WO2021098600A1 - 终端设备 - Google Patents

终端设备 Download PDF

Info

Publication number
WO2021098600A1
WO2021098600A1 PCT/CN2020/128651 CN2020128651W WO2021098600A1 WO 2021098600 A1 WO2021098600 A1 WO 2021098600A1 CN 2020128651 W CN2020128651 W CN 2020128651W WO 2021098600 A1 WO2021098600 A1 WO 2021098600A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
microphone
terminal device
diaphragm
inlet hole
Prior art date
Application number
PCT/CN2020/128651
Other languages
English (en)
French (fr)
Inventor
丁越
叶千峰
单海波
金明昱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20890828.5A priority Critical patent/EP4044567A4/en
Publication of WO2021098600A1 publication Critical patent/WO2021098600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • H04M1/035Improving the acoustic characteristics by means of constructional features of the housing, e.g. ribs, walls, resonating chambers or cavities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • This application relates to the technical field of acoustic-electric conversion of electronic equipment, and in particular to a terminal device.
  • the directivity of the microphone has the following types, omnidirectional (see Figure 6), cardioid (see Figure 7), super-cardioid (see Figure 8), and bidirectional (see Figure 8). That is, the figure 8 points, see Figure 9).
  • the omnidirectional microphone is a pressure-type design and has the same sensitivity to sounds from different angles. The sound reception characteristic is to pick up sounds from all angles. It is mainly suitable for scenes where the direction of the sound source is uncertain.
  • the double-pointing microphone also known as the figure-eight microphone, is a differential pressure design. It collects front and back sounds, but suppresses the side sounds. It is suitable for interviews with two-person conversations and other scenes.
  • Cardioid and super-cardioid microphones are generally designed with a combination of pressure and pressure difference.
  • the sensitivity on the front is significantly higher than that on the back, which suppresses the influence of the sound on the back and the side, and puts the microphone forward in the direction where you want to pick up the sound.
  • the sound on the back is small, which is suitable for scenes with designated radio direction.
  • MEMS microphone is an acousto-electric converter based on MEMS technology, which has the characteristics of small size, good frequency response characteristics, and low noise.
  • a traditional MEMS microphone is composed of a MEMS chip, an ASIC (Application Specific Integrated Circuit) chip, a shell, and a printed circuit board.
  • the product has a pickup hole on the shell or on the printed circuit board, such as on a printed circuit board. When on the circuit board, the pickup hole is located under the MEMS chip. The sound enters the microphone through the pickup hole and acts on the diaphragm of the MEMS chip to generate an electrical signal.
  • the ASIC chip processes the electrical signal and connects it to the printed circuit board through a wire to take out the signal. Because there is only one sound pickup hole, when the sound reaches the sound pickup hole, the loudness is the same, the sensitivity is the same. Therefore, the MEMS microphone of this type of structure is an omnidirectional microphone, and the sound recorded in all directions is the loudness of the sound in all directions. It is consistent and cannot achieve directional recording or two-way recording (that is, the sound directly facing the front and back of the microphone is collected).
  • the commonly used solution in technology is to use multiple microphones to pick up sounds in a specified direction or face the sounds in the front and back directions of the terminal device through an algorithm.
  • the effect is not good enough when picking up the sound in the specified direction or facing the front and back of the terminal device, and multiple microphones take up a lot of space and are expensive to use.
  • the purpose of this application is to solve the problem that the terminal device in the prior art uses multiple microphones to use algorithms to pick up sounds in a specified direction or bidirectional direction when picking up the direction facing the shooting direction or the user's speaking direction or facing the front and back of the terminal device.
  • the sound effect in the direction is not good enough, it takes up a lot of space and the use cost is high. Therefore, the embodiment of the present application provides a terminal device, which can achieve better directivity of the microphone through a single microphone without using an algorithm, and improve the directional sound pickup or two-way sound pickup effect of the terminal device, and only a single microphone is required. It occupies a small space and the use cost is low.
  • the embodiment of the present application provides a terminal device, which includes a housing, a display screen arranged opposite to the housing, and a microphone located in the terminal device.
  • the microphone includes a microphone housing, a microphone circuit board, and a microelectromechanical system chip ,
  • the microphone housing is arranged on the microphone circuit board, and a microphone cavity is formed with the microphone circuit board, and the microelectromechanical system chip is arranged on the microphone circuit board and is located in the microphone cavity,
  • the microelectromechanical system chip has a diaphragm, and one side of the diaphragm is opposite to the microphone circuit board, and the microelectromechanical system chip on one side of the diaphragm and the microphone circuit board form a chip Chamber; the back of the casing is provided with a first sound inlet, and the front of the display screen is provided with a second sound inlet;
  • the chip chamber communicates with the outside of the back of the housing through the first sound inlet hole
  • the microphone chamber communicates with the outside of the front surface of the display screen through the second sound inlet hole, so that The sound wave on the back of the casing acts on one side of the diaphragm through the first sound inlet hole, and the sound wave from the front of the display screen acts on the diaphragm through the second sound inlet hole.
  • the other side wherein, one side of the diaphragm is opposite to the other side of the diaphragm;
  • the terminal device further includes a damping plate located on the path of sound waves acting on the other side of the diaphragm through the second sound inlet hole, so that the sound wave entering from the second sound inlet hole passes through the The damping sheet acts on the other side of the diaphragm.
  • the above structure is adopted, so that the sound waves from the side where the back of the terminal device is located (that is, the side where the back of the housing is located) sequentially pass through the first sound inlet hole and act on one side of the diaphragm.
  • the sound waves on the side where the front of the device is located (that is, the side where the front of the display is located) sequentially act on the other side of the diaphragm through the second sound inlet, and the damper can change the effect on the other side of the diaphragm.
  • the amplitude value and phase of the sound pressure so that better directivity of the microphone can be achieved by setting a damping plate with an appropriate damping coefficient, and the directional pickup of the terminal device (that is, the sound that is facing the back of the terminal device) or two-way pickup can be improved
  • the effect that is, picking up the sound facing the front and back of the terminal device.
  • only a single microphone is needed, which takes up less space and lowers the cost of use.
  • the damping sheet is located outside the microphone on the path where sound waves act on the other side of the diaphragm through the second sound inlet hole.
  • the damping sheet is arranged on the outside of the microphone.
  • the microphone can be assembled to the terminal circuit board to form an integral structure before the damping sheet is assembled, so that the microphone itself is assembled and the microphone is assembled.
  • the damper does not need to be too high together with it, which improves the reliability of the damper.
  • the terminal device further includes another damping plate located on the path of sound waves acting on one side of the diaphragm through the first sound inlet hole, so that the The sound waves entering the sound inlet pass through the other damping sheet and act on one side of the diaphragm.
  • another damping plate is provided on the path where the sound wave from the side where the back of the terminal device is located acts on one side of the diaphragm through the first sound inlet hole, which can change the effect on the side of the diaphragm.
  • the amplitude value and phase of the sound pressure can be set with a suitable damping coefficient and another damping plate to achieve better directivity of the microphone, and improve the directional sound pickup effect or two-way sound pickup effect of the terminal device.
  • the microphone can be adjusted to the desired cardioid directional microphone or bidirectional microphone by adjusting the damping coefficients of the two dampers at the same time, and the adjustment flexibility is higher.
  • the other damping sheet is located outside the microphone on the path of sound waves acting on one side of the diaphragm through the first sound inlet hole.
  • another damping sheet is arranged on the outside of the microphone.
  • the microphone can be assembled to the terminal circuit board to form an integral structure before assembling the other damping sheet, so that the microphone itself
  • the other damping film does not need to be too high temperature together with it when the surface mounting process is too high, and the reliability of the other damping film is improved.
  • the terminal device further includes a camera for shooting with the housing facing the object, the center point of the end of the second sound inlet hole communicating with the outside of the terminal device and the first sound inlet
  • the line connecting the center point of the end of the hole communicating with the outside of the terminal device is parallel to the viewing angle center line of the camera or forms an included angle with the viewing angle center line of the camera, and the included angle is less than 30°.
  • the maximum sensitivity direction in the polar circle formed by the microphone is parallel or approximately parallel to the pointing direction of the camera, so as to ensure that the 0° direction in the polar circle does not deviate from the pointing direction of the camera or the deviation angle is small.
  • the terminal device further includes a terminal circuit board, the terminal circuit board is arranged inside the casing and opposite to the display screen, and the microphone circuit board is arranged on the terminal circuit board ;
  • the side of the microphone circuit board facing the diaphragm is provided with a first sound pickup hole communicating with the chip cavity, and the first sound pickup hole is communicated with the first sound inlet hole, so that The sound waves on the back of the casing enter the chip cavity through the first sound inlet hole and the first sound pickup hole in sequence and act on one side of the diaphragm;
  • the microphone circuit board or the microphone housing is provided with a second sound pickup hole communicating with the microphone chamber, and the second sound pickup hole is communicated with the second sound inlet hole, so that it comes from the display
  • the sound waves on the front of the screen sequentially pass through the second sound inlet hole and the second sound pickup hole into the microphone chamber and act on the other side of the diaphragm.
  • the terminal device further includes a bracket disposed between the terminal circuit board and the opposite side of the display screen; the bracket is formed with the second sound inlet hole The connection channel with the second sound pickup hole, so that the sound waves from the front of the display screen sequentially enter the microphone chamber through the second sound inlet hole, the connection channel, and the second sound pickup hole The middle effect is on the other side of the diaphragm.
  • the second sound pickup hole is provided on the top wall of the microphone housing opposite to the microphone circuit board, and does not overlap with the microelectromechanical system chip;
  • the connection channel includes a first A connecting section and a second connecting section, the first connecting section extends in a direction parallel to the front surface of the display screen, and one end of the first connecting section is in communication with the second sound inlet hole;
  • the second The connecting section extends along the thickness direction of the terminal device, one end of the second connecting section is communicated with the other end of the first connecting section, and the other end is communicated with the second sound pickup hole. This can shorten the communication path between the second sound inlet hole and the second sound pickup hole, which is particularly suitable for miniaturized terminal equipment.
  • the bracket is disposed on the microphone housing and is connected to the microphone housing in a sealed manner, and the side of the bracket facing the display screen is fixed and sealed to the display screen.
  • the connecting channel is formed as a sealed channel, and the sound waves from the front side of the terminal device can enter the microphone chamber through the second sound inlet, connection channel, and second sound pickup hole in turn, and finally act on the diaphragm. The other side.
  • the damping sheet is located in the connecting channel, and one side of the damping sheet is fixed and sealingly connected to the back of the display screen, and the damping sheet completely covers the second sound input. hole.
  • the terminal circuit board is provided with a through hole that completely covers the first sound pickup hole at a position facing the first sound pickup hole, and the first sound inlet hole extends straight to the housing The front surface of the body is communicated with the first sound pickup hole through the through hole.
  • the inner wall surface of one end of the first sound inlet hole communicating with the through hole has a groove recessed inward, and one end of the groove extends to the front surface of the housing
  • another damping sheet is provided, the other damping sheet is located in the groove and completely covers the Through hole, one side of the other damping sheet is fixed and sealed to the other end of the groove, and the other side of the other damping sheet is fixed and sealed to the terminal circuit board away from the microphone On the side.
  • the first sound inlet hole and the second sound inlet hole are both located close to the top of the terminal device.
  • This embodiment also provides a terminal device, including a housing, a display screen arranged opposite to the housing, and a microphone located in the terminal device, the microphone including a microphone housing, a microphone circuit board, and a microelectromechanical system chip ,
  • the microphone housing is arranged on the microphone circuit board, and a microphone cavity is formed with the microphone circuit board, and the microelectromechanical system chip is arranged on the microphone circuit board and is located in the microphone cavity,
  • the microelectromechanical system chip has a diaphragm, and one side of the diaphragm is opposite to the microphone circuit board, and the microelectromechanical system chip on one side of the diaphragm and the microphone circuit board form a chip Chamber; the back of the casing is provided with a first sound inlet, and the front of the display screen is provided with a second sound inlet;
  • the chip cavity communicates with the outside on the side where the front of the display screen is located through the second sound inlet hole, and the microphone cavity is connected to the side where the back of the housing is located through the first sound inlet hole
  • the external communication of the display screen makes the sound waves from the side of the front of the display screen act on one side of the diaphragm through the second sound inlet hole, and the sound waves from the side of the back of the housing pass through the
  • the first sound inlet hole acts on the other side of the diaphragm; wherein one side of the diaphragm is opposite to the other side of the diaphragm;
  • the terminal device further includes a damping sheet located on a path where sound waves act on the other side of the diaphragm through the first sound inlet hole, so that the sound wave entering from the first sound inlet hole passes through The damping sheet acts on the other side of the diaphragm.
  • the above structure is adopted, so that the sound waves from the side where the front of the terminal device is located sequentially act on one side of the diaphragm through the second sound inlet, and the sound waves from the side where the back of the terminal device is located sequentially
  • the first sound inlet acts on the other side of the diaphragm
  • the amplitude and phase of the sound pressure acting on the other side of the diaphragm can be changed by the damper, which can be achieved by setting a damper with an appropriate damping coefficient
  • the better directivity of the microphone improves the directional sound pickup (that is, the sound that is facing the front of the terminal device) or two-way sound pickup (that is, the sound that is facing the front and back of the terminal device) effect of the terminal device.
  • to achieve directional pickup or two-way pickup only a single microphone is required, which takes up less space and lowers the cost of use.
  • the damping sheet is located outside the microphone on the path of sound waves acting on the other side of the diaphragm through the first sound inlet hole.
  • the damping sheet is arranged on the outside of the microphone.
  • the microphone can be assembled to the terminal circuit board to form an integral structure before the damping sheet is assembled, so that the microphone itself is assembled and the microphone is assembled.
  • the damper does not need to be too high together with it, which improves the reliability of the damper.
  • the terminal device further includes another damping plate located on the path of sound waves acting on one side of the diaphragm through the second sound inlet hole, so that the The sound wave entered by the second sound inlet passes through the other damping sheet and acts on one side of the diaphragm.
  • another damping plate is provided on the path where the sound wave from the side where the front of the terminal device is located acts on one side of the diaphragm through the second sound inlet hole, which can change the effect on the side of the diaphragm.
  • the amplitude value and phase of the sound pressure can be set with a suitable damping coefficient and another damping plate to achieve better directivity of the microphone, and improve the directional sound pickup effect or two-way sound pickup effect of the terminal device.
  • the microphone can be adjusted to the desired cardioid directional microphone or bidirectional microphone by adjusting the damping coefficients of the two dampers at the same time, and the adjustment flexibility is higher.
  • the other damping sheet is located outside the microphone on the path of sound waves acting on one side of the diaphragm through the second sound inlet hole.
  • another damping sheet is arranged on the outside of the microphone.
  • the microphone can be assembled to the terminal circuit board to form an integral structure before assembling the other damping sheet, so that the microphone itself
  • the other damping film does not need to be too high temperature together with it when the surface mounting process is too high, and the reliability of the other damping film is improved.
  • connection between the center point of the end of the second sound inlet communicating with the outside of the terminal device and the center point of the end communicating with the first sound inlet of the terminal device It is parallel to the thickness direction of the terminal device or forms an included angle with the thickness direction of the terminal device, and the included angle is less than 30°.
  • the maximum sensitivity point in the polar circle formed by the microphone is parallel or roughly parallel to the front direction of the facing terminal device to ensure that the 0° direction in the polar circle does not deviate from the front direction or offset angle of the facing terminal device Smaller.
  • the terminal device further includes a terminal circuit board, the terminal circuit board is arranged inside the housing and opposite to the display screen, and the microphone circuit board is arranged on the terminal Circuit board
  • the microphone circuit board is provided with a first sound pickup hole communicating with the chip cavity on the side of the microphone circuit board directly opposite to the diaphragm, and the first sound pickup hole is communicated with the second sound inlet hole, So that sound waves from the side where the front side of the terminal device is located sequentially enter the chip cavity through the second sound inlet hole and the first sound pickup hole and act on the side of the diaphragm;
  • the microphone circuit board or the microphone housing is provided with a second sound pickup hole that communicates with the microphone chamber, and the second sound pickup hole is communicated with the first sound inlet hole, so that it comes from the terminal
  • the sound wave on the side where the back of the device is located sequentially enters the microphone chamber through the first sound inlet hole and the second sound pickup hole and acts on the other side of the diaphragm.
  • FIG. 1 is a schematic structural diagram of a terminal device according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of a partial structure of a terminal device according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a microphone of a terminal device according to an embodiment of the application.
  • FIG. 4 is a simulation curve diagram of the frequency response of the sound waves of the microphone of the terminal device of the embodiment of the application in the 0° direction and the 180° direction;
  • FIG. 5 is a graph of the frequency response of the signal strength difference between the 0° direction and the 180° direction of the microphone of the terminal device according to an embodiment of the application;
  • Figure 6 is a polar coordinate diagram of the omnidirectional characteristics of the microphone
  • Fig. 7 is a polar coordinate diagram of the cardioid pointing characteristic of the microphone
  • Fig. 8 is a polar coordinate diagram of the supercardioid directivity characteristic of the microphone
  • Fig. 9 is a polar coordinate diagram of the bidirectional characteristic of the microphone.
  • 200 shell; 210: bottom plate; 220: side wall; 230: front; 240: back; 250: first sound inlet; 260: groove; 270: foam;
  • 300 display screen; 310: front; 320: back; 330: second sound inlet;
  • 500 bracket; 520: connecting channel; 522: first connecting section; 524: second connecting section;
  • 700 microphone; 710: microphone circuit board; 720: microphone housing; 730: MEMS chip; 731: diaphragm; 732: one side; 733: the other side; 734: back plate; 735: through hole; 736 : Chip chamber; 740: functional integrated circuit chip; 750: microphone chamber; 760: first sound pickup hole; 770: second sound pickup hole;
  • T the thickness direction of the terminal equipment
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • Figures 1 and 2 show a schematic structure of a terminal device 100 with a built-in microphone, which mainly embodies the schematic structure of the microphone and other components of the terminal device 100.
  • the 0°-180° line is the straight line between the 0° direction and the 180° direction in the microphone polarity diagram.
  • an embodiment of the present application provides a terminal device 100, which includes a housing 200, a display screen 300, a terminal circuit board 400, and a microphone located in the terminal device 100.
  • the terminal device 100 is illustrated by taking a mobile phone as an example.
  • the terminal device 100 may also be other terminal devices such as a tablet computer or a smart watch, which does not limit the scope of protection of the present application.
  • the housing 200 is the rear housing of the terminal device 100, which includes a bottom plate 210 and a side wall 220.
  • the side wall 220 is arranged around the bottom plate 210 along the outer periphery of the bottom plate 210 and protrudes beyond the thickness direction T of the terminal device.
  • the front surface 230 of the bottom board 210 (that is, a surface located inside the terminal device 100).
  • the housing 200 may also be the middle frame of the terminal device 100, which does not limit the scope of protection of the present application.
  • the shape of the housing 200 is not limited.
  • the housing 200 may be in the shape of a rectangular parallelepiped, and the corners of the housing 200 have a certain curvature.
  • the display screen 300 is arranged opposite to the housing 200.
  • the outer frame of the display screen 300 is fixed to the top surface of the side wall 220 of the housing 200
  • the display screen 300 is arranged opposite to the bottom plate 210 of the housing 200
  • the display screen 300 and the housing 200 surround a receiving cavity. Room 600.
  • Both the terminal circuit board 400 and the microphone are located in the containing chamber 600.
  • the display screen 300 is located on the front of the terminal device 100
  • the housing 200 is located on the back of the terminal device 100.
  • the front of the terminal device 100 is the side facing the user during normal use
  • the back of the terminal device 100 is the side facing away from the user during normal use.
  • the terminal circuit board 400 is arranged inside the housing 200 and is arranged opposite to the display screen 300.
  • the terminal circuit board 400 is fixed to the inner surface of the bottom plate 210 of the housing 200 and is disposed opposite to the back surface 320 of the display screen 300.
  • the terminal circuit board 400 is the main board of the terminal device 100, and the carrier of the electronic components included in the terminal device 100 can realize the electrical interconnection of the above-mentioned electronic components.
  • the microphone is fixed on a side of the terminal circuit board 400 facing the display screen 300 (ie, the upper surface in FIG. 2, that is, the side is a side of the terminal circuit board 400 away from the bottom plate 210 of the housing 200).
  • the microphone is used to convert the collected audio signal into an electrical signal.
  • the microphone adopts a MEMS (Micro Electro Mechanical System) microphone.
  • the microphone includes a microphone circuit board 710, a microphone housing 720, a microelectromechanical system chip 730 (ie, a MEMS chip), and a functional integrated circuit chip 740 (ie, an ASIC chip).
  • the microphone housing 720 is disposed on the microphone circuit board 710 and forms a microphone chamber 750 with the microphone circuit board 710.
  • the MEMS chip 730 and the functional integrated circuit chip 740 are arranged on the microphone circuit board 710 at intervals, and are both located in the microphone chamber 750.
  • the microphone circuit board 710 is disposed on a side of the terminal circuit board 400 away from the bottom plate 210 of the housing 200, and is electrically connected to the terminal circuit board 400 (see FIG. 2).
  • the MEMS chip 730 includes a diaphragm 731 and a back plate 734 that are arranged opposite and spaced apart.
  • the working principle of the MEMS chip 730 is to use the pressure gradient generated by the sound change to cause the diaphragm 731 to deform due to the interference of the sound pressure, thereby changing the capacitance value between the diaphragm 731 and the back plate 734; The change is converted into the output change of the voltage value by the capacitance voltage conversion circuit, and then the voltage obtained is amplified and output by the amplifier circuit, thereby converting the sound pressure signal into a voltage signal.
  • the MEMS chip part located on the side 732 of the diaphragm 731 and the microphone circuit board 710 form a chip cavity 736.
  • the back plate 734 is located on the other side 733 of the diaphragm 731, wherein the other side 733 is opposite to the one side 732.
  • the back plate 734 is provided with a plurality of through holes 735. Through the through holes 735, the space formed by the other side 733 of the diaphragm 731 and the back plate 734 can be connected to the microphone chamber 750 outside the MEMS chip 730. Connected.
  • the back plate 734 may also be located on the side of the diaphragm 731 facing the microphone circuit board 710 and between the microphone circuit board 710 and the diaphragm 731.
  • the back plate 734 separates the chip chamber 736 between the microphone circuit board 710 and the diaphragm 731 into a first chip chamber part (not shown in the figure) and a second chip chamber part (not shown in the figure) Wherein, the first chip cavity part is located between the microphone circuit board 710 and the back plate 734, and the second chip cavity part is located between the back plate 734 and the diaphragm 731.
  • the back plate 734 is provided with a plurality of through holes 735 through which the first chip cavity portion can communicate with the second chip cavity portion, which does not limit the protection scope of the present application.
  • the functional integrated circuit chip 740 is electrically connected to the MEMS chip 730.
  • the electrical connection between the two can be a connection method known in the prior art, and the functional integrated circuit chip 740 can also be a functional integrated circuit chip 740 known in the prior art, which is not done here. Too much repeat.
  • the side of the microphone circuit board 710 facing the diaphragm 731 is provided with a first pickup hole 760 communicating with the chip chamber 736, and a second pickup hole 760 communicating with the microphone chamber 750 is opened on the microphone housing 720.
  • the sound hole 770 allows the sound wave passing through the first sound pickup hole 760 to enter the chip cavity 736 and act on one side 732 of the diaphragm 731, and the sound wave passing through the second sound pickup hole 770 enters the microphone chamber 750 and passes through the back electrode.
  • the through hole 735 on the plate 734 acts on the other side 733 of the diaphragm 731.
  • the second sound pickup hole 770 is arranged on the top wall of the microphone housing 720 and the microphone circuit board 710 opposite to each other, and is staggered from the MEMS chip 730. In other words, the projection of the second sound pickup hole 770 on the microphone circuit board 710 along the thickness direction T of the terminal device does not overlap with the MEMS chip 730.
  • the staggered arrangement of the second sound pickup hole 770 and the MEMS chip 730 can prevent impurities such as dust passing through the second sound pickup hole 770 from directly flowing to the MEMS chip 730.
  • the second pickup hole 770 can also be provided on the side wall of the microphone housing 720, or provided on the microphone circuit board 710 with a microelectromechanical system chip.
  • the parts other than 730 do not limit the scope of protection of this application here.
  • the back 240 of the housing 200 is provided with a first sound inlet 250.
  • One end of the first sound inlet hole 250 communicates with the outside of one side of the terminal device 100 (that is, the side where the back of the terminal device 100 is located), and the other end communicates with the first sound pickup hole 760, so that it comes from one side of the terminal device 100
  • the sound waves from 1 to 4 enter the chip cavity 736 through the first sound inlet 250 and the first sound pickup hole 760 in turn, and act on one side 732 of the diaphragm 731.
  • the first sound hole 250 is opened on the back 240 of the bottom plate 210 of the housing 200.
  • the front surface 310 of the display screen 300 is provided with a second sound inlet 330.
  • One end of the second sound inlet hole 330 communicates with the outside of the other side of the terminal device 100 (that is, the side where the front of the terminal device 100 is located), and the other end of the second sound inlet hole 330 communicates with the second sound pickup hole 770,
  • the sound waves from the other side of the terminal device 100 enter the microphone chamber 750 through the second sound inlet 330 and the second sound pickup hole 770 in sequence, and act on the other side 733 of the diaphragm 731.
  • the first sound inlet 250 and the second sound inlet 330 are both located near the top of the terminal device 100.
  • the terminal device 100 further includes a first damping sheet 800 and a second damping sheet 900.
  • the first damper 800 is located on the path where sound waves act on one side 732 of the diaphragm 731 through the first sound inlet 250, so that the sound waves entering from the first sound inlet 250 act on the diaphragm 731 through the first damper 800. 732 on one side.
  • the second damper 900 is located on the path where sound waves act on the other side 733 of the diaphragm 731 through the second sound inlet 330, so that the sound waves entering from the second sound inlet 330 act on the diaphragm 731 through the second damper 900. 733 on the other side.
  • the first sound inlet 250 and the second sound inlet 330 are respectively provided on the back and front of the terminal device 100, and the microphone is provided with a first sound pickup hole 760 communicating with the chip cavity 736 and
  • the second sound pickup hole 770 connected to the microphone chamber 750 allows sound waves from one side of the terminal device 100 to enter the chip cavity 736 through the first sound inlet hole 250 and the first sound pickup hole 760 to act on the diaphragm 731.
  • the sound waves from the other side of the terminal device 100 enter the microphone chamber 750 through the second sound inlet 330 and the second sound pickup hole 770 in turn, and act on the microphone chamber 750.
  • the other side 733 of the diaphragm 731 that is, the side where the front side of the terminal device 100 is located).
  • the first damper 800 is provided on the path where the sound wave from one side of the terminal device 100 acts on the side 732 of the diaphragm 731 through the first sound inlet 250, and the sound wave from the other side of the terminal device 100
  • a second damper 900 is provided on the path of the second sound inlet 330 acting on the other side 733 of the diaphragm 731, which can change the amplitude and phase of the sound pressure acting on one side 732 of the diaphragm 731 and the diaphragm 731.
  • the amplitude value and phase of the sound pressure on the other side 733 so that better directivity of the microphone can be achieved by setting the first damping sheet 800 and the second damping sheet 900 with appropriate damping coefficients, and improving the directional pickup of the terminal device 100 Effect or two-way pickup effect.
  • the damping coefficients of the first damping piece 800 and the second damping piece 900 can be realized, and the adjustment flexibility is relatively high. Because without the damping plate, the sound waves in the direction of 0° respectively act on the side 732 of the diaphragm 731 from the first sound inlet hole 250 through the first sound pickup hole 760 and pass from the second sound inlet hole 330 through the first sound wave.
  • the amplitude of the sound wave acting on one side 732 of the diaphragm 731 is greater than the amplitude of the sound wave acting on the other side 733 of the diaphragm 731.
  • the damping coefficient of the first damper 800 can be set to be relatively small, and the damping coefficient of the second damper 900 is set to be relatively large, so that the amplitude of the sound wave acting on one side 732 of the diaphragm 731 The sound pressure difference between the value and the amplitude value of the sound wave acting on the other side 733 of the diaphragm 731 is large, so that directional sound pickup can be achieved.
  • the microphone 700 has the highest sensitivity to the sound on the back of the terminal device 100, and can The sound in the back direction of the terminal device 100 is better recorded, but the sound in the front and side directions of the terminal device 100 is suppressed.
  • the damping coefficient of the first damping plate 800 and the damping coefficient of the second damping plate 900 can be adjusted so that the amplitude of the sound wave acting on one side 732 of the diaphragm 731 is the same as that of the other side of the diaphragm 731.
  • the sound wave amplitude value of the side 733 is relatively close, so that bidirectional sound pickup can be achieved.
  • the microphone 700 has the highest sensitivity to the sound in the front and back directions of the terminal device 100, and can be better recorded in the front and back directions of the terminal device. However, it suppresses the sound in the lateral direction of the terminal device 100.
  • the sound waves in the 180° direction enter the chip cavity 736 from the first sound inlet 250 through the first sound pickup hole 760, and directly act on one side 732 and from the diaphragm 731.
  • the second sound inlet 330 enters the microphone chamber 750 through the second pickup hole 770 and acts on the other side 733 of the diaphragm 731, the amplitude of the sound wave acting on one side 732 of the diaphragm 731 is greater than that acting on the diaphragm 731 733 on the other side of the sound wave amplitude value.
  • this may be because sound waves entering the microphone chamber 750 from the second sound inlet 330 through the second sound pickup hole 770 will be attenuated due to refraction, diffusion, etc., so that they will act on the diaphragm 731 after passing through the microphone chamber 750.
  • the amplitude value of the sound wave on the other side 733 decreases.
  • the first sound pickup hole 760 When the directivity of the microphone 700 is cardioid, because the first sound pickup hole 760 is connected to the first sound inlet 250 on the back 240 of the housing 200, it can pick up the sound facing the direction of the back of the terminal device, as shown in FIG. 2
  • the sound in the 0° direction is suitable for the scenario where the terminal device 100 directional radio.
  • the sound can be picked up directionally during recording, and the direction of the picked up sound (that is, the direction of the maximum sensitivity of the microphone, corresponding to the 0° direction in Figure 2) is consistent with the direction of the center line of the camera (not shown in the figure), which can be effectively reduced The interference of surrounding environment noise.
  • the directivity of the microphone 700 is bidirectional, because the first sound pickup hole 760 communicates with the first sound inlet hole 250 located on the back 240 of the housing 200, the second sound pickup hole 770 is connected with the first sound hole 250 located on the front surface 310 of the display screen 300.
  • the second sound inlet 330 is connected, so that sounds facing the front and back of the terminal device can be picked up at the same time, that is, the sounds in the 0° direction and the 180° direction in FIG. 2, which is suitable for the scenario where the terminal device 100 receives two-way audio.
  • the second sound inlet 330 may communicate with the first sound pickup hole 760 so that it comes from the other side of the terminal device 100 (that is, the front side of the terminal device 100).
  • the sound waves on the side where they are located sequentially enter the chip cavity 736 through the second sound inlet hole 330 and the first sound pickup hole 760 and act on the side 732 of the diaphragm 731.
  • the first sound inlet 250 is in communication with the second sound pickup hole 770, so that sound waves from one side of the terminal device 100 (that is, the side where the back of the terminal device 100 is located) pass through the first sound inlet 250 and the second sound hole in sequence.
  • the two pickup holes 770 enter the microphone chamber 750 and act on the other side 733 of the diaphragm 731.
  • the first damping sheet 800 is located on the path where the sound wave acts on the side 732 of the diaphragm 731 through the second sound inlet hole 330.
  • the second damping sheet 900 is located outside the microphone on the path where sound waves act on the other side 733 of the diaphragm 731 through the first sound inlet 250. It is also possible to adjust the damping coefficients of the first damping sheet 800 and the second damping sheet 900 to achieve a cardioid orientation or a figure-eight orientation.
  • the directivity of the microphone 700 is cardioid, because the first sound hole 760 is connected to the second sound hole 320 located on the front side 310 of the display screen 300, it can pick up the direction facing the front side of the terminal device.
  • the sound is suitable for scenarios where the terminal device 100 directional radio.
  • the user can pick up the sound directionally during a video call or WeChat phone call, and the picked up sound points to the direction where the user is speaking.
  • the camera is a front camera, the sound in the shooting direction can be directionally picked up.
  • the directivity of the microphone 700 is bidirectional, because the first sound pickup hole 760 communicates with the second sound inlet hole 330 on the front side 310 of the display screen 300, the second sound pickup hole 770 is connected to the second sound hole 770 on the back side 240 of the housing 200. A sound inlet 250 is connected, so that sounds facing the front and back of the terminal device can be picked up at the same time, which is suitable for scenarios where the terminal device 100 receives two-way sound.
  • the directivity refers to the characteristic that the sensitivity of the microphone changes with the incident direction of the sound wave.
  • the directivity of the microphone is divided into three types: unidirectional, bidirectional and omnidirectional.
  • the front face of a unidirectional microphone has a significantly higher sensitivity to sound waves than other directions, and can be subdivided into cardioid and super-cardioid according to the shape of the directional characteristic curve.
  • the sensitivity of the two-way microphone in the front and back directions is higher than that in other directions, and it is also called a figure-eight microphone.
  • the omnidirectional microphone has basically the same sensitivity to sound waves from all directions.
  • the sensitivity of a microphone refers to the ability of the microphone to convert sound pressure into a level.
  • the first damping sheet 800 is located outside the microphone on the path where sound waves act on the side 732 of the diaphragm 731 through the first sound inlet 250.
  • the second damper 900 is located outside the microphone on the path where sound waves act on the other side 733 of the diaphragm 731 through the second sound inlet hole 330.
  • the first damping sheet 800 and the second damping sheet 900 are arranged on the outside of the microphone.
  • Damping film 900 so that when the microphone itself is assembled and the microphone is mounted on the terminal circuit board 400 for surface mounting process over high temperature and reheating, the first damping film 800 and the second damping film 900 do not need to be too high together with them, which improves The reliability of the first damper 800 and the second damper 900 in use.
  • dampers are arranged on the outside of the two pickup holes, and the microphone can be adjusted to the desired cardioid or bidirectional microphone by adjusting the damping coefficients of the two dampers at the same time, and the adjustment flexibility is higher.
  • no damping plate may be provided on the path where the sound wave passes through the first sound inlet hole 250 and acts on one side 732 of the diaphragm 731, and only when the sound wave passes through the second sound inlet hole.
  • a damping sheet is provided on the path 330 acting on the other side 733 of the diaphragm 731.
  • the damping plate may not be provided on the path of the sound wave acting on one side 732 of the diaphragm 731 through the second sound inlet hole 330, and only when the sound wave acts on the other side 733 of the diaphragm 731 through the first sound inlet hole 250. Damping fins are set on the path.
  • the damping sheet may be a silicon wafer with dense through holes, and the dense through holes form a matrix of through holes.
  • the material of the damping sheet can be silicon, ceramics, circuit boards, metal sheets and other materials.
  • the damper can also be a silicon chip with a channel, which can allow sound waves to pass through and act on the diaphragm 731.
  • One end of the channel can be set in a mesh structure or a through structure, and the other end of the channel can be set in a mesh
  • the shape structure may also be a through structure.
  • the mesh structure is mainly used to prevent dust from entering the microphone from the pickup hole and affecting the performance of the microphone product. It is also possible to open a plurality of small through holes at the ports of the channels of the damping fins to form a mesh structure.
  • the dust-proof net can be used as a mesh structure to cover the port of the channel by pasting.
  • the terminal circuit board 400 is provided with a through hole 410 that completely covers the first sound pickup hole 760 at a position facing the first sound pickup hole 760.
  • the first sound inlet hole 250 extends straight to the front surface 230 of the housing 200. (That is, the upper surface in FIG. 2), and communicates with the first sound pickup hole 760 through the through hole 410.
  • the first damping sheet 800 is fixed in the first sound inlet 250.
  • the aperture of the through hole 410 is larger than the first sound pickup hole 760, and the aperture of the through hole 410 is smaller than the first sound inlet 250.
  • the first sound inlet 250 penetrates the thickness direction of the bottom plate 210 of the housing 200 in a straight line.
  • the first sound inlet 250 may also penetrate the housing 200 in a curved shape, a bent shape, etc.; it may also pass through a structural member of the terminal device 100 A sound channel is provided to connect the first sound inlet 250 and the through hole 410 of the terminal circuit board 400.
  • the inner wall surface of one end of the first sound inlet hole 250 communicating with the through hole 410 has a groove 260 recessed toward the inside thereof, and one end of the groove 260 extends to the front surface 230 of the housing 200.
  • the first damping sheet 800 is located in the groove 260 and completely covers the through hole 410, and one side of the first damping sheet 800 is fixed and sealingly connected to the other end of the groove 260, and the other side of the first damping sheet 800 is fixed and sealed It is connected to the side of the terminal circuit board 400 away from the microphone.
  • the two sides of the first damping sheet 800 are respectively fixed between the groove 260 and the terminal circuit board 400 by back glue.
  • the first damper 800 may also be located at other positions on the path where the sound wave acts on the side 732 of the diaphragm 731 through the first sound inlet 250.
  • the terminal device 100 further includes a bracket 500, and the bracket 500 is disposed between the opposite side of the terminal circuit board 400 and the display screen 300.
  • the bracket 500 is disposed between the front surface of the terminal circuit board 400 and the back surface 320 of the display screen 300, and is located in the receiving chamber 600.
  • a connecting channel 520 connecting the second sound inlet hole 330 and the second sound pickup hole 770 is formed in the bracket 500, so that sound waves from the other side of the terminal device 100 (that is, the side where the front of the terminal device 100 is located) pass through the first
  • the binary sound hole 330, the connecting channel 520 and the second sound pickup hole 770 enter the microphone chamber 750 and act on the other side 733 of the diaphragm 731.
  • the bracket 500 may be a structural member of the terminal device 100 (the structural member may be a sound pickup pipe), or may be a bracket 500 additionally provided in the terminal device 100, as long as it can form a connecting second inlet.
  • the connecting channel 520 between the sound hole 330 and the second sound pickup hole 770 is sufficient, and this does not limit the protection scope of the present application.
  • the connecting passage 520 includes a first connecting section 522 and a second connecting section 524.
  • the first connecting section 522 extends in a direction parallel to the front surface 310 of the display screen 300, and one end of the first connecting section 522 is connected to the second connecting section 522.
  • the hole 330 communicates.
  • the second connecting section 524 extends along the thickness direction T of the terminal device. One end of the second connecting section 524 communicates with the other end of the first connecting section 522, and the other end communicates with the second pickup hole 770.
  • the connecting channel 520 may also adopt other structural forms, which are not limited thereto.
  • bracket 500 is arranged on the microphone housing 720 and is sealed to the microphone housing 720, and the side of the bracket 500 facing the display screen 300 is fixed and sealed to the display screen 300.
  • the side of the bracket 500 facing the terminal circuit board 400 is also fixed to the terminal circuit board 400.
  • the bracket 500 may only be fixed to the terminal circuit board 400 or only the display screen 300.
  • an elastic sealing foam (not shown in the figure) can also be filled between the microphone and the support 500.
  • the bracket 500 is hermetically connected between the back 320 of the display screen 300 and the microphone housing 720 so that the connecting channel 520 is a sealed channel extending from the second sound inlet hole 330 to the second sound pickup hole 770.
  • the second damping sheet 900 is located in the connecting channel 520, and one side of the second damping sheet 900 is fixed and sealingly connected to the back 320 of the display screen 300, and the second damping sheet 900 completely covers the second sound inlet 330 .
  • the second damper 900 may also be located at other positions on the path of the sound wave acting on the other side 733 of the diaphragm 731 through the second sound inlet 330 .
  • the connecting channel 520 can also be formed by a sound tube (not shown in the figure), and one end of the sound tube can be connected to the microphone, and In communication with the second sound pickup hole 770, the other end of the sound pipe extends outward to be inserted into the second sound inlet hole 330 to form a sealed channel from the second sound inlet hole 330 to the second sound pickup hole 770 .
  • the sound guide tube can be a flexible pipe, such as a polyester PET heat shrinkable tube or a PVC heat shrinkable tube, etc.
  • the cross section of the sound guide tube can be square, round or other shapes.
  • the sound guide tube can also be made of hard materials, such as copper, iron, and aluminum.
  • the camera (not shown in the figure) of the terminal device 100 is set to take pictures with the housing 200 facing the object.
  • the camera is a rear camera.
  • the line L between the center point of the end of the second sound inlet 330 communicating with the exterior of the terminal device 100 and the center point of the end of the first sound inlet 250 communicating with the exterior of the terminal device 100 forms an angle ⁇ with the center line of the camera's viewing angle.
  • the included angle ⁇ is less than 30°.
  • the maximum sensitivity direction in the polar circle formed by the microphone is parallel or approximately parallel to the pointing direction of the camera, so as to ensure that the 0° direction in the polar circle does not deviate from the pointing direction of the camera or the deviation angle is small.
  • the center line of the viewing angle of the camera is parallel to the thickness direction T of the terminal device.
  • the distance d between the projection of the center point of one end of the second sound inlet hole 330 on the back 240 of the housing 200 in the thickness direction T of the terminal device and the center point of the first sound inlet hole 250 is less than or Equal to 10mm.
  • the center point of the end of the second sound inlet 330 communicating with the outside of the terminal device 100 and the end of the first sound inlet 250 communicating with the outside of the terminal device 100 The line L of the center point of the microphone can also be parallel to the center line of the view angle of the camera pointing in the same direction as the maximum sensitivity of the microphone.
  • the directivity effect of the microphone of the terminal device 100 will be described below with reference to FIGS. 4-5.
  • FIG. 4 is a simulation curve diagram of the frequency response of the sound wave of the microphone of the terminal device 100 (corresponding to the microphone of the terminal device 100 in FIGS. 1 to 2) in the 0° direction and the 180° direction, respectively, according to an embodiment of the application.
  • FIG. 5 is a graph of the frequency response of the signal strength difference between the 0° direction and the 180° direction of the microphone of the terminal device 100 (corresponding to the microphone of the terminal device 100 in FIGS. 1 to 2) according to an embodiment of the application.
  • the ratio of the open-circuit output voltage of each frequency sound wave signal to the open-circuit output voltage of the microphone at the specified frequency under the action of a constant sound pressure and a specified angle of incidence of the microphone is called the frequency response of the microphone, expressed in dB.
  • V1 is twice that of V2, that is, 2V, which is 6dB.
  • P stands for power and V stands for voltage).
  • dBV is based on 1V as the 0dB reference standard, that is, 1V corresponds to 0dBV.
  • the abscissa represents the frequency in Hz
  • the ordinate represents the signal strength picked up by the microphone, expressed in dBV.
  • the dotted line in FIG. 4 represents the frequency response curve of the sound wave in the 0° direction after entering the microphone.
  • the sound waves in the 0° direction respectively act on the side 732 of the diaphragm 731 from the first sound inlet hole 250 through the first sound pickup hole 760 and act on the side 732 of the diaphragm 731 from the second sound inlet hole 330 through the second sound pickup hole 770 respectively.
  • the signal strength picked up by the microphone under sound waves of various frequencies is measured.
  • the solid line in Fig. 4 represents the frequency response curve after the sound wave in the 180° direction enters the microphone.
  • the sound waves in the 180° direction respectively act on one side 732 of the diaphragm 731 from the first sound inlet hole through the first sound pickup hole 760 and act on the side 732 of the diaphragm 731 from the second sound inlet hole 330 through the second sound pickup hole 770 respectively.
  • the signal strength picked up by the microphone under sound waves of various frequencies is measured.
  • the abscissa represents the frequency in Hz
  • the ordinate represents the difference in signal strength picked up by the microphone in the 0° and 180° directions, which is also represented by dBV.
  • the graphs shown in FIGS. 4 and 5 are the frequency response curves of the microphone measured by the comsol multiphysics (multiphysics simulation software) test of the terminal device 100 shown in FIGS. 1 and 2.
  • the microphone 700 has the highest sensitivity to the sound in the back direction of the terminal device 100, and can better record the sound in the back direction of the terminal device 100.
  • the sound in the front and side directions is suppressed.
  • 100Hz-10kHz is the main frequency range of sounds in daily life.
  • the signal strength picked up by the microphone is relatively stable, and the signal strength difference between the two is relatively stable.
  • the directivity is relatively stable.
  • the signal strength picked up by the microphone will be amplified or attenuated to a small extent; after the sound wave from 180° direction reaches the microphone, the signal picked up by the microphone The intensity has a greater degree of amplification or attenuation. Moreover, after the sound waves from the 0° direction and the 180° direction reach the microphone, the signal strength difference changes greatly, and the directivity is obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请公开了一种终端设备,其包括壳体、显示屏、麦克风和阻尼片。壳体的背面开设有第一进音孔,显示屏的正面开设有第二进音孔。麦克风外壳与麦克风电路板形成有麦克风腔室。微机电系统芯片形成有芯片腔室。芯片腔室通过第一进音孔与壳体背面的外部连通,麦克风腔室通过第二进音孔与显示屏正面的外部连通,使得来自壳体背面的声波通过第一进音孔作用在振膜一侧,来自显示屏正面的声波通过第二进音孔作用在振膜另一侧。阻尼片位于声波通过第二进音孔作用在振膜另一侧的路径上,使得从第二进音孔进入的声波经过阻尼片作用在振膜另一侧。本申请能够实现麦克风较好的指向性,提高终端设备的定向拾音或双向拾音效果,占用空间较小,使用成本较低。

Description

终端设备
本申请要求2019年11月20日递交的申请号为CN201911141934.6、发明名称为“终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备的声电转换技术领域,尤其是涉及一种终端设备。
背景技术
目前,如图6-图9所示,麦克风的指向性有以下几种,全指向(参见图6)、心形指向(参见图7)、超心形指向(参见图8)、双指向(即8字指向,参见图9)。全指向麦克风是压强式设计,对不同角度来的声音有相同的灵敏度,收音特性为收取全部角度的声音,主要适用于不确定声源方向场景。双指向麦克风,又称8字形麦克风,为压差式设计,是收取正面和背面的声音,但对侧方声音有抑制,适用于采访双人对话等场景。心形指向与超心形指向麦克风一般为压强与压差复合式设计,在正面灵敏度明显高于背面,抑制背面跟侧面声音的影响,将麦克风前向正对想收取声音的方向,收录到的背面声音较小,适用于指定收音方向场景。
随着手机等终端设备的巧化、薄型化发展,手机中使用的麦克风通常为MEMS(微机电系统,Micro Electro Mechanical System)麦克风。MEMS麦克风是一种基于MEMS技术制作出来的声电转换器,其具有体积小、频响特性好、噪声低等特点。传统的MEMS麦克风由MEMS芯片、ASIC(Application Specific Integrated Circuit,功能集成电路)芯片、外壳、印刷电路板组成,产品上有一个拾音孔,在外壳上或是在印刷电路板上,如在印刷电路板上时,拾音孔位于MEMS芯片下方。声音通过拾音孔进入到麦克风,作用到MEMS芯片的振膜上,产生了电信号,ASIC芯片对电信号进行处理,通过导线连接到印刷电路板上,将信号取出。因只有一个拾音孔,当声音到达拾音孔时响度一致,则灵敏度一致,从而,此类结构的MEMS麦克风为全指向麦克风,其收录的声音是周围所有的方向,全部方向上收音的响度是一致的,无法实现定向录音或双向录音(即收取正对麦克风正面和背面的声音)。
然而,近年来随着手机等终端设备硬件的发展,应用场景增多,比如,视频录制、直播、视频通话和微信电话等成为了主流应用。用户拍摄视频时,希望收取到视频拍摄方向的声音,减弱周围环境声音。用户视频通话或微信电话时,希望收取到用户说话方向的声音。用户直播时,希望能够收取到视频拍摄方向的声音,也能够收取到正对用户自身说话方向的声音。但目前手机使用的MEMS麦克风均为全指向麦克风,无法实现定向录音或双向录音。
目前技术上常用的解决方案是,使用多个麦克风通过算法来实现拾取指定方向的声音或正对终端设备正面、背面方向上的声音。但受到终端设备尺寸限制以及麦克风在终 端设备位置的限制,在拾取指定方向或正对终端设备正面和背面方向上的声音时效果不够好,且多个麦克风占用空间较大,使用成本较高。
发明内容
本申请的目的在于解决现有技术中的终端设备使用多个麦克风通过算法来实现拾取指定方向或双指向方向上的声音时在拾取正对拍摄方向或用户说话方向或正对终端设备正面、背面方向上的声音时效果不够好、占用空间较大以及使用成本较高的问题。因此,本申请实施例提供了一种终端设备,通过单个麦克风且无需采用算法就可以实现麦克风较好的指向性,提高终端设备的定向拾音或双向拾音效果,且仅需采用单个麦克风,占用空间较小,使用成本较低。
本申请实施例提供了一种终端设备,包括壳体、与所述壳体相对设置的显示屏和位于所述终端设备内的麦克风,所述麦克风包括麦克风外壳、麦克风电路板和微机电系统芯片,所述麦克风外壳设置于所述麦克风电路板上,并与所述麦克风电路板形成有麦克风腔室,所述微机电系统芯片设置于所述麦克风电路板上,并位于所述麦克风腔室内,所述微机电系统芯片具有振膜,且所述振膜的一侧与所述麦克风电路板相对设置,位于所述振膜的一侧的微机电系统芯片部分与所述麦克风电路板形成有芯片腔室;所述壳体的背面开设有第一进音孔,所述显示屏的正面开设有第二进音孔;
所述芯片腔室通过所述第一进音孔与所述壳体的背面的外部连通,所述麦克风腔室通过所述第二进音孔与所述显示屏的正面的外部连通,使得来自所述壳体的背面的声波通过所述第一进音孔作用在所述振膜的一侧,来自所述显示屏的正面的声波通过所述第二进音孔作用在所述振膜的另一侧;其中,所述振膜的一侧与所述振膜的另一侧相反设置;
所述终端设备还包括阻尼片,所述阻尼片位于声波通过第二进音孔作用在所述振膜的另一侧的路径上,使得从所述第二进音孔进入的声波经过所述阻尼片作用在所述振膜的另一侧。
在本申请的方案中,采用上述结构,使得来自终端设备的背面所在的一侧(即壳体的背面所在一侧)的声波依次通过第一进音孔作用在振膜的一侧,来自终端设备的正面所在的一侧(即显示屏的正面所在一侧)的声波依次通过第二进音孔作用在振膜的另一侧,且通过阻尼片能够改变作用至振膜的另一侧的声压的幅度值以及相位,从而可以通过设置合适的阻尼系数的阻尼片实现麦克风较好的指向性,提高终端设备的定向拾音(即拾取正对终端设备背面方向的声音)或双向拾音效果(即拾取正对终端设备正面和背面方向的声音)。另外,实现定向拾音或双向拾音效果,仅需采用单个麦克风,占用空间较小,使用成本较低。
在一些实施例中,所述阻尼片位于声波通过第二进音孔作用在所述振膜的另一侧的路径上的所述麦克风的外侧。
在本申请的方案中,将阻尼片设置于麦克风的外侧,在该终端设备组装时,可将麦克风组装至终端电路板形成一整体结构后再组装阻尼片,从而使得在麦克风自身组装以 及将麦克风安装于终端电路板进行表面贴装工艺过高温、回炉时,阻尼片无需随其一同过高温,提高了阻尼片的使用可靠性。
在一些实施例中,所述终端设备还包括另一阻尼片,所述另一阻尼片位于声波通过第一进音孔作用在所述振膜的一侧的路径上,使得从所述第一进音孔进入的声波经过所述另一阻尼片作用在所述振膜的一侧。
在本申请的方案中,在来自终端设备的背面所在的一侧的声波通过第一进音孔作用在振膜的一侧的路径上设置另一阻尼片,能够改变作用至振膜的一侧的声压的幅度值以及相位,从而可以通过设置合适的阻尼系数的阻尼片和另一阻尼片实现麦克风较好的指向性,提高终端设备的定向拾音效果或双向拾音效果。并且,能够通过同时调节两个阻尼片的阻尼系数来将麦克风调节成所需的心形指向麦克风或双指向麦克风,调节灵活性更高。
在一些实施例中,所述另一阻尼片位于声波通过第一进音孔作用在所述振膜的一侧的路径上的所述麦克风的外侧。
在本申请的方案中,将另一阻尼片设置于麦克风的外侧,在该终端设备组装时,可将麦克风组装至终端电路板形成一整体结构后再组装另一阻尼片,从而使得在麦克风自身组装以及将麦克风安装于终端电路板进行表面贴装工艺过高温、回炉时,另一阻尼片无需随其一同过高温,提高了另一阻尼片的使用可靠性。
在一些实施例中,所述终端设备还包括以所述壳体面向物体进行拍摄的摄像头,所述第二进音孔与所述终端设备外部连通的一端的中心点和所述第一进音孔与所述终端设备外部连通的一端的中心点的连线平行于所述摄像头的视角中心线或者与所述摄像头的视角中心线形成一夹角,所述夹角小于30°。这样使得麦克风所形成的极性圆中最大灵敏度指向与摄像头的指向方向平行或大致平行,以确保极性圆中0°方向不会偏移摄像头的指向方向或偏移角度较小。
在一些实施例中,所述终端设备还包括终端电路板,所述终端电路板设置于所述壳体内部并与所述显示屏相对设置,且所述麦克风电路板设置于所述终端电路板;
所述麦克风电路板正对所述振膜的一侧开设有与所述芯片腔室连通的第一拾音孔,且所述第一拾音孔与所述第一进音孔连通,使得来自所述壳体的背面的声波依次通过所述第一进音孔、所述第一拾音孔进入所述芯片腔室中作用在所述振膜的一侧;
所述麦克风电路板或所述麦克风外壳上开设有与所述麦克风腔室连通的第二拾音孔,且所述第二拾音孔与所述第二进音孔连通,使得来自所述显示屏的正面的声波依次通过所述第二进音孔、所述第二拾音孔进入所述麦克风腔室中作用在所述振膜的另一侧。
在一些实施例中,所述终端设备还包括支架,所述支架设置于所述终端电路板与所述显示屏相对设置的一面之间;所述支架内形成有连通所述第二进音孔和所述第二拾音孔的连接通道,使得来自所述显示屏的正面的声波依次通过所述第二进音孔、所述连接通道和所述第二拾音孔进入所述麦克风腔室中作用在所述振膜的另一侧。
在一些实施例中,所述第二拾音孔设置于所述麦克风外壳与所述麦克风电路板相对设置的顶壁上,并与所述微机电系统芯片不重叠;所述连接通道包括第一连接段和第二连接段,所述第一连接段沿与所述显示屏的正面平行的方向延伸,且所述第一连接段的一端与所述第二进音孔连通;所述第二连接段沿所述终端设备的厚度方向延伸,所述第 二连接段的一端与所述第一连接段的另一端连通,另一端与所述第二拾音孔连通。这样能够缩短第二进音孔和所述第二拾音孔连通的路径,特别适用于小型化的终端设备。
在一些实施例中,所述支架罩设于所述麦克风外壳,并与所述麦克风外壳密封连接,且所述支架面向所述显示屏的一面固定于并密封连接于所述显示屏。这样使得连接通道形成为密封的通道,能够来自终端设备的正面所在一侧的声波依次通过第二进音孔、连接通道、第二拾音孔全部进入麦克风腔室中,最后作用在振膜的另一侧。
在一些实施例中,所述阻尼片位于所述连接通道内,且所述阻尼片的一侧固定于并密封连接于所述显示屏的背面,所述阻尼片完全覆盖所述第二进音孔。
在一些实施例中,所述终端电路板正对所述第一拾音孔的部位开设有完全覆盖所述第一拾音孔的通孔,所述第一进音孔直线延伸至所述壳体的正面,并通过所述通孔与所述第一拾音孔连通。
在一些实施例中,所述第一进音孔与所述通孔连通的一端的内壁面具有向其内部凹陷的凹槽,且所述凹槽的一端延伸至所述壳体的所述正面;当声波通过所述第一进音孔作用在所述振膜的所述一侧的路径上设有另一阻尼片时,所述另一阻尼片位于所述凹槽内并完全覆盖所述通孔,且所述另一阻尼片的一侧固定并密封连接于所述凹槽的另一端,所述另一阻尼片的另一侧固定并密封连接于所述终端电路板背离所述麦克风的一侧。
在一些实施例中,所述第一进音孔和所述第二进音孔均位于靠近所述终端设备的顶部的位置处。
本实施例还提供了一种终端设备,包括壳体、与所述壳体相对设置的显示屏和位于所述终端设备内的麦克风,所述麦克风包括麦克风外壳、麦克风电路板和微机电系统芯片,所述麦克风外壳设置于所述麦克风电路板上,并与所述麦克风电路板形成有麦克风腔室,所述微机电系统芯片设置于所述麦克风电路板上,并位于所述麦克风腔室内,所述微机电系统芯片具有振膜,且所述振膜的一侧与所述麦克风电路板相对设置,位于所述振膜的一侧的微机电系统芯片部分与所述麦克风电路板形成有芯片腔室;所述壳体的背面开设有第一进音孔,所述显示屏的正面开设有第二进音孔;
所述芯片腔室通过所述第二进音孔与所述显示屏的正面所在一侧的外部连通,所述麦克风腔室通过所述第一进音孔与所述壳体的背面所在一侧的外部连通,使得来自所述显示屏的正面所在一侧的声波通过所述第二进音孔作用在所述振膜的一侧,来自所述壳体的背面所在一侧的声波通过所述第一进音孔作用在所述振膜的另一侧;其中,所述振膜的一侧与所述振膜的另一侧相反设置;
所述终端设备还包括阻尼片,所述阻尼片位于声波通过所述第一进音孔作用在所述振膜的另一侧的路径上,使得从所述第一进音孔进入的声波经过所述阻尼片作用在所述振膜的另一侧。
在本申请的方案中,采用上述结构,使得来自终端设备的正面所在的一侧的声波依次通过第二进音孔作用在振膜的一侧,来自终端设备的背面所在的一侧的声波依次通过第一进音孔作用在振膜的另一侧,且通过阻尼片能够改变作用至振膜的另一侧的声压的幅度值以及相位,从而可以通过设置合适的阻尼系数的阻尼片实现麦克风较好的指向性,提高终端设备的定向拾音(即拾取正对终端设备正面方向的声音)或双向拾音(即拾取正对终端设备正面和背面方向的声音)效果。另外,实现定向拾音或双向拾音效果,仅 需采用单个麦克风,占用空间较小,使用成本较低。
在一些实施例中,所述阻尼片位于声波通过所述第一进音孔作用在所述振膜的另一侧的路径上的所述麦克风的外侧。
在本申请的方案中,将阻尼片设置于麦克风的外侧,在该终端设备组装时,可将麦克风组装至终端电路板形成一整体结构后再组装阻尼片,从而使得在麦克风自身组装以及将麦克风安装于终端电路板进行表面贴装工艺过高温、回炉时,阻尼片无需随其一同过高温,提高了阻尼片的使用可靠性。
在一些实施例中,所述终端设备还包括另一阻尼片,所述另一阻尼片位于声波通过所述第二进音孔作用在所述振膜的一侧的路径上,使得从所述第二进音孔进入的声波经过所述另一阻尼片作用在所述振膜的一侧。
在本申请的方案中,在来自终端设备的正面所在的一侧的声波通过第二进音孔作用在振膜的一侧的路径上设置另一阻尼片,能够改变作用至振膜的一侧的声压的幅度值以及相位,从而可以通过设置合适的阻尼系数的阻尼片和另一阻尼片实现麦克风较好的指向性,提高终端设备的定向拾音效果或双向拾音效果。并且,能够通过同时调节两个阻尼片的阻尼系数来将麦克风调节成所需的心形指向麦克风或双指向麦克风,调节灵活性更高。
在一些实施例中,所述另一阻尼片位于声波通过第二进音孔作用在所述振膜的一侧的路径上的所述麦克风的外侧。
在本申请的方案中,将另一阻尼片设置于麦克风的外侧,在该终端设备组装时,可将麦克风组装至终端电路板形成一整体结构后再组装另一阻尼片,从而使得在麦克风自身组装以及将麦克风安装于终端电路板进行表面贴装工艺过高温、回炉时,另一阻尼片无需随其一同过高温,提高了另一阻尼片的使用可靠性。
在一些可能的实施例中,所述第二进音孔与所述终端设备外部连通的一端的中心点和所述第一进音孔与所述终端设备外部连通的一端的中心点的连线平行于所述终端设备的厚度方向或者与终端设备的厚度方向形成一夹角,所述夹角小于30°。这样使得麦克风所形成的极性圆中最大灵敏度指向与正对终端设备的正面方向平行或大致平行,以确保极性圆中0°方向不会偏移正对终端设备的正面方向或偏移角度较小。
在一些可能的实施例中,所述终端设备还包括终端电路板,所述终端电路板设置于所述壳体内部并与所述显示屏相对设置,且所述麦克风电路板设置于所述终端电路板;
所述麦克风电路板正对所述振膜的所述一侧开设有与所述芯片腔室连通的第一拾音孔,且所述第一拾音孔与所述第二进音孔连通,使得来自所述终端设备的正面所在一侧的声波依次通过所述第二进音孔、所述第一拾音孔进入所述芯片腔室中作用在所述振膜的所述一侧;
所述麦克风电路板或所述麦克风外壳上开设有与所述麦克风腔室连通的第二拾音孔,且所述第二拾音孔与所述第一进音孔连通,使得来自所述终端设备的背面所在一侧的声波依次通过所述第一进音孔、所述第二拾音孔进入所述麦克风腔室中作用在所述振膜的所述另一侧。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的终端设备的结构示意图;
图2为本申请实施例的终端设备的局部结构示意图;
图3为本申请实施例的终端设备的麦克风的结构示意图;
图4为本申请实施例的终端设备的麦克风分别在0°方向和180°方向的声波的频率响应仿真曲线图;
图5为本申请实施例的终端设备的麦克风在0°方向和180°方向的信号强度差的频率响应的曲线图;
图6为麦克风的全指向特性极坐标图;
图7为麦克风的心形指向特性极坐标图;
图8为麦克风的超心形指向特性极坐标图;
图9为麦克风的双指向特性极坐标图。
附图标记说明:
100:终端设备;
200:壳体;210:底板;220:侧壁;230:正面;240:背面;250:第一进音孔;260:凹槽;270:泡棉;
300:显示屏;310:正面;320:背面;330:第二进音孔;
400:终端电路板;410:通孔
500:支架;520:连接通道;522:第一连接段;524:第二连接段;
600:容纳腔室;
700:麦克风;710:麦克风电路板;720:麦克风外壳;730:微机电系统芯片;731:振膜;732:一侧;733:另一侧;734:背极板;735:贯通孔;736:芯片腔室;740:功能集成电路芯片;750:麦克风腔室;760:第一拾音孔;770:第二拾音孔;
800:第一阻尼片;
900:第二阻尼片;
T:终端设备的厚度方向;
L:连线;
α:夹角;
d;第二进音孔的一端的中心点沿终端设备的厚度方向在壳体的背面上的投影与第一进音孔的一端的中心点之间的距离。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合较佳实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
请参见图1-图2,图1和图2示出了内置麦克风的终端设备100的示意性结构,主要体现了麦克风与终端设备100的其它部件配合的示意性结构,其中,图2中的0°-180°线为麦克风的极性图中0°方向和180°方向所在的直线。如图1-图2,本申请实施例提供了一种终端设备100,其包括壳体200、显示屏300、终端电路板400和位于终端设备100内的麦克风。在本实施方式中,终端设备100以手机进行举例说明。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,该终端设备100也可以为平板电脑或智能手表等其它终端设备,在此并不对本申请的保护范围产生限定作用。
在本实施方式中,壳体200为终端设备100的后壳,其包括底板210和侧壁220,侧壁220沿底板210的外周缘环绕底板210设置,且沿终端设备的厚度方向T突出于底板210的正面230(即位于终端设备100内部的一表面)。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,壳体200也可以为终端设备100的中框,在此并不对本申请的保护范围产生限定作用。
在本实施方式中,对壳体200的形状不作限定,例如,壳体200可以呈长方体形状, 且壳体200的边角存在一定弧度。
进一步地,显示屏300与壳体200相对设置。在本实施方式中,显示屏300的外边框固定于壳体200的侧壁220的顶面,显示屏300与壳体200的底板210相对设置,显示屏300与壳体200围绕形成一容纳腔室600。终端电路板400和麦克风均位于该容纳腔室600内。显示屏300位于终端设备100的正面,壳体200位于终端设备100的背面。本领域技术人员可以理解的是,终端设备100的正面为正常使用时朝向用户的一面,终端设备100的背面为正常使用时背向用户的一面。
如图2所示,终端电路板400设置于壳体200内部并与显示屏300相对设置。在本实施方式中,终端电路板400固定于壳体200的底板210的内表面,并与显示屏300的背面320相对设置。终端电路板400是终端设备100的主板,终端设备100所包括的电子元器件的承载体,能实现上述电子元器件的电性互连。
进一步地,麦克风固定于终端电路板400面向显示屏300的一侧面(即图2中的上表面,也就是,该侧面为终端电路板400背离壳体200的底板210的一侧面)。麦克风用于将采集到的音频信号转化成电信号。在本实施方式中,该麦克风采用MEMS(微机电系统)麦克风。
以下结合图3对本实施例所采用的麦克风的结构进行具体说明。
如图3所示,麦克风包括麦克风电路板710、麦克风外壳720、微机电系统芯片730(即MEMS芯片)和功能集成电路芯片740(即ASIC芯片)。麦克风外壳720设置于麦克风电路板710上,并与麦克风电路板710形成有麦克风腔室750。微机电系统芯片730和功能集成电路芯片740间隔设置于麦克风电路板710上,并均位于麦克风腔室750内。麦克风电路板710设置于终端电路板400背离壳体200的底板210的一侧,并与终端电路板400电性连接(参见图2)。
微机电系统芯片730包括相对并间隔设置的振膜731和背极板734。其中,微机电系统芯片730的工作原理是利用声音变化产生的压力梯度使振膜731受声压干扰而产生形变,进而改变振膜731和背极板734之间的电容值;该电容值的变化由电容电压转换电路转化为电压值的输出变化,再经过放大电路将得到的电压放大输出,从而将声压信号转化为电压信号。
具体地,位于振膜731的一侧732的微机电系统芯片部分与麦克风电路板710形成有芯片腔室736。在本实施方式中,背极板734位于振膜731的另一侧733,其中,另一侧733与一侧732相反设置。背极板734中开设有多个贯通孔735,通过该多个贯通孔735使得振膜731的另一侧733和背极板734形成的空间能够与微机电系统芯片730外部的麦克风腔室750连通。
本领域技术人员可以理解的是,在可替代的其它实施方式中,背极板734也可以位于振膜731面向麦克风电路板710的一侧,并位于麦克风电路板710与振膜731之间,该背极板734将麦克风电路板710与振膜731之间的芯片腔室736分隔成第一芯片腔室部分(图中未示出)和第二芯片腔室部分(图中未示出),其中,第一芯片腔室部分位于麦克风电路板710与背极板734之间,第二芯片腔室部分位于背极板734与振膜731之间。背极板734中开设有多个贯通孔735,通过该多个贯通孔735使得第一芯片腔室部分能够与第二芯片腔室部分连通,在此并不对本申请的保护范围产生限定作用。
进一步地,功能集成电路芯片740与微机电系统芯片730电性连接。在本实施方式中,两者电性连接的方式可采用现有技术已知的连接方式,且功能集成电路芯片740也可采用现有技术中已知的功能集成电路芯片740,在此不做过多赘述。
如图3所示,麦克风电路板710正对振膜731的一侧开设有与芯片腔室736连通的第一拾音孔760,麦克风外壳720上开设有与麦克风腔室750连通的第二拾音孔770,使得通过第一拾音孔760的声波进入芯片腔室736中作用在振膜731的一侧732,且通过第二拾音孔770的声波进入麦克风腔室750中,通过背极板734上的贯通孔735作用在振膜731的另一侧733。
进一步地,第二拾音孔770设置于麦克风外壳720与麦克风电路板710相对设置的顶壁上,并与微机电系统芯片730错开设置。也就是说,第二拾音孔770沿终端设备的厚度方向T在麦克风电路板710上的投影与微机电系统芯片730不重叠。第二拾音孔770与微机电系统芯片730错开设置能够避免通过第二拾音孔770的粉尘等杂质直接流向微机电系统芯片730。
本领域技术人员可以理解的是,在可替代的其它实施方式中,第二拾音孔770也可以设置在麦克风外壳720的侧壁上,或者,设置于麦克风电路板710的设置微机电系统芯片730之外的其它部位,在此并不对本申请的保护范围产生限定作用。
如图2-图3所示,壳体200的背面240开设有第一进音孔250。第一进音孔250的一端与终端设备100的一侧(即终端设备100的背面所在的一侧)的外部连通,另一端与第一拾音孔760连通,使得来自终端设备100的一侧的声波依次通过第一进音孔250、第一拾音孔760进入芯片腔室736中作用在振膜731的一侧732。在本实施方式中,第一进音孔250开设于壳体200的底板210的背面240。
显示屏300的正面310开设有第二进音孔330。第二进音孔330的一端与终端设备100的另一侧(即终端设备100的正面所在的一侧)的外部连通,第二进音孔330的另一端与第二拾音孔770连通,使得来自终端设备100的另一侧的声波依次通过第二进音孔330、第二拾音孔770进入麦克风腔室750中作用在振膜731的另一侧733。在本实施方式中,第一进音孔250和第二进音孔330均位于靠近终端设备100的顶部的位置处。
终端设备100还包括第一阻尼片800和第二阻尼片900。第一阻尼片800位于声波通过第一进音孔250作用在振膜731的一侧732的路径上,使得从第一进音孔250进入的声波经过第一阻尼片800作用在振膜731的一侧732。第二阻尼片900位于声波通过第二进音孔330作用在振膜731的另一侧733的路径上,使得从第二进音孔330进入的声波经过第二阻尼片900作用在振膜731的另一侧733。
在本实施方式中,通过在终端设备100背面和正面分别设置第一进音孔250和第二进音孔330,并在麦克风上设置有与芯片腔室736连通的第一拾音孔760以及与麦克风腔室750连通的第二拾音孔770,使得来自终端设备100的一侧的声波依次通过第一进音孔250、第一拾音孔760进入芯片腔室736中作用在振膜731的一侧732(即终端设备100的背面所在的一侧),来自终端设备100的另一侧的声波依次通过第二进音孔330、第二拾音孔770进入麦克风腔室750中作用在振膜731的另一侧733(即终端设备100的正面所在的一侧)。同时,在来自终端设备100的一侧的声波通过第一进音孔250作用在振膜731的一侧732的路径上设置第一阻尼片800,并在来自终端设备100的另一侧的声波通 过第二进音孔330作用在振膜731的另一侧733的路径上设置第二阻尼片900,能够改变作用至振膜731的一侧732的声压的幅度值以及相位和振膜731的另一侧733的声压的幅度值以及相位,从而可以通过设置合适的阻尼系数的第一阻尼片800和第二阻尼片900实现麦克风较好的指向性,提高终端设备100的定向拾音效果或双向拾音效果。
同时,可以通过调整第一阻尼片800和第二阻尼片900的阻尼系数,实现心形指向或8字形指向,且调整灵活性较高。因在未设置阻尼片情况下,在0°方向上的声波分别从第一进音孔250经过第一拾音孔760作用在振膜731的一侧732和从第二进音孔330经过第二拾音孔770作用在振膜731的另一侧733时,作用在振膜731的一侧732的声波幅度值大于作用在振膜731的另一侧733的声波幅度值。对此,为了实现心形指向,可将第一阻尼片800的阻尼系数设置成比较小,第二阻尼片900的阻尼系数设置成比较大,使得作用在振膜731的一侧732的声波幅度值与作用在振膜731的另一侧733的声波幅度值的声压差较大,从而可以实现定向指向拾音,此时,麦克风700对终端设备100的背面方向的声音的灵敏度最高,能够较好地收录到终端设备100的背面方向的声音,但对终端设备100的正面和侧面方向的声音有抑制。为了实现8字形指向,可通过调整第一阻尼片800的阻尼系数和第二阻尼片900的阻尼系数,使得作用在振膜731的一侧732的声波幅度值与作用在振膜731的另一侧733的声波幅度值比较接近,从而可以实现双指向拾音,此时,麦克风700对终端设备100的正面和背面方向的声音的灵敏度最高,能够较好地收录到终端设备的正面和背面方向的声音,但对终端设备100的侧面方向的声音有抑制。
并且,在未设置阻尼片情况下,在180°方向上的声波分别从第一进音孔250经过第一拾音孔760进入芯片腔室736中直接作用在振膜731的一侧732和从第二进音孔330经过第二拾音孔770进入麦克风腔室750中作用在振膜731的另一侧733时,作用在振膜731的一侧732的声波幅度值大于作用在振膜731的另一侧733的声波幅度值。理论分析,这可能因为声波从第二进音孔330经过第二拾音孔770进入麦克风腔室750将会因折射、漫射等产生衰减,从而使得经过麦克风腔室750后作用在振膜731的另一侧733的声波的幅度值减小。
当麦克风700的指向性为心形指向时,因第一拾音孔760与位于壳体200的背面240的第一进音孔250连通,可以拾取正对终端设备背面方向的声音,即图2中0°方向的声音,适用于终端设备100定向收音的场景。比如,录像时可以定向拾取声音,所拾取的声音指向(即麦克风的最大灵敏度指向,对应图2中0°方向)与摄像头(图中未示出)的视角中心线的指向一致,可有效降低周围环境噪声的干扰。
当麦克风700的指向性为双指向时,因第一拾音孔760与位于壳体200的背面240的第一进音孔250连通,第二拾音孔770与位于显示屏300的正面310的第二进音孔330连通,从而可以同时拾取正对终端设备正面和背面方向的声音,即图2中0°方向和180°方向上的声音,适用于终端设备100双向收音的场景。
需要说明的是,外部声波传递到终端设备100时,会分别到达第一进音孔250和第二进音孔330,在0°方向以及180°的声波到达第一进音孔250和第二进音孔330的声程差最大,在90°方向以及270°方向的声波会同时到达第一进音孔250和第二进音孔330。
本领域技术人员可以理解的是,在可替代的其它实施方式中,第二进音孔330可以与第一拾音孔760连通,使得来自终端设备100的另一侧(即终端设备100的正面所在的一侧)的声波依次通过第二进音孔330、第一拾音孔760进入芯片腔室736中作用在振膜731的一侧732。此时,第一进音孔250与第二拾音孔770连通,使得来自终端设备100的一侧(即终端设备100的背面所在的一侧)的声波依次通过第一进音孔250、第二拾音孔770进入麦克风腔室750中作用在振膜731的另一侧733。此时,第一阻尼片800位于声波通过第二进音孔330作用在振膜731的一侧732的路径上。第二阻尼片900位于声波通过第一进音孔250作用在振膜731的另一侧733的路径上的麦克风的外侧。也可以通过调整第一阻尼片800和第二阻尼片900的阻尼系数,实现心形指向或8字形指向。
采用这种结构时,在麦克风700的指向性为心形指向时,因第一拾音孔760与位于显示屏300的正面310的第二进音孔320连通,可以拾取正对终端设备正面方向的声音,适用于终端设备100定向收音的场景。比如,用户视频通话或微信电话时可以定向拾取声音,所拾取的声音指向正对用户说话的方向,在摄像头为前置摄像头时,可以定向拾取摄像拍摄方向的声音。
当麦克风700的指向性为双指向时,因第一拾音孔760与显示屏300的正面310的第二进音孔330连通,第二拾音孔770与位于壳体200的背面240的第一进音孔250连通,从而可以同时拾取正对终端设备正面和背面方向的声音,适用于终端设备100双向收音的场景。
本领域技术人员可以理解的是,指向性是指麦克风灵敏度随声波入射方向变化而变化的特性。麦克风的指向性分单向性、双向性和全向性3种。单向性麦克风的正面对声波的灵敏度明显高于其他方向,并且根据指向特性曲线形状,可细分为心形、超心形。双向性麦克风在前、后方向的灵敏度均高于其他方向,又称8字性麦克风。全向性麦克风对来自四面八方的声波都有基本相同的灵敏度。麦克风的灵敏度是指麦克风将声压转化成电平的能力。
如图2所示,第一阻尼片800位于声波通过第一进音孔250作用在振膜731的一侧732的路径上的麦克风的外侧。第二阻尼片900位于声波通过第二进音孔330作用在振膜731的另一侧733的路径上的麦克风的外侧。将第一阻尼片800和第二阻尼片900设置于麦克风的外侧,在该终端设备100组装时,可将麦克风组装至终端电路板400形成一整体结构后再组装第一阻尼片800、第二阻尼片900,从而使得在麦克风自身组装以及将麦克风安装于终端电路板400进行表面贴装工艺过高温、回炉时,第一阻尼片800、第二阻尼片900无需随其一同过高温,提高了第一阻尼片800、第二阻尼片900的使用可靠性。同时在2个拾音孔外侧设置阻尼片,能够通过同时调节两个阻尼片的阻尼系数来将麦克风调节成所需的心形指向麦克风或双指向麦克风,调节灵活性更高。
需要说明的是,在可替代的其它实施方式中,可以在声波通过第一进音孔250作用在振膜731的一侧732的路径上不设置阻尼片,仅在声波通过第二进音孔330作用在振膜731的另一侧733的路径上设置阻尼片。或者,可以在声波通过第二进音孔330作用在振膜731的一侧732的路径上不设置阻尼片,仅在声波通过第一进音孔250作用在振膜731的另一侧733的路径上设置阻尼片。
本领域技术人员可以理解的是,第一阻尼片800和第二阻尼片900可以采用现有技术中已有的阻尼片结构。比如,阻尼片可以为开设有密集通孔的硅片,密集通孔形成了通孔矩阵。其中,阻尼片的材料可以为硅、陶瓷、线路板、金属片等材料。阻尼片也可以为开设有通道的硅片,通道能够供声波穿过并作用在振膜731上,通道的一端可以设置成网状结构,也可以为贯通结构,通道的另一端可以设置成网状结构,也可以为贯通结构。网状结构主要用于防止灰尘从拾音孔进入麦克风内部影响麦克风产品性能。也可以在阻尼片的通道的端口处开设有多个细小的通孔形成网状结构。可以将防尘网作为网状结构通过粘贴等方式覆盖在通道的端口上。
如图2所示,终端电路板400正对第一拾音孔760的部位开设有完全覆盖第一拾音孔760的通孔410,第一进音孔250直线延伸至壳体200的正面230(即图2中上表面),并通过通孔410与第一拾音孔760连通。第一阻尼片800固定于第一进音孔250内。在本实施方式中,通孔410的孔径大于第一拾音孔760,通孔410的孔径小于第一进音孔250。第一进音孔250呈一直线状贯穿壳体200的底板210的厚度方向。本领域技术人员可以理解的是,在可替代的实施方式中,第一进音孔250也可以呈弯曲状、弯折状等其他形状贯穿壳体200;也可以通过在终端设备100的结构件上设置声音通道连通第一进音孔250和终端电路板400的通孔410。
进一步地,第一进音孔250与通孔410连通的一端的内壁面具有向其内部凹陷的凹槽260,且凹槽260的一端延伸至壳体200的正面230。第一阻尼片800位于凹槽260内并完全覆盖通孔410,且第一阻尼片800的一侧固定并密封连接于凹槽260的另一端,第一阻尼片800的另一侧固定并密封连接于终端电路板400背离麦克风的一侧。其中,第一阻尼片800的两侧分别通过背胶固定于凹槽260和终端电路板400之间。
在本实施方式中,为了能够使得第一阻尼片800面向终端电路板400的一侧的外周缘与终端电路板400之间密封连接,还需要在第一阻尼片800和终端电路板400之间填充具有弹性的泡棉270。需要注意的是,在实际安装时,该泡棉270应当是压扁的状态。在图2中绘画的泡棉270是其原始状态,以便于体现该处存在泡棉270。
本领域技术人员可以理解的是,在可替代的其它实施方式中,第一阻尼片800也可以位于声波通过第一进音孔250作用在振膜731的一侧732的路径上的其它位置。
如图2所示,终端设备100还包括支架500,支架500设置于终端电路板400与显示屏300相对设置的一面之间。也就是说,支架500设置于终端电路板400的正面以及显示屏300的背面320之间,并位于容纳腔室600内。支架500内形成有连通第二进音孔330和第二拾音孔770的连接通道520,使得来自终端设备100的另一侧(即终端设备100的正面所在的一侧)的声波依次通过第二进音孔330、连接通道520和第二拾音孔770进入麦克风腔室750中作用在振膜731的另一侧733。在本实施方式中,该支架500可以为终端设备100的结构件(该结构件可以为拾音管道),也可以为在终端设备100中额外设置的一支架500,只要能够形成连通第二进音孔330和第二拾音孔770的连接通道520即可,在此并不对本申请的保护范围产生限定作用。
具体地,连接通道520包括第一连接段522和第二连接段524,第一连接段522沿与显示屏300的正面310平行的方向延伸,且第一连接段522的一端与第二进音孔330连通。第二连接段524沿终端设备的厚度方向T延伸,第二连接段524的一端与第一连接 段522的另一端连通,另一端与第二拾音孔770连通。本领域技术人员可以理解的是,连接通道520也可以采用其它结构形式,并不局限于此。
进一步地,支架500罩设于麦克风外壳720,并与麦克风外壳720密封连接,且支架500面向显示屏300的一面固定于并密封连接于显示屏300。在本实施方式中,支架500面向终端电路板400的一侧也固定于终端电路板400。本领域技术人员可以理解的是,在可替代的其它实施方式中,支架500可以仅固定于终端电路板400,或者仅固定于显示屏300。
为了能够使得支架500与麦克风之间密封连接,也可以在麦克风和支架500之间填充具有弹性的密封泡棉(图中未示出)。支架500密封连接于显示屏300的背面320与麦克风外壳720之间,使得连接通道520为从第二进音孔330延伸至第二拾音孔770的密封通道。
更进一步地,第二阻尼片900位于连接通道520内,且第二阻尼片900的一侧固定于并密封连接于显示屏300的背面320,第二阻尼片900完全覆盖第二进音孔330。本领域技术人员可以理解的是,在可替代的其它实施方式中,第二阻尼片900也可以位于声波通过第二进音孔330作用在振膜731的另一侧733的路径上的其它位置。
本领域技术人员可以理解的是,在可替代的其它实施方式中,也可通过一导音管(图中未示出)形成该连接通道520,可将导音管的一端与麦克风连接,并与第二拾音孔770连通,导音管的另一端向外延伸至插于第二进音孔330内,以形成由第二进音孔330至第二拾音孔770之间的密封通道。导音管可采用柔性管道,比如可以是聚酯PET热缩管或PVC热缩管等等。导音管的截面可以是方形、圆形或者其他形状。导音管也可以采用硬质材料,例如铜铁铝等制作。
在本实施方式中,终端设备100的摄像头(图中未示出)设置成以壳体200面向物体进行拍摄。其中,该摄像头为后置摄像头。第二进音孔330与终端设备100外部连通的一端的中心点和第一进音孔250与终端设备100外部连通的一端的中心点的连线L与摄像头的视角中心线形成一夹角α,夹角α小于30°。这样使得麦克风所形成的极性圆中最大灵敏度指向与摄像头的指向方向平行或大致平行,以确保极性圆中0°方向不会偏移摄像头的指向方向或偏移角度较小。本领域技术人员可以理解的是,摄像头的视角中心线与终端设备的厚度方向T平行。
进一步地,第二进音孔330的一端的中心点沿终端设备的厚度方向T在壳体200的背面240上的投影与第一进音孔250的一端的中心点之间的距离d小于或等于10mm。
本领域技术人员可以理解的是,在可替代的其它实施方式中,第二进音孔330与终端设备100外部连通的一端的中心点和第一进音孔250与终端设备100外部连通的一端的中心点的连线L也可以平行于与麦克风的最大灵敏度指向同向指向的摄像头的视角中心线。
以下结合图4-5对终端设备100的麦克风的指向性效果进行说明。
图4为本申请实施例的终端设备100的麦克风(对应图1-图2中的终端设备100的麦克风)分别在0°方向和180°方向的声波的频率响应仿真曲线图。图5为本申请实施例的终端设备100的麦克风(对应图1-图2中的终端设备100的麦克风)在0°方向和180°方向的信号强度差的频率响应的曲线图。其中,麦克风在恒定声压和规定入射角声 波作用下,各频率声波信号的开路输出电压与规定频率麦克风开路输出电压之比,称为麦克风的频率响应,用dB表示。dB=20log(V1/V2)=20logV;其中,V1表示各频率声波信号的开路输出电压,V2表示规定频率麦克风开路输出电压,该规定频率为1000Hz。例如V1是V2的2倍,即2V,就是6dB。(P代表功率,V代表电压)。dBV是以1V为0dB参考标准,即1V对应0dBV。
在图4中,横坐标表示频率,单位Hz,纵坐标表示麦克风拾取到的信号强度,用dBV表示。
其中,图4中虚线表示在0°方向上的声波进入麦克风后的频率响应曲线。此时,在0°方向上的声波分别从第一进音孔250经过第一拾音孔760作用在振膜731的一侧732和从第二进音孔330经过第二拾音孔770作用在振膜731的另一侧733,在恒定声压的情况下,测得麦克风在各频率声波下拾取到的信号强度。其中,当频率为1000Hz时,V1=V2,即V=1,对应0dBV。曲线上的其余点均以该点为基准。
图4中实线表示在180°方向上的声波进入麦克风后的频率响应曲线。此时,在180°方向上的声波分别从第一进音孔经过第一拾音孔760作用在振膜731的一侧732和从第二进音孔330经过第二拾音孔770作用在振膜731的另一侧733,在恒定声压的情况下,测得麦克风在各频率声波下拾取到的信号强度。
在图5中,横坐标表示频率,单位Hz,纵坐标表示麦克风在0°和180°方向上拾取到的信号强度差,也用dBV表示。
图4和图5所示的曲线图是通过comsol multiphysics(多物理仿真软件)测试图1和图2所示的终端设备100测得的麦克风的频率响应曲线。
获取图4和图5所示的曲线图的仿真条件如下表1所示:
表1
Figure PCTCN2020128651-appb-000001
Figure PCTCN2020128651-appb-000002
从图4和图5可知,在声波频率为100Hz-10kHz时,相同声压的声波分别从0°方向跟180°方向到达麦克风后,麦克风拾取到的信号强度不同,即麦克风输出的声音大小不同。也就是说,来自180°方向的声波的声压虽然跟来自0°方向的声波的声压一样大,来自180°方向的声波到达麦克风后,麦克风拾取到的信号强度较小,即麦克风输出的声音比较小。所以是有方向选择性的拾音效果。此时,该麦克风为心形指向麦克风,此时,麦克风700对终端设备100的背面方向的声音的灵敏度最高,能够较好地收录到终端设备100的背面方向的声音,但对终端设备100的正面和侧面方向的声音有抑制。其中,100Hz-10kHz为日常生活中声音的主要频率范围。
其中,在声波频率为100Hz-1kHz之间,来自0°方向和180°方向的声波到达麦克风后,麦克风拾取到的信号强度均较为平稳,且两者之间的信号强度差也是相对稳定的,在6dB左右,指向性相对稳定。
在声波频率为1k-10kHz之间,来自0°方向的声波到达麦克风后,麦克风拾取到的信号强度有较小幅度的放大或衰减;来自180°方向的声波到达麦克风后,麦克风拾取到的信号强度有较大幅度的放大或衰减。并且,来自0°方向和180°方向的声波到达麦克风后,信号强度差变化较大,指向性明显。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种终端设备,包括壳体、与所述壳体相对设置的显示屏和位于所述终端设备内的麦克风,所述麦克风包括麦克风外壳、麦克风电路板和微机电系统芯片,所述麦克风外壳设置于所述麦克风电路板上,并与所述麦克风电路板形成有麦克风腔室,所述微机电系统芯片设置于所述麦克风电路板上,并位于所述麦克风腔室内,所述微机电系统芯片具有振膜,且所述振膜的一侧与所述麦克风电路板相对设置,位于所述振膜的一侧的微机电系统芯片部分与所述麦克风电路板形成有芯片腔室;其特征在于,所述壳体的背面开设有第一进音孔,所述显示屏的正面开设有第二进音孔;
    所述芯片腔室通过所述第一进音孔与所述壳体的背面的外部连通,所述麦克风腔室通过所述第二进音孔与所述显示屏的正面的外部连通,使得来自所述壳体的背面的声波通过所述第一进音孔进入所述芯片腔室中作用在所述振膜的一侧,来自所述显示屏的正面的声波通过所述第二进音孔进入所述麦克风腔室中作用在所述振膜的另一侧;其中,所述振膜的一侧与所述振膜的另一侧相反设置;
    所述终端设备还包括阻尼片,所述阻尼片位于声波通过第二进音孔作用在所述振膜的另一侧的路径上,使得从所述第二进音孔进入的声波经过所述阻尼片作用在所述振膜的另一侧。
  2. 如权利要求1所述的终端设备,其特征在于,所述阻尼片位于声波通过第二进音孔作用在所述振膜的另一侧的路径上的所述麦克风的外侧。
  3. 如权利要求1或2所述的终端设备,其特征在于,所述终端设备还包括另一阻尼片,所述另一阻尼片位于声波通过第一进音孔作用在所述振膜的一侧的路径上,使得从所述第一进音孔进入的声波经过所述另一阻尼片作用在所述振膜的一侧。
  4. 如权利要求3所述的终端设备,其特征在于,所述另一阻尼片位于声波通过第一进音孔作用在所述振膜的一侧的路径上的所述麦克风的外侧。
  5. 如权利要求1-4中任一项所述的终端设备,其特征在于,所述终端设备还包括以所述壳体面向物体进行拍摄的摄像头,所述第二进音孔与所述终端设备外部连通的一端的中心点和所述第一进音孔与所述终端设备外部连通的一端的中心点的连线平行于所述摄像头的视角中心线或者与所述摄像头的视角中心线形成一夹角,所述夹角小于30°。
  6. 如权利要求1-5中任一项所述的终端设备,其特征在于,所述终端设备还包括终端电路板,所述终端电路板设置于所述壳体内部并与所述显示屏相对设置,且所述麦克风电路板设置于所述终端电路板;
    所述麦克风电路板正对所述振膜的一侧开设有与所述芯片腔室连通的第一拾音孔,且所述第一拾音孔与所述第一进音孔连通,使得来自所述壳体的背面的声波依次通过所述第一进音孔、所述第一拾音孔进入所述芯片腔室中作用在所述振膜的一侧;
    所述麦克风电路板或所述麦克风外壳上开设有与所述麦克风腔室连通的第二拾音孔,且所述第二拾音孔与所述第二进音孔连通,使得来自所述显示屏的正面的声波依次通过所述第二进音孔、所述第二拾音孔进入所述麦克风腔室中作用在所述振膜的另一侧。
  7. 如权利要求6所述的终端设备,其特征在于,所述终端设备还包括支架,所述支架设置于所述终端电路板与所述显示屏相对设置的一面之间;
    所述支架内形成有连通所述第二进音孔和所述第二拾音孔的连接通道,使得来自所述显示屏的正面的声波依次通过所述第二进音孔、所述连接通道和所述第二拾音孔进入 所述麦克风腔室中作用在所述振膜的所述另一侧。
  8. 如权利要求7所述的终端设备,其特征在于,所述第二拾音孔设置于所述麦克风外壳与所述麦克风电路板相对设置的顶壁上,并与所述微机电系统芯片不重叠;
    所述连接通道包括第一连接段和第二连接段,所述第一连接段沿与所述显示屏的正面平行的方向延伸,且所述第一连接段的一端与所述第二进音孔连通;所述第二连接段沿所述终端设备的厚度方向延伸,所述第二连接段的一端与所述第一连接段的另一端连通,另一端与所述第二拾音孔连通。
  9. 如权利要求8所述的终端设备,其特征在于,所述支架罩设于所述麦克风外壳,并与所述麦克风外壳密封连接,且所述支架面向所述显示屏的一面固定于并密封连接于所述显示屏。
  10. 如权利要求7-9中任一项所述的终端设备,其特征在于,所述阻尼片位于所述连接通道内,且所述阻尼片的一侧固定于并密封连接于所述显示屏的背面,所述阻尼片完全覆盖所述第二进音孔。
  11. 如权利要求6-10中任一项所述的终端设备,其特征在于,所述终端电路板正对所述第一拾音孔的部位开设有完全覆盖所述第一拾音孔的通孔,所述第一进音孔直线延伸至所述壳体的正面,并通过所述通孔与所述第一拾音孔连通。
  12. 如权利要求11所述的终端设备,其特征在于,所述第一进音孔与所述通孔连通的一端的内壁面具有向其内部凹陷的凹槽,且所述凹槽的一端延伸至所述壳体的所述正面;
    当声波通过所述第一进音孔作用在所述振膜的一侧的路径上设有另一阻尼片时,所述另一阻尼片位于所述凹槽内并完全覆盖所述通孔,且所述另一阻尼片的一侧固定并密封连接于所述凹槽的另一端,所述另一阻尼片的另一侧固定并密封连接于所述终端电路板背离所述麦克风的一侧。
  13. 如权利要求1-12中任一项所述的终端设备,其特征在于,所述第一进音孔和所述第二进音孔均位于靠近所述终端设备的顶部的位置处。
  14. 一种终端设备,包括壳体、与所述壳体相对设置的显示屏和位于所述终端设备内的麦克风,所述麦克风包括麦克风外壳、麦克风电路板和微机电系统芯片,所述麦克风外壳设置于所述麦克风电路板上,并与所述麦克风电路板形成有麦克风腔室,所述微机电系统芯片设置于所述麦克风电路板上,并位于所述麦克风腔室内,所述微机电系统芯片具有振膜,且所述振膜的一侧与所述麦克风电路板相对设置,位于所述振膜的一侧的微机电系统芯片部分与所述麦克风电路板形成有芯片腔室;其特征在于,所述壳体的背面开设有第一进音孔,所述显示屏的正面开设有第二进音孔;
    所述芯片腔室通过所述第二进音孔与所述显示屏的正面所在一侧的外部连通,所述麦克风腔室通过所述第一进音孔与所述壳体的背面所在一侧的外部连通,使得来自所述显示屏的正面所在一侧的声波通过所述第二进音孔作用在所述振膜的一侧,来自所述终端设备的背面所在一侧的声波通过所述第一进音孔作用在所述振膜的另一侧;其中,所述振膜的一侧与所述振膜的另一侧相反设置;
    所述终端设备还包括阻尼片,所述阻尼片位于声波通过所述第一进音孔作用在所述振膜的另一侧的路径上,使得从所述第一进音孔进入的声波经过所述阻尼片作用在所述 振膜的另一侧。
  15. 如权利要求14所述的终端设备,其特征在于,所述阻尼片位于声波通过所述第一进音孔作用在所述振膜的另一侧的路径上的所述麦克风的外侧。
  16. 如权利要求14或15所述的终端设备,其特征在于,所述终端设备还包括另一阻尼片,所述另一阻尼片位于声波通过所述第二进音孔作用在所述振膜的一侧的路径上,使得从所述第二进音孔进入的声波经过所述另一阻尼片作用在所述振膜的一侧。
  17. 如权利要求16所述的终端设备,其特征在于,所述另一阻尼片位于声波通过第二进音孔作用在所述振膜的一侧的路径上的所述麦克风的外侧。
PCT/CN2020/128651 2019-11-20 2020-11-13 终端设备 WO2021098600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20890828.5A EP4044567A4 (en) 2019-11-20 2020-11-13 TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911141934.6 2019-11-20
CN201911141934.6A CN112825532B (zh) 2019-11-20 2019-11-20 终端设备

Publications (1)

Publication Number Publication Date
WO2021098600A1 true WO2021098600A1 (zh) 2021-05-27

Family

ID=75906297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128651 WO2021098600A1 (zh) 2019-11-20 2020-11-13 终端设备

Country Status (3)

Country Link
EP (1) EP4044567A4 (zh)
CN (1) CN112825532B (zh)
WO (1) WO2021098600A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231508A (zh) * 2022-05-31 2022-10-25 青岛歌尔智能传感器有限公司 复合防水膜、防水气压传感器以及封装工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131140A (zh) * 2011-04-07 2011-07-20 深圳市豪恩声学股份有限公司 Mems传声器
CN203416415U (zh) * 2013-08-15 2014-01-29 山东共达电声股份有限公司 指向性mems传声器
CN104507029A (zh) * 2015-01-09 2015-04-08 歌尔声学股份有限公司 一种指向性mems麦克风
CN204291393U (zh) * 2015-01-09 2015-04-22 歌尔声学股份有限公司 一种指向性mems麦克风
CN205946166U (zh) * 2016-08-17 2017-02-08 深圳市芯易邦电子有限公司 单指向拾音硅麦克风
WO2019179149A1 (en) * 2018-03-22 2019-09-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Microphone, mobile terminal and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159575A1 (en) * 2006-12-28 2008-07-03 Fortemedia, Inc. Electronic device with internal uni-directional microphone
CN201995128U (zh) * 2011-03-28 2011-09-28 歌尔声学股份有限公司 Mems麦克风以及包含它的mems麦克风模组
JP6305676B2 (ja) * 2012-05-29 2018-04-04 京セラ株式会社 電子機器及び制御プログラム並びに電子機器の制御方法
US9955246B2 (en) * 2014-07-03 2018-04-24 Harman International Industries, Incorporated Gradient micro-electro-mechanical systems (MEMS) microphone with varying height assemblies
JP6580356B2 (ja) * 2015-03-25 2019-09-25 株式会社プリモ 単一指向性memsマイクロホン
CN106612485B (zh) * 2015-10-23 2024-03-29 钰太芯微电子科技(上海)有限公司 一种mems麦克风及收音装置
CN205283817U (zh) * 2015-12-29 2016-06-01 山东共达电声股份有限公司 指向性mems mic
CN205946167U (zh) * 2016-08-17 2017-02-08 深圳市芯易邦电子有限公司 双指向拾音硅麦克风
CN206602609U (zh) * 2016-12-10 2017-10-31 瑞声科技(新加坡)有限公司 麦克风

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131140A (zh) * 2011-04-07 2011-07-20 深圳市豪恩声学股份有限公司 Mems传声器
CN203416415U (zh) * 2013-08-15 2014-01-29 山东共达电声股份有限公司 指向性mems传声器
CN104507029A (zh) * 2015-01-09 2015-04-08 歌尔声学股份有限公司 一种指向性mems麦克风
CN204291393U (zh) * 2015-01-09 2015-04-22 歌尔声学股份有限公司 一种指向性mems麦克风
CN205946166U (zh) * 2016-08-17 2017-02-08 深圳市芯易邦电子有限公司 单指向拾音硅麦克风
WO2019179149A1 (en) * 2018-03-22 2019-09-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Microphone, mobile terminal and electronic device

Also Published As

Publication number Publication date
EP4044567A1 (en) 2022-08-17
EP4044567A4 (en) 2022-12-07
CN112825532A (zh) 2021-05-21
CN112825532B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN105228068B (zh) 具有不同高度的组合件的梯度微机电系统麦克风
US9363595B2 (en) Microphone unit, and sound input device provided with same
US20220295187A1 (en) Wireless headset
US9247334B2 (en) Portable electronic device
US9521500B2 (en) Portable electronic device with directional microphones for stereo recording
US10299032B2 (en) Front port resonator for a speaker assembly
US20100183174A1 (en) Microphone package
US10631073B2 (en) Microphone housing with screen for wind noise reduction
US10771904B2 (en) Directional MEMS microphone with correction circuitry
CN109413554B (zh) 一种指向性mems麦克风
KR20090039677A (ko) 전자음향 트랜스듀서 장치, 트랜스듀서 모듈, 카메라, 휴대용 통신 장치, 보청기 및 기록 장치
CN110868682B (zh) 一种mems麦克风
WO2021139632A1 (zh) 扬声器、扬声器模组及电子设备
CN109889967B (zh) 麦克风和智能语音设备
JP2013135436A (ja) マイクロホン装置および電子機器
WO2021098600A1 (zh) 终端设备
US11743635B2 (en) Audio systems, devices, MEMS microphones, and methods thereof
CN209072736U (zh) 一种指向性mems麦克风
CN112714388B (zh) 指向性麦克风和电子设备
US10863283B2 (en) MEMS microphone for frame-free device
WO2019051952A1 (zh) 一种微机电系统麦克风及声学设备
JP5834818B2 (ja) マイクロホンユニット、及び、それを備えた音声入力装置
CN205946167U (zh) 双指向拾音硅麦克风
CN216600075U (zh) 反向心形驻极体电容式传声器
CN217825263U (zh) 拾音装置及通话设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020890828

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE