WO2021098808A1 - 激光跟踪仪站位确定方法、系统、电子设备及介质 - Google Patents

激光跟踪仪站位确定方法、系统、电子设备及介质 Download PDF

Info

Publication number
WO2021098808A1
WO2021098808A1 PCT/CN2020/130291 CN2020130291W WO2021098808A1 WO 2021098808 A1 WO2021098808 A1 WO 2021098808A1 CN 2020130291 W CN2020130291 W CN 2020130291W WO 2021098808 A1 WO2021098808 A1 WO 2021098808A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser tracker
aircraft
horizontally
measured
preset
Prior art date
Application number
PCT/CN2020/130291
Other languages
English (en)
French (fr)
Inventor
范晓骏
张雷
Original Assignee
中国商用飞机有限责任公司
上海飞机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 上海飞机制造有限公司 filed Critical 中国商用飞机有限责任公司
Publication of WO2021098808A1 publication Critical patent/WO2021098808A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/005Measuring inclination, e.g. by clinometers, by levels specially adapted for use in aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels

Definitions

  • the present disclosure relates to the field of digital detection technology, for example, to a method, system, electronic equipment, and medium for determining the position of a laser tracker.
  • the level measurement of the whole aircraft is to check the relative position of multiple parts of the aircraft, the assembly quality of the parts and the deformation of the aircraft during flight.
  • the level measurement of the whole aircraft is the last quality inspection after the final assembly of the aircraft to the test flight, and it is also the final link in the production of the aircraft.
  • the level measurement of the whole aircraft must be carried out. .
  • the laser tracker is used to measure the level of the whole aircraft.
  • the laser tracker when using the laser tracker to measure, it is required that no obstruction is allowed between the laser transmitter and the reflector.
  • the aircraft model with a length of 40 meters requires Only by arranging more than 7 laser tracker stations can the measurement cover all the horizontal measurement control points.
  • the multi-station transfer operation is cumbersome, usually it takes more than 8-10 hours to measure the level of the whole machine, and the operator is prone to miss the control point.
  • the level measurement of the whole aircraft will be carried out during the stages of final assembly and off-line and flight test, but the daily level measurement does not have a fixed measurement station, it is impossible to determine the fixed instrument position and landmark system, and traditional simulation cannot be implemented.
  • the present disclosure provides a method, system, electronic equipment and medium for determining the position of a laser tracker, so as to realize the evaluation of the best measurement position of the laser tracker, which has strong practicability, reduces the missed measurement rate of human operation, and saves total Machine level measurement time.
  • a method for determining the position of a laser tracker includes:
  • the position of the laser tracker of the aircraft to be measured horizontally is determined based on the position of the simulation device and the three-dimensional coordinate data of the multiple reference points.
  • a laser tracker position determination system which includes:
  • the simulation equipment position determination module is configured to determine the simulation equipment position of the aircraft to be measured horizontally according to the level measurement points of the aircraft to be horizontally measured and the preset laser tracker position;
  • a data acquisition module configured to acquire three-dimensional coordinate data of multiple reference points of the aircraft to be measured horizontally;
  • the laser tracker position determination module is configured to determine the laser tracker position of the aircraft to be measured horizontally based on the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • An electronic device which includes:
  • One or more processors are One or more processors;
  • Storage device set to store multiple programs
  • the one or more processors When at least one of the multiple programs is executed by the one or more processors, the one or more processors are caused to implement the above-mentioned method for determining the position of the laser tracker.
  • a computer-readable storage medium is also provided, and a computer program is stored, and when the computer program is executed by a processor, the above-mentioned method for determining the position of the laser tracker is realized.
  • Fig. 1 is a flowchart of a method for determining the position of a laser tracker according to the first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for determining the position of a laser tracker according to the second embodiment of the present invention
  • FIG. 3 is a schematic diagram of an exemplary arrangement of adjacently arranged preset laser tracker positions and horizontal measurement points corresponding to the preset laser tracker positions according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an exemplary simulation device location distribution provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of simulated measurement of a laser tracker provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a leak check of a laser tracker client provided by an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a system for determining the position of a laser tracker according to the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the hardware structure of an electronic device according to the fourth embodiment of the present invention.
  • Figure 1 is a flow chart of a method for determining the position of a laser tracker according to the first embodiment of the present invention. This embodiment can be applied to level the aircraft anytime and anywhere during aircraft production or multiple stages after flight. In the case of measurement, this method can be implemented by a laser tracker position determination system, which can be implemented in the form of software and/or hardware. The method includes the following steps.
  • S110 Determine the location of the simulation equipment of the aircraft to be measured horizontally according to the level measurement points of the aircraft to be measured horizontally and the preset laser tracker position.
  • the level measurement point of the aircraft to be measured horizontally is determined based on the fixed reference point value required on the aircraft to be measured horizontally, and the preset laser tracker position is pre-defined by the surveyor according to simulation requirements. It is set to help determine the location of the simulation equipment for the aircraft to be measured at the level of the whole aircraft.
  • the uncertainty between the adjacently arranged preset laser tracker positions and the horizontal measurement points corresponding to the preset laser tracker positions is obtained, and the uncertainty is substituted into the preset linear formula to calculate The distance value of the adjacently arranged preset laser tracker stations is determined based on the simulation equipment station corresponding to the adjacently arranged preset laser tracker stations.
  • a customized client interface can be established, and the 3D coordinate values of each preset laser tracker station and the measurement diagram of the aircraft can be stored in the customer.
  • the end memory guide the operator to clarify the calibrated horizontal measurement points to be measured for each preset laser tracker station.
  • the reference points are selected from multiple reference points on the fuselage of the aircraft to be measured horizontally, and used to measure these points using a laser tracker to achieve laser tracking of the aircraft to be measured horizontally.
  • the instrument aligns the coordinate system to determine the accurate laser tracker position of the laser tracker.
  • the instrument for measuring multiple reference points on the plane to be horizontally measured for the whole plane may be a laser tracker.
  • the laser tracker is a computer-aided measurement system that uses two angle encoders and a laser interferometer to measure the horizontal angle, vertical angle, and distance between adjacent laser trackers, and then calculates the X, Y, and Z coordinates.
  • the laser tracker can choose a liftable tripod to fix the host of the laser tracker to ensure the stability of the instrument during the measurement process.
  • the lifting range of the liftable tripod is 1.4 meters to 2.3 meters.
  • the laser tracker is equipped with a reflective ball, and a reflective ball is placed in the ball seat.
  • the laser tracker is equipped with a reflective target with three mirrors perpendicular to each other.
  • the laser tracker is equipped with a reflective mirror to turn the laser beam into the cube backwards. Reflection (parallel to the incident laser beam).
  • the laser tracker is also equipped with a flat base.
  • the flat base is used to fix the magnetic base of the laser tracker reflector, and is arranged on the ground through multiple flat bases to form a temporary landmark system.
  • S130 Determine the laser tracker position of the aircraft to be measured horizontally based on the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • the coordinate system of the reference point uses the whole plane coordinate system of the aircraft to be measured horizontally, and the coordinate system of the three-dimensional coordinate data obtained by measuring multiple reference points on the plane to be measured horizontally is used It is the coordinate system of the measuring instrument, and the coordinate system of the three-dimensional coordinate data needs to be converted from the coordinate system of the measuring instrument to the whole machine coordinate system.
  • the position of the laser tracker of the aircraft to be measured horizontally is determined according to the three-dimensional coordinate data of the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • the positions of the laser tracker can be distributed on both sides of the aircraft to be measured horizontally and set up symmetrically, or they can be randomly distributed around the aircraft to be measured horizontally.
  • the laser tracker station can be singular or even, and there is no restriction on this.
  • the laser tracker station can be six.
  • the position of the simulation equipment of the aircraft to be measured horizontally is determined according to the level measurement points of the aircraft to be measured horizontally and the preset laser tracker position; multiple reference points of the aircraft to be measured horizontally are obtained Based on the three-dimensional coordinate data of the simulation device location and the multiple reference points, the laser tracker location of the aircraft to be measured horizontally is determined.
  • the technical solution of the embodiment of the present invention solves the problems of the inability to perform horizontal measurement of the whole machine under non-fixed conditions in the related technology, the measurement is cumbersome, and the measurement takes a long time, so as to realize the evaluation of the best measurement position of the laser tracker, and has strong practicability. , And reduce the missed measurement rate of human operation, saving the time of the whole machine level measurement.
  • Fig. 2 is a flowchart of a method for determining the position of a laser tracker according to the second embodiment of the present invention. This embodiment is described on the basis of the above-mentioned embodiment.
  • the method of this embodiment includes the following steps.
  • the adjacently arranged preset laser tracker positions are determined according to the adjacently arranged preset laser tracker positions and the horizontal measurement points corresponding to the preset laser tracker positions
  • the location of the simulation equipment corresponding to the location includes: obtaining the uncertainty between the preset laser tracker location and the horizontal measurement point corresponding to the preset laser tracker location; The uncertainty is substituted into a preset linear formula, and the distance value of the preset laser tracker station arranged adjacently is calculated; according to the distance value, the corresponding position of the preset laser tracker station arranged adjacently is determined The location of the simulated device.
  • the adjacent The position of the simulated device corresponding to the preset position of the laser tracker that is arranged.
  • Fig. 3 is a schematic diagram of an exemplary arrangement of adjacently arranged preset laser tracker positions and horizontal measurement points corresponding to the preset laser tracker positions according to an embodiment of the present invention.
  • 2a+b(L1+L2) ⁇ UP that is, L1+L2 ⁇ (UP-2a)/b.
  • the distance between the preset laser tracker station STS1 and the preset laser tracker station STS2 satisfies D ⁇ L1+L2, then D ⁇ (UP-2a)/b, use this preset linearity
  • the formula is to calculate the distance value of the preset laser tracker stations arranged adjacently, and the simulation device station corresponding to the preset laser tracker station arranged adjacently can be determined according to the distance value.
  • S220 Determine the location of the simulation device of the aircraft to be horizontally measured on the basis of the location of the simulation device corresponding to the preset laser tracker location that is adjacently arranged.
  • the simulation equipment positions are distributed evenly around the aircraft to be measured for the level of the entire aircraft.
  • Figure 4 is a schematic diagram of an exemplary simulation equipment station distribution provided by an embodiment of the present invention.
  • the position of the measurement equipment in the figure is the simulation equipment station of the aircraft to be measured horizontally.
  • the six measurement equipment in the figure are only It is an example, rather than limiting the number of simulation equipment stations to be used for the horizontal measurement of the aircraft.
  • the circle in the figure represents the multiple reference points of the aircraft to be measured horizontally during the process of determining the position of the simulation equipment of the aircraft to be measured horizontally. It can be seen that the location of the measuring equipment can also be A reference point is set, and the number of reference points is set according to the actual needs of the measurement.
  • the laser tracker uses the analog measurement function of the SA software, performs analog measurement on the covered horizontal measurement point at multiple simulation equipment stations, and obtains the horizontal angle, pitch angle, and adjacent simulation of the point in the analog measurement. The distance value of the equipment station. Control these values within 80% of the limit range corresponding to these values, then confirm the coordinate position of each simulation equipment station, the laser tracker and the horizontal measurement points that the simulation equipment station needs to measure to form a simulation data set, For example, you can refer to the schematic diagram of the laser tracker simulation measurement shown in FIG. 5, which shows that the laser tracker performs the simulation measurement of multiple test points on the aircraft to be horizontally measured to determine the data required for the simulation data set.
  • S240 Convert the three-dimensional coordinates of the three-dimensional coordinate data of the multiple reference points from the instrument coordinate system to the entire aircraft coordinate system according to the pose information of the aircraft to be measured horizontally.
  • the pose information is the real-time position information of the aircraft currently to be measured horizontally by the entire aircraft.
  • the technical solution provided by the embodiment of the present invention can determine the position of the laser tracker based on the real-time pose information of the aircraft currently to be measured horizontally by the entire aircraft, rather than In the related technology, the aircraft is moved to the designated measurement position, which saves operation time and facilitates the measurement.
  • multiple reference points are selected on the fuselage of the aircraft to be measured horizontally, and the laser tracker is used to measure these points.
  • the coordinate system is aligned through these reference points, and the instrument coordinate system is converted to the entire aircraft. Coordinate System.
  • S260 Determine the position of the laser tracker of the aircraft to be measured horizontally according to the three-dimensional coordinate data of the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • S270 Determine the landmark system of the aircraft to be measured horizontally according to the position of the laser tracker of the aircraft to be measured horizontally.
  • the laser pointing function of the laser tracker is used to point out the location of each measurement station on the spot, mark it with a marker, and start to arrange a plane base on the actual ground to form a landmark
  • the system ensures that the entire measurement area is covered, and the laser tracker of each simulation equipment station can measure more than 7 reference points at the same time.
  • the missing point information includes unmeasured level measurement points of the aircraft to be horizontally measured for the whole plane, unmeasured laser tracker positions, and unmeasured laser tracker positions corresponding to unmeasured laser tracker positions. The number of points.
  • FIG. 6 is a schematic diagram of the laser tracker client's missing point check provided by an embodiment of the present invention.
  • the analysis method and formula of the horizontal measurement point are stored in the EXCEL table, and the horizontal measurement point data corresponding to the corresponding horizontal measurement point is quickly imported into the corresponding position of the EXCEL table through the laser tracker client, and the aircraft is automatically executed. Analysis of horizontal posture.
  • the horizontal measurement point and station position of the whole machine level measurement are digitally simulated in advance, and it is confirmed that the laser tracker position of the laser tracker is optimized during the whole machine level measurement, so that the measurement effect can be achieved.
  • the best which improves the horizontal measurement rate of the whole machine and reduces the measurement time.
  • the coordinate system of the laser tracker is pre-aligned to the coordinate system of the whole machine through some key control points on the fuselage, and the pointing function of the laser tracker is used to quickly identify the location of the simulation equipment on the spot, so as to realize the non-fixed measurement station on the spot. In this case, the location of the simulated equipment can quickly locate the function.
  • the simulation planning in the case of a fixed measurement station, it has greater applicability and can be applied to on-site implementation such as route operation, flight test phase, and aircraft assembly.
  • the SA software Secondly develop the SA software, establish a laser tracker client, embed the measurement plan and station pictures into the client, guide the on-site operators to standardize the measurement, and through the missing point detection, remind the operator of the current station online, The omission of measurement points ensures the integrity of the measurement; the laser tracker client automatically analyzes the actual status of the entire aircraft according to the requirements of the EXCEL template, reducing the difficulty of human operation and analysis.
  • FIG. 7 is a structural diagram of a laser tracker position determination system provided by the third embodiment of the present invention. This embodiment can be applied to perform the whole plane leveling of the aircraft anytime and anywhere in the process of aircraft production or multiple links after the flight. The measurement situation.
  • the system includes: a simulation device location determination module 310, a data acquisition module 320, and a laser tracker location determination module 330.
  • the simulation equipment position determination module 310 is configured to determine the simulation equipment position of the aircraft to be measured horizontally according to the level measurement points of the aircraft to be horizontally measured and the preset laser tracker position;
  • the data acquisition module 320 is configured to acquire three-dimensional coordinate data of multiple reference points of the aircraft to be horizontally measured by the entire aircraft;
  • the laser tracker position determining module 330 is configured to determine the laser tracker position of the aircraft to be measured horizontally based on the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • the laser tracker position determination system of this embodiment determines the simulation device position of the aircraft to be measured horizontally according to the level measurement points of the aircraft to be horizontally measured and the preset laser tracker position; Horizontally measure the three-dimensional coordinate data of multiple reference points of the aircraft; determine the position of the laser tracker of the aircraft to be horizontally measured on the basis of the simulation device location and the three-dimensional coordinate data of the multiple reference points.
  • the technical solution of the embodiment of the present invention solves the problems in the related technology that the whole machine level measurement cannot be performed according to the requirements, the measurement is cumbersome, and the measurement takes a long time, so as to realize the evaluation of the best measurement station of the laser tracker, and has strong practicability. It reduces the missed measurement rate of human operation and saves the horizontal measurement time of the whole machine.
  • determining the location of the simulation equipment of the aircraft to be horizontally measured according to the level measurement points of the aircraft to be horizontally measured and the preset laser tracker position includes:
  • the simulation equipment station corresponding to the adjacently arranged preset laser tracker station determines the simulation equipment station corresponding to the adjacently arranged preset laser tracker station ;
  • the location of the simulation device of the aircraft to be measured horizontally is determined based on the location of the simulation device corresponding to the preset laser tracker location that is adjacently arranged.
  • the adjacently arranged preset laser tracker positions are determined according to the adjacently arranged preset laser tracker positions and the horizontal measurement points corresponding to the preset laser tracker positions
  • the location of the simulation equipment corresponding to the location including:
  • the location of the simulation device corresponding to the preset laser tracker location adjacently arranged is determined according to the distance value.
  • the method further includes:
  • the three-dimensional coordinates of the three-dimensional coordinate data of the multiple reference points are converted from the instrument coordinate system to the entire aircraft coordinate system according to the pose information of the aircraft to be measured horizontally.
  • the method before determining the position of the laser tracker of the aircraft to be measured horizontally based on the simulation device position and the three-dimensional coordinate data of the multiple reference points, the method further includes:
  • Determining the position of the laser tracker of the aircraft to be measured horizontally based on the position of the simulation device and the three-dimensional coordinate data of the multiple reference points includes:
  • the position of the laser tracker of the aircraft to be measured horizontally is determined according to the three-dimensional coordinate data of the simulation device position and the three-dimensional coordinate data of the multiple reference points.
  • the missing point information includes unmeasured level measurement points of the aircraft to be horizontally measured for the whole plane, unmeasured laser tracker positions, and unmeasured laser tracker positions corresponding to unmeasured laser tracker positions. The number of points.
  • the laser tracker position determination system provided by the above multiple embodiments can execute the laser tracker position determination method provided in the embodiments of the present invention, and has the corresponding functional modules and beneficial effects for executing the laser tracker position determination method.
  • FIG. 8 is a schematic structural diagram of an electronic device according to Embodiment 4 of the present invention.
  • Figure 8 shows a block diagram of an exemplary electronic device 12 suitable for implementing embodiments of the present invention.
  • the electronic device 12 shown in FIG. 8 is only an example.
  • the electronic device 12 is represented in the form of a general-purpose computing device.
  • the components of the electronic device 12 may include: one or more processors or processing units 16, a system memory 28, and a bus 18 connecting different system components (including the system memory 28 and the processing unit 16).
  • the bus 18 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • these architectures include Industry Standard Architecture (Subversive Alliance, ISA) bus, Micro Channel Architecture (MAC) bus, enhanced ISA bus, Video Electronics Standards Association (VESA) ) Local bus and Peripheral Component Interconnect (PCI) bus.
  • the electronic device 12 includes a variety of computer system readable media. These media may be any available media that can be accessed by the electronic device 12, including volatile and non-volatile media, removable and non-removable media.
  • the system memory 28 may include a computer system readable medium in the form of a volatile memory, such as a random access memory (RAM) 30 and/or a cache memory 32.
  • the electronic device 12 may include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • the storage system 34 may be used to read and write non-removable, non-volatile magnetic media (not shown in FIG. 8 and generally referred to as a "hard drive").
  • each drive can be connected to the bus 18 through one or more data media interfaces.
  • the system memory 28 may include at least one program product, the program product having a set (for example, at least one) of program modules, and these program modules are configured to perform the functions of the embodiments of the present invention.
  • a program/utility tool 40 having a set of (at least one) program module 42 may be stored in, for example, the system memory 28.
  • Such program module 42 includes an operating system, one or more application programs, other program modules, and program data. Each or a combination of the examples may include the implementation of a network environment.
  • the program module 42 generally executes the functions and/or methods in the embodiments described in the present disclosure.
  • the electronic device 12 may also communicate with one or more external devices 14 (such as a keyboard, pointing device, display 24, etc.), and may also communicate with one or more devices that enable a user to interact with the electronic device 12, and/or communicate with Any device (such as a network card, modem, etc.) that enables the electronic device 12 to communicate with one or more other computing devices. This communication can be performed through an input/output (Input/Output, I/O) interface 22.
  • the electronic device 12 may also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 20.
  • networks such as a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • the network adapter 20 communicates with other modules of the electronic device 12 through the bus 18.
  • other hardware and/or software modules can be used in conjunction with the electronic device 12, including: microcode, device drivers, redundant processing units, external disk drive arrays, and disk arrays (Redundant Arrays of Independent Drives, RAID) Systems, tape drives, and data backup storage systems.
  • the processing unit 16 executes a variety of functional applications and data processing by running programs stored in the system memory 28, for example, realizes the method for determining the position of a laser tracker provided by the embodiment of the present invention.
  • the method for determining the position of a laser tracker includes :
  • the position of the laser tracker of the aircraft to be measured horizontally is determined based on the position of the simulation device and the three-dimensional coordinate data of the multiple reference points.
  • the processing unit can also implement the technical solution of the method for determining the position of the laser tracker provided by any embodiment of the present disclosure.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the method for determining the position of a laser tracker as provided in the embodiment of the present invention, the laser tracker station Position determination methods include:
  • the position of the laser tracker of the aircraft to be measured horizontally is determined based on the position of the simulation device and the three-dimensional coordinate data of the multiple reference points.
  • the computer-readable storage medium provided by the embodiment of the present invention is not limited to the above-mentioned method operation and the computer program stored on it can also execute the method for determining the position of the laser tracker provided by any embodiment of the present disclosure. Related operations.
  • the computer storage medium of the embodiment of the present invention may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or a combination of any of the above.
  • Computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Erasable Programmable Read-Only Memory (EPROM) or flash memory, optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • RF radio frequency
  • the computer program code used to perform the operations of the embodiments of the present invention can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and Conventional procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network including LAN or WAN, or may be connected to an external computer (for example, using an Internet service provider to connect through the Internet).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种激光跟踪仪站位确定方法、系统、电子设备(12)及介质。激光跟踪仪站位确定方法包括:根据待全机水平测量飞机的水平测量点(P)以及预设激光跟踪仪站位(STS1,STS2)确定待全机水平测量飞机的仿真设备站位(S110);获取待全机水平测量飞机的多个基准点的三维坐标数据(S120);基于仿真设备站位和多个基准点的三维坐标数据确定待全机水平测量飞机的激光跟踪仪站位(S130)。

Description

激光跟踪仪站位确定方法、系统、电子设备及介质
本申请要求在2019年11月21日提交中国专利局、申请号为201911148943.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及数字化检测技术领域,例如涉及一种激光跟踪仪站位确定方法、系统、电子设备及介质。
背景技术
全机水平测量是对飞机多个部件相对位置、部件装配质量及飞机在飞行过程中变形情况的检查。全机水平测量是飞机总装结束后到试飞前的最后一次质量检查,也是飞机生产的最后环节,此外,在飞机飞行时,一旦经历了剧烈飞行或是更换部件后,也要进行全机水平测量。
在一种方式中,全机水平测量使用激光跟踪仪进行测量,但是在使用激光跟踪仪测量时,要求激光发射器与反光镜间不允许任何遮挡,那么一般40米长的飞机机型,需要布置7个以上的激光跟踪仪站位,才能保证测量覆盖到所有水平测量控制点上。并且在测量过程中,多站位的转站操作繁琐,通常全机水平测量需要8-10小时以上,且操作人员易发生漏测控制点的情况。此外,全机水平测量在总装下线和试飞等阶段都会进行,但日常水平测量没有固定测量站位,无法确定固定的仪器位置与地标系统,传统仿真无法实施。
发明内容
本公开提供一种激光跟踪仪站位确定方法、系统、电子设备及介质,以实现评估出激光跟踪仪的最佳测量站位,实用性强,且降低了人为操作的漏测率,节约全机水平测量时间。
提供了一种激光跟踪仪站位确定方法,该方法包括:
根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
获取所述待全机水平测量飞机的多个基准点的三维坐标数据;
基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
还提供了一种激光跟踪仪站位确定系统,该系统包括:
仿真设备站位确定模块,设置为根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
数据获取模块,设置为获取所述待全机水平测量飞机的多个基准点的三维坐标数据;
激光跟踪仪站位确定模块,设置为基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
还提供了一种电子设备,该电子设备包括:
一个或多个处理器;
存储装置,设置为存储多个程序,
当所述多个程序中的至少一个被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的激光跟踪仪站位确定方法。
还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述的激光跟踪仪站位确定方法。
附图说明
图1是本发明实施例一提供的一种激光跟踪仪站位确定方法的流程图;
图2是本发明实施例二提供的一种激光跟踪仪站位确定方法的流程图;
图3是本发明实施例提供的示例性的相邻布置的预设激光跟踪仪站位和预设激光跟踪仪站位对应的水平测量点的布置示意图;
图4是本发明实施例提供的示例性的仿真设备站位分布示意图;
图5是本发明实施例提供的激光跟踪仪模拟测量示意图;
图6是本发明实施例提供的激光跟踪仪客户端漏点检查示意图;
图7是本发明实施例三提供的一种激光跟踪仪站位确定系统的结构图;
图8是本发明实施例四提供的一种电子设备的硬件结构示意图。
具体实施方式
下面结合附图对本发明实施例进行描述。
附图中仅示出了与本发明实施例相关的部分而非全部内容。一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,多项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
实施例一
图1为本发明实施例一提供的一种激光跟踪仪站位确定方法的流程图,本实施例可适用于随时随地在飞机生产或是飞行后的多个环节过程中对飞机进行全机水平测量的情况,该方法可以由激光跟踪仪站位确定系统来执行,该系统可以通过软件和/或硬件的形式实现。该方法包括如下步骤。
S110、根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位。
在一实施例中,待全机水平测量飞机的水平测量点为根据待全机水平测量飞机上要求的固定基准点值进行确定,预设激光跟踪仪站位为由测量人员根据仿真需求进行预先设定,以助于对待全机水平测量飞机进行仿真设备站位的确定。
在一实施例中,获取相邻布置的预设激光跟踪仪站位以及与预设激光跟踪仪站位对应的水平测量点之间的不确定度,将不确定度代入预设线性公式,计算相邻布置的预设激光跟踪仪站位的距离值,基于相邻布置的预设激光跟踪仪站位对应的仿真设备站位确定待全机水平测量飞机的仿真设备站位。
在一实施例中,可以通过对三维空间测量分析SA软件二次开发,建立定制化客户端界面,将每个预设激光跟踪仪站位的仪器三维坐标值,以及飞机的测量示意图存入客户端的存储器中,指导操作人员明确每个预设激光跟踪仪站位要测量的已标定的水平测量点。
S120、获取待全机水平测量飞机的多个基准点的三维坐标数据。
在一实施例中,,基准点是在待全机水平测量飞机的机身上选取多个基准点,用于使用激光跟踪仪对这些点进行测量,以实现对待全机水平测量飞机的激光跟踪仪进行坐标系对齐,确定激光跟踪仪的准确激光跟踪仪站位。
可选的,对待全机水平测量飞机上的多个基准点进行测量的仪器可以为激光跟踪仪。激光跟踪仪是用二个角编码器和一个激光干涉仪来测量水平角度、垂直角度及相邻激光跟踪仪的距离值,然后计算X、Y和Z坐标的计算机辅助 测量系统。激光跟踪仪可以选择可升降三脚架对激光跟踪仪的主机进行固定,以保证测量过程中仪器的稳定性,其中,可升降三脚架的升降范围为1.4米到2.3米。激光跟踪仪配置有反射球,一个反射球置于球座内,激光跟踪仪配置有相互垂直的三面反光镜的反射目标,激光跟踪仪配置反光镜的作用是将射入立方体的激光束向后反射(与射入激光束平行)。激光跟踪仪还配置有平面底座,平面底座用于固定激光跟踪仪反射球的带有磁性的底座,通过多个平面底座布置在地面上,形成临时的地标系统。
S130、基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
在一实施例中,基准点的坐标系使用的是待全机水平测量飞机的全机坐标系,而对待全机水平测量飞机上的多个基准点进行测量获得的三维坐标数据的坐标系使用的是测量仪器坐标系,需要将三维坐标数据的坐标系从测量仪器坐标系转换为全机坐标系。
在一实施例中,根据所述仿真设备站位的三维坐标数据和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
可选的,激光跟踪仪站位可以分布在待全机水平测量飞机的两侧,对称进行设置,也可以随机分布在待全机水平测量飞机的周围。可选的,激光跟踪仪站位可以为单数或是双数,对此不作任何限制,可选的,激光跟踪仪站位可以为6个。
本发明实施例根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;获取待全机水平测量飞机的多个基准点的三维坐标数据;基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。本发明实施例的技术方案,解决了相关技术中无法在非固定条件进行全机水平测量且测量繁琐以及测量耗时长的问题,以实现评估出激光跟踪仪的最佳测量站位,实用性强,且降低了人为操作的漏测率,节约全机水平测量时间。
实施例二
图2为本发明实施例二提供的一种激光跟踪仪站位确定方法的流程图。本实施例以上述实施例为基础进行说明。
本实施例的方法包括如下步骤。
S210、根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
在上述实施例的基础上,根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位,包括:获取相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点之间的不确定度;将所述不确定度代入预设线性公式,计算所述相邻布置的所述预设激光跟踪仪站位的距离值;根据所述距离值确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
在一实施例中,针对所选用的激光跟踪仪的性能(例如水平角度、俯仰角度、测量不确定度等)和预设激光跟踪仪站位对应的水平测量点的公差要求,可以确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
图3是本发明实施例提供的示例性的相邻布置的预设激光跟踪仪站位和预设激光跟踪仪站位对应的水平测量点的布置示意图。参见图3,设定相邻布置的预设激光跟踪仪站位分布为STS1和STS2。
通过激光跟踪仪在预设激光跟踪仪站位STS1上对水平测量点P的空间坐标测量,可以确定不确定度为U1=a+bL1,其中,L1为预设激光跟踪仪站位STS1到水平测量点P的距离;通过激光跟踪仪在预设激光跟踪仪站位STS2上对水平测量点P的空间坐标测量,可以不确定度为U2=a+bL2,其中,L2为预设激光跟踪仪站位STS2到水平测量点P的距离;若位于预设激光跟踪仪站位STS1和预设激光跟踪仪站位STS2之间的水平测量点P的坐标测量不确定度要求为UP,则预设激光跟踪仪站位STS1和预设激光跟踪仪站位STS2两个站位的位置应满足如下关系:U1+U2≤UP。可选的,则有2a+b(L1+L2)≤UP,即L1+L2≤(UP-2a)/b。由图3可知,预设激光跟踪仪站位STS1和预设激光跟踪仪站位STS2之间的距离满足D≤L1+L2,则有D≤(UP-2a)/b,利用此预设线性公式,计算所述相邻布置的所述预设激光跟踪仪站位的距离值,根据该距离值可以确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
S220、基于相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位确定所述待全机水平测量飞机的仿真设备站位。
在一实施例中,基于相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位,通过对待全机水平测量飞机周围均匀分布布置仿真设备站位。参见图4,图4是本发明实施例提供的示例性的仿真设备站位分布示意图,图中测量设备 所在位置即为待全机水平测量飞机的仿真设备站位,图中六个测量设备仅为示例,而非对待全机水平测量飞机的仿真设备站位的数量进行限制。
S230、获取待全机水平测量飞机的多个基准点的三维坐标数据。
继续参见图4,图中圆圈代表的是在对待全机水平测量飞机的仿真设备站位进行确定的过程中的待全机水平测量飞机的多个基准点,可以看出测量设备所在位置也可以设置有一个基准点,基准点的数量根据测量的实际需求进行设置。
在一实施例中,使用SA软件的模拟测量功能,激光跟踪仪在多个仿真设备站位对覆盖的水平测量点进行模拟测量,获取模拟测量中该点的水平角度、俯仰角度和相邻仿真设备站位的距离值。将这些值控制在这些值对应的极限范围的80%以内,则确认每个仿真设备站位、激光跟踪仪的坐标位置及该仿真设备站位所需测量的水平测量点,形成仿真数据集,例如可以参见图5所示的激光跟踪仪模拟测量示意图,图5中即表示激光跟踪仪在对待全机水平测量飞机进行多个测试点的模拟测量确定仿真数据集所需的数据。
S240、根据所述待全机水平测量飞机的位姿信息将多个基准点的三维坐标数据的三维坐标由仪器坐标系转换为全机坐标系。
位姿信息是当前待全机水平测量飞机的实时位置信息,本发明实施例提供的技术方案可以根据当前待全机水平测量飞机的实时位姿信息,进行激光跟踪仪站位的确定,而非相关技术中将飞机移动至指定测量位置,节约操作时间,方便测量。
S250、获取所述仿真设备站位的三维坐标数据,并将所述仿真设备站位的三维坐标数据的三维坐标转换为全机坐标系。
在一实施例中,在待全机水平测量飞机的机身上选取多个基准点,使用激光跟踪仪对这些点进行测量,通过这些基准点进行坐标系对齐,将仪器坐标系转换为全机坐标系。
S260、根据所述仿真设备站位的三维坐标数据和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
S270、根据所述待全机水平测量飞机的激光跟踪仪站位确定所述待全机水平测量飞机的地标系统。
在一实施例中,根据仿真设备站位的三维坐标数据,利用激光跟踪仪的激光指向功能,指出现场每一个测量站位的位置,用记号笔标识,并开始在实际地面布置平面底座形成地标系统,确保覆盖整个测量区域,并且每个仿真设备站位的激光跟踪仪都能同时测到7个基准点以上。
S280、通过所述地标系统和所述待全机水平测量飞机的水平测量点判断所述待全机水平测量飞机是否存在漏测点信息,在所述待全机水平测量飞机存在所述漏测点信息的情况下,对所述漏测点信息进行补充测量。
在上述实施例的基础上,所述漏测点信息包括未测量的待全机水平测量飞机的水平测量点、未测量的激光跟踪仪站位和未测量的激光跟踪仪站位对应的未测点数量。
通过激光跟踪仪客户端,指引操作人员对每个激光跟踪仪站位所需要测量的地标系统及水平测量点进行数据采集,采集完成后,可一键查询该激光跟踪仪站位是否有点遗漏,并当场进行补测,例如激光跟踪仪客户端的操作界面如图6所示,图6是本发明实施例提供的激光跟踪仪客户端漏点检查示意图。
在一实施例中,将水平测量点的分析方法及公式存入EXCEL表中,通过激光跟踪仪客户端快速将相应水平测量点所对应的水平测量点数据导入EXCEL表格对应位置中,自动进行飞机水平姿态的分析。
本发明实施例的技术方案,预先对全机水平测量的水平测量点和站位进行了数字化仿真,确认了全机水平测量时,激光跟踪仪最优化的激光跟踪仪站位,使测量效果达到最佳,提高了全机水平测量速率,减少测量时间。通过机身上部分关键控制点将激光跟踪仪坐标系预先对齐至全机坐标系中,利用激光跟踪仪指向功能,快速标识出仿真设备站位在现场的位置,实现在现场非固定测量站位情况下,仿真设备站位快速定位功能。相对于在固定测量站位情况下的仿真规划,适用性更大,可适用于航线运应、试飞阶段以及飞机总装等现场实施。
针对SA软件进行二次开发,建立激光跟踪仪客户端,将测量计划和站位图片内嵌到客户端中,指导现场操作人员标准化测量,并通过漏点检测,在线提醒操作人员当前站位,测量点遗漏情况,保证测量完整性;激光跟踪仪客户端自动根据EXCEL模板要求,分析整个飞机的实际状态,降低了人为操作和分析的难度。
实施例三
图7为本发明实施例三提供的一种激光跟踪仪站位确定系统的结构图,本实施例可适用于随时随地在飞机生产或是飞行后的多个环节过程中对飞机进行全机水平测量的情况。
如图7所示,所述系统包括:仿真设备站位确定模块310、数据获取模块320和激光跟踪仪站位确定模块330。
仿真设备站位确定模块310,设置为根据待全机水平测量飞机的水平测量点 以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
数据获取模块320,设置为获取待全机水平测量飞机的多个基准点的三维坐标数据;
激光跟踪仪站位确定模块330,设置为基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
本实施例的激光跟踪仪站位确定系统,根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;获取待全机水平测量飞机的多个基准点的三维坐标数据;基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。本发明实施例的技术方案,解决了相关技术中无法根据需求进行全机水平测量且测量繁琐以及测量耗时长的问题,以实现评估出激光跟踪仪的最佳测量站位,实用性强,且降低了人为操作的漏测率,节约全机水平测量时间。
在上述实施例的基础上,根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位,包括:
根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位;
基于相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位确定所述待全机水平测量飞机的仿真设备站位。
在上述实施例的基础上,根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位,包括:
获取相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点之间的不确定度;
将所述不确定度代入预设线性公式,计算所述相邻布置的所述预设激光跟踪仪站位的距离值;
根据所述距离值确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
在上述实施例的基础上,在获取待全机水平测量飞机的多个基准点的三维坐标数据之后,还包括:
根据所述待全机水平测量飞机的位姿信息将多个基准点的三维坐标数据的三维坐标由仪器坐标系转换为全机坐标系。
在上述实施例的基础上,在基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位之前,还包括:
获取所述仿真设备站位的三维坐标数据,并将所述仿真设备站位的三维坐标数据的三维坐标转换为全机坐标系;
基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位,包括:
根据所述仿真设备站位的三维坐标数据和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
在上述实施例的基础上,还包括:
根据所述待全机水平测量飞机的激光跟踪仪站位确定所述待全机水平测量飞机的地标系统;
通过所述地标系统和所述待全机水平测量飞机的水平测量点判断所述待全机水平测量飞机是否存在漏测点信息,在所述待全机水平测量飞机存在所述漏测点信息的情况下,对所述漏测点信息进行补充测量。
在上述实施例的基础上,所述漏测点信息包括未测量的待全机水平测量飞机的水平测量点、未测量的激光跟踪仪站位和未测量的激光跟踪仪站位对应的未测点数量。
上述多个实施例所提供的激光跟踪仪站位确定系统可执行本发明实施例所提供的激光跟踪仪站位确定方法,具备执行激光跟踪仪站位确定方法相应的功能模块和有益效果。
实施例四
图8为本发明实施例四提供的一种电子设备的结构示意图。图8示出了适于用来实现本发明实施方式的示例性电子设备12的框图。图8显示的电子设备12仅仅是一个示例。
如图8所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括工业标准体系结构(Industry Subversive Alliance,ISA)总线,微通道体系结构(Micro Channel Architecture, MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
电子设备12包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。电子设备12可以包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图8未显示,通常称为“硬盘驱动器”)。尽管图8中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM),数字多功能盘只读存储器(Digital Video Disk Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。系统存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如系统存储器28中,这样的程序模块42包括操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或一种组合中可能包括网络环境的实现。程序模块42通常执行本公开所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Drives,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行多种功能 应用以及数据处理,例如实现本发明实施例所提供的激光跟踪仪站位确定方法,该激光跟踪仪站位确定方法包括:
根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
获取待全机水平测量飞机的多个基准点的三维坐标数据;
基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
处理单元还可以实现本公开任意实施例所提供的激光跟踪仪站位确定方法的技术方案。
实施例五
本发明实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现如本发明实施例所提供的激光跟踪仪站位确定方法,该激光跟踪仪站位确定方法包括:
根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
获取待全机水平测量飞机的多个基准点的三维坐标数据;
基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
本发明实施例所提供的一种计算机可读存储介质,其上存储的计算机程序不限于如上所述的方法操作,还可以执行本公开任意实施例所提供的激光跟踪仪站位确定方法中的相关操作。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其 结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种激光跟踪仪站位确定方法,包括:
    根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
    获取所述待全机水平测量飞机的多个基准点的三维坐标数据;
    基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
  2. 根据权利要求1所述的方法,其中,所述根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位,包括:
    根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位;
    基于相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位确定所述待全机水平测量飞机的仿真设备站位。
  3. 根据权利要求2所述的方法,其中,所述根据相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位,包括:
    获取相邻布置的所述预设激光跟踪仪站位以及与所述预设激光跟踪仪站位对应的水平测量点之间的不确定度;
    将所述不确定度代入预设线性公式,计算所述相邻布置的所述预设激光跟踪仪站位的距离值;
    根据所述距离值确定相邻布置的所述预设激光跟踪仪站位对应的仿真设备站位。
  4. 根据权利要求1所述的方法,其中,在所述获取所述待全机水平测量飞机的多个基准点的三维坐标数据之后,还包括:
    根据所述待全机水平测量飞机的位姿信息将所述多个基准点的三维坐标数据的三维坐标由仪器坐标系转换为全机坐标系。
  5. 根据权利要求1所述的方法,其中,在所述基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位之前,还包括:
    获取所述仿真设备站位的三维坐标数据,并将所述仿真设备站位的三维坐标数据的三维坐标转换为全机坐标系;
    所述基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位,包括:
    根据所述仿真设备站位的三维坐标数据和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
  6. 根据权利要求1所述的方法,还包括:
    根据所述待全机水平测量飞机的激光跟踪仪站位确定所述待全机水平测量飞机的地标系统;
    通过所述地标系统和所述待全机水平测量飞机的水平测量点判断所述待全机水平测量飞机是否存在漏测点信息,在所述待全机水平测量飞机存在所述漏测点信息的情况下,对所述漏测点信息进行补充测量。
  7. 根据权利要求6所述的方法,其中,所述漏测点信息包括未测量的待全机水平测量飞机的水平测量点、未测量的激光跟踪仪站位和所述未测量的激光跟踪仪站位对应的未测点数量。
  8. 一种激光跟踪仪站位确定系统,包括:
    仿真设备站位确定模块,设置为根据待全机水平测量飞机的水平测量点以及预设激光跟踪仪站位确定所述待全机水平测量飞机的仿真设备站位;
    数据获取模块,设置为获取所述待全机水平测量飞机的多个基准点的三维坐标数据;
    激光跟踪仪站位确定模块,设置为基于所述仿真设备站位和所述多个基准点的三维坐标数据确定所述待全机水平测量飞机的激光跟踪仪站位。
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的激光跟踪仪站位确定方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的激光跟踪仪站位确定方法。
PCT/CN2020/130291 2019-11-21 2020-11-20 激光跟踪仪站位确定方法、系统、电子设备及介质 WO2021098808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911148943.8A CN112824828B (zh) 2019-11-21 2019-11-21 一种激光跟踪仪站位确定方法、系统、电子设备及介质
CN201911148943.8 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021098808A1 true WO2021098808A1 (zh) 2021-05-27

Family

ID=75907367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130291 WO2021098808A1 (zh) 2019-11-21 2020-11-20 激光跟踪仪站位确定方法、系统、电子设备及介质

Country Status (2)

Country Link
CN (1) CN112824828B (zh)
WO (1) WO2021098808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408735A (zh) * 2022-08-30 2022-11-29 长春理工大学中山研究院 一种基于改进法医调查算法的大尺寸测量场布站优化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895646B (zh) * 2021-10-26 2023-08-04 成都飞机工业(集团)有限责任公司 面向飞机部件调姿对接的自动测量方法及装置
CN114543767B (zh) * 2022-02-22 2023-05-12 中国商用飞机有限责任公司 用于飞机水平测量的系统和方法
CN114923467B (zh) * 2022-04-07 2023-10-20 清华大学 激光跟踪仪和igps的空间测量可达性仿真分析与布置方法
CN117885913B (zh) * 2024-03-18 2024-06-04 埃瑞泰克斯(上海)机械制造有限公司 基于精确算法的最佳拟合系统及其操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150228A1 (en) * 2005-12-26 2007-06-28 Konica Minolta Sensing, Inc. Method and apparatus for three-dimensional measurement
CN101363714A (zh) * 2008-09-26 2009-02-11 浙江大学 一种机翼水平位姿测量与评估方法
CN102519430A (zh) * 2011-12-06 2012-06-27 江西洪都航空工业集团有限责任公司 飞机水平激光测量系统及方法
CN107102645A (zh) * 2016-02-22 2017-08-29 成都飞机工业(集团)有限责任公司 一种飞机姿态调节装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971878B1 (de) * 2006-01-13 2013-07-31 Leica Geosystems AG Tracking-verfahren und messsystem mit laser-tracker
US8567077B2 (en) * 2011-10-20 2013-10-29 Raytheon Company Laser tracker system and technique for antenna boresight alignment
EP2746807A1 (de) * 2012-12-20 2014-06-25 Leica Geosystems AG Selbstkalibrierender Lasertracker und Selbstkalibrierungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150228A1 (en) * 2005-12-26 2007-06-28 Konica Minolta Sensing, Inc. Method and apparatus for three-dimensional measurement
CN101363714A (zh) * 2008-09-26 2009-02-11 浙江大学 一种机翼水平位姿测量与评估方法
CN102519430A (zh) * 2011-12-06 2012-06-27 江西洪都航空工业集团有限责任公司 飞机水平激光测量系统及方法
CN107102645A (zh) * 2016-02-22 2017-08-29 成都飞机工业(集团)有限责任公司 一种飞机姿态调节装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QI JIANGWEN: "Building Measurement Environment for Digital Assembly of Aircraft Components", MACHINE BUILDING & AUTOMATION, 31 December 2017 (2017-12-31), pages 205 - 208, XP055814216, ISSN: 1671-5276, DOI: 10.19344/j.cnki.issn1671-5276.2017.00.060 *
TANG KAI , ZHOU ZHENG-YU , CAO FANG-HUA , LI YANG: "Research on Aircraft Attitude Automatic Adjusting System Based on Laser Tracking and Measuring Technology", MEASUREMENT & CONTROL TECHNOLOGY, vol. 34, 28 July 2015 (2015-07-28), pages 69 - 74, XP055814224, ISSN: 1000-8829 *
WU PENG, HUANG QINGHUA: "Feasibility Study on Application of Laser Tracking Equipment in Leveling for Whole Aircraft", HONGDU SCIENCE & TECHNOLOGY, no. 3, 15 September 2010 (2010-09-15), pages 30 - 32, XP055814219, ISSN: 1005-7420 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408735A (zh) * 2022-08-30 2022-11-29 长春理工大学中山研究院 一种基于改进法医调查算法的大尺寸测量场布站优化方法

Also Published As

Publication number Publication date
CN112824828B (zh) 2022-03-25
CN112824828A (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
WO2021098808A1 (zh) 激光跟踪仪站位确定方法、系统、电子设备及介质
US11714174B2 (en) Parameter calibration method and apparatus of multi-line laser radar, device and readable medium
CN112654886B (zh) 外参标定方法、装置、设备及存储介质
US20190371003A1 (en) Monocular vision tracking method, apparatus and non-volatile computer-readable storage medium
CN108413988B (zh) 机器人末端经纬仪坐标系快速标定方法
CN108828555B (zh) 基于坐标变换的精确测量方法、系统及装置
CN112825190B (zh) 一种精度评估方法、系统、电子设备和存储介质
CN110849363B (zh) 激光雷达与组合惯导的位姿标定方法、系统及介质
CN112729345B (zh) 用于光学定位器精度检测的方法及装置
CN109975745A (zh) 一种基于到达时间差的近远场统一定位方法
CN105806304B (zh) 天线方向角测量方法及装置
CN114049401A (zh) 双目相机标定方法、装置、设备及介质
CN103116173A (zh) 用于光电跟踪的误差检验装置
CN110779503B (zh) 一种三维精密控制网测量方法
US10304351B2 (en) Buried asset detection simulator using retrofitted electromagnetic locate device
CN113188492B (zh) 一种三点式结构装配精度实时监测装置及方法
CN110866951B (zh) 一种单目摄像机光轴倾斜的校正方法
US20210348938A1 (en) Sensor calibration for space translation
CN106931879B (zh) 一种双目误差测量方法、装置及系统
CN110065072A (zh) 机器人重复定位精度的验证方法
CN112556722B (zh) 一种基于自动选取优选源的系统误差补偿方法
CN115033835B (zh) 基于多台交互最小二乘估计的弹道参数解算方法和系统
CN113567966B (zh) 基于蒙特卡洛仿真的机载/车载激光点云精度预估方法
CN114021231A (zh) 一种测绘数据处理的方法、装置及电子设备
CN116269756A (zh) 器械标定系统、方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889769

Country of ref document: EP

Kind code of ref document: A1