WO2021098921A1 - Mehrflutige flügelzellenpumpe - Google Patents

Mehrflutige flügelzellenpumpe Download PDF

Info

Publication number
WO2021098921A1
WO2021098921A1 PCT/DE2020/200101 DE2020200101W WO2021098921A1 WO 2021098921 A1 WO2021098921 A1 WO 2021098921A1 DE 2020200101 W DE2020200101 W DE 2020200101W WO 2021098921 A1 WO2021098921 A1 WO 2021098921A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane pump
flow vane
connection
rotor
pump
Prior art date
Application number
PCT/DE2020/200101
Other languages
English (en)
French (fr)
Inventor
Thilo MAUSER
Sergej BERG
Original Assignee
Hanon Systems Efp Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanon Systems Efp Deutschland Gmbh filed Critical Hanon Systems Efp Deutschland Gmbh
Priority to JP2021570415A priority Critical patent/JP2022534112A/ja
Priority to CN202080024209.5A priority patent/CN113631815A/zh
Priority to US17/594,558 priority patent/US20230304495A1/en
Publication of WO2021098921A1 publication Critical patent/WO2021098921A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • F04C11/003Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the invention relates to a multi-flow vane pump.
  • Vane pumps are often used, for example in the automotive sector, to deliver a hydraulic fluid, in particular oil. Such pumps can be used, for example, as power steering pumps or gear pumps.
  • Such a vane pump is known from DE 1553 283 A and has a hydraulic connection between the point of the smallest distance from the axis of the rotor and the point of greatest distance from the axis of the rotor.
  • US Pat. No. 9,366,251 B2 relates to a multi-flow vane pump. These are usually constructed symmetrically, in other words, several pumps, each with a suction and an outlet area, are arranged around the rotor axis. As a result, their hydraulic and mechanical forces can balance each other, and no transverse forces arise, at least theoretically, on the rotor, its shaft, or the surrounding cam ring. Worry in practice however, manufacturing-related tolerances ensure that the components mentioned and their geometry are not symmetrical. This generates asymmetrical pressures and thus asymmetrical forces during operation. Air bubbles in the pumped oil or an uneven supply of oil to the suction areas have similar effects. As a result of such imbalances with regard to the forces, there is increased noise and wear. This has hitherto been counteracted by comparatively narrow tolerances and / or notches at the pressure outlet in order to keep pressure fluctuations low.
  • the invention is based on the object of creating a multi-flow vane pump which is improved in terms of noise development and / or wear.
  • this is characterized in that at least two points along the direction of rotation of the rotor, at which essentially the same pressure prevails during operation, and which are spaced from the inlets and outlets, are hydraulically connected to one another.
  • the measure according to the invention differs from the measure customary in multi-flow or multi-stroke vane pumps of connecting the multiple inlets and outlets to one another.
  • areas within the vane pump are hydraulically connected to one another which, at least theoretically, have the same cell pressure and are spaced apart from inlets and outlets.
  • the number of flows which are provided in the pump according to the invention is arbitrary, in particular it can be a two-, three-, four- or multi-flow vane pump.
  • a two-, four- or other even-flow vane pump diagonally opposite cells are connected, and with a three- or five-flow pump it is, for example, the 120 ° resp.
  • the hydraulic connection is preferably designed in the form of openings, in particular bores and / or grooves in the rotor and / or the cam ring and / or at least one side plate.
  • suitable grooves can be made in the cam ring, which are metallically sealed by the side plates.
  • openings can be formed in the side plates, for example drilled or formed by an additive manufacturing process. The same manufacturing processes are suitable for the formation of openings in the rotor for the production of the hydraulic connection according to the invention. This can in particular be formed between all cells in which theoretically the same pressure is present during operation, or by connecting only some of these cells.
  • connection according to the invention is always present, while if openings or the like are formed in the cam ring or a side plate, when the opening provided for the hydraulic connection is passed by a wing of the pump, there is an interruption the connection takes place. It is expected, however, that this does not significantly impair the effect according to the invention.
  • the effects according to the invention can be used particularly extensively if at least two openings or grooves are at the same distance from the rotor axis. This also simplifies production.
  • a weakening of the rotor and the side plates can advantageously be avoided by a connection which runs in particular in the cam ring and is at least partially formed in the circumferential direction.
  • the preferred measure does not result in any increased space requirement if at least one connection is designed to surround a bolt.
  • an additive manufacturing method for the formation of the, at least in certain application cases, comparatively complex contours which form the connection according to the invention, an additive manufacturing method also develops its advantages.
  • Figure 2 is a cross-sectional view of a second
  • FIG. 3 shows a longitudinal sectional view of a pump according to the invention similar to the first embodiment
  • Figure 4 is a cross-sectional view of a third
  • Fig. 5 is a cross-sectional view of a fourth
  • the double-flow vane pump 10 in the case shown conveys hydraulic fluid from a reservoir 12.
  • two lines 14 are formed to the respective suction or inlet area 16, and two lines 18 extend in a similar manner from the respective outlet area 20, which are connected to one another.
  • FIG. 1 it can be seen that areas or cells which are spaced apart from inlet 16 and outlet 20 and, due to the double-flow design of the pump, are diametrically opposite, are hydraulically connected to one another by means of the indicated connection 26.
  • openings 28 are formed in a side plate (40, see FIG. 3) in the case shown.
  • the direction of rotation is indicated by the arrow in the area of the rotor. In FIG. 2 this is opposite to that of FIG. In Fig.
  • a three-flow vane pump 10 which has a rotor 30 with slots 32 in a known manner, in each of which a vane 34 is movably received in the radial direction.
  • the embodiment of FIG. 2 has three inlets 16 and three outlets 20. These are formed in a known manner in a cam ring 36.
  • points which are spaced apart from inlets 16 and outlets 18 and at which theoretically the same pressure exist are provided with openings 28 in order to hydraulically connect them to one another.
  • these openings 28 are spaced apart from one another by 120 °. The preferred measure can also be seen, according to which the openings are at the same distance from the rotor axis.
  • connection 26 schematically drawn in FIG. 1 is formed in one of the side plates 40 in the form of a radially extending groove and connects the two openings 28 to one another.
  • the side plate 40 provided with the groove is closed with a cover 42, and the cover 42, together with the two side plates 40, the rotor 30 and the cam ring 36, is received in a substantially pot-shaped housing 44.
  • connection according to the invention can also be designed in the form of radial connections in the rotor 30 or in the cam ring 36 in the form of a circumferential connection between three cells, as follows for a double-flow Vane pump described and shown in Fig. 4 and 5 respectively.
  • connection 26 for the pressure equalization described above in the rotor 30 and in particular also its shaft 38 is formed.
  • the connection 26 is advantageously designed as a straight through bore. For a complete pressure equalization in the area of all cells, the connection would have to be repeated for each cell pair.
  • connection 26 is formed in the cam ring 36.
  • the connection 26 is designed concentrically to the outer contour of the cam ring 36 over a wide course and is connected to the respective cell of the pump by means of a short radial connection.
  • this connection 26 can be designed to surround a bolt, which can be seen as a circle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Eine mehrflutige Flügelzellenpumpe (10) weist zumindest zwei Stellen (Öffnungen 28) entlang der Drehrichtung des Rotors (30) auf, an denen im Betrieb im Wesentlichen der gleiche Druck herrscht, und die von Ein- (16) und Auslässen (20) beabstandet und hydraulisch miteinander verbunden sind (Verbindung 26).

Description

Mehrflutige Flügelzellenpumpe
Technisches Gebiet
Die Erfindung betrifft eine mehrflutige Flügelzellenpumpe.
Flügelzellenpumpen werden häufig, beispielsweise im Automobilbereich, verwendet, um eine Hydraulikflüssigkeit, insbesondere Öl zu fördern. Derartige Pumpen können beispielsweise als Lenkhelf- oder Getriebepumpen eingesetzt werden.
Stand der Technik
Eine derartige Flügelzellenpumpe ist aus der DE 1553 283 A bekannt und weist eine hydraulische Verbindung zwischen der Stelle des geringsten Abstandes von der Achse des Rotors und der Stelle des größten Abstandes von der Achse des Rotors auf.
Die US 9,366,251 B2 betrifft eine mehrflutige Flügelzellenpumpe. Diese sind üblicherweise symmetrisch aufgebaut, mit anderen Worten sind mehrere Pumpen mit jeweils einem Saug- und einem Auslassbereich um die Rotorachse herum angeordnet. Hierdurch können sich deren hydraulische und mechanische Kräfte ausgleichen, und weder auf den Rotor, noch dessen Welle, noch den umgebenden Hubring entstehen, zumindest theoretisch, Querkräfte. In der Praxis sorgen jedoch fertigungsbedingte Toleranzen dafür, dass die genannten Bauteile und deren Geometrie nicht symmetrisch sind. Dies erzeugt im Betrieb asymmetrische Drücke und damit asymmetrische Kräfte. Ähnliche Wirkungen haben Luftblasen im geförderten Öl oder eine ungleiche Versorgung der Saugbereiche mit Öl. Infolge derartiger Ungleichgewichte im Hinblick auf die Kräfte kommt es zu erhöhter Geräuschentwicklung und Verschleiß. Dem wird bislang durch vergleichsweise enge Toleranzen und/oder Kerben am Druckauslass entgegengewirkt, um Druckschwankungen gering zu halten.
Darstellung der Erfindung
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine mehrflutige Flügelzellenpumpe zu schaffen, die im Hinblick auf Geräuschentwicklung und/oder Verschleiß verbessert ist.
Die Lösung dieser Aufgabe erfolgt durch die im Patentanspruch 1 beschriebene mehrflutige Flügelzellenpumpe.
Demzufolge zeichnet sich diese dadurch aus, dass zumindest zwei Stellen entlang der Drehrichtung des Rotors, an denen im Betrieb im Wesentlichen der gleiche Druck herrscht, und die von Ein- und Auslässen beabstandet sind, hydraulisch miteinander verbunden sind. Mit anderen Worten unterscheidet sich die erfindungsgemäße Maßnahme von der bei mehrflutigen oder mehrhubigen Flügelzellenpumpen üblichen Maßnahme, die mehreren Ein- und Auslässe jeweils miteinander zu verbinden. Vielmehr werden erfindungsgemäß Bereiche innerhalb der Flügelzellenpumpe hydraulisch miteinander verbunden, die, zumindest theoretisch, den gleichen Zelldruck aufweisen und von Ein- und Auslässen beabstandet sind. Hierdurch können Ungleichgewichte im Hinblick auf den Druck, wodurch diese auch immer hervorgerufen sein mögen, zumindest teilweise ausgeglichen und egalisiert werden, so dass Geräuschentwicklung und Verschleiß in vorteilhafter Weise verringert werden.
Wie nachfolgend genauer erläutert, ist dies durch vergleichsweise kostengünstige Maßnahmen möglich. Hierbei ist die Anzahl der Fluten, die in der erfindungsgemäßen Pumpe vorgesehen sind, beliebig, insbesondere kann es sich um eine zwei-, drei-, vier- oder mehrflutige Flügelzellenpumpe handeln. Bei einer zwei-, vier- oder einer anderen geradzahlig-flutigen Flügelzellenpumpe sind diagonal gegenüberliegende Zellen verbunden, und bei einer drei- oder fünfflutigen Pumpe sind es beispielsweise die um 120° bzw.
72° und in jedem Fall in Umfangsrichtung gleichmäßig voneinander beabstandeten Zellen.
Bevorzugt ist die hydraulische Verbindung in Form von Öffnungen, insbesondere Bohrungen und/oder Nuten in dem Rotor und/oder dem Hubring und/oder zumindest einer Seitenplatte ausgebildet. Insbesondere können in den Hubring geeignete Nuten eingelassen sein, die durch die Seitenplatten metallisch abgedichtet werden. Ferner können in den Seitenplatten Öffnungen ausgebildet, beispielsweise gebohrt oder durch ein additives Fertigungsverfahren ausgebildet sein. Die gleichen Fertigungsverfahren eignen sich für die Ausbildung von Öffnungen in dem Rotor zur Herstellung der erfindungsgemäßen hydraulischen Verbindung. Diese kann insbesondere zwischen sämtlichen Zellen, in denen im Betrieb theoretisch der gleiche Druck vorliegt, oder durch Verbindung nur mancher dieser Zellen ausgebildet werden. Bei einer Ausbildung von Öffnungen oder dergleichen im Rotor besteht der Vorteil, dass die erfindungsgemäße Verbindung stets vorhanden ist, während bei einer Ausbildung von Öffnungen oder dergleichen im Hubring oder einer Seitenplatte beim Überfahren der für die hydraulische Verbindung vorgesehenen Öffnung durch einen Flügel der Pumpe eine Unterbrechung der Verbindung erfolgt. Es wird jedoch erwartet, dass dies dem erfindungsgemäßen Effekt nicht nennenswert beeinträchtigt. Besonders umfangreich können die erfindungsgemäßen Effekte genutzt werden, wenn zumindest zwei Öffnungen oder Nuten von der Rotorachse den gleichen Abstand aufweisen. Hierdurch wird ergänzend die Herstellung vereinfacht.
Eine besonders gute Funktionalität und Herstellbarkeit wird für zumindest eine radial verlaufende Bohrung oder Nut und/oder eine axiale Öffnung erwartet, insbesondere wenn diese geradlinig ausgeführt ist.
In anderen Anwendungsfällen kann durch eine insbesondere in dem Hubring verlaufende, zumindest teilweise in Umfangsrichtung ausgebildete Verbindung eine Schwächung des Rotors und der Seitenplatten in vorteilhafter Weise vermieden werden.
In diesem Fall ergibt sich durch die bevorzugte Maßnahme kein erhöhter Platzbedarf, wenn zumindest eine Verbindung einen Bolzen umgebend ausgeführt ist.
Für die Handhabung und den Zusammenbau der erfindungsgemäßen Pumpe bietet es ferner Vorteile, wenn diese einen die Seitenplatte verschließenden Deckel und/oder ein im Wesentlichen topfförmiges Gehäuse aufweist.
Für die Ausbildung der, zumindest in bestimmten Anwendungsfällen, vergleichsweise komplexen Konturen, welche die erfindungsgemäße Verbindung bilden, entfaltet ferner ein additives Fertigungsverfahren seine Vorteile.
Kurze Beschreibung der Zeichnungen
Nachfolgend wird die Erfindung anhand von beispielhaft in den Figuren dargestellten Ausführungsformen näher erläutert. Es zeigen: Fig. 1 eine hydraulische Prinzipskizze mit einer ersten Ausführungsform der erfindungsgemäßen Pumpe;
Fig. 2 eine Querschnittsansicht einer zweiten
Ausführungsform der erfindungsgemäßen Pumpe,
Fig. 3 eine Längsschnittansicht einer erfindungsgemäßen Pumpe ähnlich der ersten Ausführungsform,
Fig. 4 eine Querschnittsansicht einer dritten
Ausführungsform der erfindungsgemäßen Pumpe; und
Fig. 5 eine Querschnittsansicht einer vierten
Ausführungsform der erfindungsgemäßen Pumpe.
Ausführliche Beschreibung bevorzugter Ausführungsform der Erfindung
Wie in Fig. 1 zu erkennen ist, fördert die in dem gezeigten Fall zweiflutige Flügelzellenpumpe 10 Hydraulikflüssigkeit aus einem Reservoir 12. Zu diesem Zweck sind zwei Leitungen 14 zu dem jeweiligen Saug- oder Einlassbereich 16 ausgebildet, und in ähnlicher Weise erstrecken sich zwei Leitungen 18 von dem jeweiligen Auslassbereich 20, die miteinander verbunden sind.
Der Aufbau der Flügelzellenpumpe 10 ist nachfolgend unter Bezugnahme auf Fig. 2 näher erläutert. In Fig. 1 ist jedoch zu erkennen, dass Bereiche oder Zellen, die von Ein- 16 und Auslass 20 beabstandet sind und aufgrund der zweiflutigen Ausführung der Pumpe diametral gegenüber liegen mittels der angezeigten Verbindung 26 hydraulisch miteinander verbunden sind. Zu diesem Zwecke sind in dem gezeigten Fall in einer Seitenplatte (40, vgl. Fig 3) Öffnungen 28 ausgebildet. Mit dem Pfeil im Bereich des Rotors ist die Drehrichtung angedeutet . In Fig. 2 ist diese zu derjenigen von Fig. 1 entgegengesetzt. In Fig. 2 ist eine dreiflutige Flügelzellenpumpe 10 dargestellt, die in bekannter Weise einen Rotor 30 mit Schlitzen 32 aufweist, in denen jeweils ein Flügel 34 in Radialrichtung beweglich aufgenommen ist. Entsprechend der dreiflutigen Ausbildung weist die Ausführungsform von Fig. 2 drei Einlässe 16 und drei Auslässe 20 auf. Diese sind in bekannter Weise in einem Hubring 36 ausgebildet. Entsprechend der in Fig. 1 gezeigten Ausführungsformen sind Stellen, die von Ein- 16 und Auslässen 18 beabstandet sind, und an denen theoretisch der gleiche Druck vorliegt, mit Öffnungen 28 versehen, um sie hydraulisch miteinander zu verbinden. Entsprechend der dreiflutigen Ausführung der in Fig. 2 gezeigten Flügelzellenpumpe sind diese Öffnungen 28 um 120° voreinander beabstandet. Es ist ferner die bevorzugte Maßnahme zu erkennen, wonach die Öffnungen von der Rotorachse den gleichen Abstand aufweisen.
Wie in Fig. 3 zu erkennen ist, ist in einer der Seitenplatten 40 die in Figur 1 schematisch eingezeichnete Verbindung 26 in Form einer radial verlaufenden Nut ausgebildet und verbindet die beiden Öffnungen 28 miteinander. Die mit der Nut versehene Seitenplatte 40 ist mit einem Deckel 42 verschlossen, und der Deckel 42 ist zusammen mit den beiden Seitenplatten 40, dem Rotor 30 und dem Hubring 36 in einem im wesentlichen topfförmigen Gehäuse 44 aufgenommen.
Wenngleich dies für die dreiflutige Pumpe der Fig. 2 nicht gezeigt ist, kann die erfindungsgemäße Verbindung auch in Form radialer Verbindungen in dem Rotor 30 oder in dem Hubring 36 in Form einer in Umfangsrichtung verlaufenden Verbindung zwischen drei Zellen ausgeführt sein, wie nachfolgend für eine zweiflutige Flügelzellenpumpe beschrieben und in Fig. 4 bzw. 5 dargestellt.
In Fig. 4 ist eine der Ausführungsform von Fig. 1 ähnliche Flügelzellenpumpe 10 dargestellt, bei der jedoch die Verbindung 26 für den oben beschriebenen Druckausgleich in dem Rotor 30 und insbesondere auch dessen Welle 38 ausgebildet ist. In vorteilhafter Weise ist die Verbindung 26 als geradlinig durchgehende Bohrung ausgeführt. Für einen vollständigen Druckausgleich im Bereich sämtlicher Zellen müsste die Verbindung für jedes Zellenpaar wiederholt werden.
In Fig. 5 ist schließlich eine weitere Ausführungsform zu erkennen, bei der die Verbindung 26 in dem Hubring 36 ausgebildet ist. Wie in Fig. 5 zu erkennen ist, ist die Verbindung 26 über einen weiten Verlauf konzentrisch zu der Außenkontur des Hubrings 36 ausgeführt und mittels einer kurzen radialen Verbindung mit der jeweiligen Zelle der Pumpe verbunden. Im linken unteren Bereich von Fig. 5 ist zu erkennen, dass diese Verbindung 26 einen Bolzen, der als Kreis zu erkennen ist, umgebend ausgebildet sein kann.

Claims

Patentansprüche
1. Mehrflutige Flügelzellenpumpe (10), bei der zumindest zwei Stellen (Öffnungen 28) entlang der Drehrichtung des Rotors (30), an denen im Betrieb im Wesentlichen der gleiche Druck herrscht, und die von Ein- (16) und Auslässen (20) beabstandet sind, hydraulisch miteinander verbunden sind (Verbindung 26).
2. Mehrflutige Flügelzellenpumpe (10) nach Anspruch 1, dadurch g e k e n n z e i c h n e t, dass zumindest eine Verbindung (26) in Form von Öffnungen (28), insbesondere Bohrungen und/oder Nuten in dem Rotor (30) und/oder dem Hubring (36) und/oder zumindest einer Seitenplatte (40) ausgebildet ist.
3. Mehrflutige Flügelzellenpumpe (10) nach Anspruch 2, dadurch g e k e n n z e i c h n e t, dass zumindest zwei Öffnungen (28) oder Nuten von der Rotorachse den gleichen Abstand aufweisen.
4. Mehrflutige Flügelzellenpumpe (10) nach Anspruch 2 oder
3, dadurch g e k e n n z e i c h n e t, dass zumindest eine Bohrung oder Nut radial verläuft und/oder zumindest eine Öffnung (28) axial ausgebildet ist.
5. Mehrflutige Flügelzellenpumpe (10) nach Anspruch 4, dadurch g e k e n n z e i c h n e t, dass zumindest eine Bohrung, Öffnung (28) oder Nut geradlinig ausgebildet ist.
6. Mehrflutige Flügelzellenpumpe (10) nach einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass zumindest eine Verbindung (26) zumindest teilweise in Umfangsrichtung verläuft.
7. Mehrflutige Flügelzellenpumpe (10) nach zumindest einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass zumindest eine Verbindung (26) einen Bolzen umgibt.
8. Mehrflutige Flügelzellenpumpe (10) nach einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass zumindest eine Seitenplatte (40) mit einem Deckel (42) verschlossen ist.
9. Mehrflutige Flügelzellenpumpe (10) nach zumindest einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass die Pumpe ein im Wesentlichen topfförmiges Gehäuse (44) aufweist.
10. Mehrflutige Flügelzellenpumpe (10) nach einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, dass zumindest eine Verbindung (26) mittels eines additiven Fertigungsverfahrens hergestellt ist.
PCT/DE2020/200101 2019-11-22 2020-11-13 Mehrflutige flügelzellenpumpe WO2021098921A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021570415A JP2022534112A (ja) 2019-11-22 2020-11-13 多重流れベーンポンプ
CN202080024209.5A CN113631815A (zh) 2019-11-22 2020-11-13 多流道叶片泵
US17/594,558 US20230304495A1 (en) 2019-11-22 2020-11-13 Multiple-flow vane cell pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019218034.5A DE102019218034B4 (de) 2019-11-22 2019-11-22 Mehrflutige Flügelzellenpumpe
DE102019218034.5 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098921A1 true WO2021098921A1 (de) 2021-05-27

Family

ID=73654594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/200101 WO2021098921A1 (de) 2019-11-22 2020-11-13 Mehrflutige flügelzellenpumpe

Country Status (5)

Country Link
US (1) US20230304495A1 (de)
JP (1) JP2022534112A (de)
CN (1) CN113631815A (de)
DE (1) DE102019218034B4 (de)
WO (1) WO2021098921A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2653551A (en) * 1947-12-22 1953-09-29 New York Air Brake Co Fluid pump
US2711698A (en) * 1952-03-07 1955-06-28 Vickers Inc Power transmission
DE1553283A1 (de) 1964-08-17 1969-09-25 Zahnradfabrik Friedrichshafen Fluegelzellen-Kapselwerk
US9366251B2 (en) 2011-10-03 2016-06-14 Kyb Corporation Vane pump with a vane ring, a vane ring housing chamber and vane ring opposite pressure chambers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2832199A (en) * 1953-04-30 1958-04-29 American Brake Shoe Co Vane pump
US3401641A (en) * 1966-02-16 1968-09-17 American Brake Shoe Co Three area vane type hydraulic pump having force modulating flow restrictor means
US3299823A (en) * 1966-07-05 1967-01-24 Samuel J E Marshall Pumps
US3481276A (en) 1967-11-27 1969-12-02 Abex Corp Vane tracking in hydraulic pumps
EP0399387B1 (de) * 1989-05-24 1992-09-30 Vickers Incorporated Flügelzellenmaschine
US6896489B2 (en) * 2000-12-12 2005-05-24 Borgwarner Inc. Variable displacement vane pump with variable target regulator
DE102014222322B3 (de) 2014-10-31 2016-02-04 Magna Powertrain Bad Homburg GmbH Flügelzellenpumpe mit verbessertem Startverhalten
DE102015217169A1 (de) 2015-09-09 2017-03-09 Zf Friedrichshafen Ag Hydrauliksystem für ein Automatikgetriebe
JP6220837B2 (ja) 2015-11-02 2017-10-25 Kyb株式会社 ベーンポンプ
DE102016211913A1 (de) 2016-06-30 2018-01-18 Schwäbische Hüttenwerke Automotive GmbH Flügelzellenpumpe mit druckbeaufschlagbarem Unterflügelbereich
CN106122001A (zh) * 2016-07-29 2016-11-16 李钢 径向力平衡的叶片泵
JP6948195B2 (ja) 2017-09-13 2021-10-13 日立Astemo株式会社 ポンプ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2653551A (en) * 1947-12-22 1953-09-29 New York Air Brake Co Fluid pump
US2711698A (en) * 1952-03-07 1955-06-28 Vickers Inc Power transmission
DE1553283A1 (de) 1964-08-17 1969-09-25 Zahnradfabrik Friedrichshafen Fluegelzellen-Kapselwerk
US9366251B2 (en) 2011-10-03 2016-06-14 Kyb Corporation Vane pump with a vane ring, a vane ring housing chamber and vane ring opposite pressure chambers

Also Published As

Publication number Publication date
CN113631815A (zh) 2021-11-09
JP2022534112A (ja) 2022-07-27
DE102019218034A1 (de) 2021-05-27
US20230304495A1 (en) 2023-09-28
DE102019218034B4 (de) 2021-07-29

Similar Documents

Publication Publication Date Title
EP2273124B1 (de) Zentrifugalpumpe und Verfahren zum Ausgleichen des axialen Schubs in einer Zentrifugalpumpe
DE102009045574A1 (de) Doppel-Innenzahnradpumpe
DE2054407C3 (de) Verdrängerpumpe, insbesondere für Servoeinrichtungen in Kraftfahrzeugen
DE102010045867A1 (de) Axialkolbenmaschine
EP3265679B1 (de) Schwenkwiegenlagerung einer axialkolbenmaschine
EP2672119B1 (de) Zahnradmaschine mit hydrodynamisch und hydrostatisch gelagertem Lagerzapfen
EP3015708B1 (de) Flügelzellenpumpe mit verbessertem startverhalten
DE4136150A1 (de) Fluegelzellenpumpe
DE102013102031A1 (de) Aus wenigstens zwei Teilen gebildete Schraubenspindelpumpe
DE4143466C2 (de) Steuerscheibe für Flügelzellenpumpe
DE102015217169A1 (de) Hydrauliksystem für ein Automatikgetriebe
DE102019218034B4 (de) Mehrflutige Flügelzellenpumpe
DE3319729A1 (de) Kolbenringanordnung fuer hydraulikanwendungen, insbesondere fuer sehr hohe betriebsdrucke
DE2852852B1 (de) Kolbenpumpe,insbesondere Radialkolbenpumpe
DE102004014457A1 (de) Kraftstoffpumpe
DE3303492C2 (de)
DE4334228A1 (de) Hydroaggregat
WO2018172059A1 (de) Innenzahnradmaschine
DE4139506A1 (de) Drehschieberventil fuer servolenkungen
DE102014105613A1 (de) Flügelzellenpumpe mit verstellbarem Fördervolumen
DE102004029749A1 (de) Verfahren zur Herstellung eines Drehschiebersteuerventils für eine hydraulische Lenkeinrichtung
DE1838949U (de) Druckfluessigkeitsgetriebe, insbesondere fuer hydrostatische kraftuebertragungen.
DE3414535A1 (de) Hydropumpe
DE3134150A1 (de) Fluegelpumpe
DE102017201935A1 (de) Zylindertrommel für eine hydrostatische Axialkolbenmaschine und Verfahren zur Herstellung einer solchen Zylindertrommel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20816898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570415

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20816898

Country of ref document: EP

Kind code of ref document: A1