CN113156418B - 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法 - Google Patents

基于蒙特卡洛仿真的雷达目标跟踪精度预测方法 Download PDF

Info

Publication number
CN113156418B
CN113156418B CN202110503392.3A CN202110503392A CN113156418B CN 113156418 B CN113156418 B CN 113156418B CN 202110503392 A CN202110503392 A CN 202110503392A CN 113156418 B CN113156418 B CN 113156418B
Authority
CN
China
Prior art keywords
radar
coordinate system
tracking
moment
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110503392.3A
Other languages
English (en)
Other versions
CN113156418A (zh
Inventor
王经鹤
行坤
雷之鸣
刘霖
徐正
喻忠军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Information Research Institute of CAS
Original Assignee
Aerospace Information Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Information Research Institute of CAS filed Critical Aerospace Information Research Institute of CAS
Priority to CN202110503392.3A priority Critical patent/CN113156418B/zh
Publication of CN113156418A publication Critical patent/CN113156418A/zh
Application granted granted Critical
Publication of CN113156418B publication Critical patent/CN113156418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Geometry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供了一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法,包括以下步骤:初始化蒙特卡洛仿真的参数;生成雷达位置和目标位置;模拟所述雷达的接收过程;模拟所述雷达的跟踪过程;计算当前所述蒙特卡洛仿真中的跟踪精度;计算给定置信度下的跟踪精度,所述跟踪精度包括雷达方位、距离、俯仰三维的精度。本发明是在计算雷达目标跟踪精度时同时考虑了平台运动、目标运动、惯导误差、雷达测量误差以及跟踪算法误差等几方面因素,能够更加准确地模拟雷达真实工作情况,提供更精确的精度估计值。

Description

基于蒙特卡洛仿真的雷达目标跟踪精度预测方法
技术领域
本发明涉及雷达目标检测跟踪领域,尤其涉及一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法。
背景技术
雷达性能预测是指根据雷达系统参数(如:天线尺寸、发射功率等)和外界因素影响(如:目标RCS、天气状况、大气衰减等)估计雷达在实际应用中可能达到的性能的过程。一方面,雷达性能预测结果可以作为雷达系统设计的指导。设计人员可以利用相关系统参数计算雷达预期性能,并与给定的技术指标对比,通过多次迭代减少预期性能与期望指标间的差异,完善系统设计。另一方面,雷达性能预测结果可以作为雷达使用的依据。使用人员可以根据给出的雷达系统预测性能,设计雷达部署方式、工作模式、规划载机平台航线航路等。
雷达跟踪精度预测是雷达性能预测中的一个重要方面,包括方位向精度、俯仰向精度和距离向精度三个方面。在以运动目标探测为主的雷达工作模式下,有关目标的上报信息最终是以跟踪航迹的形式呈现的,因此,准确的雷达跟踪精度预测具有重要的意义。雷达实际工作过程中,从照射目标到形成目标航迹的过程中经过了多步复杂的运算、转化、信号处理和数据处理工作,这大大增加了雷达跟踪精度的预测难度。另外,平台和目标运动的不确定性、惯导误差的引入也给跟踪精度的预测问题带来了额外挑战。针对上述问题,常见的解决方法有两种。一是结合系统参数根据经验值推测精度结果;二是忽略跟踪算法及其他外部因素的影响,利用分析得到的雷达测量精度作为跟踪精度的结果。这两种方法在分析过程中均没有结合雷达实际工作流程,也没有充分考虑雷达处理过程中可能引入的误差以及平台机动、惯导测量不准确等外部因素的影响,难以保证计算结果的有效性。
发明内容
有鉴于此,本发明的主要目的在于提供一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法,以期部分地解决上述技术问题中的至少之一。
为了实现上述目的,本发明提供了一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法,包括以下步骤:
初始化蒙特卡洛仿真的参数;
生成雷达位置和目标位置;
模拟所述雷达的接收过程;
模拟所述雷达的跟踪过程;
计算当前所述蒙特卡洛仿真中的跟踪精度;
计算给定置信度下的跟踪精度,所述跟踪精度包括雷达方位、距离、俯仰三维的精度。
其中,所述蒙特卡洛仿真的参数包括蒙特卡洛次数、观测总时刻数、雷达扫描周期、雷达测量误差,包括方位、俯仰及距离测量误差、惯导测量精度,包括经度、纬度及高度测量误差。
其中,所述生成雷达位置和目标位置包括以下子步骤:
随机生成雷达在WGS-84坐标系下的初始位置,包括经度、纬度和高度、初始速度,初始速度设为0,用于模拟平台固定的情况;并生成各观测时刻上的雷达位置;
生成雷达在各观测时刻上的姿态角;
随机生成目标在WGS-84坐标系下的初始位置,包括经度、纬度和高度、初始速度,并生成各观测时刻上的目标位置;
将所述各观测时刻上目标在WGS-84坐标系下的位置转换到各时刻雷达极坐标系下,得到目标在雷达极坐标系下的距离、方位、俯仰信息。
其中,所述将所述各观测时刻上目标在WGS-84坐标系下的位置转换到各时刻雷达极坐标系下,得到目标在雷达极坐标系下的距离、方位、俯仰信息包括以下子步骤:
将各个时刻目标经纬度位置和雷达经纬度位置由WGS-84坐标系转换至ECEF坐标系;
将各个时刻目标位置由ECEF坐标系转换至各时刻东北天坐标系,此时使用的雷达位置为相应时刻的雷达位置及其对应的ECEF坐标;
假设东北天坐标系、平台坐标系和雷达直角坐标系完全重合,即目标在各时刻东北天坐标系下坐标位置就是其在各时刻雷达直角坐标系下坐标位置,其中,东方向为X轴方向,北方向为Y轴方向,天方向为Z轴方向;
将各个时刻目标位置由各个时刻的雷达直角坐标系转换至各个时刻的雷达极坐标系下。
其中,所述模拟所述雷达的接收过程包括以下子步骤:
引入惯导误差修正各时刻记录的雷达位置;
引入雷达测量误差修正雷达测量的目标位置。
其中,所述模拟所述雷达的跟踪过程包括以下子步骤:
将各个时刻在雷达极坐标下的测量目标位置转换至初始时刻雷达直角坐标系下,记录转换后的位置为P1…PN
采用卡尔曼滤波算法,利用P1…PN对目标进行跟踪,得到各个时刻目标跟踪结果。
其中,所述将各个时刻在雷达极坐标下的测量目标位置转换至初始时刻雷达直角坐标系下具体实现方式如下:
将各个时刻目标位置由n时刻雷达极坐标系转换至n时刻雷达直角坐标系;
假设雷达直角坐标系、平台坐标系和东北天坐标系完全重合,即目标在n时刻东北天坐标系下坐标位置就是n时刻雷达直角坐标系下坐标位置,其中,X轴方向为东方向,Y轴方向为北方向,Z轴方向为天方向;
将各个时刻目标位置由n时刻东北天坐标系转换至ECEF坐标系;
将各个时刻目标位置由ECEF坐标系转换至初始时刻东北天坐标系,其中,每个时刻在转换时所使用雷达位置均为初始时刻雷达位置。
其中,所述计算当前所述蒙特卡洛仿真中的跟踪精度包括以下子步骤:
遍历n个时刻,将n时刻跟踪结果转换至n时刻的雷达极坐标系下;
计算当前仿真中雷达各时刻的跟踪误差,即跟踪结果与目标实际位置的差值;
计算当前仿真中跟踪精度平均值。
其中,所述遍历n个时刻,将n时刻跟踪结果转换至n时刻的雷达极坐标系下具体执行如下:
将n时刻跟踪结果由初始时刻雷达直角坐标系转换至初始时刻雷达极坐标系下Ln
将Ln由初始时刻雷达极坐标系转换至ECEF坐标系下,转换结果记为Ln′;
将Ln′由WGS-84坐标系转换至n时刻雷达极坐标系下。
其中,所述计算给定置信度下的跟踪精度包括以下子步骤:
将跟踪精度的每一维,包括距离、方位、俯仰,分别按照从小到大的顺序排列得到向量E;
Figure BDA0003055960000000041
其中,
Figure BDA0003055960000000042
表示向上取整,M表示蒙特卡洛次数,Pa表示给定的置信度;
跟踪精度计算:
Figure BDA0003055960000000043
基于上述技术方案可知,本发明的基于蒙特卡洛仿真的雷达目标跟踪精度预测方法相对于现有技术至少具有如下有益效果的一部分:
本发明是在计算雷达目标跟踪精度时同时考虑了平台运动、目标运动、惯导误差、雷达测量误差以及跟踪算法误差等几方面因素,能够更加准确地模拟雷达真实工作情况,提供更精确的精度估计值。本发明可以应用于雷达系统性能预测、雷达系统设计等方面。
附图说明
图1为本发明实施例提供的预测方法的流程框图;
图2为本发明实施例提供的计算的不同蒙特卡洛仿真次数下的距离误差曲线;
图3为本发明实施例提供的计算的不同蒙特卡洛仿真次数下的方位误差曲线;
图4为本发明实施例提供的计算的不同蒙特卡洛仿真次数下的俯仰误差曲线。
具体实施方式
本发明公开了一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法,可在雷达系统设计过程中通过仿真计算预测雷达在运动或固定平台下对目标的跟踪精度。计算结果可用于验证设计的雷达系统与预期指标的符合情况,并对系统设计做进一步修正完善。本发明的特点是在分析雷达跟踪精度时,通过模拟雷达实际工作过程,同时包含了系统设计、平台和目标运动、惯导误差、坐标系转换以及后续数据处理引入的误差等多方面因素的影响。此外,本发明在计算过程中采用蒙特卡洛仿真算法考虑了雷达实际工作中可能存在的不确定性,进一步提升精度分析的可靠性。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明主要采用计算机仿真的方法进行验证,所有步骤、结论都在MATLAB-R2019a上验证确认。
为了方便后续表述,将方法实现过程中坐标系转换相关步骤用到的公式首先列于下方。
公式1:完成雷达直角坐标系到雷达极坐标系转换
Figure BDA0003055960000000051
θ=arctan(Y/X)
Figure BDA0003055960000000052
其中,(r,θ,
Figure BDA0003055960000000053
)表示雷达极坐标系下的距离、方位、俯仰,(X,Y,Z)表示雷达直角坐标系坐标位置。
公式2:完成雷达极坐标系到雷达直角坐标系转换
Figure BDA0003055960000000054
Figure BDA0003055960000000055
Figure BDA0003055960000000056
公式3:完成东北天坐标系到ECEF坐标系转换
Figure BDA0003055960000000057
Figure BDA0003055960000000058
Figure BDA0003055960000000059
其中,(E,N,U)为东北天坐标系下坐标,(XE,YE,ZE)为转换后ECEF坐标系下坐标,B0和L0分别为雷达位置(东北天坐标系原点)的纬度和经度,
Figure BDA0003055960000000061
为雷达位置的ECEF坐标。
公式4:完成ECEF坐标系到东北天坐标系转换
Figure BDA0003055960000000062
Figure BDA0003055960000000063
Figure BDA0003055960000000064
公式5:完成ECEF坐标系到WGS-84坐标系的转换
L=arctan(YE/XE)
Figure BDA0003055960000000065
Figure BDA0003055960000000066
其中,
Figure BDA0003055960000000067
B表示纬度,L表示经度,H表示高度,a为地球长半径,b为地球短半径。实际纬度B的计算公式中需要用到B的值,这样无法求解,因此先用B1来初始化计算,为了提高精度可以进行多次迭代计算,这样计算出来的纬度B误差更小。一般迭代3~5次后精度误差可以达到10-8次方量级。
公式6:完成WGS-84坐标系到ECEF坐标系的转换
XE=(K+H)cos B cos L
YE=(K+H)cos B sin L
ZE=(K(1-e2)+H)sin B
如图1所示,为本发明所提方法的流程框图,具体实施步骤如下:
步骤1:参数初始化
初始化蒙特卡洛次数M,观测总时刻数N,雷达扫描周期T,雷达测量误差σa(包括方位、俯仰及距离测量误差),惯导测量精度σd(包括经度、纬度及高度测量误差),令m=1。
步骤2:雷达及目标位置生成
2.1:随机生成雷达在WGS-84坐标系下的初始位置Y1(包括经度、纬度和高度)、初始速度Vr(初始速度设为0,可模拟平台固定的情况),并根据下面公式生成各观测时刻上的雷达位置。
Yn=Yn-1+Vr×T,n=2,…,N
2.2:生成雷达在各观测时刻上的姿态角,令ηn表示第n个时刻的雷达姿态角,包括雷达俯仰、横滚和航向角。
2.3:随机生成目标在WGS-84坐标系下的初始位置x1(包括经度、纬度和高度)、初始速度Vt,并根据下面公式生成各观测时刻上的目标位置。
Xn=Xn-1+Vt×T,n=2,…,N
2.4:将各个时刻上目标在WGS-84坐标系下的位置转换到各时刻雷达极坐标系(以相应时刻的雷达位置为中心的极坐标系)下,得到目标在雷达极坐标系下的距离、方位、俯仰信息,令
Figure BDA0003055960000000071
表示坐标转换后第n个时刻的目标位置,其中rn表示距离、θn表示方位、
Figure BDA0003055960000000072
表示俯仰。分为以下几个步骤:
2.4.1)利用公式6将n=1,…,N时刻目标经纬度位置xn和雷达经纬度位置Yn由WGS-84坐标系转换至ECEF坐标系;
2.4.2)利用公式4将n=1,…,N时刻目标位置由ECEF坐标系转换至各时刻东北天坐标系,此时使用的雷达位置为相应时刻的雷达位置Yn及其对应的ECEF坐标;
2.4.3)假设东北天坐标系、平台坐标系和雷达直角坐标系完全重合,即目标在各时刻东北天坐标系下坐标位置就是其在各时刻雷达直角坐标系下坐标位置(东方向为X轴方向,北方向为Y轴方向,天方向为Z轴方向)。
2.4.4)利用公式1将n=1,…,N时刻目标位置由各个时刻的雷达直角坐标系转换至各个时刻的雷达极坐标系下。
步骤3:模拟雷达实际工作过程
3.1:按照下面公式,引入惯导误差修正各时刻记录的雷达位置。
Yn′=Yn+ln,n=1,…,N
其中,l1…lN是随机生成的N个服从均值为0,方差为σd的正态分布的向量。
3.2:按照下面公式,引入雷达测量误差修正雷达测量的目标位置。
Zn′=Znn,n=1,…,N
其中,α1…αN是随机生成的N个服从均值为0,方差为σa的正态分布的向量。
步骤4:跟踪过程
4.1:将n=1,…,N时刻的测量目标位置Z1′…ZN′(雷达极坐标系下)转换至1时刻雷达直角坐标系下,记录转换后的位置为P1…PN。具体实现方式如下:
4.1.1)利用公式2,将n=1,…,N时刻目标位置Zn′由n时刻雷达极坐标系转换至n时刻雷达直角坐标系;
4.1.2)假设雷达直角坐标系、平台坐标系和东北天坐标系完全重合,即目标在n时刻东北天坐标系下坐标位置就是n时刻雷达直角坐标系下坐标位置(X轴方向为东方向,Y轴方向为北方向,Z轴方向为天方向)。
4.1,3)利用公式3将n=1,…,N时刻目标位置由n时刻东北天坐标系转换至ECEF坐标系,此时使用的雷达位置为Yn′及其对应的ECEF坐标;
4.1.4)利用公式4将n=1,…,N时刻目标位置由ECEF坐标系转换至1时刻东北天坐标系。其中,每个时刻在转换时所使用雷达位置均为1时刻雷达位置。
假设东北天坐标系、平台坐标系和雷达直角坐标系完全重合,即目标在1时刻东北天坐标系下坐标位置就是1时刻雷达直角坐标系下坐标位置(东方向为X轴方向,北方向为Y轴方向,天方向为Z轴方向),记为P1…PN
4.2:采用卡尔曼滤波算法,利用P1…PN对目标进行跟踪,得到1~N时刻目标跟踪结果P1′…PN′。基于卡尔曼滤波的跟踪算法已有成熟实现方法,这里不进行详述。
步骤5:计算本次跟踪精度
5.1:遍历n=1,…,N,将n时刻跟踪结果Pn′转换至n时刻的雷达极坐标系下,记为Zn″。
5.1.1)利用公式1,将n时刻跟踪结果Pn′由1时刻雷达直角坐标系转换至1时刻雷达极坐标系下Ln
5.1.2)依次利用公式2、公式3和公式5,将Ln由1时刻雷达极坐标系转换至ECEF坐标系下,记为Ln′。其中,n(n=1,…,N)时刻转换使用的雷达位置为Y′n及其对应的ECEF坐标。
5.1.3)重复步骤2.4,将Ln′由WGS-84坐标系转换至n时刻雷达极坐标系下,记为Zn″。
5.2:计算本次仿真中雷达各时刻的跟踪误差εm,n,即跟踪结果Zn″与目标实际zn位置的差值。
εm,n=Zn″-Zn,n=1,…,N
5.3:计算本次仿真中跟踪精度平均值εm
Figure BDA0003055960000000091
步骤6:令m=m+1,如果m<M,则执行步骤2;否则,执行步骤7。
步骤7:计算给定置信度下的跟踪精度ε,ε中包括雷达方位、距离、俯仰三维的精度。
7.1:将ε1,…,εM的每一维(距离、方位、俯仰)分别按照从小到大的顺序排列得到向量E;
7.2:令
Figure BDA0003055960000000092
其中
Figure BDA0003055960000000093
表示向上取整,M表示蒙特卡洛次数,Pa表示给定的置信度;
7.3:跟踪精度计算:
Figure BDA0003055960000000094
如图2、图3、图4所示,分别为计算的不同蒙特卡洛仿真次数下的距离、方位、俯仰误差曲线;仿真条件为:观测总时刻数N=100,雷达测量误差为距离误差1m、方位误差0.05°、俯仰误差0.1°,惯导测量误差为经度误差0.00001°、纬度误差0.00001°、高度误差0.05°。
从仿真结果中可以看出,本发明所提算法的误差计算结果前期呈现较大幅度震荡,但随着蒙特卡洛仿真次数的增加逐渐收敛,最终趋于平稳。在给定仿真条件下,距离误差约为1.33m,方位误差约为0.0283°,俯仰误差约为0.0555°。
本发明可以应用于雷达系统性能预测、雷达系统设计等方面。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于蒙特卡洛仿真的雷达目标跟踪精度预测方法,其特征在于,包括以下步骤:
初始化蒙特卡洛仿真的参数;
生成雷达位置和目标位置;
模拟所述雷达的接收过程;
模拟所述雷达的跟踪过程;
计算当前所述蒙特卡洛仿真中的跟踪精度;
计算给定置信度下的跟踪精度,所述跟踪精度包括雷达方位、距离、俯仰三维的精度;
所述计算给定置信度下的跟踪精度包括以下子步骤:
将跟踪精度的每一维分别按照从小到大的顺序排列得到向量E,所述向量E包括方位跟踪精度队列,距离跟踪精度队列以及俯仰跟踪精度队列,所述方位跟踪精度队列包括按照从小到大的顺序排列的方位跟踪精度,所述距离跟踪精度队列包括按照从小到大的顺序排列的距离跟踪精度以及所述俯仰跟踪精度队列包括按照从小到大的顺序排列的俯仰跟踪精度;
Figure FDA0003921630510000011
其中,
Figure FDA0003921630510000012
表示向上取整,M表示蒙特卡洛次数,Pa表示给定的置信度;
跟踪精度计算:ε=E(l),所述E(l)表示所述向量E包含的所述方位跟踪精度队列中第l个所述方位跟踪精度、所述距离跟踪精度队列中第l个所述距离跟踪精度和所述俯仰跟踪精度队列中第l个所述俯仰跟踪精度。
2.根据权利要求1中所述的雷达目标跟踪精度预测方法,其特征在于,所述蒙特卡洛仿真的参数包括蒙特卡洛次数、观测总时刻数、雷达扫描周期、雷达测量误差,包括方位、俯仰及距离测量误差、惯导测量精度,包括经度、纬度及高度测量误差。
3.根据权利要求1中所述的雷达目标跟踪精度预测方法,其特征在于,所述生成雷达位置和目标位置包括以下子步骤:
随机生成雷达在WGS-84坐标系下的初始位置,包括经度、纬度和高度、初始速度,初始速度设为0,用于模拟平台固定的情况;并生成各观测时刻上的雷达位置;
生成雷达在各观测时刻上的姿态角;
随机生成目标在WGS-84坐标系下的初始位置,包括经度、纬度和高度、初始速度,并生成各观测时刻上的目标位置;
将所述各观测时刻上目标在WGS-84坐标系下的位置转换到各时刻雷达极坐标系下,得到目标在雷达极坐标系下的距离、方位、俯仰信息。
4.根据权利要求3中所述的雷达目标跟踪精度预测方法,其特征在于,所述将所述各观测时刻上目标在WGS-84坐标系下的位置转换到各时刻雷达极坐标系下,得到目标在雷达极坐标系下的距离、方位、俯仰信息包括以下子步骤:
将各个时刻目标经纬度位置和雷达经纬度位置由WGS-84坐标系转换至ECEF坐标系;
将各个时刻目标位置由ECEF坐标系转换至各时刻东北天坐标系,此时使用的雷达位置为相应时刻的雷达位置及其对应的ECEF坐标;
假设东北天坐标系、平台坐标系和雷达直角坐标系完全重合,即目标在各时刻东北天坐标系下坐标位置就是其在各时刻雷达直角坐标系下坐标位置,其中,东方向为X轴方向,北方向为Y轴方向,天方向为Z轴方向;
将各个时刻目标位置由各个时刻的雷达直角坐标系转换至各个时刻的雷达极坐标系下。
5.根据权利要求1中所述的雷达目标跟踪精度预测方法,其特征在于,所述模拟所述雷达的接收过程包括以下子步骤:
引入惯导误差修正各时刻记录的雷达位置;
引入雷达测量误差修正雷达测量的目标位置。
6.根据权利要求1中所述的雷达目标跟踪精度预测方法,其特征在于,所述模拟所述雷达的跟踪过程包括以下子步骤:
将各个时刻在雷达极坐标下的测量目标位置转换至初始时刻雷达直角坐标系下,记录转换后的位置为P1…PN
采用卡尔曼滤波算法,利用P1…PN对目标进行跟踪,得到各个时刻目标跟踪结果。
7.根据权利要求6中所述的雷达目标跟踪精度预测方法,其特征在于,所述将各个时刻在雷达极坐标下的测量目标位置转换至初始时刻雷达直角坐标系下具体实现方式如下:
将各个时刻目标位置由n时刻雷达极坐标系转换至n时刻雷达直角坐标系;
假设雷达直角坐标系、平台坐标系和东北天坐标系完全重合,即目标在n时刻东北天坐标系下坐标位置就是n时刻雷达直角坐标系下坐标位置,其中,X轴方向为东方向,Y轴方向为北方向,Z轴方向为天方向;
将各个时刻目标位置由n时刻东北天坐标系转换至ECEF坐标系;
将各个时刻目标位置由ECEF坐标系转换至初始时刻东北天坐标系,其中,每个时刻在转换时所使用雷达位置均为初始时刻雷达位置。
8.根据权利要求1中所述的雷达目标跟踪精度预测方法,其特征在于,所述计算当前所述蒙特卡洛仿真中的跟踪精度包括以下子步骤:
遍历n个时刻,将n时刻跟踪结果转换至n时刻的雷达极坐标系下;
计算当前仿真中雷达各时刻的跟踪误差,即跟踪结果与目标实际位置的差值;
计算当前仿真中跟踪精度平均值。
9.根据权利要求8中所述的雷达目标跟踪精度预测方法,其特征在于,所述遍历n个时刻,将n时刻跟踪结果转换至n时刻的雷达极坐标系下具体执行如下:
将n时刻跟踪结果由初始时刻雷达直角坐标系转换至初始时刻雷达极坐标系下Ln
将Ln由初始时刻雷达极坐标系转换至ECEF坐标系下,转换结果记为Ln′;
将Ln′由WGS-84坐标系转换至n时刻雷达极坐标系下。
CN202110503392.3A 2021-05-08 2021-05-08 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法 Active CN113156418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110503392.3A CN113156418B (zh) 2021-05-08 2021-05-08 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110503392.3A CN113156418B (zh) 2021-05-08 2021-05-08 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法

Publications (2)

Publication Number Publication Date
CN113156418A CN113156418A (zh) 2021-07-23
CN113156418B true CN113156418B (zh) 2023-02-24

Family

ID=76874050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110503392.3A Active CN113156418B (zh) 2021-05-08 2021-05-08 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法

Country Status (1)

Country Link
CN (1) CN113156418B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608432B (zh) * 2021-08-06 2023-11-10 中国人民解放军63691部队 船载二自由度伺服系统高动态环路参数调节方法及系统
CN115372911B (zh) * 2022-08-30 2023-06-16 中国船舶集团有限公司第七二三研究所 一种虚拟场景与真实试验平台空间位置映射转换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205371A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp レーダ追尾装置及びレーダ追尾処理方法
CN102929273A (zh) * 2012-11-05 2013-02-13 中国船舶重工集团公司第七二四研究所 雷达目标定位跟踪系统的闭环验证方法
CN104977022A (zh) * 2014-04-04 2015-10-14 西北工业大学 多目标跟踪系统性能评估仿真方法
CN108983216A (zh) * 2018-08-20 2018-12-11 电子科技大学 一种基于坐标校准的机载雷达微弱目标检测前跟踪方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139503A (ja) * 1997-07-15 1999-02-12 Hitachi Ltd 移動体シミュレーション方法
CN105891821B (zh) * 2016-05-24 2018-04-17 北京环境特性研究所 一种机载下视测量目标的自动跟踪方法
CN106646453B (zh) * 2016-11-17 2019-04-05 电子科技大学 一种基于预测值量测转换的多普勒雷达目标跟踪方法
CN109917343A (zh) * 2019-03-25 2019-06-21 北京润科通用技术有限公司 一种目标仿真系统
CN111257865B (zh) * 2020-02-07 2021-09-24 电子科技大学 一种基于线性伪量测模型的机动目标多帧检测跟踪方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205371A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp レーダ追尾装置及びレーダ追尾処理方法
CN102929273A (zh) * 2012-11-05 2013-02-13 中国船舶重工集团公司第七二四研究所 雷达目标定位跟踪系统的闭环验证方法
CN104977022A (zh) * 2014-04-04 2015-10-14 西北工业大学 多目标跟踪系统性能评估仿真方法
CN108983216A (zh) * 2018-08-20 2018-12-11 电子科技大学 一种基于坐标校准的机载雷达微弱目标检测前跟踪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
机载雷达目标跟踪与应用技术研究;李宏敏;《中国优秀硕士学位论文全文数据库信息科技辑》;20101115(第11期);10-18 *

Also Published As

Publication number Publication date
CN113156418A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN113156418B (zh) 基于蒙特卡洛仿真的雷达目标跟踪精度预测方法
CN108983216B (zh) 一种基于坐标校准的机载雷达微弱目标检测前跟踪方法
CN110646782B (zh) 一种基于波形匹配的星载激光在轨指向检校方法
CN108061889A (zh) Ais与雷达角度系统偏差的关联方法
CN105424036A (zh) 一种低成本水下潜器地形辅助惯性组合导航定位方法
CN107300700B (zh) 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法
CN113238072B (zh) 一种适用于车载光电平台的运动目标解算方法
CN110794409A (zh) 一种可估计未知有效声速的水下单信标定位方法
CN109856616B (zh) 一种雷达定位相对系统误差修正方法
CN114777812B (zh) 一种水下组合导航系统行进间对准与姿态估计方法
CN110646783A (zh) 一种水下航行器的水下信标定位方法
CN106052717A (zh) 一种利用精密弹道的电波折射修正效果标定方法
CN103487800B (zh) 基于残差反馈的多模型高速高机动目标跟踪方法
CN114235136B (zh) 直升机声辐射球组的获取、远场噪声预测方法和装置
CN104101869A (zh) 一种极坐标下的地波雷达运动目标仿真建模方法
CN106353756A (zh) 基于图像匹配的下降轨聚束合成孔径雷达定位方法
CN116299163A (zh) 无人机航迹规划方法、装置、设备及介质
CN114608567B (zh) 一种小俯仰角条件下的usbl定位方法
CN114047486B (zh) 一种雷达导引头挂飞试验安装误差角标定方法及存储介质
CN113945892B (zh) 一种体目标三维运动轨迹测量方法
CN114236522A (zh) 前向散射雷达网目标三维空间位置估计方法及存储介质
CN113534130A (zh) 基于视线角度的多站雷达多目标数据关联方法
CN111965638A (zh) 基于斜距表征和迭代法的弹载双基雷达定位方法
CN113376626A (zh) 基于immpda算法的高机动目标跟踪方法
CN111366921A (zh) 基于距离加权融合的双站雷达交叉定位方法、系统及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant