16)、第2層間部分106に第2層間条件でレーザ光Lを照射して、第2層間部分106を切断し(ステップS18)、第3層103に第3条件でレーザ光Lを照射して、第3層103を切断する(ステップS19)。
 図5は、第2層102を切断する場合の例、すなわち図3のステップS12の詳細内容の例を示している。図5に示すように、制御装置20は、第2層102の表面102Aから層間近傍位置102Cまでにわたって、第2条件でレーザ光Lを照射して、第2層102の表面102Aから層間近傍位置102Cまでの部分を除去(切断)する。層間近傍位置102Cは、第2層102の、Z方向における表面102Aと表面102Bとの間の位置である。さらに言えば、層間近傍位置102Cは、第2層102における、第2層102と第1層101との層間(表面102B)の近傍の部分であることが好ましく、言い換えれば、Z方向における層間近傍位置102Cと表面102Bとの間の距離が、Z方向における層間近傍位置102Cと表面102Aとの間の距離よりも短いことが好ましい。例えば、Z方向における層間近傍位置102Cと表面102Bとの間の距離は、0.2mm以上1.0mm以下であることが好ましい。
 具体的には、図5のステップS12Aに示すように、制御装置20は、複数の加工パスを、第2層102上に設定する。加工パスとは、母材100に照射しようとするレーザ光Lの軌跡を指し、言い換えれば、加工パス上にレーザ光Lが照射される。複数の加工パスは、走査方向であるY方向及び積層方向(深さ方向)であるZ方向に直交するX方向(幅方向)に並ぶように、設定されている。具体的に、複数の加工パスは、X方向において、加工ラインI側を基準とし、加工ラインI側から残部100b側に亘って、X方向に所定のピッチ間隔Pで並んで設定されている。また、レーザ光Lは、図5に示すように、焦点Oが母材100(ここでは第2層102)の内部に位置すると共に、レーザ光Lの光軸AがZ方向に沿っている。以下、X方向に並んで設定される複数の加工パスを、適宜、一群の加工パスと記載する。
 制御装置20は、このように第2層102上に設定した一群の加工パスのそれぞれに向けて第2条件でレーザ光Lを照射することで、加工パス上の第2層102に、第2条件でレーザ光Lを照射する。制御装置20は、加工ラインI側の加工パスから残部100b側の加工パスに向かって、順番にレーザ光Lを照射する。すなわち、制御装置20は、レーザ光LのX方向における照射位置を最も加工ラインI側の加工パス上に固定したまま、レーザ光Lを、Y方向に走査しつつ照射する。これにより、最も加工ラインI側の加工パスに沿って、第2層102にレーザ光Lが照射されて、第2層102の加工パスに重なる部分が除去される。その後、制御装置20は、例えば支持台16を制御することで母材100を加工ラインI側に移動させることで、レーザ光LのX方向における照射位置を残部100b側に移動させて、レーザ光Lを、Y方向に走査しつつ照射する。これにより、その加工パスに沿って、第2層102にレーザ光Lが照射されて、第2層102の加工パスに重なる部分が除去される。制御装置20は、移行で同様の制御を繰り返して、一群の加工パスのそれぞれにレーザ光Lを照射する。これにより、一群の加工パスにわたって、第2層102が、所定の厚み分除去される。
 制御装置20は、一群の加工パスへのレーザ光Lの照射が終了したら、ステップS12Bに示すように、Z2方向側に次の一群の加工パスを設定して、その一群の加工パスのそれぞれに対して、第2条件でレーザ光Lを照射する。すなわち、前回に設定した一群の加工パスよりもZ2方向側に、新たな一群の加工パスを設定して、その新たな一群の加工パスにレーザ光Lを照射する。新たな一群の加工パスに向けて照射されるレーザ光Lの焦点Oは、前回の一群の加工パスに向けて照射されたレーザ光Lの焦点Oよりも、Z2方向側に位置することとなる。これにより、第2層102の新たな加工パスに重なる部分が、さらに所定の厚み分、除去される。なお、一群の加工パスの数は、前回の一群の加工パスの数に比して、少なくなるように設定される。つまり、母材100の厚さ方向における深い側(Z2方向側)の加工パスの数が、浅い側の加工パスの数に比して少なくなっている。さらに言えば、一群の加工パスのうちの最も残部100b側の加工パスの位置は、前回(浅い側)の一群の加工パスのうちの最も残部100b側の加工パスの位置よりも、製品100a側に位置するように設定される。また、加工ラインI側の加工パスは、Z方向によらずX方向において一定位置となるように設定される。このように加工パスを設定することで、切断加工では、各レーザ照射工程におけるピッチ間隔Pが同じ間隔となる場合、X方向における切断幅が、母材100の表面側(浅い側)から裏面側(深い側)に向かって狭くなるように、母材100にレーザ光Lが照射される。
 制御装置20は、このレーザ照射工程、すなわち一群の加工パス毎にレーザ光Lを照射して第2層102を所定の厚み分だけ除去する工程を、繰り返す。これにより、図5のステップS12Bに示すように、第2層102の加工パスに重なった部分が、表面102Aから層間近傍位置102Cまでにわたって除去されて、第2層102の表面102Aから層間近傍位置102Cまでの部分が切断される。このように第2層102が切断されることで、第2層102の層間近傍位置102Cの、これまでの加工パスに重なる部分が、外部に露出する。なお、図5の例では、一群の加工パスの設定を複数回繰り替えして、すなわち所定の厚み分だけ第2層102を除去することをZ2方向側に複数回繰り返して、第2層102を切断している。ここでの一群の加工パスの設定回数、言い換えれば、第2層102の所定の厚み分の除去の回数は、表面102Aから層間近傍位置102Cまでの厚みや第2条件に基づき決まるものであり、1回でもよいし複数回であってもよい。
 図6は、第1層間部分105を切断する場合の例、すなわち図3のステップS14の詳細内容の例を示している。図5に示すように、制御装置20は、第1層間部分105に第1層間条件でレーザ光Lを照射して、第1層間部分105を除去(切断)する。第1層間部分105は、第2層102の層間近傍位置102Cから、第2層102と第1層101との層間を経て、第1層101の層間近傍位置101Cまでの部分である。第2層102と第1層101との層間とは、第2層102の表面102Bと第1層101の表面101Aとが接触している部分ともいえる。また、層間近傍位置101Cは、第1層101の、Z方向における表面101Aと表面101Bとの間の位置である。さらに言えば、層間近傍位置101Cは、第1層101における、第1層101と第2層102との層間(表面101A)の近傍の部分であることが好ましく、言い換えれば、Z方向における層間近傍位置101Cと表面101Aとの間の距離が、Z方向における層間近傍位置101Cと表面101Bとの間の距離よりも短いことが好ましい。例えば、Z方向における層間近傍位置101Cと表面101Aとの間の距離は、0.2mm以上1.0mm以下であることが好ましい。第1層間部分105は、第2層102の層間近傍位置102Cから第2層102の表面102Bまでにわたる部分と、第1層101の表面101Aから層間近傍位置101Cまでにわたる部分とを含んだ部分といえる。
 制御装置20は、第2層102の厚みや第2条件などに基づき、第2層102の表面102Aから層間近傍位置102Cまでの部分を切断するのに必要な一群の加工パスの設定回数を予め算出する。そして、制御装置20は、その設定回数分の一群の加工パスへのレーザ光Lの照射が終了したら、層間近傍位置102Cまでの切断が完了したと判断して、第1層間部分105の切断加工に移行する。図6のステップS14Aに示すように、制御装置20は、層間近傍位置102Cまでの切断が終了したと判断したら、一群の加工パスを、第1層間部分105の層間近傍位置102C上に設定して、それぞれの加工パスに沿って、レーザ光Lを第1層間条件で照射する。これにより、第1層間部分105の加工パスに重なる部分が、所定の厚み分、除去される。一群の加工パスへのレーザ光Lの照射が終了したら、制御装置20は、Z2方向側に次の一群の加工パスを設定して、その一群の加工パスのそれぞれに対して、第1層間条件でレーザ光Lを照射する。これにより、第1層間部分105の次の加工パスに重なる部分が、所定の厚み分、除去される。制御装置20は、この工程、すなわち一群の加工パス毎にレーザ光Lを照射して第1層間部分105を所定の厚み分だけ除去する工程を、繰り返す。これにより、図6のステップS14B、S14Cに示すように、加工パスに重なった部分が、層間近傍位置102Cから、第2層102と第1層101との層間を経て、第1層101の層間近傍位置101Cまでにわたって除去されて、第1層間部分105が切断される。このように第1層間部分105が切断されることで、第1層101の層間近傍位置101Cの、これまでの加工パスに重なる部分が、外部に露出する。なお、第1層間部分105上への加工パスの設定方法や、加工パスへのレーザ光Lの照射方法は、照射条件を第1層間条件としている以外は、第2層102における方法と同様である。
 図7は、第1層101を切断する場合の例、すなわち図3のステップS16の詳細内容の例を示している。図7に示すように、制御装置20は、第1層101の層間近傍位置101Cから層間近傍位置101Dまでにわたって、第1条件でレーザ光Lを照射して、第1層101の層間近傍位置101Cから層間近傍位置101Dまでの部分を除去(切断)する。層間近傍位置101Dは、第1層101の、Z方向における層間近傍位置101Cと表面101Bとの間の位置である。さらに言えば、層間近傍位置101Dは、第1層101における、第1層101と第3層103との層間(表面101B)の近傍の部分であることが好ましく、言い換えれば、Z方向における層間近傍位置101Dと表面101Bとの間の距離が、Z方向における層間近傍位置101Dと表面101Aとの間の距離よりも短いことが好ましい。例えば、Z方向における層間近傍位置101Dと表面101Bとの間の距離は、0.2mm以上1.0mm以下であることが好ましい。
 制御装置20は、第1層間部分105の厚みや第1層間条件などに基づき、第1層間部分105を切断するのに必要な一群の加工パスの設定回数を予め算出する。そして、制御装置20は、その設定回数分の一群の加工パスへのレーザ光Lの照射が終了したら、第1層間部分105の切断が完了したと判断して、第1層101の切断加工に移行する。図7のステップS16Aに示すように、制御装置20は、第1層間部分105の切断が終了したと判断したら、一群の加工パスを、第1層101の層間近傍位置101C上に設定して、それぞれの加工パスに沿って、レーザ光Lを第1条件で照射する。これにより、第1層101の加工パスに重なる部分が、所定の厚み分、除去される。一群の加工パスへのレーザ光Lの照射が終了したら、制御装置20は、Z2方向側に次の一群の加工パスを設定して、その一群の加工パスのそれぞれに対して、第1条件でレーザ光Lを照射する。これにより、第1層101の次の加工パスに重なる部分が、所定の厚み分、除去される。制御装置20は、この工程、すなわち一群の加工パス毎にレーザ光Lを照射して第1層101を所定の厚み分だけ除去する工程を、繰り返す。これにより、図7のステップS16Bに示すように、第1層101の加工パスに重なった部分が、層間近傍位置101Cから層間近傍位置101Dまでにわたって除去されて、第1層101の層間近傍位置101Cから層間近傍位置101Dまでの部分が切断される。このように第1層101が切断されることで、第1層101の層間近傍位置101Dの、これまでの加工パスに重なる部分が、外部に露出する。なお、第1層101上への加工パスの設定方法や、加工パスへのレーザ光Lの照射方法は、照射条件を第1条件としている以外は、第2層102における方法と同様である。
 図8は、第2層間部分106を切断する場合の例、すなわち図3のステップS18の詳細内容の例を示している。図8に示すように、制御装置20は、第2層間部分106に第2層間条件でレーザ光Lを照射して、第2層間部分106を除去(切断)する。第2層間部分106は、第1層101の層間近傍位置101Dから、第1層101と第3層103との層間を経て、第3層103の層間近傍位置103Cまでの部分である。第1層101と第3層103との層間とは、第1層101の表面101Bと第3層103の表面103Aとが接触している部分ともいえる。また、層間近傍位置103Cは、第3層103の、Z方向における表面103Aと表面103Bとの間の位置である。さらに言えば、層間近傍位置103Cは、第3層103における、第3層103と第1層101との層間(表面103A)の近傍の部分であることが好ましく、言い換えれば、Z方向における層間近傍位置103Cと表面103Aとの間の距離が、Z方向における層間近傍位置103Cと表面103Bとの間の距離よりも短いことが好ましい。例えば、Z方向における層間近傍位置103Cと表面103Aとの間の距離は、0.2mm以上1.0mm以下であることが好ましい。第2層間部分106は、第1層101の層間近傍位置101Dから第1層101の表面101Bまでにわたる部分と、第3層103の表面103Aから層間近傍位置103Cまでにわたる部分とを含んだ部分といえる。
 制御装置20は、第1層101の厚みや第1条件などに基づき、第1層101の層間近傍位置101Cから層間近傍位置101Dまでの部分を切断するのに必要な一群の加工パスの設定回数を予め算出する。そして、制御装置20は、その設定回数分の一群の加工パスへのレーザ光Lの照射が終了したら、層間近傍位置101Dまでの切断が完了したと判断して、第2層間部分106の切断加工に移行する。図8のステップS18Aに示すように、制御装置20は、層間近傍位置101Dまでの切断が終了したと判断したら、一群の加工パスを、第2層間部分106の層間近傍位置101D上に設定して、それぞれの加工パスに沿って、レーザ光Lを第2層間条件で照射する。これにより、第2層間部分106の加工パスに重なる部分が、所定の厚み分、除去される。一群の加工パスへのレーザ光Lの照射が終了したら、制御装置20は、Z2方向側に次の一群の加工パスを設定して、その一群の加工パスのそれぞれに対して、第2層間条件でレーザ光Lを照射する。これにより、第2層間部分106の次の加工パスに重なる部分が、所定の厚み分、除去される。制御装置20は、この工程、すなわち一群の加工パス毎にレーザ光Lを照射して第2層間部分106を所定の厚み分だけ除去する工程を、繰り返す。これにより、図8のステップS18B、S18Cに示すように、加工パスに重なった部分が、層間近傍位置101Dから、第1層101と第3層103との層間を経て、第3層103の層間近傍位置103Cまでにわたって除去されて、第2層間部分106が切断される。このように第2層間部分106が切断されることで、第3層103の層間近傍位置103Cの、これまでの加工パスに重なる部分が、外部に露出する。なお、第2層間部分106上への加工パスの設定方法や、加工パスへのレーザ光Lの照射方法は、照射条件を第2層間条件としている以外は、第2層102における方法と同様である。
 図9は、第3層103を切断する場合の例、すなわち図3のステップS19の詳細内容の例を示している。図9に示すように、制御装置20は、第3層103の層間近傍位置103Cから表面103Bまでにわたって、第3条件でレーザ光Lを照射して、第3層103の層間近傍位置103Cから表面103Bまでの部分を除去(切断)する。
 制御装置20は、第2層間部分106の厚みや第2層間条件などに基づき、第2層間部分106を切断するのに必要な一群の加工パスの設定回数を予め算出する。そして、制御装置20は、その設定回数分の一群の加工パスへのレーザ光Lの照射が終了したら、第2層間部分106の切断が完了したと判断して、第3層103の切断加工に移行する。図9のステップS19Aに示すように、制御装置20は、第2層間部分106の切断が終了したと判断したら、一群の加工パスを、第3層103の層間近傍位置103C上に設定して、それぞれの加工パスに沿って、レーザ光Lを第3条件で照射する。これにより、第3層103の加工パスに重なる部分が、所定の厚み分、除去される。一群の加工パスへのレーザ光Lの照射が終了したら、制御装置20は、Z2方向側に次の一群の加工パスを設定して、その一群の加工パスのそれぞれに対して、第3条件でレーザ光Lを照射する。これにより、第3層103の次の加工パスに重なる部分が、所定の厚み分、除去される。制御装置20は、この工程、すなわち一群の加工パス毎にレーザ光Lを照射して第3層103を所定の厚み分だけ除去する工程を、繰り返す。これにより、図9のステップS19Bに示すように、第3層103の加工パスに重なった部分が、層間近傍位置103Cから表面103Bまでにわたって除去されて、第3層103が切断される。なお、第3層103上への加工パスの設定方法や、加工パスへのレーザ光Lの照射方法は、照射条件を第3条件としている以外は、第2層102や第1層101における方法と同様である。
