CN107300700B - 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法 - Google Patents

敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法 Download PDF

Info

Publication number
CN107300700B
CN107300700B CN201610238755.4A CN201610238755A CN107300700B CN 107300700 B CN107300700 B CN 107300700B CN 201610238755 A CN201610238755 A CN 201610238755A CN 107300700 B CN107300700 B CN 107300700B
Authority
CN
China
Prior art keywords
calculating
satellite
euler
attitude maneuver
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610238755.4A
Other languages
English (en)
Other versions
CN107300700A (zh
Inventor
韩晓磊
张庆君
刘杰
袁智
张驰
朱宇
张润宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft System Engineering
Original Assignee
Beijing Institute of Spacecraft System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft System Engineering filed Critical Beijing Institute of Spacecraft System Engineering
Priority to CN201610238755.4A priority Critical patent/CN107300700B/zh
Publication of CN107300700A publication Critical patent/CN107300700A/zh
Application granted granted Critical
Publication of CN107300700B publication Critical patent/CN107300700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9052Spotlight mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9047Doppler beam sharpening mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出了一种敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法,在聚束模式工作时包括:对雷达波束的地面瞄准点和成像时序进行规划;根据所规划的成像时序,对所述雷达波束的姿态机动需求信息进行粗算;将粗算获得的姿态机动需求信息作为初始信息进行精算以完成最终的姿态机动需求计算。因此,本发明考虑了雷达波束离轴角的影响,适用于包含任意离轴角的敏捷SAR卫星聚束模式姿态机动需求计算,也可应用于机械扫描和电扫描联合实现的SAR卫星聚束模式姿态机动需求计算,得到满足精度要求的需求姿态,能够适用于天线安装于星体任何位置的敏捷SAR卫星聚束模式姿态机动需求计算。

Description

敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法
技术领域
本发明涉及一种敏捷合成孔径雷达(以下简称为SAR)卫星聚束模式姿态机动需求计算方法,尤其适用于天线相位中心偏离星本体,并采用集中馈电的反射面体制进行敏捷SAR卫星聚束模式姿态机动需求计算.
背景技术
聚束模式是一种常用的高分辨率星载SAR工作模式,通过雷达波束扫描使波束中心始终瞄准地面固定点,从而使成像区域始终处于雷达波束的照射之下,延长了合成孔径时间,实现了方位向高分辨率成像。敏捷SAR卫星有效载荷固定在卫星上,依靠姿态控制系统控制卫星整体绕俯仰、横滚、偏航3个轴向摆动,实现SAR成像所需的波束扫描。敏捷SAR卫星具有较高的灵活性和成像能力,能高效地实现高分辨率聚束模式成像。
星载SAR与光学成像机理不同,例如,SAR需侧视成像、SAR天线具备波束扫描能力以及SAR对相位误差敏感等,导致光学遥感卫星中的姿态机动指标参数计算方法不适用于SAR卫星。上海航天控制技术研究所的汪礼成等人在2013年高分辨率对地观测学术年会上发表了《对地聚束成像SAR卫星姿态控制技术研究》一文,对聚束模式下SAR卫星的姿态跟踪机动规律进行了研究,但未考虑雷达天线相位中心偏离星本体坐标系原点,和雷达天线波束指向偏离星本体坐标系坐标轴的情况。题为“一种基于SAR卫星姿态控制实现滑动聚束模式的方法”的发明专利(北京航空航天大学,陈杰等,申请号为CN 103076607)提出了一种基于SAR卫星姿态控制实现滑动聚束模式的方法,但这种方法是针对滑动聚束模式而非聚束模式设计的,同时它也不能适应雷达天线相位中心偏离星本体坐标系原点,和雷达天线波束指向偏离星本体坐标系坐标轴的情况,不适用于高分辨率聚束模式敏捷SAR卫星。
因而,敏捷SAR卫星聚束模式分辨率高,对雷达波束指向的精度要求提高,需要在高精度卫星轨道和地球模型的基础上,充分考虑雷达天线相位中心偏离星本体坐标系原点,和雷达天线波束指向偏离星本体坐标系坐标轴的影响,设计精确的敏捷SAR卫星聚束模式姿态需求计算方案。
发明内容
为了解决现有技术中存在的问题以及克服现有技术的不足,本发明提出了一种基于迭代计算的敏捷SAR卫星聚束模式姿态机动指标参数计算方案,能适应SAR天线在星体上各种不同的安装位置,并充分考虑可能存在的波束离轴角,得到准确的敏捷SAR卫星聚束模式成像所需的姿态指标参数,为基于卫星平台姿态机动实现高分辨率星载SAR成像提供支撑.
本发明提供了一种敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法,包含以下三个主要步骤:瞄准点和时序规划、需求姿态角粗算和需求姿态角精算。
步骤1——瞄准点和时序规划
1.1)聚束模式工作时雷达波束中心始终瞄准地面待观测场景的几何中心,选择该几何中心作为地面瞄准点.
1.2)根据瞄准点坐标以及星历数据,寻找瞄准点回波多普勒中心为零的星历时刻,将其作为成像时序的中心。根据需求方位向分辨率和多普勒调频率计算完整的成像时间,并平均分布于时序中心两侧.
1.3)将地面瞄准点和地心坐标变换到轨道坐标系,为后续姿态角计算提供输入.
步骤2——需求姿态角粗算
2.1)根据天线相位中心和地面瞄准点在轨道系下的坐标,计算期望的波束中心指向向量;
2.2)根据卫星质心和地心在轨道系下的坐标,计算起始Z轴指向向量;
2.3)由于雷达波束可能存在离轴角,根据旋转变换关系,计算波束起始指向向量;
2.4)根据欧拉定理,计算以欧拉轴/角参数式表示的需求姿态;
2.5)根据欧拉四元数式与欧拉轴/角参数式的转换关系计算需求的欧拉四元数;
2.6)根据欧拉角式与欧拉四元数式的转换关系可以计算得到初始欧拉角。
步骤3——需求姿态角精算
3.1)利用上一步得到的初始欧拉角,计算星本体坐标系到轨道坐标系的转换矩阵,并将天线相位中心星本体坐标系坐标变换成轨道坐标系坐标;
3.2)以此坐标为输入,重复步骤二的计算过程,得到新的欧拉角;
3.3)比较新欧拉角与初始欧拉角之间的差值,如大于预先设定的门限值,则用新欧拉角代替初始欧拉角,重复上述过程,直到新欧拉角与初始欧拉角之间的差值小于预先设定的门限值,完成姿态机动需求计算.
因此,与现有技术相比,本发明可以实现以下的有益效果:
1)充分考虑了卫星轨道和地球表面的弯曲特性影响,以及聚束模式星载SAR工作特点,为高分辨率星载SAR成像提供了一种经济、高效的实现方式;
2)充分考虑了可能存在的波束指向偏离星本体坐标系Z轴的离轴角,适用于同时存在电扫描和整星姿态机动的情况,具备更高的普适性,且为机电联合扫描实现聚束模式星载SAR成像提供技术基础;
3)能适应SAR天线在星体上各种不同的安装位置,将天线相位中心与卫星质心偏差的影响降低到可以忽略的程度.
附图说明
图1是本发明的敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法的流程图;
图2是本发明的敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法的计算原理示意图;
图3是本发明的敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法的实施验证流程图;
图4示出了本发明实施例所涉及的以卫星轨道系为参考系312转序下的需求欧拉角;
图5示出了本发明实施例的STK软件中虚拟SAR卫星的起始时刻波束指向;
图6示出了本发明实施例的STK软件中虚拟SAR卫星的中间时刻波束指向;
图7示出了本发明实施例的STK软件中虚拟SAR卫星的结束时刻波束指向;
图8示出了本发明实施例的地面瞄准误差.
具体实施方式
下面结合附图1-8及具体实施方式对本发明进行详细说明.
本发明通过迭代计算得到敏捷SAR卫星聚束模式姿态机动需求指标参数,具体的方法流程图如图1所示,包含以下步骤:
步骤一,瞄准点和时序规划
1.1确定瞄准点
为计算姿态机动需求指标参数,需要明确不同时刻雷达波束需要指向的位置信息。聚束模式工作时雷达波束中心始终瞄准地面待观测场景的几何中心,因此,选择该几何中心作为整个成像时间内的地面瞄准点。该瞄准点的具体坐标由任务规划和系统波位设计结果决定,观测任务确定后可以计算得到。
1.2时序规划
接下来需要确定成像时间序列,为保证回波信号多普勒中心为零,降低数据处理难度,需要以回波多普勒中心为零的星历时刻作为成像时序中心,再根据分辨率需求计算成像总时间,并将其对称分布于成像时序中心两侧,完成时序规划。
为寻找瞄准点回波多普勒中心为零的星历时刻,首先需要计算各个星历时刻的回波多普勒中心,计算方法如下:
Figure BSA0000128890680000041
其中,
Figure BSA0000128890680000042
为地心惯性坐标系下卫星的位置矢量,
Figure BSA0000128890680000043
为地心惯性坐标系下瞄准点的位置矢量,
Figure BSA0000128890680000044
为地心惯性坐标系下卫星的速度矢量,
Figure BSA0000128890680000045
为地心惯性坐标系下瞄准点的速度矢量,λ为载波波长,Rst为卫星与瞄准点之间的距离。根据上式可以得到所有星历时刻的瞄准点回波多普勒中心值,进而得到中心值为零的星历时刻.
接下来根据需求方位向分辨率ρa和多普勒调频率fa计算成像时间,计算公式如下:
Figure BSA0000128890680000046
其中,Vg为零多普勒线扫过地面的速度,kwa为多普勒信号处理加权扩展因子,fa为多普勒调频率,由下式计算得到
Figure BSA0000128890680000047
其中,
Figure BSA0000128890680000048
为地心惯性坐标系下卫星的加速度矢量,
Figure BSA0000128890680000049
为地心惯性坐标系下瞄准点的加速度矢量。
将成像时间长度Ts对称分布于成像时序中心t0两侧,成像时间范围为
Figure BSA00001288906800000410
完成了时序规划。本发明中涉及的坐标系变换方法可查阅卫星控制经典教材,这里不再累述.
1.3计算瞄准点和地心轨道坐标系坐标
将地面瞄准点和地心坐标变换到轨道坐标系,为后续姿态角计算提供输入。应了解,这个步骤是为了将相关点的坐标变换到同一坐标系下,以便于后续计算.
步骤二,需求姿态角粗算
计算需求姿态角时,应根据时序规划得到的成像星历时刻逐点进行计算。计算的基本思路是将起始指向向量和期望指向向量变换到同一坐标系下,再利用最短旋转路径准则,计算实现天线波束期望指向的旋转轴和转动角,进而得到所有需求姿态信息。
卫星整星构型确定后,可以准确测得天线相位中心在卫星本体坐标系下的坐标,但因姿态角未知,不能得到天线相位中心在轨道坐标系下的精确坐标。粗算阶段,以其在卫星本体坐标系下的坐标代替轨道坐标系坐标,由于上述两个坐标系原点同为卫星质心,且星体尺寸一般较小,两坐标系下的相位中心坐标值差一般为米级,可以用于姿态角粗算,这种近似引入的误差将在精算阶段予以消除。
2.1计算期望指向向量
依据上述姿态角计算思路,首先需要计算期望指向向量。根据天线相位中心OP和地面瞄准点T在轨道系下的坐标,可得到期望的波束中心指向向量,以
Figure BSA0000128890680000051
表示。根据卫星质心OS和天线相位中心OP在轨道系下的坐标,可得到卫星质心到相位中心的向量,以
Figure BSA0000128890680000052
表示.由于姿态机动时围绕卫星质心OS转动,应以卫星质心为起点计算期望指向向量,以
Figure BSA0000128890680000053
表示,根据向量关系得到:
Figure BSA0000128890680000054
如图2所示,示出了上述的计算原理。
2.2计算Z轴指向向量
接下来需要计算波束起始指向向量,首先计算星本体坐标系Z轴指向向量,随后根据该向量和离轴角,通过旋转变换得到波束起始指向向量。
根据卫星质心OS和地心OE在轨道系下的坐标,可得到起始Z轴指向向量,以
Figure BSA0000128890680000055
表示。
2.3计算波束起始指向向量
由于雷达波束可能存在离轴角,根据旋转变换关系,可得到如下波束起始指向向量:
Figure BSA0000128890680000056
其中,C(θ)为由波束离轴角决定的旋转转换矩阵,θ为离轴角,是天线雷达波束中心偏离卫星本体坐标系Z轴的角度,包含天线安装时的斜装角,天线自身的电扫描角等.
2.4计算以欧拉轴/角参数式表示的需求姿态
首先,计算以欧拉轴/角参数式表示的需求姿态信息,根据欧拉定理,卫星绕质心的姿态机动可以由绕通过质心的某一固定轴转动一定角度得到。该转轴方向矢量用
Figure BSA0000128890680000057
表示,转动角度用Φ表示,这即是欧拉轴/角参数式.根据最短路径旋转准则,
Figure BSA0000128890680000058
和Φ可由
Figure BSA0000128890680000059
Figure BSA00001288906800000510
通过下两式计算得到:
Figure BSA00001288906800000511
Figure BSA0000128890680000061
其中,×为向量积,·为标量积,|·|为向量长度。
2.5计算以欧拉四元数式表示的需求姿态
根据欧拉四元数式与欧拉轴/角参数式的转换关系可以计算得到以欧拉四元数表示的需求姿态信息.
2.6计算以欧拉角式表示的需求姿态
根据欧拉角式与欧拉四元数式的转换关系可以计算得到初始欧拉角.由于在本阶段的计算过程中,使用天线相位中心卫星本体坐标系坐标代替轨道坐标系坐标,所以初始欧拉角中包含一定的误差,下一步将重点剔除该误差。
本步骤所涉及的欧拉轴/角参数式、欧拉四元数式、欧拉角式等姿态表示方法之间的转换关系可查阅卫星控制经典教材,在本说明书中不再累述。
步骤三,需求姿态角精算
将步骤二中得到的欧拉角作为初始姿态角,利用初始姿态角计算天线相位中心在轨道系下的坐标,重复步骤二,得到新的欧拉角,再将新的欧拉角作为初始姿态角,循环迭代计算,直到新旧欧拉角之间误差满足需求精度。由于计算新欧拉角所用的转换矩阵总是比计算初始欧拉角时的转换矩阵更精确,因此,新欧拉角逐渐向准确的需求姿态角逼近,而新欧拉角与初始欧拉角之差逐渐向零收敛。通过选择合适的门限值,能得到满足精度需求的姿态角。这个迭代计算有效剔除了天线相位中心与质心不重合导致的指向误差,得到满足精度要求的姿态角,本步骤具体包含如下过程.
3.1计算轨道系天线相位中心坐标
利用上一步得到的初始欧拉角,计算星本体坐标系到轨道坐标系的转换矩阵,并将天线相位中心星本体坐标系坐标变换成轨道坐标系坐标。
3.2重复步骤二计算欧拉角式表示的需求姿态
然后以此坐标为输入,重复步骤二的计算过程,得到新的欧拉角.
3.3判决计算结果是否达到判决门限
比较新欧拉角与初始欧拉角之间的差值,如大于预先设定的门限值,则用新欧拉角代替初始欧拉角,重复上述过程,直到新欧拉角与初始欧拉角之间的差值小于预先设定的门限值。可根据指向精度的要求确定门限值,本发明方法收敛速度较快,3~4次迭代后新欧拉角与初始欧拉角之间的差值将达到10-20弧度量级,故该门限值可以设置为10-20弧度。事实上,由于控制系统的执行机构精度有限,更高的计算精度并没有实际价值.
通过MATLAB和卫星仿真工具包(Satellite Tool Kit,以下简称为STK)软件联合仿真,可以验证本发明提出的方案的有效性,验证流程如图3所示。首先,根据输入条件,在MATLAB软件中计算姿态机动指标参数,然后将姿态机动指标参数计算结果导入STK软件,显示姿态机动和波束指向变化,并将地面瞄准点位置信息输回MATLAB软件,分析STK软件中得到的瞄准点位置信息与期望的瞄准点位置信息之间的误差.由于STK软件的正确性已经经过工程验证,它的分析结果能准确地反映卫星运动规律,故上述仿真实验具有较高的可信度。
本次仿真实验的SAR卫星聚束模式输入参数如以下表1所示,根据本发明的方案,得到实现聚束模式的姿态机动需求指标参数.图4为以轨道系为参考系,312转序下的需求欧拉角.可见,聚束模式成像过程中俯仰机动范围最大,达到1.8835°,偏航机动次之,达到0.4768°,横滚机动最小,为0.0048°。
表1
参数 数值
轨道长半轴(km) 7078.14
轨道偏心率 0.01
轨道倾角(°) 98.1928
近地点幅角(°) 0
升交点赤经(°) 0
天线离轴角(°) 10
星本体系下天线相位中心位置(m) [5,5,5]
雷达载波波长(m) 0.0311
多普勒信号处理加权展宽因子 1.1
期望方位向分辨率(m) 0.6
期望场景中心经度坐标(°) 169.9
期望场景中心纬度坐标(°) 12.1
将上述姿态角导入STK软件,通过STK软件中虚拟SAR卫星的雷达波束指向,验证本发明提出方法的正确性和有效性。STK软件中虚拟卫星同样采用表1中的输入参数,在注入计算得到的姿态角后,得到成像起始、中间和结束时刻波束指向,以及地面瞄准点位置(如图5、6、7所示)。在附图中,叉形区域为期望的成像场景中心(瞄准点),矩形区域为注入本发明方法计算得到的需求姿态角后,虚拟卫星的雷达波束地面足印,可见雷达波束在成像起始、中间和结束时刻都准确地指向了期望的场景中心,证明了上述姿态机动指标参数计算结果的正确性。再将STK软件中得到的实际瞄准点位置信息导回到MATLAB软件中进行分析,得到了详细的瞄准误差.如图8所示,瞄准误差在10-8米量级,可以忽略不计。
综上所述,本发明的敏捷SAR卫星聚束模式姿态机动需求计算方法,考虑了雷达波束离轴角的影响,能够适用于包含任意离轴角的敏捷SAR卫星聚束模式姿态机动需求计算,也可应用于机械扫描和电扫描联合实现的SAR卫星聚束模式姿态机动需求计算。另外,通过迭代计算剔除雷达天线相位中心偏离星本体坐标系原点的影响,得到满足精度要求的需求姿态,该算法能够适用于天线安装于星体任何位置的敏捷SAR卫星聚束模式姿态机动需求计算。
本发明中未说明部分属于本领域的公知技术。

Claims (1)

1.一种敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法,其特征在于,在聚束模式工作时,包括以下步骤:
步骤一,对雷达波束的地面瞄准点和成像时序进行规划;
步骤二,根据所规划的成像时序,对所述雷达波束的姿态机动需求信息进行粗算;以及
步骤三,将粗算获得的姿态机动需求信息作为初始信息进行精算,以完成最终的姿态机动需求计算,
所述步骤一包括:
使所述雷达波束的中心始终瞄准地面待观测场景的几何中心,并选择所述几何中心作为所述地面瞄准点;
根据各个瞄准点的坐标以及星历数据,寻找所述瞄准点的回波多普勒中心为零的行李时刻并将其作为所述成像时序的中心;
根据需求的方位向分辨率和多普勒调频率,计算完整的成像时间并使其平均分布于所述成像时序的中心两侧,
所述步骤一还包括:
将所述地面瞄准点和地心坐标变换到轨道坐标系,以为后续的姿态机动需求信息的计算提供输入,
所述步骤二包括:
根据天线相位中心和所述地面瞄准点在所述轨道坐标系下的坐标,计算期望的波束中心指向向量;
根据卫星质心和地心在所述轨道坐标系下的坐标,计算起始轴指向向量;
在所述雷达波束存在离轴角的情况下,根据旋转变换关系,计算波束起始指向向量;
根据欧拉定理,计算以欧拉轴/角参数式表示的需求姿态;
根据欧拉四元数式与所述欧拉轴/角参数式的转换关系,计算需求的欧拉四元数;以及
根据欧拉角式与所述欧拉四元数式的转换关系,计算得到初始欧拉角,
所述步骤三包括:
利用所述初始欧拉角,计算星本体坐标系到所述轨道坐标系的转换矩阵,并将所述天线相位中心的星本体坐标系坐标变换成轨道坐标系坐标;
以所述轨道坐标系坐标为输入,重复所述步骤二,从而得到新欧拉角;
对所述初始欧拉角与所述新欧拉角进行比较并确定它们之间的差值;
在所述差值大于预设门限值的情况下,采用所述新欧拉角代替所述初始欧拉角,重复迭代直至差值小于所述预设门限,从而完成最终的姿态机动需求计算。
CN201610238755.4A 2016-04-15 2016-04-15 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法 Active CN107300700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610238755.4A CN107300700B (zh) 2016-04-15 2016-04-15 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610238755.4A CN107300700B (zh) 2016-04-15 2016-04-15 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法

Publications (2)

Publication Number Publication Date
CN107300700A CN107300700A (zh) 2017-10-27
CN107300700B true CN107300700B (zh) 2020-05-22

Family

ID=60136823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610238755.4A Active CN107300700B (zh) 2016-04-15 2016-04-15 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法

Country Status (1)

Country Link
CN (1) CN107300700B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208797B (zh) * 2019-05-27 2021-02-09 西安空间无线电技术研究所 一种快响sar卫星大斜视姿态机动方法
CN112130147B (zh) * 2020-08-31 2022-09-06 北京空间飞行器总体设计部 一种基于海陆目标位置信息的成像波位确定方法
CN113721243B (zh) * 2021-06-30 2024-02-09 西安空间无线电技术研究所 一种高轨雷达卫星高精度协同照射方法
CN115856893B (zh) * 2022-11-15 2023-09-15 北京卫星信息工程研究所 用于卫星自身旋转的雷达天线波束控制系统
CN116774222B (zh) * 2023-08-23 2023-11-14 中国电子科技集团公司第十四研究所 一种机电扫结合的多模式马赛克成像方法
CN118068331B (zh) * 2024-04-22 2024-06-25 中国科学院空天信息创新研究院 星载合成孔径雷达数据流式分景方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076607A (zh) * 2013-01-04 2013-05-01 北京航空航天大学 一种基于sar卫星姿态控制实现滑动聚束模式的方法
WO2014012828A1 (de) * 2012-07-19 2014-01-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Methode zur prozessierung von hochauflösenden weltraumgestützt erhaltenen spotlight-sar rohdaten
CN104330797A (zh) * 2014-10-28 2015-02-04 南京邮电大学 基于相位误差直接估计的sar实时自聚焦方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012828A1 (de) * 2012-07-19 2014-01-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Methode zur prozessierung von hochauflösenden weltraumgestützt erhaltenen spotlight-sar rohdaten
CN103076607A (zh) * 2013-01-04 2013-05-01 北京航空航天大学 一种基于sar卫星姿态控制实现滑动聚束模式的方法
CN104330797A (zh) * 2014-10-28 2015-02-04 南京邮电大学 基于相位误差直接估计的sar实时自聚焦方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATTITUDE STEERING STRATEGY FOR AGILE SMALL SAR SATELLITE WITH SLIDING SPOTLIGHT MODE;De-yi ZOU等;《IGARSS 2013》;20131231;第1298-1301页 *
Design of Large Angle Attitude Control System for Agile Missile;何素娟等;《系统仿真学报》;20110531;第23卷(第5期);第906-910页 *
HIGH-RESOLUTION WIDE-SWATH MOSAIC MODE SPACE-BORNE SAR;Xiaolei Han等;《IGARSS 2015》;20121231;第1809-1812页 *
对地聚束成像卫星姿态控制技术研究;汪礼成等;《测绘通报》;20141231;第43-49页 *

Also Published As

Publication number Publication date
CN107300700A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN107300700B (zh) 敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法
CN107607947B (zh) 基于卡尔曼滤波的星载雷达成像参数在线估计方法
CN107765226B (zh) 一种sar卫星雷达回波模拟方法、系统和介质
Li et al. Autonomous navigation and guidance for landing on asteroids
RU2454631C1 (ru) Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд
CN111102981B (zh) 一种基于ukf的高精度卫星相对导航方法
CN111998855B (zh) 光学望远镜共视观测确定空间目标初轨的几何方法及系统
CN110058204B (zh) 一种基于方向图匹配的星载天线波束中心定标方法
CN113238072B (zh) 一种适用于车载光电平台的运动目标解算方法
RU2318188C1 (ru) Способ автономной навигации и ориентации космических аппаратов
CN108917764A (zh) 一种双星编队仅测距相对导航方法
CN103344958B (zh) 基于星历数据的星载sar高阶多普勒参数估算方法
Hesar et al. Small body gravity field estimation using LIAISON supplemented optical navigation
CN112540367B (zh) 空间目标雷达定轨实时识别方法、设备和存储介质
CN105825058A (zh) 超稀疏雷达数据摄动补偿初轨计算方法
Barbee et al. Guidance and navigation for rendezvous and proximity operations with a non-cooperative spacecraft at geosynchronous orbit
US20220065587A1 (en) System and method of hypersonic object tracking
Zhang et al. A novel antenna beam steering strategy for GEO SAR staring observation
CN114063054A (zh) 一种火箭发射点参数的回溯计算方法
CN111090830B (zh) 一种高轨非合作目标在轨光压辨识方法
CN112857400A (zh) 一种基于十表冗余捷联惯组的运载火箭初始对准方法
RU2448326C2 (ru) Способ спутниковой коррекции автономных средств навигации подвижных объектов
CN111366126A (zh) 地面测站天线对卫星指向的视向量计算系统
RU2751121C1 (ru) Способ определения формы амплитудной диаграммы направленности антенной системы навигационного космического аппарата
CN103487808A (zh) 一种变参数锁定模式弹载聚束sar的航迹仿真方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant