WO2019051952A1 - 一种微机电系统麦克风及声学设备 - Google Patents

一种微机电系统麦克风及声学设备 Download PDF

Info

Publication number
WO2019051952A1
WO2019051952A1 PCT/CN2017/108578 CN2017108578W WO2019051952A1 WO 2019051952 A1 WO2019051952 A1 WO 2019051952A1 CN 2017108578 W CN2017108578 W CN 2017108578W WO 2019051952 A1 WO2019051952 A1 WO 2019051952A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
microphone
directional receiving
directional
tube
Prior art date
Application number
PCT/CN2017/108578
Other languages
English (en)
French (fr)
Inventor
王承谦
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2019051952A1 publication Critical patent/WO2019051952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present application relates to the field of acoustic application technology, and more particularly to a microelectromechanical system microphone, and to an acoustic device.
  • Microelectromechanical system microphones are microphones based on MEMS (Micro Electro Mechanical Systems) technology. Simply put, a capacitor is integrated on a micro silicon wafer and can be fabricated using a surface mount process to withstand high reflow temperatures. Easy to integrate with CMOS (Complementary Metal Oxide Semiconductor) process and other audio circuits, with improved noise cancellation performance and good RF (Radio Frequency) and EMI (Electro Magnetic Interference) The suppression capability is widely used in mobile communication terminal equipment.
  • CMOS Complementary Metal Oxide Semiconductor
  • RF Radio Frequency
  • EMI Electro Magnetic Interference
  • the technology of directional receiving acoustic signals can be solved: one rejects the acoustic signals in the non-receiving range, the ambient noise and the like into the microphone; and the second can enhance the performance of the hearing aid-like acoustic devices to receive the acoustic signals.
  • the application technology of directional receiving technology in microphones especially MEMS microphones.
  • the first type of design, product structure design is complex, using a one-way electret microphone, when such a microphone is matched with the product structure, the structure needs to have a rear air pressure hole, and the product is oriented and received.
  • the range consistency is poor;
  • another type of design requires the use of at least two microphones, and requires a corresponding complex software algorithm design, which is costly to implement.
  • the first object of the present application is to provide a micro-electromechanical system microphone, and the structural design of the MEMS microphone can effectively solve the technical problem that it is difficult to apply the technology of directional receiving acoustic signals to the MEMS microphone.
  • the present application also provides an acoustic device including the above-described microelectromechanical system microphone.
  • a microelectromechanical system microphone includes a microphone body, a sound guiding tube and a directional receiving shell having a curved surface, and a nozzle of the sound guiding tube communicates with an entrance hole of the microphone body, and a nozzle of the sound guiding tube Located in a central region of the concave side of the directional receiving housing.
  • the directional receiving shell is specifically a housing having a paraboloid, and the sound guiding tube is inserted into the directional receiving shell, and the nozzle is fixed at a focus position of the paraboloid.
  • the sound hole of the microphone body is in direct communication with the sound tube.
  • the microphone body is covered with a rubber sleeve, and the rubber sleeve wraps the connection position between the sound hole and the sound tube.
  • the outer circumference of the sound tube is bonded and fixed to the directional receiving shell, and the bonding position is provided with a silicone sealing layer.
  • the bottom surface of the microphone body facing away from the sound guiding tube and the edge of the rubber sleeve are also provided with a silicone sealing layer.
  • the concave side surface of the directional receiving case is attached with an enhanced reflection film.
  • the MEMS microphone provided by the present application includes a microphone body, a sound guiding tube and a directional receiving shell having a curved surface, and a nozzle of the sound guiding tube communicates with an acoustic hole of the microphone body, and the sound guiding tube of the sound tube
  • the nozzle is located in a central region of the concave side of the directional receiving housing.
  • the MEMS microphone receives the sound signal through the directional receiving shell of the curved surface, and the sound signal of the direction opposite to the concave surface of the curved surface is concentrated in the central area within the arc surface by the characteristic of the curved surface reflection, and then the set is
  • the sound tube introduces the sound signal concentrated at the nozzle into the corresponding sound pickup unit in the microphone body to complete the complete sound pickup process, thereby realizing the directional receiving sound signal, and the design is simple structural modification of the MEMS microphone.
  • the general omnidirectional acoustic performance can be changed to directional reception, which can ensure the consistency of the product receiving range under the premise of directional reception, and does not require multiple microphones to cope with the cost, effectively solving the problem of directional reception.
  • the technique of acoustic signals is applied to technical problems such as MEMS microphones.
  • the application also provides an acoustic device comprising any of the above described MEMS microphones. Since the above-mentioned MEMS microphone has the above technical effects, the acoustic device having the MEMS microphone should also have corresponding technical effects.
  • FIG. 1 is a schematic structural diagram of a microphone of a MEMS system according to an embodiment of the present application.
  • the embodiment of the present application discloses a MEMS microphone to solve the technical problem that it is difficult to apply the technique of directional receiving acoustic signals to a MEMS microphone or the like.
  • FIG. 1 is a schematic structural diagram of a microphone of a MEMS system according to an embodiment of the present application.
  • the non-leading arrows in the drawing line indicate the acoustic signal indicating the reflection of the acoustic signal as it passes through the device.
  • the MEMS microphone provided by the embodiment of the present application includes a microphone body 1, a sound tube 2, and a directional receiving shell 3 having a curved surface, a nozzle of the sound tube 2 and a sound hole of the microphone body 1.
  • the nozzle of the sound tube 2 is located in a central region of the concave side of the directional receiving case 3.
  • the microphone body refers to the basic sound pickup unit of the microphone device, including the outer cover and the internal electronic sound pickup element; in addition, the concept of the directional receiving cover curved surface is only in the technical solution of the present application. Refers to a surface with a single arc direction;
  • the central area refers to the concave side of the curved surface, and when the curved surface is naturally reflected, the reflection line reflects the concentrated area.
  • the preferred design is to provide a sealed structure at each connection position to ensure the loss of sound energy.
  • the MEMS microphone receives the sound signal through the directional receiving shell of the curved surface, and the sound signal in the direction opposite to the concave surface of the curved surface is concentrated in the central region within the arc surface by the characteristic of the curved surface reflection, and then The sound signal collected at the nozzle is introduced into the corresponding sound pickup unit in the microphone body through the set sound tube, and the complete sound pickup process is completed, thereby realizing the directional receiving sound signal, which is simple to make the MEMS microphone
  • the structural modification can change the general omnidirectional acoustic performance to directional reception, which can ensure the consistency of the product receiving range under the premise of directional reception, and does not require multiple microphones to cope with the cost, which effectively solves the problem. Techniques for directional reception of acoustic signals are applied to technical problems such as MEMS microphones.
  • the above microcomputer is preferred.
  • the directional receiving case 3 is specifically a housing having a paraboloid, and the sound guiding tube 2 is inserted into the directional receiving case 3, and the nozzle is fixed at a focus position of the paraboloid.
  • the design of the curved shell is further optimized, which adopts a parabolic concave surface, thereby having better convergence ability, and the sound can be reflected to its focus position due to the parabolic characteristic, so The nozzle of the sound tube is placed at the focus position, which greatly improves the receiving effect of the receiving shell.
  • the sound hole of the microphone body 1 is in direct communication with the sound tube 2.
  • connection manner between the microphone body and the sound guiding tube is further optimized, and the other end opening of the sound guiding tube is directly inserted into the sound hole.
  • the connection mode is stable, more durable and difficult to be connected and broken. .
  • the microphone body 1 in the microphone of the MEMS, is covered with a rubber sleeve 4, and the rubber sleeve 4 wraps the sound hole and the The connection position between the sound tubes 2.
  • the structure of the rubber sleeve can make the sound convergence reduce the loss of the transmission process, and can prevent the noise from being ingested, or the dust enters the internal electrical component; further, the sound tube and the rubber sleeve can be integrally set and divided.
  • the volume structure preferably adds a pad-like structure between the two.
  • the outer circumference of the sound tube 2 is bonded and fixed to the directional receiving shell 3, and the bonding positions are set. Silicone sealing layer.
  • the sound guiding tube and the directional receiving shell are connected by bonding.
  • the design requires the sound guiding tube to be made of a rigid material.
  • the design structure is simple, and the sound guiding tube only needs to penetrate the outer wall of the receiving shell. The proper distance can be achieved by setting a silicone sealing layer to ensure a seamless seal between the two.
  • the bottom surface of the microphone body 1 facing away from the sound guiding tube 2 and the edge of the rubber sleeve 4 are also disposed.
  • a silicone sealing layer is disposed between the edge of the rubber sleeve and the bottom surface of the microphone body, and the sound signal is also gathered for the purpose of improving the sealing property. ability.
  • the concave side surface of the directional receiving case 3 is attached with an enhanced reflection film.
  • An anti-reflection film is arranged on the surface of the directional receiving shell by means of filming or coating, which enhances the reflection of the parabolic surface acoustic signal, reduces the energy loss of the sound signal, and makes the sound pickup effect better.
  • the present application also provides an acoustic device comprising the MEMS microphone of any of the above embodiments. Since the acoustic device is employed in the MEMS microphone of the above embodiment, the advantageous effects of the acoustic device can be referred to the above embodiment.
  • the acoustic device can include a hearing aid, various communication devices, and the like.
  • the product designed by the technology of the present application can realize "changing" the omnidirectional microphone into a directional microphone; can be used for the equipment on the conference system, receiving the speech of a specific speaker, "rejecting" the speech of the surrounding person, and can be used for the hearing aid
  • the directional receiving shell of the microphone on the device can be oriented toward the direction of the person who wants to listen, which can help the user to better filter out the noise except the listening direction; can also be applied to the directional recording device, and has directional reception
  • the sonic signal is required on the device.
  • the person wearing the technical device of the present application is A
  • the speaker is B.
  • the acoustic signal emitted by the B speech is transmitted to the receiving of the present technology via the air medium.
  • the sound wave is further transmitted to the mouth of the sound tube (ie, the focus position), and then enters the microphone unit through the sound hole of the microphone to complete the conversion of the acoustic signal to the analog signal, and then transmitted to the hardware circuit portion of the device (via the signal)
  • the processing is finally transmitted to the speaker unit device via the wire, and the horn emits an acoustic signal to the eardrum of A, and the whole process is completed.
  • the MEMS microphone Compared with the electret microphone, the MEMS microphone provided by the above embodiment has the following Advantages:
  • the production process has good repeatability and consistency, so that each silicon microphone has the same excellent performance.
  • the sound pressure level is high, and the preamplifier circuit is generally inside the chip, so the sensitivity is high.
  • Wide frequency response range 100 ⁇ 10KHZ.
  • Small distortion THD ⁇ 1% (@1KHZ) (Total Harmonic Distortion).
  • Low current consumption Excellent resistance to EMI and RFI.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

一种微机电系统麦克风和包括微机电系统麦克风的声学设备,微机电系统麦克风包括麦克风本体(1)、导声管(2)以及具有弧面的定向接收壳(3),导声管(2)与麦克风本体(1)连接,导声管(2)的管口位于定向接收壳(3)的凹面侧的中心区域。通过弧面的定向接收壳(3)定向接收声音信号,利用弧面反射的特性,将所对方向的声音信号汇聚于弧面范围内区域,再通过导声管(2)将汇聚于管口的声音信号引入麦克风本体(1)内的对应拾音单元,完成完整的拾音过程,以此实现了定向接收声信号。通过对微机电系统麦克风进行简单的结构改装将一般全向的声学性能改变为定向接收,既能够在定向接收的前提下保证产品接收范围的一致性,又不需多个麦克风配合造成成本过高。

Description

一种微机电系统麦克风及声学设备
交叉引用
本申请引用于2017年09月14日递交的名称为“一种微机电系统麦克风及声学设备”的第201710828743.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及声学应用技术领域,更具体地说,涉及一种微机电系统麦克风,还涉及一种声学设备。
背景技术
微机电系统麦克风简称MEMS麦克风,是基于MEMS(微型机电系统)技术制造的麦克风,简单的说就是一个电容器集成在微硅晶片上,可以采用表贴工艺进行制造,能够承受很高的回流焊温度,容易与CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺及其它音频电路相集成,并具有改进的噪声消除性能与良好的RF(Radio Frequency,射频)及EMI(Electro Magnetic Interference,电磁干扰)抑制能力,广泛应用于移动通信终端设备。
定向接收声信号的技术可以解决:一拒绝非接收范围内的声信号、环境噪音等进入麦克风;二可以增强助听器类声学设备接收声信号的性能。然而定向接收技术在麦克风、尤其是MEMS麦克风中的应用技术还存在盲区,具体的:
第一类设计,产品结构设计复杂,使用单向的驻极体式麦克风,此类麦克风配合产品结构时,需要结构设计有后部的气压孔,并且产品定向接收的 范围一致性较差;另一类设计需要使用至少两个麦克风配合,并需要对应的复杂软件算法设计,其实施成本较高。
综上所述,如何有效地解决难以将定向接收声信号的技术应用于微机电系统麦克风等的技术问题,是目前本领域技术人员急需解决的问题。
发明内容
有鉴于此,本申请的第一个目的在于提供一种微机电系统麦克风,该微机电系统麦克风的结构设计可以有效地解决难以将定向接收声信号的技术应用于微机电系统麦克风等的技术问题,本申请还提供一种包括上述微机电系统麦克风的声学设备。
为了达到上述第一个目的,本申请提供如下技术方案:
一种微机电系统麦克风,包括麦克风本体、导声管以及具有弧面的定向接收壳,所述导声管的管口与所述麦克风本体的进声孔连通,所述导声管的管口位于所述定向接收壳的凹面侧的中心区域。
优选的,上述微机电系统麦克风中,所述定向接收壳具体为具有抛物面的壳体,所述导声管插入所述定向接收壳,其管口固定于抛物面的焦点位置。
优选的,上述微机电系统麦克风中,所述麦克风本体的进声孔与所述导声管直接连通。
优选的,上述微机电系统麦克风中,所述麦克风本体包覆有胶套,所述胶套裹紧所述进声孔与所述导声管之间的连接位置。
优选的,上述微机电系统麦克风中,所述导声管的外周与所述定向接收壳粘接固定一体,二者粘接位置设置有硅胶密封层。
优选的,上述微机电系统麦克风中,所述麦克风本体背离所述导声管一侧的底面与所述胶套边缘连接位置也设置有硅胶密封层。
优选的,上述微机电系统麦克风中,所述定向接收壳的凹面侧表面附有增强反射膜。
本申请提供的微机电系统麦克风,包括麦克风本体、导声管以及具有弧面的定向接收壳,所述导声管的管口与所述麦克风本体的进声孔连通,所述导声管的管口位于所述定向接收壳的凹面侧的中心区域。这种微机电系统麦克风通过弧面的定向接收壳定向接收声音信号,通过弧面反射的特性,将该弧面凹面所对方向的声音信号汇聚于弧面范围内的中心区域,再通过设置的导声管将汇聚于管口的声音信号引入麦克风本体内的对应拾音单元,完成完整的拾音过程,以此实现了定向接收声信号,该设计通过对微机电系统麦克风进行简单的结构改装即可将一般全向的声学性能改变为定向接收,既能够在定向接收的前提下保证产品接收范围的一致性,又不需多个麦克风配合造成成本过高,有效的解决了难以将定向接收声信号的技术应用于微机电系统麦克风等的技术问题。
本申请还提供了一种声学设备,该声学设备包括上述任一种微机电系统麦克风。由于上述的微机电系统麦克风具有上述技术效果,具有该微机电系统麦克风的声学设备也应具有相应的技术效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的微机电系统麦克风的结构示意图。
附图中标记如下:
麦克风本体1、导声管2、定向接收壳3、胶套4。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体 实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例公开了一种微机电系统麦克风,以解决难以将定向接收声信号的技术应用于微机电系统麦克风等的技术问题。
请参阅图1,图1为本申请实施例提供的微机电系统麦克风的结构示意图。附图中非指引线的箭头直线标示声波信号,标示声波信号通过本装置时的反射情况。
本申请的实施例提供的微机电系统麦克风,包括麦克风本体1、导声管2以及具有弧面的定向接收壳3,所述导声管2的管口与所述麦克风本体1的进声孔连通,所述导声管2的管口位于所述定向接收壳3的凹面侧的中心区域。
其中需要说明的是,麦克风本体指的是麦克风设备的基本拾音单元,包括外面的壳罩及内部的电子拾音元件;此外,定向接收壳弧面的概念,在本申请技术方案中,仅指具有单一弧度方向的曲面;
中心区域指的是位于该弧面的凹陷一侧,并通过弧面自然反射时,反射线反射汇聚区域,优选的设计是在各个连接位置设置密封的结构,以保证声能量减少流失。
本实施中这种微机电系统麦克风通过弧面的定向接收壳定向接收声音信号,通过弧面反射的特性,将该弧面凹面所对方向的声音信号汇聚于弧面范围内的中心区域,再通过设置的导声管将汇聚于管口的声音信号引入麦克风本体内的对应拾音单元,完成完整的拾音过程,以此实现了定向接收声信号,该设计通过对微机电系统麦克风进行简单的结构改装即可将一般全向的声学性能改变为定向接收,既能够在定向接收的前提下保证产品接收范围的一致性,又不需多个麦克风配合造成成本过高,有效的解决了难以将定向接收声信号的技术应用于微机电系统麦克风等的技术问题。
为进一步优化上述技术方案,在上述实施例的基础上优选的,上述微机 电系统麦克风中,所述定向接收壳3具体为具有抛物面的壳体,所述导声管2插入所述定向接收壳3,其管口固定于抛物面的焦点位置。
本实施例提供的技术方案中,进一步优化了弧面壳体的设计,其采用抛物凹面,由此具有更好的汇聚能力,由于抛物面的特性,能够将声音反射至其焦点位置,因此将导声管的管口设置于焦点位置,大大提升了接收壳的接收效果。
为进一步优化上述技术方案,在上述实施例的基础优选的,上述微机电系统麦克风中,所述麦克风本体1的进声孔与所述导声管2直接连通。
本实施例提供的技术方案中,进一步优化了麦克风本体与导声管的连接方式,直接将导声管的另一端开口插装于进声孔中,该连接方式结构稳固,更加耐用不易连接断裂。
为进一步优化上述技术方案,在上述实施例的基础优选的,上述微机电系统麦克风中,所述麦克风本体1包覆有胶套4,所述胶套4裹紧所述进声孔与所述导声管2之间的连接位置。
本实施例提供的技术方案中,胶套的结构能够令声音汇聚减少传输过程损失,并能够避免杂音被摄入,或者灰尘进入内部电气元件;进一步可将导声管与胶套一体设置,分体式结构优选在二者之间增加胶垫类结构。
为进一步优化上述技术方案,在上述实施例的基础优选的,上述微机电系统麦克风中,所述导声管2的外周与所述定向接收壳3粘接固定一体,二者粘接位置设置有硅胶密封层。
本实施例提供的技术方案中,通过粘接的方式连接导声管与定向接收壳,此设计需要导声管为刚性材质构成,该设计结构简单,只需令导声管穿透接收壳外壁适当距离即可,通过设置硅胶密封层保证二者之间的无缝密封。
为进一步优化上述技术方案,在上述实施例的基础优选的,上述微机电系统麦克风中,所述麦克风本体1背离所述导声管2一侧的底面与所述胶套4边缘连接位置也设置有硅胶密封层。与上述实施例同理在胶套边缘与麦克风本体的底面之间设置硅胶密封层,同样为了提升密封性,保证声信号的汇聚 能力。
为进一步优化上述技术方案,在上述实施例的基础上,提出进一步的优化,令装置的进声结构设置更加合理,令麦克风的进声孔、胶套4上的过孔及导声管2的管口在同一直线上,这种设计简化了装置的结构设计,并通过直线式的结构实现声波及能量的传导,减少声音能量的损耗,提高了拾音效果。
为进一步优化上述技术方案,在上述实施例的基础优选的,上述微机电系统麦克风中,所述定向接收壳3的凹面侧表面附有增强反射膜。通过贴膜或镀膜的方式在定向接收壳的表面设置增强反射膜,增强抛物面对声信号的反射,减少声音信号的能量损失,令拾音效果更好。
基于上述实施例中提供的微机电系统麦克风中,本申请还提供了一种声学设备,该声学设备包括上述实施例中任一种微机电系统麦克风。由于该声学设备采用了上述实施例中的微机电系统麦克风中,所以该声学设备的有益效果请参考上述实施例。
其中该声学设备可包括助听器、各种通话设备等等。通过本申请技术设计的产品,可实现将全向麦克风“变”为指向性麦克风;可用于会议系统上的设备,接收特定发言人的讲话,“拒接”收周围人的讲话,可用于助听器的接收端,将装置上麦克风的定向接收壳朝向想听的人的方向即可,能够帮助用户较好的滤除除了收听方向之外的杂音;还可应用于定向录音设备,以及有定向接收声波信号需求的设备上面。
以助听器的使用为例,假定佩戴本申请技术设备的人员为A,与之讲话者为B,当B向A讲话时,B讲话所发出的声波信号,经由空气媒介传输至本申请技术的接收壳内,声波被进一步传输至导声管口部(即焦点位置),再由麦克风的进声孔进入麦克风单元,完成声信号到模拟信号的转换,进而传输至设备的硬件电路部分(经过信号的处理),最后经导线传输至喇叭单元器件,喇叭发出声波信号传输至A的耳膜,整个过程由此完成。
与驻极体式麦克风相比,以上实施例提供的微机电系统麦克风具有以下 优势:制作工艺具有很好的重复性和一致性,从而保证每颗硅麦克风有相同的优秀表现。声压电平高,且芯片内部一般有预放大电路,因此灵敏度很高。频响范围宽:100~10KHZ。失真小:THD<1%(@1KHZ)(Total Harmonic Distortion,总谐波失真)。电流消耗低。优异的抗EMI和RFI特性。耐潮湿环境和温度冲击。耐高温,能够使用波峰焊。能够经受振动、跌落、撞击等机械力和温度冲击。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种微机电系统麦克风,其特征在于,包括麦克风本体、导声管以及具有弧面的定向接收壳,所述导声管的管口与所述麦克风本体的进声孔连通,所述导声管的管口位于所述定向接收壳的凹面侧的中心区域。
  2. 根据权利要求1所述的微机电系统麦克风,其特征在于,所述定向接收壳具体为具有抛物面的壳体,所述导声管插入所述定向接收壳,其管口固定于抛物面的焦点位置。
  3. 根据权利要求2所述的微机电系统麦克风,其特征在于,所述麦克风本体的进声孔与所述导声管直接连通。
  4. 根据权利要求3所述的微机电系统麦克风,其特征在于,所述麦克风本体包覆有胶套,所述胶套裹紧所述进声孔与所述导声管之间的连接位置。
  5. 根据权利要求4所述的微机电系统麦克风,其特征在于,所述导声管的外周与所述定向接收壳粘接固定一体,二者粘接位置设置有硅胶密封层。
  6. 根据权利要求5所述的微机电系统麦克风,其特征在于,所述麦克风本体背离所述导声管一侧的底面与所述胶套边缘连接位置也设置有硅胶密封层。
  7. 根据权利要求6所述的微机电系统麦克风,其特征在于,所述定向接收壳的凹面侧表面附有增强反射膜。
  8. 一种声学设备,其特征在于,包括如权利要求1至7任一项所述的微机电系统麦克风。
PCT/CN2017/108578 2017-09-14 2017-10-31 一种微机电系统麦克风及声学设备 WO2019051952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710828743.1 2017-09-14
CN201710828743.1A CN107396269A (zh) 2017-09-14 2017-09-14 一种微机电系统麦克风及声学设备

Publications (1)

Publication Number Publication Date
WO2019051952A1 true WO2019051952A1 (zh) 2019-03-21

Family

ID=60351843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108578 WO2019051952A1 (zh) 2017-09-14 2017-10-31 一种微机电系统麦克风及声学设备

Country Status (2)

Country Link
CN (1) CN107396269A (zh)
WO (1) WO2019051952A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432066B2 (en) * 2019-02-14 2022-08-30 Dean Robert Gary Anderson Audio systems, devices, MEMS microphones, and methods thereof
WO2022155384A1 (en) 2021-01-14 2022-07-21 Anderson, Daniel Audio systems, devices, and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2577524Y (zh) * 2002-10-20 2003-10-01 罗富强 抛物面聚焦声波信号拾音器
CN203446028U (zh) * 2013-09-13 2014-02-19 山东共达电声股份有限公司 Mems麦克风及电子设备
US20140133685A1 (en) * 2012-11-09 2014-05-15 Invensense, Inc. Microphone System with Mechanically-Coupled Diaphragms
CN103813248A (zh) * 2014-03-10 2014-05-21 金如利 一种声聚焦拾音装置
US20150102435A1 (en) * 2013-10-15 2015-04-16 Robert Bosch Gmbh Mems microphone with membrane antennas
CN205726411U (zh) * 2016-06-28 2016-11-23 北京第七九七音响股份有限公司 高灵敏度的传声器
CN207124767U (zh) * 2017-09-14 2018-03-20 歌尔科技有限公司 一种微机电系统麦克风及声学设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475983A (zh) * 2013-09-13 2013-12-25 山东共达电声股份有限公司 Mems麦克风及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2577524Y (zh) * 2002-10-20 2003-10-01 罗富强 抛物面聚焦声波信号拾音器
US20140133685A1 (en) * 2012-11-09 2014-05-15 Invensense, Inc. Microphone System with Mechanically-Coupled Diaphragms
CN203446028U (zh) * 2013-09-13 2014-02-19 山东共达电声股份有限公司 Mems麦克风及电子设备
US20150102435A1 (en) * 2013-10-15 2015-04-16 Robert Bosch Gmbh Mems microphone with membrane antennas
CN103813248A (zh) * 2014-03-10 2014-05-21 金如利 一种声聚焦拾音装置
CN205726411U (zh) * 2016-06-28 2016-11-23 北京第七九七音响股份有限公司 高灵敏度的传声器
CN207124767U (zh) * 2017-09-14 2018-03-20 歌尔科技有限公司 一种微机电系统麦克风及声学设备

Also Published As

Publication number Publication date
CN107396269A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN105228068B (zh) 具有不同高度的组合件的梯度微机电系统麦克风
US20220295187A1 (en) Wireless headset
US8428285B2 (en) Microphone screen with common mode interference reduction
US9762991B2 (en) Passive noise-cancellation of an in-ear headset module
CN110868682B (zh) 一种mems麦克风
US11743635B2 (en) Audio systems, devices, MEMS microphones, and methods thereof
CN109889967B (zh) 麦克风和智能语音设备
WO2018076605A1 (zh) 头戴式降噪耳机
US9438986B2 (en) In-ear headphone with sound pick-up capability
CN109413554A (zh) 一种指向性mems麦克风
US8509459B1 (en) Noise cancelling microphone with reduced acoustic leakage
WO2019051952A1 (zh) 一种微机电系统麦克风及声学设备
CN110958509A (zh) 一种发声装置模组和电子产品
WO2018202309A1 (en) A filter for a microphone system, a microphone system, a miniature electronic device and a method of equipping a printed circuit board
JP4793207B2 (ja) マイクロホン装置、および音響装置
CN207124767U (zh) 一种微机电系统麦克风及声学设备
CN107493526B (zh) 一种拾音设备和耳麦
CN208783051U (zh) 一种反馈式降噪入耳式耳机
WO2023082745A1 (zh) 声纹识别与语音通话抗噪装置
CN216820088U (zh) 一种线路板组件以及驻极体麦克风
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
WO2021098600A1 (zh) 终端设备
JP2022105287A (ja) 音響フィルタを有するマイクロホンアセンブリ
JP2008301129A (ja) 通話装置
CN112565953A (zh) 麦克风模组和听戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925090

Country of ref document: EP

Kind code of ref document: A1