 以上のように第2層102、第1層間部分105、第1層101、第2層間部分106、及び第3層103が切断されることで、母材100が切断されて、製品100aと残部100bとが切り分けられる。母材100から切り出された製品100aは、レーザ光Lが照射された加工面が、加工ラインIに倣った面として形成される。
 なお、制御装置20は、予め算出した加工パスの設定回数へのレーザ光Lの照射が終了したら、第2層102や第1層101などの切断が完了したと判断しているが、1つの層の切断が完了したと判断する方法は、それに限られない。例えば、作業者が母材100を目視しておき、次の層が露出する前に、作業者が制御装置20にその旨を入力してもよい。制御装置20は、作業者による入力を検出したら、1つの層の切断が完了したと判断してもよい。
 ここで、材料が異なる複数の層が積層された母材100は、切断加工のためのレーザ光Lが照射された場合に、レーザ光Lによって加熱されて、母材100のそれぞれの層が膨張する。母材100のそれぞれの層は、熱膨張係数が互いに異なるため、膨張量が互いに異なる。母材100は、このように層毎の膨張量が異なるため、層間に引張応力が発生して、層間剥離が生じるおそれがある。それに対し、本実施形態に係るレーザ加工装置1は、層間の部分(ここでは第1層間部分105)へのレーザ光Lの入熱量を、層間よりも内側の部分(ここでは第1層101)へのレーザ光Lの入熱量よりも低くする。これにより、層間の付近におけるそれぞれの層の熱膨張量を抑制して、層間の引張応力を抑制することが可能となり、層間剥離を抑制することができる。
 以上説明したように、本実施形態に係るレーザ加工方法は、熱膨張係数が異なる第1層101と第2層102との層間の部分を含む第1層間部分105に対して、入熱量が小さくなるようにレーザ光Lを照射することで、第2層102と第1層101との層間における熱膨張量を抑制して、層間の引張応力を抑制する。これにより、層間剥離を抑制しつつ、母材100を適切に切断することができる。さらに、第1層101への入熱量を第1層間部分105への入熱量よりも大きくすることで、熱膨張量が低い第1層101を高速で加工することも可能となる。
 また、本実施形態に係るレーザ加工装置1は、第1層間部分105に対して、入熱量が小さくなるようにレーザ光Lを照射することで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 図10は、第1実施形態に係るレーザ加工方法の他の例を説明する模式図である。レーザ加工装置1は、図10に示すように、レーザ光Lの光軸Aを、積層方向であるZ方向に対して傾斜させつつ、母材100にレーザ光Lを照射してもよい。レーザ加工装置1は、レーザ光Lの光軸Aが、X方向において、Z方向に対して残部100b側に傾斜するように、母材100にレーザ光Lを照射することが好ましい。より詳しくは、レーザ光Lは、光軸Aに対して所定の角度θをもって集光される。そして、レーザ光Lの光軸Aは、Z方向に沿った加工ラインIに対して傾斜される。つまり、レーザ光Lは、集光される所定の角度θを考慮して、Z方向に沿った加工ラインIに対する光軸Aの傾斜角度を設定する。この傾斜角度は、0.1以上5°以下の範囲、好ましくは、0.1以上2°以下の範囲、さらに好ましくは、0.1以上1°以下の範囲で設定されている。このように、Z方向に沿った加工ラインIに対して、レーザ光Lの照射方向(光軸A)を傾斜させることで、加工ラインIに対する加工面の傾斜を抑制し、加工ラインIに沿った加工面とすることができる。
 なお、本実施形態においては、第2層102の表面102Aから層間近傍位置102Cまでのレーザ光Lの照射条件を、第1層間条件よりも入熱量が高い第2条件としていた。ただし、第2層102の表面102Aから層間近傍位置102Cまでへのレーザ光Lの照射条件を、第1層間部分105と同様に、第1層間条件に設定してもよい。すなわちこの場合、第2層102の表面102Aから、第2層102と第1層101との層間を経て、第1層101の層間近傍位置101Cまでにわたって、第1層間条件でレーザ光Lを照射する。このように、本実施形態に係るレーザ加工方法は、第2層102の表面102Aから層間近傍位置102Cまでの部分に対して、第1層間条件でレーザ光Lを照射して、第2層102を切断するステップを含んでよい。このように第2層102から第1層間部分105までにわたって第1層間条件でレーザ光Lを照射することで、例えば第2層102が薄く形成されている場合に、第1層101と第2層102との層間部分への入熱量を抑えて、層間剥離をより好適に抑制できる。以降の実施形態においても、第2層102から第1層間部分105までにわたって第1層間条件でレーザ光Lを照射してもよい。
 また、本実施形態においては、第3層103の層間近傍位置103Cから表面103Bまでのレーザ光Lの照射条件を、第2層間条件よりも入熱量が高い第3条件としていた。ただし、第3層103の層間近傍位置103Cから表面103Bまでへのレーザ光Lの照射条件を、第2層間部分106と同様に、第2層間条件に設定してもよい。すなわちこの場合、第1層101の層間近傍位置101Dから、第1層101と第3層103との層間を経て、第3層103の表面103Bまでにわたって、第2層間条件でレーザ光Lを照射する。このように、本実施形態に係るレーザ加工方法は、第3層103の層間近傍位置103Cから表面103Bまでの部分に対して、第2層間条件でレーザ光Lを照射して、第3層103を切断するステップを含んでよい。このように第2層間部分106から第3層103までにわたって第1層間条件でレーザ光Lを照射することで、例えば第3層103が薄く形成されている場合に、第1層101と第3層103との層間部分への入熱量を抑えて、層間剥離をより好適に抑制できる。以降の実施形態においても、第2層間部分106から第3層103までにわたって、第2層間条件でレーザ光Lを照射してもよい。
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態は、第1層間部分105にレーザ光を照射する際に、加工ラインIに沿った加工パスよりも残部100b側の加工パスに対して、第2条件でレーザ光Lを照射する点で、第1実施形態とは異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
 図11は、第2実施形態係るレーザ加工方法を説明する模式図である。図11のステップS10に示すように、第2実施形態においても、第1実施形態と同様に、第2層102がZ1方向側に位置するように、母材100を支持台16上に固定する。そして、ステップS20に示すように、制御装置20は、第2層102上の加工ラインIに沿った位置に、加工パスを設定する。以下、加工ラインIに沿って設定した加工パスを、ライン加工パスと記載する。制御装置20は、ライン加工パスに第1層間条件でレーザ光Lを照射することで、ライン加工パスに重なる第2層102(より詳しくは第2層102の層間近傍位置102Cまでの部分)及び第1層間部分105に第1層間条件でレーザ光Lを照射して、第2層102及び第1層間部分105のライン加工パスに重なる部分を除去する。これにより、第1層101の層間近傍位置101Cのライン加工パスに重なる部分が、露出する。さらに言えば、ライン加工パスに重なる第2層102及び第1層間部分105を除去することで、ライン加工パスを隔てて、製品100a側の第2層102及び第1層間部分105と、残部100b側の第2層102及び第1層間部分105とが、分離する。
 なお、ライン加工パスは、Z方向に複数設定されてよい。この場合、制御装置20は、1つ目のライン加工パスにレーザ光Lを照射した後、そのライン加工パスよりもZ2方向側に設定したライン加工パスにレーザ光Lを照射することで、第2層102及び第1層間部分105のライン加工パスに重なる部分を、所定の厚み毎に段階的に除去する。また、ライン加工パスは、X方向に複数設定されてもよい。この場合、制御装置20は、第1実施形態と同様に、最も加工ラインIに沿ったライン加工パスにレーザ光Lを照射した後、そのライン加工パスの残部100b側のライン加工パスにレーザ光Lを照射する。
 ライン加工パスに第2条件でレーザ光Lを照射したら、図11のステップS22に示すように、ライン加工パスよりもX方向における残部100b側の第2層102及び第1層間部分105上に、一群の加工パスを設定する。制御装置20は、第2層102及び第1層間部分105上の一群の加工パスに第2条件でレーザ光Lを照射することで、第2層102及び第1層間部分105の一群の加工パスに重なる部分を、すなわち第2層102及び第1層間部分105のライン加工パスよりも残部100b側の部分を、除去する。ここで、第2条件でレーザ光Lを照射する領域のX方向における長さを、長さD1とし、第1層間条件でレーザ光Lを照射する領域のX方向における長さを、長さD2とする。長さD1は、第1条件でレーザ光Lを照射する一群の加工パスの全体のX方向における長さともいえ、長さD2は、ライン加工パスの全体のX方向における長さともいえる。この場合、長さD1は、長さD2より長く設定されている。
 第2層102及び第1層間部分105のライン加工パスよりも残部100b側の部分を除去したら、図11のステップS24に示すように、第1層101に対して第1実施形態と同様に加工パスを設定してレーザ光Lを照射して第1層101を除去し、第2層間部分106に対して第1実施形態と同様に加工パスを設定してレーザ光Lを照射して第1層101を除去し、第3層103に対して第1実施形態と同様に加工パスを設定してレーザ光Lを照射して第3層103を除去する。ただし、第2実施形態においては、第2層間部分106に対して、第1条件又は第3条件でレーザ光Lを照射する点で、第1実施形態と異なる。
 このように、第2実施形態においては、第2層102及び第1層間部分105のライン加工パスに重なる部分については第1層間条件でレーザ光Lを照射し、ライン加工パスよりも残部100b側の部分には、第2条件でレーザ光Lを照射する。第2層102及び第1層間部分105のライン加工パスに重なる部分を除去することで、第2層102及び第1層間部分105の製品100a側は、残部100b側から分離されるため、残部100b側に第1条件でレーザ光Lを照射しても、製品100aの第2層102及び第1層間部分105への入熱が抑えられて、製品100aの層間剥離を抑制できる。
 以上説明したように、第2実施形態に係るレーザ加工方法は、加工ラインI(ライン加工パス)に沿った部分を第1層間条件でレーザ照射することで、製品100a側での層間剥離を抑制しつつ、母材100を適切に切断することができる。さらに、ライン加工パスより残部100b側では第2条件でレーザ照射することで、入熱量が小さい第1層間条件での加工を加工ラインI(ライン加工パス)に沿った部分のみに制限して、加工時間が長くなることを抑制できる。
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態は、第2層102にレーザ光Lを照射した後、母材100をひっくり返して第3層103にレーザ光Lを照射する点で、第1実施形態とは異なる。第3実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。なお、第3実施形態は、第2実施形態に対しても適用可能である。
 図12は、第3実施形態係るレーザ加工方法を説明する模式図である。図12のステップS10に示すように、第3実施形態においても、第1実施形態と同様に、第2層102がZ1方向側に位置するように、母材100を支持台16上に固定する。そして、図12のステップS30に示すように、第3実施形態においても、第1実施形態と同様に、制御装置20は、第2層102上に加工パスを設定して、加工パスに第2条件でレーザ光Lを照射することで、第2層102(より詳しくは第2層102の層間近傍位置102Cまでの部分)を除去する。そして、制御装置20は、第1層間部分105上に加工パスを設定して、加工パスに第1層間条件でレーザ光Lを照射することで、第1層間部分105を除去する。これにより、第1層101の層間近傍位置101Cの、加工パスに重なる部分が、外部に露出する。第2層102及び第1層間部分105を除去したら、図12のステップS32に示すように、母材100を支持台16上から取り外して、母材100を反対向きにして支持台16に固定し直す。具体的には、母材100の第3層103がZ1方向側に位置するように、言い換えれば第3層103がレーザ光Lの照射される側に位置するように、支持台16上に母材100を固定する。すなわち、母材100は、Z1方向に向けて、第2層102、第1層101、第3層103の順に並ぶように、支持台16に固定される。
 次に、第3実施形態においては、図12のステップS34に示すように、第3層103上に加工パスを設定して、加工パスに第3条件でレーザ光Lを照射することで、第3層103(より詳しくは第3層103の層間近傍位置103Cまでの部分)を除去する。そして、制御装置20は、第2層間部分106上に加工パスを設定して、加工パスに第2層間条件でレーザ光Lを照射することで、第2層間部分106を除去する。これにより、第1層101の層間近傍位置101Dの、加工パスに重なる部分が、外部に露出する。第3層103及び第2層間部分106を除去したら、図12のステップS36に示すように、第1層101上に加工パスを設定して、加工パスに第1条件でレーザ光Lを照射することで、第1層101を除去する。これにより、第2層102、第3層103、第1層101の順で除去されて、母材100が切断される。
 以上説明したように、第3実施形態に係るレーザ加工方法は、第3層103をレーザ光Lが照射される側に配置して切断加工を行うことで、第3層103と第1層101との境界が視認し易くなり、第3層103と第1層101とを、それぞれに合った適切なレーザ照射条件で、切断加工することができる。さらに、例えば第2層102と第3層103とで、レーザ照射条件が同じである場合は、第2層102と第3層103とを同じレーザ照射条件で切断加工した後、第1層101のレーザ照射条件で加工すればよくなる。この場合、レーザ照射条件の変更を1回で済ませることができるため、切断加工を容易にすることができる。
 (第4実施形態)
 次に、第4実施形態について説明する。第4実施形態においては、母材100のZ2方向側の表面に冷却媒体Fを供給しながら切断加工を行う点で、第1実施形態とは異なる。第4実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。なお、第4実施形態は、第2実施形態に対しても適用可能である。
 図13は、第4実施形態に係るレーザ加工装置を模式的に示す図である。図13に示すように、第4実施形態に係るレーザ加工装置1aは、制御装置20aと、冷却部としての冷却装置22とを含む。冷却装置22は、供給口22Aから冷却媒体Fを供給する装置である。冷却媒体Fは、ガスであり、例えば、空気、低温の二酸化炭素、窒素などの不活性ガスなどであってよい。ただし、冷却媒体Fは、母材100を冷却可能な媒体であれば任意のものであってよく、例えば液体であってもよい。
 冷却装置22は、制御装置20aによって制御されることにより、供給口22Aから冷却媒体Fを放出する。供給口22Aは、支持台16よりもZ2方向側であって、支持台16に固定された母材100の、Z2方向側の表面103Aに対向する位置に、設けられている。さらに言えば、供給口22Aは、X方向において、支持台16に固定された母材100の製品100a側において、残部100b側に向いて開口している。従って、供給口22Aから放出された冷却媒体Fは、母材100の製品100a側の表面103Aに当たり、表面103Aに沿って、X方向において製品100a側から残部100b側に向けて流れる。
 図14から図16は、第4実施形態に係る母材の一例を示す模式図である。図14に示すように、第4実施形態に係る母材100は、第2層102が積層される領域AR1と、第2層102が積層されない領域AR2とを含む。図14の例では、領域AR1と領域AR2とは、Y方向で隣り合っている。図15は、図14のD1-D1断面図であり、領域AR1における母材100の断面図を示している。図16は、図14のD2-D2断面図であり、領域AR2における母材100の断面図を示している。図14及び図15に示すように、母材100は、領域AR1においては、第3層103、第1層101、第2層102が、この順で積層されている。一方、図14及び図16に示すように、母材100は、領域AR2においては、第3層103と第1層101とがこの順で積層されて、第2層102が積層されていない。すなわち、母材100は、第3層103と第1層101とが、領域AR1から領域AR2にわたって積層される一方、第2層102は、領域AR1にのみ積層されている。
 なお、第4実施形態に係る母材100は、例えば航空機用の部材であり、領域AR2が主翼の先端部分として用いられ、領域AR1が主翼の先端より基端側の部分として用いられる。ただし、第4実施形態に係る母材100の用途はこれに限られず任意である。また、第4実施形態における母材100は、図14から図16で説明した積層構成であることに限られず、第1実施形態と同様の積層構成であってよい。例えば、第4実施形態における母材100は、全域にわたって第3層103、第1層101、第2層102が積層されていてもよいし、全域にわたって第3層103と第1層101とが積層されて第2層102が積層されていなくてもよい。
 図17は、第4実施形態係るレーザ加工方法を説明する模式図である。図17のステップS10に示すように、第4実施形態においては、領域AR1の第2層102がZ1方向側に位置するように、すなわち第3層103、第1層101、第2層102がZ1方向に向けてこの順で並ぶように、母材100を支持台16上に固定する。そのため、第3層103は、レーザ光Lが照射される側と反対側に、すなわちZ2方向側に、配置される。第3層103の表面103Bは、製品100a側の少なくとも一部が、支持台16に覆われず、露出する。第3層103の表面103Bは、冷却装置22の供給口22Aと対向する。そして、図17のステップS40に示すように、制御装置20は、領域AR1の第2層102上に加工パスを設定して、加工パスに第2条件でレーザ光Lを照射することで、領域AR1の第2層102(より詳しくは第2層102の層間近傍位置102Cまでの部分)を除去する。そして、制御装置20は、第1層間部分105上に加工パスを設定して、加工パスに第1層間条件でレーザ光Lを照射することで、第1層間部分105を除去する。この際、制御装置20は、領域AR1の第2層102及び第1層間部分105にレーザ光Lを照射させつつ、冷却装置22の供給口22Aから、第3層103の表面103Bに向けて、冷却媒体Fを供給する。これにより、第3層103を冷却媒体Fにより冷却しつつ、第2層102及び第1層間部分105を除去できる。なお、母材100の領域AR2には、第2層102が形成されていないため、第2条件でのレーザ光Lが照射されない。
 領域AR1の第2層102及び第1層間部分105の切断が終了したら、図17のステップS42に示すように、制御装置20は、第1層101の層間近傍位置101C上に加工パスを設定して、加工パスに第1条件でレーザ光Lを照射することで、第1層101の層間近傍位置101Cからの部分を除去する。第1層101は、領域AR1及び領域AR2の両方に設けられているので、領域AR1及び領域AR2の両方の第1層101が除去される。第1層101を除去したら、制御装置20は、第3層103に加工パスを設定して、加工パスに第1条件でレーザ光Lを照射することで、第3層103を除去する。第3層103も、領域AR1及び領域AR2の両方に設けられているので、領域AR1及び領域AR2の両方の第3層103が除去される。これにより、母材100の切断が完了する。なお、第1層101及び第3層103にレーザ光Lを照射している最中にも、冷却装置22の供給口22Aから、第3層103の表面103Bに向けて、冷却媒体Fを供給する。これにより、第3層103を冷却しつつ、第1層101及び第3層103を除去できる。第4実施形態においては、第3層103を冷却することで、第1層101と第3層103との層間の加熱を抑えている。そのため、第4実施形態においては、第2層間部分106に第2層間条件を用いることなく、第1層101の層間近傍位置101Cからの全体に、第1条件でレーザ光Lを照射し、第3層103の全体に、第3条件でレーザ光Lを照射してよい。
 このように、第4実施形態に係るレーザ加工装置1aは、第3層103に冷却媒体Fを供給して第3層103を冷却しつつ、レーザ光Lの照射による切断加工を行っている。従って、第4実施形態に係るレーザ加工装置1aによると、熱膨張係数が高い第3層103を冷却することで、第1層101と第3層103との層間へのレーザ光Lの照射条件を入熱量が少ない条件とすることなく、層間の熱膨張を抑制して、第1層101と第3層103との剥離を抑制できる。ただし、第3実施形態においても、第1実施形態と同様に、第2層間部分106に第2層間条件でレーザ光Lを照射しつつ、第3層103に冷却媒体Fを供給してもよい。
 以上説明したように、第4実施形態の母材100は、領域AR1において、第1層101の他方の表面101Bに、第1層101と熱膨張係数が異なる第3層103が形成されている。第4実施形態のレーザ加工方法は、第1層101及び第2層102の切断時に、第3層103に冷却媒体Fを供給して、第3層103を冷却する。なお、母材100の全域に第1層101、第2層102、第3層103が積層されている場合は、全域においてこのようなレーザ加工方法を実行してよい。第4実施形態に係るレーザ加工方法によると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 また、第4実施形態のレーザ加工方法は、領域AR2において、第1層101、及び第1層101の表面に積層されて第1層101と熱膨張係数が異なる第3層103(第2層)を含む母材100にレーザ光Lを照射して、母材100を切断する切断加工を行う。レーザ加工方法は、第3層103をレーザ光Lが照射される側と反対側に配置するステップと、第3層103に冷却媒体Fを供給して第3層103を冷却しつつ、第1層101にレーザ光Lを照射して、第1層101を切断するステップと、第1層101を切断した後に、第3層103にレーザ光Lを照射して第3層103を切断するステップと、を含む。なお、母材100の全域に第1層101、第3層103が積層されて第2層102が積層されていない場合は、全域においてこのようなレーザ加工方法を実行してよい。第4実施形態に係るレーザ加工方法によると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 また、第4実施形態に係るレーザ加工装置1aによると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 また、レーザ加工装置1aは、表面103Aにおいて、製品100a側から残部100b側に向けて冷却媒体Fを流す。これにより、レーザ加工装置1aは、製品100aを適切に冷却して、層間剥離を抑制できる。
 以上説明したように、本実施形態に係るレーザ加工方法は、第1層101、及び第1層101の表面101Aに積層されて第1層101とは熱膨張係数が異なる第2層102を含む母材100にレーザ光Lを照射して、母材100を切断する切断加工を行う。このレーザ加工方法は、第1層間部分105に対して、所定の第1層間条件でレーザ光Lを照射して、第1層間部分105を切断するステップを含む。第1層間部分105は、第2層102の積層方向(Z方向)における表面102Aより内側の層間近傍位置102Cから、第2層102と第1層101との層間を経て、第1層101の積層方向(Z方向)における表面101Aより内側の層間近傍位置101Cまでの部分である。そして、このレーザ加工方法は、第1層101の層間近傍位置101Cから積層方向(Z方向)の内側の部分に対して、第1条件でレーザ光Lを照射して、第1層101を切断するステップを含む。第1層間条件は、第1条件よりもレーザ光Lによる入熱量が低い条件である。本実施形態に係るレーザ加工方法は、熱膨張係数が異なる第1層101と第2層102との層間の部分を含む第1層間部分105に対して、入熱量が小さくなるようにレーザ光Lを照射することで、第2層102と第1層101との層間における熱膨張量を抑制して、層間の引張応力を抑制する。これにより、層間剥離を抑制しつつ、母材100を適切に切断することができる。さらに、第1層101への入熱量を第1層間部分105への入熱量よりも大きくすることで、熱膨張量が低い第1層101を高速で加工することも可能となる。
 また、本実施形態に係るレーザ加工方法は、第2層102の積層方向における表面102Aから層間近傍位置102Cまでの部分に対して、第2条件でレーザ光Lを照射して、第2層102を切断するステップをさらに含む。第1層間条件は、第2条件よりもレーザ光Lによる入熱量が低い条件である。本実施形態に係るレーザ加工方法は、表面の第2層102を切断する際の入熱量を第1層間部分105への入熱量より大きくすることで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 また、第1条件と第2条件とは、レーザ光Lによる入熱量が異なる。熱膨張率が異なる層毎に入熱量を異ならせることで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 本実施形態に係るレーザ加工方法は、第2層102の表面102Aから層間近傍位置102Cまでの部分に対して、第1層間条件でレーザ光Lを照射して、第2層102を切断するステップを含んでよい。このように第2層102から第1層間部分105までにわたって第1層間条件でレーザ光Lを照射することで、例えば第2層102が薄く形成されている場合に、第1層101と第2層102との層間部分への入熱量を抑えて、層間剥離をより好適に抑制できる。
 本実施形態に係るレーザ加工方法は、切断加工前の母材100に、切り出される製品100aと、製品100aが切り出された後の母材100である残部100bとの境界となる加工ラインIを設定するステップを更に含む。第2実施形態に係るレーザ加工方法は、第2層102及び第1層間部分105に対して、加工ラインI(ライン加工パス)に沿って第1層間条件でレーザ光Lを照射して、加工ラインIに沿って第2層102及び第1層間部分105を切断し、加工ラインI(ライン加工パス)よりも残部100b側の第2層102及び第1層間部分105に対して、第2条件でレーザ光Lを照射して、第2層102及び第1層間部分105を切断する。第2実施形態に係るレーザ加工方法は、加工ラインI(ライン加工パス)に沿った部分を第1層間条件でレーザ照射することで、製品100a側での層間剥離を抑制しつつ、母材100を適切に切断することができる。さらに、ライン加工パスより残部100b側では第2条件でレーザ照射することで、入熱量が小さい第1層間条件での加工を加工ラインI(ライン加工パス)に沿った部分のみに制限して、加工時間が長くなることを抑制できる。
 また、母材100は、第1層101の他方の表面101Bに、第1層101とは熱膨張係数が異なる第3層103が形成されていてよい。本実施形態に係るレーザ加工方法は、第2層間部分106を切断するステップをさらに含む。第2層間部分106は、第1層101の積層方向における表面101Bより内側の層間近傍位置101Dから、第1層101と第3層103との層間を経て、第3層103の表面103Bより内側の層間近傍位置103Cまでの部分である。第2層間条件は、第1条件よりもレーザ光Lによる入熱量が低い条件である。本実施形態に係るレーザ加工方法は、裏面の第3層103と第1層101との層間を切断する際の入熱量を小さくすることで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 また、本実施形態に係るレーザ加工方法は、第3層103の層間近傍位置103Cからの部分に対して、第2層間条件よりもレーザ光Lによる入熱量が高い第3条件でレーザ光Lを照射して、第3層103を切断するステップをさらに含む。本実施形態に係るレーザ加工方法は、裏面の第3層103を切断する際の入熱量を第2層間部分106への入熱量より大きくすることで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 また、本実施形態に係るレーザ加工方法は、第2層102、第1層間部分105、第1層101、第2層間部分106、及び第3層103の順で、切断するステップを実行する。このレーザ加工方法は、この順で切断ステップを実行することにより、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 本実施形態に係るレーザ加工方法は、第2層102をレーザ光Lが照射される側に配置した状態で、第2層102及び第1層間部分105を切断するステップを実行する。本実施形態に係るレーザ加工方法は、その後、第3層103をレーザ光Lが照射される側に配置して、第3層103及び第2層間部分106を切断するステップを実行する。本実施形態に係るレーザ加工方法は、その後、切断により露出した第1層101に対して、第1層101を切断するステップを実行する。このように、本実施形態に係るレーザ加工方法は、第2層102及び第1層間部分105を除去した後に、母材100をひっくり返してから第3層103及び第2層間部分106を除去して、その後に第1層101を除去する。このように、第3層103をレーザ光Lが照射される側に配置して切断加工を行うことで、第3層103と第1層101との境界が視認し易くなり、第3層103と第1層101とを、それぞれに合った適切なレーザ照射条件で、切断加工することができる。さらに、例えば第2層102と第3層103とで、レーザ照射条件が同じである場合は、第2層102と第3層103とを同じレーザ照射条件で切断加工した後、第1層101のレーザ照射条件で加工すればよくなる。この場合、レーザ照射条件の変更を1回で済ませることができるため、切断加工を容易にすることができる。
 本実施形態の母材100は、第1層101の他方の表面101Bに、第1層101と熱膨張係数が異なる第3層103が形成されている。本実施形態のレーザ加工方法は、第1層101及び第2層102の切断時に、第3層103に冷却媒体Fを供給して、第3層103を冷却する。本実施形態に係るレーザ加工方法によると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 また、第1層間条件と第1条件とは、レーザ光Lの出力とレーザ光Lの走査速度とレーザ光Lのスポット径との、少なくとも1つが異なる。本実施形態に係るレーザ加工方法は、レーザ光Lの出力とレーザ光Lの走査速度とレーザ光Lのスポット径の少なくとも1つを異ならせることで、適切に第1層間条件と第1条件とを設定することが可能となる。
 本実施形態のレーザ加工方法は、第1層101、及び第1層101の表面に積層されて第1層101と熱膨張係数が異なる第3層103(第2層)を含む母材100にレーザ光Lを照射して、母材100を切断する切断加工を行う。レーザ加工方法は、第3層103をレーザ光Lが照射される側と反対側に配置するステップと、第3層103に冷却媒体Fを供給して第3層103を冷却しつつ、第1層101にレーザ光Lを照射して、第1層101を切断するステップと、第1層101を切断した後に、第3層103にレーザ光Lを照射して第3層103を切断するステップと、を含む。本実施形態に係るレーザ加工方法によると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 また、本実施形態に係るレーザ加工装置1は、第1層101、及び第1層101の表面101Aに積層されて第1層101とは熱膨張係数が異なる第2層102を含む母材100にレーザ光Lを照射して、母材100を切断する切断加工を行う。レーザ加工装置1は、母材100にレーザ光Lを照射するレーザ照射装置10と、レーザ照射装置10の動作を制御する制御装置20と、を備える。制御装置20は、第1層間部分105に対して、所定の第1層間条件でレーザ光Lを照射して、第1層間部分105を切断し、第1層101の層間近傍位置101Cから積層方向(Z方向)の内側の部分に対して、第1条件でレーザ光Lを照射して、第1層101を切断する。第1層間条件は、第1条件よりもレーザ光Lによる入熱量が低い条件である。本実施形態に係るレーザ加工装置1は、第1層間部分105に対して、入熱量が小さくなるようにレーザ光Lを照射することで、層間剥離を抑制しつつ、母材100を適切に切断することができる。
 また、本実施形態に係るレーザ加工装置1aは、第1層101、及び第1層101の表面に積層されて第1層101と熱膨張係数が異なる第3層103(第2層)を含む母材100にレーザ光Lを照射して、母材100を切断する切断加工を行う。レーザ加工装置1は、母材100にレーザ光Lを照射するレーザ照射装置10と、母材100に冷却媒体Fを供給する冷却装置22と、レーザ照射装置10及び冷却装置22の動作を制御する制御装置20と、を備える。制御装置20は、レーザ光Lが照射される側と反対側に第3層103が配置された母材100に対し、第3層103に冷却媒体Fを供給させて第3層103を冷却しつつ、第1層101にレーザ光Lを照射させて、第1層101を切断する。そして、制御装置20は、第1層101を切断した後に、第3層103にレーザ光Lを照射させて、第3層103を切断する。本実施形態に係るレーザ加工装置1aによると、熱膨張係数が高い第3層103を冷却しながら切断加工を行うことで、第3層103の熱膨張を抑制して、第3層103の剥離を抑制できる。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 1 レーザ加工装置
 10 レーザ照射装置(レーザ照射部)
 12 走査光学系
 14 集光光学系
 16 支持台
 20 制御装置(制御部)
 100 母材
 100a 製品
 100b 残部
 101 第1層
 102 第2層
 103 第3層
 105 第1層間部分
 106 第2層間部分
 L レーザ光

Claims (14)

  1.  第1層、及び、前記第1層の一方の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工方法であって、
     前記第2層の表面より内側の層間近傍位置から、前記第2層と前記第1層との層間を経て、前記第1層の前記一方の表面より内側の層間近傍位置までの、第1層間部分に対して、所定の第1層間条件で前記レーザ光を照射して、前記第1層間部分を切断するステップと、
     前記第1層の層間近傍位置から内側の部分に対して、第1条件で前記レーザ光を照射して、前記第1層を切断するステップと、
     を含み、
     前記第1層間条件は、前記第1条件よりも前記レーザ光による入熱量が低い条件である、レーザ加工方法。
  2.  前記第2層の表面から前記層間近傍位置までの部分に対して、第2条件で前記レーザ光を照射して、前記第2層を切断するステップをさらに含み、
     前記第1層間条件は、前記第2条件よりも前記レーザ光による入熱量が低い条件である、請求項1に記載のレーザ加工方法。
  3.  前記第1条件と前記第2条件とは、前記レーザ光による入熱量が異なる、請求項2に記載のレーザ加工方法。
  4.  前記第2層の表面から前記層間近傍位置までの部分に対して、前記第1層間条件で前記レーザ光を照射して、前記第2層を切断するステップをさらに含む、
    請求項1に記載のレーザ加工方法。
  5.  前記切断加工前の前記母材に、切り出される製品と、前記製品が切り出された後の前記母材である残部との境界となる加工ラインを設定するステップを更に含み、
    前記第2層及び前記第1層間部分に対して、前記加工ラインに沿って前記第1層間条件で前記レーザ光を照射して、前記加工ラインに沿って前記第2層及び前記第1層間部分を切断し、
     前記加工ラインよりも前記残部側の前記第2層及び前記第1層間部分に対して、前記第1層間条件よりも前記レーザ光による入熱量が高い第2条件で前記レーザ光を照射して、前記第2層及び前記第1層間部分を切断する、請求項1に記載のレーザ加工方法。
  6.  前記母材は、前記第1層の他方の表面に、前記第1層とは熱膨張係数が異なる第3層が形成されており、
     前記第1層の前記他方の表面より内側の層間近傍位置から、前記第1層と前記第3層との層間を経て、前記第3層の表面より内側の層間近傍位置までの、第2層間部分に対して、所定の第2層間条件で前記レーザ光を照射して、前記第2層間部分を切断するステップと、
    を更に含み、
     前記第2層間条件は、前記第1条件よりも前記レーザ光による入熱量が低い条件である、請求項1から請求項5のいずれか1項に記載のレーザ加工方法。
  7.  前記第3層の層間近傍位置からの部分に対して、前記第2層間条件よりも前記レーザ光による入熱量が高い第3条件で前記レーザ光を照射して、前記第3層を切断するステップをさらに含む、請求項6に記載のレーザ加工方法。
  8.  前記第2層、前記第1層間部分、前記第1層、前記第2層間部分、及び前記第3層の順で、切断するステップを実行する、請求項7に記載のレーザ加工方法。
  9.  前記第2層を前記レーザ光が照射される側に配置した状態で、前記第2層及び前記第1層間部分を切断するステップを実行し、
     その後、前記第3層を前記レーザ光が照射される側に配置して、前記第3層及び前記第2層間部分を切断するステップを実行し、
     その後、切断により露出した前記第1層に対して、前記第1層を切断するステップを実行する、請求項7に記載のレーザ加工方法。
  10.  前記母材は、前記第1層の他方の表面に、前記第1層とは熱膨張係数が異なる第3層が形成されており、
     前記第1層及び前記第2層の切断時に、前記第3層に冷却媒体を供給して前記第3層を冷却する、請求項7に記載のレーザ加工方法。
  11.  前記第1層間条件と前記第1条件とは、前記レーザ光の出力と、前記レーザ光の走査速度と、前記レーザ光のスポット径との、少なくとも1つが異なる、請求項1から請求項10のいずれか1項に記載のレーザ加工方法。
  12.  第1層、及び、前記第1層の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工方法であって、
     前記第2層を前記レーザ光が照射される側と反対側に配置するステップと、
     前記第2層に冷却媒体を供給して前記第2層を冷却しつつ、前記第1層に前記レーザ光を照射して、前記第1層を切断するステップと、
     前記第1層を切断した後に、前記第2層に前記レーザ光を照射して、前記第2層を切断するステップと、
     を含む、レーザ加工方法。
  13.  第1層、及び、前記第1層の一方の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工装置であって、
     前記母材に前記レーザ光を照射するレーザ照射部と、
     前記レーザ照射部の動作を制御する制御部と、を備え、
     前記制御部は、
     前記第2層の表面より内側の層間近傍位置から、前記第2層と前記第1層との層間を経て、前記第1層の前記一方の表面より内側の層間近傍位置までの、第1層間部分に対して、所定の第1層間条件で前記レーザ光を照射させて、前記第1層間部分を切断し、
     前記第1層の層間近傍位置から内側の部分に対して、第1条件で前記レーザ光を照射させて、前記第1層を切断し、
     前記第1層間条件は、前記第1条件よりも前記レーザ光による入熱量が低い条件である、
     レーザ加工装置。
  14.  第1層、及び、前記第1層の表面に積層されて前記第1層とは熱膨張係数が異なる第2層を含む母材にレーザ光を照射して、前記母材を切断する切断加工を行うレーザ加工装置であって、
     前記母材に前記レーザ光を照射するレーザ照射部と、
     前記母材に冷却媒体を供給する冷却部と、
     前記レーザ照射部及び前記冷却部の動作を制御する制御部と、を備え、
     前記制御部は、
     前記レーザ光が照射される側と反対側に前記第2層が配置された前記母材に対し、前記第2層に前記冷却媒体を供給させて前記第2層を冷却しつつ、前記第1層に前記レーザ光を照射させて、前記第1層を切断し、
     前記第1層を切断した後に、前記第2層に前記レーザ光を照射させて、前記第2層を切断する、
     レーザ加工装置。
PCT/JP2019/045830 2019-11-22 2019-11-22 レーザ加工方法及びレーザ加工装置 WO2021100201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/045830 WO2021100201A1 (ja) 2019-11-22 2019-11-22 レーザ加工方法及びレーザ加工装置
US17/777,779 US20220410319A1 (en) 2019-11-22 2019-11-22 Laser processing method and laser processing device
EP19953018.9A EP4046742A4 (en) 2019-11-22 2019-11-22 LASER PROCESSING METHOD AND LASER PROCESSING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045830 WO2021100201A1 (ja) 2019-11-22 2019-11-22 レーザ加工方法及びレーザ加工装置

Publications (1)

Publication Number Publication Date
WO2021100201A1 true WO2021100201A1 (ja) 2021-05-27

Family

ID=75981575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045830 WO2021100201A1 (ja) 2019-11-22 2019-11-22 レーザ加工方法及びレーザ加工装置

Country Status (3)

Country Link
US (1) US20220410319A1 (ja)
EP (1) EP4046742A4 (ja)
WO (1) WO2021100201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211796A1 (en) * 2022-04-28 2023-11-02 Meta Platforms Technologies, Llc Glass-film lamination and cutting method to mitigate orange peel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327885A (ja) * 1989-06-22 1991-02-06 Canon Inc レーザーによる加工方法
JP2006167727A (ja) * 2004-12-13 2006-06-29 Sanko Gosei Ltd エアーバッグ展開用開放部のための脆弱ライン加工方法及び装置
JP2007021526A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd レーザ加工装置
JP2007021527A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd レーザ加工方法
JP2009227166A (ja) 2008-03-24 2009-10-08 Mitsubishi Heavy Ind Ltd 航空機組立品
JP2016107574A (ja) 2014-12-09 2016-06-20 国立研究開発法人産業技術総合研究所 繊維強化複合材料の高速レーザー加工方法及びその高速レーザー加工装置
JP2017069243A (ja) * 2015-09-28 2017-04-06 日本特殊陶業株式会社 積層体のレーザ除去加工方法
JP2017154145A (ja) * 2016-02-29 2017-09-07 国立大学法人大阪大学 炭素繊維複合材料の加工方法および加工装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125397B4 (de) * 2001-05-23 2005-03-03 Siemens Ag Verfahren zum Bohren von Mikrolöchern mit einem Laserstrahl
KR101412850B1 (ko) * 2010-05-27 2014-06-30 미쓰비시덴키 가부시키가이샤 레이저 가공방법 및 레이저 가공기
JP7182362B2 (ja) * 2018-01-12 2022-12-02 日東電工株式会社 複合材の分断方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327885A (ja) * 1989-06-22 1991-02-06 Canon Inc レーザーによる加工方法
JP2006167727A (ja) * 2004-12-13 2006-06-29 Sanko Gosei Ltd エアーバッグ展開用開放部のための脆弱ライン加工方法及び装置
JP2007021526A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd レーザ加工装置
JP2007021527A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd レーザ加工方法
JP2009227166A (ja) 2008-03-24 2009-10-08 Mitsubishi Heavy Ind Ltd 航空機組立品
JP2016107574A (ja) 2014-12-09 2016-06-20 国立研究開発法人産業技術総合研究所 繊維強化複合材料の高速レーザー加工方法及びその高速レーザー加工装置
JP2017069243A (ja) * 2015-09-28 2017-04-06 日本特殊陶業株式会社 積層体のレーザ除去加工方法
JP2017154145A (ja) * 2016-02-29 2017-09-07 国立大学法人大阪大学 炭素繊維複合材料の加工方法および加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4046742A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211796A1 (en) * 2022-04-28 2023-11-02 Meta Platforms Technologies, Llc Glass-film lamination and cutting method to mitigate orange peel

Also Published As

Publication number Publication date
EP4046742A4 (en) 2022-12-07
EP4046742A1 (en) 2022-08-24
US20220410319A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
BR112019000361B1 (pt) Método para processar uma peça de trabalho com um feixe de laser e aparelho de processamento a laser
EP2465634B1 (en) Laser machining device and laser machining method
US10792759B2 (en) Laser processing method and laser processing apparatus
KR100864863B1 (ko) 멀티 레이저 시스템
KR102064697B1 (ko) 가공 장치 및 가공 방법
US20220241901A1 (en) Manufacturing method of processed resin substrate and laser processing apparatus
US9312178B2 (en) Method of dicing thin semiconductor substrates
WO2010123068A1 (ja) レーザ加工装置及びレーザ加工方法
JP2013180295A (ja) 加工装置及び加工方法
JP2012071314A (ja) 複合材の加工方法及び複合材の加工装置
KR20130058604A (ko) 취성 재료 기판의 스크라이브 방법 및 취성 재료 기판의 스크라이브 장치
KR20160108148A (ko) 적층 기판의 가공 방법 및 레이저광에 의한 적층 기판의 가공 장치
WO2021100201A1 (ja) レーザ加工方法及びレーザ加工装置
JP2010201479A (ja) レーザ光加工装置及びレーザ光加工方法
CN112368104A (zh) 焊接方法以及焊接装置
WO2015098388A1 (ja) 加工装置
WO2018110415A1 (ja) レーザ加工装置及びレーザ加工方法
CN110936027B (zh) 一种激光切割方法及激光切割装置
WO2020241276A1 (ja) 加工方法および加工装置
WO2020245956A1 (ja) レーザ加工方法及びレーザ加工装置
WO2014155846A1 (ja) 加工装置
JP2013176800A (ja) 加工装置及び加工方法
JP2021133399A (ja) レーザ加工装置、レーザ加工方法、およびレーザ加工装置の制御方法
US20230158608A1 (en) Equipment and method for cutting substrate
WO2020245957A1 (ja) レーザ加工方法及びレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019953018

Country of ref document: EP

Effective date: 20220520

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP