WO2021098328A1 - 一种低噪声放大器的调档装置、方法、终端及网元设备 - Google Patents

一种低噪声放大器的调档装置、方法、终端及网元设备 Download PDF

Info

Publication number
WO2021098328A1
WO2021098328A1 PCT/CN2020/111778 CN2020111778W WO2021098328A1 WO 2021098328 A1 WO2021098328 A1 WO 2021098328A1 CN 2020111778 W CN2020111778 W CN 2020111778W WO 2021098328 A1 WO2021098328 A1 WO 2021098328A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
lna
value
papr
band interference
Prior art date
Application number
PCT/CN2020/111778
Other languages
English (en)
French (fr)
Inventor
曹明伟
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to EP20891352.5A priority Critical patent/EP4064574A4/en
Publication of WO2021098328A1 publication Critical patent/WO2021098328A1/zh
Priority to US17/747,263 priority patent/US12047102B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a low noise amplifier (LNA) gear adjustment device, method, terminal, and network element equipment.
  • LNA low noise amplifier
  • the automatic gain control module (Automatic Gain Control, AGC) adjusts the gain gear of the LNA according to the peak-to-average power ratio (PAPR) of the target signal; however, due to the interference frequency and the target Signals are different, this way of adjusting the gear will cause the LNA gear to be too high, resulting in nonlinear distortion, which seriously affects the reception performance; or, the LNA gear is too low, the noise figure (NF) is larger, and the signal-to-noise ratio is sacrificed (Signal-to-noise ratio, SNR).
  • AGC Automatic Gain Control
  • the present disclosure proposes a low-noise amplifier gear adjustment device, method, terminal and network element equipment.
  • a gear adjustment device of a low noise amplifier including:
  • the low noise amplifier LNA is used to amplify the received signal to obtain the first signal;
  • the received signal includes: out-of-band interference and target signal;
  • the power peak-to-average ratio PAPR module is used to measure the PAPR value of the first signal
  • the automatic gain control AGC module is used to adjust the gain gear of the LNA according to the PAPR value, the maximum linear input power point of the LNA, and the strength of the first signal.
  • the AGC module is specifically used for:
  • the gain gear of the corresponding LNA is determined.
  • the LNA has multiple maximum linear input power points
  • the AGC module is further configured to select the maximum linear input power point with the smallest value when it is satisfied that the maximum power value is not greater than the maximum linear input power point.
  • the device further includes:
  • the first analog-to-digital conversion is used to perform analog-to-digital conversion on the first signal output by the LNA, and input the converted first digital signal to the PAPR module.
  • the device further includes:
  • a mixer for mixing the first signal with a local oscillator signal to obtain a baseband signal
  • VGA variable gain amplifier
  • the second ADC is configured to perform analog-to-digital conversion on the second signal, and input the converted second digital signal to the AGC module.
  • the AGC module is also used to:
  • the PAPR value is corrected.
  • the AGC module is also used to:
  • the measured value of the PAPR is added to a preset increment to obtain the PAPR value.
  • the AGC module is also used to:
  • a gear adjusting device of a low noise amplifier LNA includes:
  • the received signal includes: out-of-band interference and target signal;
  • the adjusting the gain gear of the LNA according to the PAPR value, the maximum linear input power point of the LNA, and the strength of the first signal includes:
  • the gain gear of the corresponding LNA is determined.
  • the LNA has multiple maximum linear input power points
  • the selecting the maximum linear input power point of the LNA according to the maximum power value includes:
  • the maximum linear input power point with the smallest value is selected.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the PAPR value is corrected.
  • the correcting the PAPR value according to the determination result includes:
  • the measured value of the PAPR is added to a preset increment to obtain the PAPR value.
  • the comparing the magnitude of the out-of-band interference with the target signal to obtain the determination result includes:
  • a terminal device including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to execute the above method.
  • a network element device including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to execute the above method.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, wherein the computer program instructions implement the above method when executed by a processor.
  • the overall average power and PAPR value of the target signal and interference in the received signal are measured, and the maximum linear input power point of the LNA is combined to adjust the gear so that the total power peak of the received signal is exactly less than and when entering the LNA.
  • the closest maximum linear input power point so as to optimize the signal-to-noise ratio, and realize the intelligent adjustment of the LNA under the burst broadband communication system.
  • Fig. 1 shows a structural diagram of a gear adjustment device of a low noise amplifier according to an embodiment of the present disclosure
  • Fig. 2 shows a structural diagram of a gear adjustment device of a low noise amplifier according to an embodiment of the present disclosure
  • Fig. 3 shows a structural diagram of a gear adjustment device of a low noise amplifier according to an embodiment of the present disclosure
  • Fig. 4 shows a flow chart of a method for adjusting a gear of a low noise amplifier according to an embodiment of the present disclosure
  • Fig. 5 shows a block diagram of a terminal device for low-noise amplifier gear adjustment according to an embodiment of the present disclosure
  • Fig. 6 shows a block diagram of a network element device for low-noise amplifier gear adjustment according to an embodiment of the present disclosure.
  • burst communication systems such as Bluetooth, wifi (802.11a/b/g/n/ac/ax) and cellular communication systems
  • the receiver needs to detect signals when there is interference; and this It is required that the signal head can be detected first, and the analog gain of the receiver can be adjusted to an appropriate level through AGC.
  • the above-mentioned communication system usually has multiple frequency bands available. Therefore, the LNA at the front end of the receiver is generally broadband, that is, multiple target frequency bands are included. For example, in a wifi receiving device, there are usually two LNAs, one is responsible for the 2GHZ frequency band, and the other is responsible for the 5GHZ frequency band.
  • the LNA when the receiver is receiving a certain 20M bandwidth, the LNA will also amplify signals of other frequencies.
  • LNA is divided into many levels, and the large gain level is used for small signals.
  • NF noise figure, input signal to noise ratio/output signal to noise ratio
  • SNR signal to noise ratio/output signal to noise ratio
  • the AGC when there is no interference, the AGC can easily adjust the gears. According to the characteristics of the target signal, such as PAPR (statistical characteristics are known), the LNA and VGA can be adjusted to the appropriate gears.
  • PAPR operational characteristics are known
  • the LNA and VGA can be adjusted to the appropriate gears.
  • the performance is not the best, because If the interference is large, the energy at the input of the LNA is mainly interference, and the target signal is relatively small, then the PAPR depends on the interference.
  • the PAPR of the interference is much greater than the PAPR of the target signal, which may cause the LNA gear to be too high, resulting in Non-linear distortion of the LNA seriously affects performance; on the contrary, if the PAPR of the interference is much smaller than the PAPR of the target signal, the LNA gear will be adjusted too low, resulting in a larger NF and sacrificing SNR.
  • the receiver receives an 802.11n signal but is interfered by a strong 802.11b signal out of band, and the PAPR of the 802.11n signal is much greater than that of 802.11b, it is obviously inappropriate for the LNA to adjust the LNA with the PAPR of 802.11n.
  • the lower LNA gear will be selected, and the NF will increase; on the contrary, when receiving 802.11b, it is interfered by the strong out-of-band 802.11n signal, and the higher LNA gear will be selected, which will cause serious nonlinear distortion and severely impair performance. .
  • the receiver needs to grasp and lock the signal and adjust the appropriate gear within a certain period of time; because it is easy to be strongly interfered by out-of-band interference during communication, although out-of-band interference will be selected by simulation Frequency filter suppresses, but LNA is all-pass. It can be seen that LNA has the greatest impact on NF, that is, the greatest impact on SNR. Therefore, when adjusting the LNA, higher accuracy is required, that is, it cannot cause nonlinearity, and it cannot be geared. The bit is too low and the NF is too large.
  • each user has a competitive access, and there is no fixed transmission time, so it is easy to cause interference.
  • the Bluetooth protocol and the wifi protocol (802.11a/b/g/n/ac/ax )
  • the PAPR of the signal is different, and the PAPR of some environmental interference is even more unpredictable. Therefore, it is very beneficial to measure the total PAPR after interference + signal under interference, so that LNA can be adjusted more intelligently, and thus have better performance.
  • the embodiment of the present disclosure proposes an intelligent gear adjustment scheme for the LNA in a burst broadband communication system, by measuring the overall average power and PAPR value of the target signal and interference in the received signal, combined with the maximum linear input power of the LNA Point to adjust the gear so that the total power peak of the received signal when entering the LNA is just less than and closest to the maximum linear input power point of the LNA, so as to optimize the signal-to-noise ratio and realize the intelligent adjustment of the LNA under out-of-band interference.
  • Fig. 1 shows a structural diagram of a gear adjustment device of a low noise amplifier according to an embodiment of the present disclosure.
  • the device may include: a low noise amplifier 10 for amplifying a received signal to obtain a first signal; the received signal includes: out-of-band interference and a target signal; a power peak-to-average ratio module 20, For measuring the PAPR value of the first signal; an automatic gain control module 30 for adjusting the gain file of the LNA according to the PAPR value, the maximum linear input power point of the LNA and the strength of the first signal Bit.
  • the received signal is the signal sent by the transmitting end received by the LNA through the antenna.
  • the received signal includes the target signal and out-of-band interference; among them, the out-of-band interference is the harmonic or spurious of the transmitter.
  • the main task of the LNA is to amplify the signal under the premise of generating as low noise as possible to reduce the influence of the noise generated by the subsequent module on the signal.
  • the above-mentioned received signal enters the LNA, and the RF signal output after the LNA is amplified is the first signal.
  • the above-mentioned first signal is input to the PAPR module. While measuring the PAPR value of the first signal, the PAPR module can also measure the overall average power of the target signal + out-of-band interference (that is, the strength of the first signal), and the measured result It is fed back to the AGC module, where the PAPR value of the first signal is the ratio of the peak power of the first signal to the average power, and the PAPR value can be calculated according to the measured average power and peak power of the first signal.
  • AGC receives the PAPR value of the first signal and the strength of the first signal reported by the PAPR module, and uses the PAPR value and the maximum linear input power point of the LNA as known information, and according to the strength of the first signal, that is, the target signal + band
  • the overall average power of the external interference is adjusted to achieve the optimal adjustment, so that the total power peak of the target signal + out-of-band interference when entering the LNA is just less than and closest to the maximum linear input power point of the LNA, so that the SNR can reach Optimal.
  • the AGC module is a module of any form that can adjust the gain gear of the LNA that amplifies the received signal.
  • it can be a hardware module (for example, analog and digital circuits), a software module (for example, it can be realized by executing logic instructions to realize the corresponding function through a processing device such as a single-chip microcomputer, a microprocessor, a field programmable logic device, etc.), or a hardware and software phase.
  • the gear adjustment device of the low noise amplifier can be configured at any appropriate position in the terminal equipment and/or the network element equipment receiver, which is not limited in the present disclosure.
  • the device further includes: a first analog-to-digital converter, configured to perform analog-to-digital conversion on the first signal output by the LNA, and input the converted first digital signal to the PAPR Module.
  • a first analog-to-digital converter configured to perform analog-to-digital conversion on the first signal output by the LNA, and input the converted first digital signal to the PAPR Module.
  • FIG. 2 shows a structural diagram of a gear adjustment device of a low noise amplifier according to an embodiment of the present disclosure.
  • the first analog-to-digital converter 40 is coupled to the automatic gain control module 10 and the power
  • the peak-to-average ratio module 20 converts the first signal into a first digital signal through analog-digital conversion.
  • the first analog-to-digital converter since the first analog-to-digital converter is not used for demodulation, it is only used to perform analog-to-digital to the output signal of the LNA. Therefore, in order to reduce cost and save power consumption, the first analog-to-digital converter can be a low-precision ADC.
  • the device further includes: a mixer for mixing the first signal with a local oscillator signal to obtain a baseband signal; and a frequency selection filter for suppressing the baseband signal Out-of-band interference in the; variable gain amplifier, used to amplify the baseband signal after suppressing out-of-band interference, to obtain the second signal; second analog-to-digital converter, used to perform analog-to-digital conversion on the second signal, and The converted second digital signal is input to the AGC module.
  • FIG. 3 shows a structural diagram of a gear adjustment device of a low-noise amplifier according to an embodiment of the present disclosure
  • the target signal and out-of-band interference are received by the antenna and enter the low-noise amplifier 10 for primary amplification.
  • the LNA amplifies the received signal into a first signal according to the gain gear.
  • the first signal is converted by the first analog-to-digital converter 40 and then input to the power peak-to-average ratio module 20.
  • the first signal also enters the mixer coupled to the LNA.
  • the mixer performs spectrum shift on the first signal, that is, mixes the first signal with the local oscillator signal to obtain a baseband signal; the baseband signal enters the frequency selective filter 60, and the frequency selective filter suppresses out-of-band interference ,
  • the processed signal enters the variable gain amplifier 70 (VGA).
  • VGA variable gain amplifier 70
  • the VGA amplifies the signal two-stage by adjusting the gain to obtain the second signal; the second signal is input to the second analog-to-digital converter 80, and the second signal is passed through
  • the analog-digital conversion obtains a second digital signal, and the second digital signal is input to the automatic gain control module 30, thereby obtaining a target signal with a high signal-to-noise ratio.
  • the AGC module is specifically used for:
  • the gain gear of the corresponding LNA is determined.
  • the AGC module first adds the PAPR value measured by the PAPR module to the strength of the first signal (the overall average power of the target signal and the out-of-band interference). Obtain the maximum power value of the received signal; then, based on the maximum power value, adjust the gain level of the LNA to achieve the optimal shift to minimize the NF; in this way, the LNA position is adjusted by the overall average power of the target signal + out-of-band interference
  • the gear of the LNA is directly adjusted according to the PAPR of the target signal, so as to optimize the signal-to-noise ratio.
  • the LNA has multiple maximum linear input power points
  • the AGC module is further configured to select the maximum linear input power point with the smallest value when it is satisfied that the maximum power value is not greater than the maximum linear input power point.
  • each maximum linear input power point is set with a corresponding amplification gain gear.
  • the gain gear is negatively related to the maximum linear input power point, that is, the larger the gain gear, the greater the maximum linear input power point.
  • the number of gain gears of the LNA that is, the number of maximum linear input power points can be set according to the actual environment and the LNA's own parameters; for example, the maximum linear input power point of the LNA can include: -50dbm, -40dbm,- 30dbm, -20dbm, -10dbm, the corresponding gain gears are: 40db, 30db, 20db, 10db, 0db; namely -50dbm@40db gain gear, -40dbm@30db gain gear, -30dbm@20db gain gear , -20dbm@10db gain gear, -10dbm@0db gain gear.
  • the AGC module After the AGC module obtains the maximum power value of the received signal, it compares it with the preset maximum linear input power points; selects the maximum linear input power point to be selected that is greater than the maximum power value, and further selects the maximum linear input power point to be selected. Among the linear input power points, the one with the smallest value is selected as the maximum linear input power point.
  • choose the smallest value among the maximum linear input power points to be selected that is, -50dbm, -40dbm, -30dbm, -20dbm, -10dbm
  • the corresponding 40db gain gear is the gain gear that the LNA needs to adjust.
  • the AGC module is also used to:
  • the PAPR value is corrected.
  • the measured PAPR value may be less than the maximum PAPR value of the entire receiving time. Therefore, it can be further based on the size of the out-of-band interference and the target signal.
  • the PAPR value is corrected to further improve the receiving performance.
  • the AGC module is also used to:
  • the output power of the LNA is the strength of the first signal, which represents the overall average power of the target signal and out-of-band interference
  • the output power of the VGA is the strength of the second signal (the signal after suppressing the out-of-band interference), which represents the target signal
  • the power size Therefore, the size of the target signal and the out-of-band interference can be compared through the difference between the above two output powers. The greater the difference between the two, the stronger the interference. If the difference between the two is not large, the interference is small interference.
  • the difference result can represent the magnitude of out-of-band interference; the difference can be compared with a preset threshold, or with the output power of the VGA, and the out-of-band interference can be judged as compared with the output power of the VGA.
  • the size of the target signal, wherein the preset threshold can be set according to actual requirements, which is not limited in the present disclosure.
  • the AGC module is also used to:
  • the measured value of the PAPR is added to a preset increment to obtain the PAPR value.
  • the known statistical value can be used as the PAPR value, and the PAPR module can be controlled to stop the measurement at this time. Thereby saving power consumption.
  • the measured PAPR value plus a small increment for example, 1db
  • the LNA can choose the 20db gain gear to ensure the reception of the target signal.
  • the total power peak of the received signal is exactly less than when it enters the LNA. And it is closest to the maximum linear input power point of the LNA, so that the signal-to-noise ratio is optimized, and the intelligent adjustment of the LNA under the burst broadband communication system is realized.
  • Fig. 4 shows a flow chart of a method for adjusting a gear of a low noise amplifier according to an embodiment of the present disclosure. As shown in FIG. 4, the method is applied to the above-mentioned low-noise amplifier gear adjustment device, which may include the following steps:
  • Step 100 Amplify the received signal to obtain a first signal; the received signal includes: out-of-band interference and target signal;
  • Step 200 Measure the PAPR value of the first signal
  • Step 300 Adjust the gain gear of the LNA according to the PAPR value, the maximum linear input power point of the LNA, and the strength of the first signal.
  • the adjusting the gain gear of the LNA according to the PAPR value, the maximum linear input power point of the LNA, and the strength of the first signal may include:
  • the gain gear of the corresponding LNA is determined.
  • the maximum linear input power point with the smallest value is selected.
  • the method may further include: performing analog-to-digital conversion on the first signal output by the LNA to obtain the first digital signal.
  • the method may further include:
  • the method may further include:
  • the PAPR value is corrected.
  • the correcting the PAPR value according to the determination result may include:
  • the measured value of the PAPR is added to a preset increment to obtain the PAPR value.
  • the comparing the magnitude of the out-of-band interference with the target signal to obtain the determination result may include:
  • the total power peak of the received signal is exactly less than when it enters the LNA. And it is closest to the maximum linear input power point of the LNA, so that the signal-to-noise ratio is optimized, and the intelligent adjustment of the LNA under the burst broadband communication system is realized.
  • FIG. 5 shows a block diagram of a terminal device 800 for adjusting gears of a low noise amplifier according to an embodiment of the present disclosure.
  • the terminal device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the terminal device 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, and a sensor component 814 , And communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal device 800, such as operations associated with display, telephone calls, data communication, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the terminal device 800. Examples of these data include instructions for any application or method operated on the terminal device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 806 provides power for various components of the terminal device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the terminal device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the terminal device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal device 800 with various state evaluations.
  • the sensor component 814 can detect the open/close state of the terminal device 800 and the relative positioning of the components.
  • the component is the display and the keypad of the terminal device 800.
  • the sensor component 814 can also detect the terminal device 800 or the terminal device 800.
  • the position of the component changes, the presence or absence of contact between the user and the terminal device 800, the orientation or acceleration/deceleration of the terminal device 800, and the temperature change of the terminal device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal device 800 and other devices.
  • the terminal device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal device 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field A programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field A programmable gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • a non-volatile computer-readable storage medium is also provided, such as the memory 804 including computer program instructions, which can be executed by the processor 820 of the terminal device 800 to complete the foregoing method.
  • FIG. 6 shows a block diagram of a network element device 1900 for adjusting gears of a low noise amplifier according to an embodiment of the present disclosure.
  • the network element device 1900 may be provided as a server. 6
  • the network element device 1900 includes a processing component 1922, which further includes one or more processors, and a memory resource represented by a memory 1932 for storing instructions that can be executed by the processing component 1922, such as application programs.
  • the application program stored in the memory 1932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute instructions to perform the above-described methods.
  • the network element device 1900 may also include a power supply component 1926 configured to perform power management of the network element device 1900, a wired or wireless network interface 1950 configured to connect the network element device 1900 to the network, and an input and output (I/O ) Interface 1958.
  • the network element device 1900 can operate based on an operating system stored in the storage 1932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-volatile computer-readable storage medium is also provided, such as the memory 1932 including computer program instructions, which can be executed by the processing component 1922 of the network element device 1900 to complete the foregoing method.
  • the present disclosure may be a system, method and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as the instantaneous signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to connect to the user's computer) connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • FPGA field programmable gate array
  • PDA programmable logic array
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine that makes these instructions when executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner. Thus, the computer-readable medium storing the instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more components for realizing the specified logical function.
  • Executable instructions may also occur in a different order than the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本公开涉及一种低噪声放大器的调档装置、方法、终端及网元设备,其中,该装置包括低噪声放大器(LNA),用于对接收信号进行放大,得到第一信号;接收信号包括:带外干扰及目标信号;功率峰均比(PAPR)模块,用于测量第一信号的PAPR值;自动增益控制AGC模块,用于根据PAPR值、LNA的最大线性输入功率点及第一信号的强度,调节LNA的增益档位。本公开实施例,通过测量出接收信号中目标信号与干扰的总体平均功率及PAPR值,结合LNA的最大线性输入功率点进行调档,使接收信号的总功率峰值在进入LNA时恰好小于且最接近LNA的最大线性输入功率点,从而使信噪比达到最优,实现突发式宽带通信系统下LNA的智能调档。

Description

一种低噪声放大器的调档装置、方法、终端及网元设备 技术领域
本公开涉及通信技术领域,尤其涉及一种低噪声放大器(Low noise amplifier,LNA)的调档装置、方法、终端及网元设备。
背景技术
在突发式通信系统中,存在各种干扰,接收机在检测目标信号时,需要调节LNA的增益。相关技术中,自动增益控制模块(Automatic Gain Control,AGC)根据目标信号的功率峰均比(peak-to-average power ratio,PAPR)来调节LNA的增益档位;然而,由于干扰的频率与目标信号不同,这种调档方式会造成LNA档位过高,导致非线性失真,严重影响接收性能;或者,LNA档位过低,噪声图案(noise figure,NF)更大,牺牲了信噪比(Signal-to-noise ratio,SNR)。
发明内容
有鉴于此,本公开提出了一种低噪声放大器的调档装置、方法、终端及网元设备。
根据本公开的一方面,提供了一种低噪声放大器的调档装置,包括:
低噪声放大器LNA,用于对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;
功率峰均比PAPR模块,用于测量所述第一信号的PAPR值;
自动增益控制AGC模块,用于根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位。
在一种可能的实现方式中,所述AGC模块,具体用于:
根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
根据所述最大功率值,选取LNA的最大线性输入功率点;
根据所述最大线性输入功率点,确定对应的LNA的增益档位。
在一种可能的实现方式中,所述LNA具有多个最大线性输入功率点;
所述AGC模块,还用于:在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
在一种可能的实现方式中,所述装置还包括:
第一模数转换器(analog-to-digital conversion,ADC),用于对LNA输出的第一信号进行模数转换,并将转换后的第一数字信号输入到所述PAPR模块。
在一种可能的实现方式中,所述装置还包括:
混频器,用于将所述第一信号与本振信号混频,得到基带信号;
选频滤波器,用于抑制所述基带信号中的带外干扰;
可变增益放大器(variable gain amplifier,VGA),用于放大抑制带外干扰后的基带信号,得到第二信号;
第二ADC,用于对所述第二信号进行模数转换,并将转换后的第二数字信号输入到所述AGC模块。
在一种可能的实现方式中,所述AGC模块,还用于:
比较带外干扰与目标信号的大小,得到判定结果;
根据所述判定结果,修正所述PAPR值。
在一种可能的实现方式中,所述AGC模块,还用于:
在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
在一种可能的实现方式中,所述AGC模块,还用于:
通过LNA的输出功率及VGA的输出功率,比较带外干扰与目标信号的大小;
在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的情况下,得到所述带外干扰大于所述目标信号的判定结果;
在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
根据本公开的另一方面,提供了一种低噪声放大器的调档方法,所述方法应用于低噪声放大器LNA的调档装置,包括:
对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;
测量所述第一信号的PAPR值;
根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的 强度,调节所述LNA的增益档位。
在一种可能的实现方式中,所述根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位,包括:
根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
根据所述最大功率值,选取LNA的最大线性输入功率点;
根据所述最大线性输入功率点,确定对应的LNA的增益档位。
在一种可能的实现方式中,所述LNA具有多个最大线性输入功率点;
所述根据所述最大功率值,选取LNA的最大线性输入功率点,包括:
在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
在一种可能的实现方式中,所述方法还包括:
对LNA输出的第一信号进行模数转换,得到第一数字信号。
在一种可能的实现方式中,所述方法还包括:
将所述第一信号与本振信号混频,得到基带信号;
抑制所述基带信号中的带外干扰;
放大抑制带外干扰后的基带信号,得到第二信号;
对所述第二信号进行模数转换,得到第二数字信号。
在一种可能的实现方式中,所述方法还包括:
比较带外干扰与目标信号的大小,得到判定结果;
根据所述判定结果,修正所述PAPR值。
在一种可能的实现方式中,所述根据所述判定结果,修正所述PAPR值,包括:
在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
在一种可能的实现方式中,所述比较带外干扰与目标信号的大小,得到判定结果,包括:
通过LNA的输出功率及可变增益放大器VGA的输出功率,比较带外干扰与目标信号的大小;
在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的 情况下,得到所述带外干扰大于所述目标信号的判定结果;
在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
根据本公开的另一方面,提供了一种终端设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述方法。
根据本公开的另一方面,提供了一种网元设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述方法。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其中,所述计算机程序指令被处理器执行时实现上述方法。
本公开实施例中,通过测量出接收信号中目标信号与干扰的总体平均功率及PAPR值,结合LNA的最大线性输入功率点进行调档,使接收信号的总功率峰值在进入LNA时恰好小于且最接近的最大线性输入功率点,从而使信噪比达到最优,实现突发式宽带通信系统下LNA的智能调档。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的低噪声放大器的调档装置的结构图;
图2示出根据本公开一实施例的低噪声放大器的调档装置的结构图;
图3示出根据本公开一实施例的低噪声放大器的调档装置的结构图;
图4示出根据本公开一实施例的低噪声放大器的调档方法的流程图;
图5示出根据本公开一实施例的用于低噪声放大器调档的终端设备的框图;
图6示出根据本公开一实施例的用于低噪声放大器调档的网元设备的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施 例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
在突发式通信系统中,如蓝牙、wifi(802.11a/b/g/n/ac/ax)及蜂窝通信系统等,会存在各种干扰,接收机需要在有干扰时检测信号;而这要求首先可以检测到信号头,并通过AGC将接收机的模拟增益调到合适的大小。上述通信系统通常都有多个频段可用,因此,接收机前端的LNA一般是宽带的,也就是说,会有多个目标频段包含在内的。例如,wifi接收装置中,通常有2个LNA,一个负责2GHZ频段,一个负责5GHZ频段。这样,当接收机在接收某一个20M带宽时,LNA也会对其它频率的信号放大。通常为保证大信号及小信号的性能,LNA分很多档,大的增益档位用于小信号,NF(即噪声系数,为输入端信噪比/输出端信噪比)很小,能保证SNR;而小的增益(可能是负的)用于大信号,确保不会发生非线性失真,但NF很大,会恶化SNR。
在相关技术中,在没有干扰时,AGC很容易调档位,根据目标信号的特征,例如PAPR(统计特性是已知的)将LNA与VGA各调到恰好合适的档位即可。然而,在有干扰时,特别是带外干扰时,干扰的频率与信号不同,仍旧采用根据目标信号的PAPR将LNA与VGA各调到恰好合适的档位的方案,则性能并非最佳,因为若干扰很大时,在LNA输入端,能量主要是干扰,目标信号相对要小,那么PAPR取决于干扰,这时干扰的PAPR远大于目标信号的PAPR,则可能造成LNA档位过高,导致LNA非线性失真,严重影响性能;反之,若干扰的PAPR远小于目标信号的PAPR,则LNA档位会调的过于低,从而NF更大,牺牲SNR。
例如,在wifi系统中,若接收机接收802.11n信号时却被带外的强802.11b信号干扰,而802.11n信号PAPR远大于802.11b,因此LNA以802.11n的PAPR来调LNA显然不合适,会选择较低的LNA档位,NF变大;反之,在接收802.11b时却被带外的强802.11n信号干扰,会选择较高的LNA档位,造成严重的非线性失真,严重损伤性能。
考虑到在突发式通信系统中,接收机需要在一定长的时间内抓住并锁定 信号、调整合适档位;由于在通信时很容易被带外强干扰,虽然带外干扰会被模拟选频滤波器抑制,但LNA却是全通的,可见LNA对NF的影响最大,即对SNR影响最大,因此对LNA调档时,需要更高的精确度,即不能造成非线性,也不能档位过低,NF过大。然而,针对上述突发式通信系统,各用户均是竞争式接入,没有固定的发送时间,因此很容易形成干扰,而蓝牙协议以及wifi协议(802.11a/b/g/n/ac/ax)信号的PAPR各有不同,另外一些环境干扰的PAPR更是不可测。所以,若能在干扰下,测出是干扰+信号后总的PAPR是非常有益的,这样可以更智能的调整LNA,从而拥有更好的性能。
因此,本公开实施例提出了一种突发式宽带通信系统下,LNA的智能调档方案,通过测量出接收信号中目标信号与干扰的总体平均功率及PAPR值,结合LNA的最大线性输入功率点进行调档,使接收信号的总功率峰值在进入LNA时恰好小于且最接近LNA的最大线性输入功率点,从而使信噪比达到最优,实现带外干扰下LNA的智能调档。
图1示出根据本公开一实施例的低噪声放大器的调档装置的结构图。如图1所示,该装置可以包括:低噪声放大器10,用于对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;功率峰均比模块20,用于测量所述第一信号的PAPR值;自动增益控制模块30,用于根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位。
其中,接收信号为LNA通过天线接收的发送端发送的信号,在突发式通信系统中,接收到的信号包括目标信号及带外干扰;其中,带外干扰为发射机的谐波或杂散辐射在接收有用信号的通带内造成的干扰。LNA主要任务是在产生尽可能低噪声的前提下对信号进行放大以降低后级模块产生的噪声对信号的影响,上述接收信号进入LNA,经LNA放大后输出的射频信号即为第一信号。
上述第一信号输入到PAPR模块,PAPR模块在测量第一信号的PAPR值的同时,还可以测量出目标信号+带外干扰的总体平均功率(即第一信号的强度),并将测量的结果反馈给AGC模块,其中,第一信号的PAPR值为第一信号峰值的功率和平均功率之比,可以根据测量的第一信号的平均功率及峰值功率,计算得到该PAPR值。
AGC接收PAPR模块上报的第一信号的PAPR值和第一信号的强度,并以该PAPR值以及LNA的最大线性输入功率点作为已知信息,并根据第一信号 的强度,即目标信号+带外干扰的总体平均功率来进行调档,以达到最优调档,使目标信号+带外干扰的总功率峰值在进入LNA时恰好小于且最接近LNA的最大线性输入功率点,从而使SNR达到最优。
需要说明的是,AGC模块为能够调整对接收信号做放大的LNA的增益档位的任意形式的模块。例如可以是硬件模块(例如模拟、数字电路)、软件模块(例如可以是通过单片机、微处理器、现场可编程逻辑器件等处理器件执行实现相应功能的逻辑指令来实现)、或者硬件与软件相结合构成的处理模块,本公开对此不作限制。同时,该低噪声放大器的调档装置可以配置在终端设备和/或网元设备接收机中的任意适当位置,本公开对此不作限制。
在一种可能的实现方式中,所述装置还包括:第一模数转换器,用于对LNA输出的第一信号进行模数转换,并将转换后的第一数字信号输入到所述PAPR模块。
示例性地,图2示出根据本公开一实施例的低噪声放大器的调档装置的结构图,如图2所示,第一模数转换器40耦合于所述自动增益控制模块10及功率峰均比模块20,将第一信号通过模拟-数字转换为第一数字信号,需要说明的是,由于该第一模数转换器不用于解调,只用于对LNA的输出信号进行模数转换,因此为了降低成本及节约功耗,第一模数转换器可以为低精度ADC。
在一种可能的实现方式中,所述装置还包括:混频器,用于将所述第一信号与本振信号混频,得到基带信号;选频滤波器,用于抑制所述基带信号中的带外干扰;可变增益放大器,用于放大抑制带外干扰后的基带信号,得到第二信号;第二模数转换器,用于对所述第二信号进行模数转换,并将转换后的第二数字信号输入到所述AGC模块。
示例性地,图3示出根据本公开一实施例的低噪声放大器的调档装置的结构图;如图3所示,目标信号及带外干扰通过天线接收进入低噪声放大器10作一级放大,LNA根据增益档位对接收信号放大为第一信号,该第一信号经第一模数转换器40转换后,输入到功率峰均比模块20,同时第一信号还进入耦合于LNA的混频器50,该混频器对第一信号作频谱搬移,即将第一信号与本振信号混频,得到基带信号;基带信号进入选频滤波器60,通过该选频滤波器抑制带外干扰,处理后的信号进入可变增益放大器70(VGA),VGA通过调节增益对该信号进行二级放大,得到第二信号;第二信号输入到第二模数转换器80,将第二信号经过模拟-数字转换,得到第二数字信号,并将 该第二数字信号输入到自动增益控制模块30,从而得到高信噪比的目标信号。
在一种可能的实现方式中,所述AGC模块,具体用于:
根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
根据所述最大功率值,选取LNA的最大线性输入功率点;
根据所述最大线性输入功率点,确定对应的LNA的增益档位。
示例性地,AGC模块在对LNA的增益档位进行调节的过程中,首先将PAPR模块测量得到的PAPR值与第一信号的强度(目标信号与带外干扰的总体平均功率)进行相加,得到接收信号的最大功率值;然后,基于最大功率值,调节LNA的增益档位,以达到最优调档,使得NF最小;这样,通过目标信号+带外干扰的总体平均功率调节LNA的方位,而非相关技术中直接按照目标信号的PAPR来调节LNA的档位,从而使信噪比达到最优。
在一种可能的实现方式中,所述LNA具有多个最大线性输入功率点;
所述AGC模块,还用于:在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
其中,每个最大线性输入功率点均设置有与之相应的放大增益档位,示例性地,增益档位与最大线性输入功率点负相关,即增益档位越大,最大线性输入功率点越小。LNA的增益档位个数,即最大线性输入功率点的个数可以根据实际环境及LNA自身参数进行设定;举例来说,LNA的最大线性输入功率点可以包括:-50dbm、-40dbm、-30dbm、-20dbm、-10dbm,对应的增益档位分别为:40db、30db、20db、10db、0db;即-50dbm@40db增益档位、-40dbm@30db增益档位、-30dbm@20db增益档位、-20dbm@10db增益档位、-10dbm@0db增益档位。
AGC模块在得到上述接收信号的最大功率值后,与上述预设的各最大线性输入功率点进行比较;挑选出大于该最大功率值的待选最大线性输入功率点,从而,进一步在待选最大线性输入功率点中,选择数值最小者作为最大线性输入功率点。举例来说,若目标信号与带外干扰的总体平均功率为-80dbm,PAPR值为10db,那么相加得到的最大功率值为(-80+10)dbm=-70dbm,由于-70dbm小于已知最大线性输入功率点中的任一个,则在待选最大线性输入功率点(即-50dbm、-40dbm、-30dbm、-20dbm、-10dbm)中,选择数值最小者即-50dbm,从而确定-50dbm对应的40db增益档位为LNA需调节的增益档位。同理,若目标信号与带外干扰的总体平均功率为-50dbm, PAPR值为10db,那么相加得到的最大功率值为(-50+10)dbm=-40dbm,基于上述档位选取方式,由于-40dbm<=-40dbm,所以LNA可选用30db增益档位。同理,若目标信号与带外干扰的总体平均功率为-20dbm,PAPR值为10db,那么最大功率为(-20+10)dbm=-10dbm<=-10dbm,所以LNA可选用0db增益档位。
在一种可能的实现方式中,所述AGC模块,还用于:
比较带外干扰与目标信号的大小,得到判定结果;
根据所述判定结果,修正所述PAPR值。
在实际工作过程中,考虑到PAPR模块在各时段测量的PAPR值是变动的,测量出的PAPR值可能小于整个接收时间的最大PAPR值,因此,可以进一步根据带外干扰与目标信号的大小,对该PAPR值进行修正,从而进一步提高接收性能。
在一种可能的实现方式中,所述AGC模块,还用于:
通过LNA的输出功率及VGA的输出功率,比较带外干扰与目标信号的大小;
在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的情况下,得到所述带外干扰大于所述目标信号的判定结果;
在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
其中,LNA的输出功率即为第一信号的强度,表征目标信号与带外干扰的总体平均功率大小;VGA的输出功率即第二信号(抑制带外干扰后的信号)的强度,表征目标信号的功率大小。因此,可以通过上述两者输出功率间的差异,比较目标信号与带外干扰的大小,两者差异越大,则干扰越强,两者相差不大,则干扰为小干扰。进一步地,对上述两者的输出功率作差,差值结果可以表征带外干扰的大小;可以将该差值与预设阈值,或者与VGA的输出功率进行比较,即可判定带外干扰与目标信号的大小,其中,预设阈值可以根据实际需求进行设定,本公开对此不作限定。
在一种可能的实现方式中,所述AGC模块,还用于:
在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
这样,基于上述目标信号与带外干扰大小的判定结果,在仅有目标信号或者带外干扰比目标信号小时,可以使用已知的统计值作为PAPR值,此时可以控制PAPR模块停止测量工作,从而节省功耗。同时,在带外干扰强于目标信号时,可以使用测量的PAPR值加上一个较小增量(例如1db)作为最终的PAPR值,以保证目标信号的接收。
举例来说,若目标信号与带外干扰的总体平均功率为-50dbm,且带外干扰强于目标信号,PAPR值为10db,则对该PAPR值进行修正(10+1)db=11db,那么相加得到的最大功率值为(-50+11)dbm=-39dbm,基于上述增益档位选取方式,由于-39dbm<-30dbm,所以LNA可选用20db增益档位,从而保证目标信号的接收。
需要说明的是,尽管以上述实施例作为示例介绍了低噪声放大器的调档装置如上,但本领域技术人员能够理解,本公开应不限于此。事实上,用户完全可根据个人喜好和/或实际应用场景灵活设定各实施方式,只要符合本公开的技术方案即可。
这样,本公开实施例,通过测量出接收信号中目标信号与干扰的总体平均功率及PAPR值,结合LNA的最大线性输入功率点进行调档,使接收信号的总功率峰值在进入LNA时恰好小于且最接近LNA的最大线性输入功率点,从而使信噪比达到最优,实现突发式宽带通信系统下LNA的智能调档。
图4示出根据本公开一实施例的低噪声放大器的调档方法的流程图。如图4所示,该方法应用于上述低噪声放大器的调档装置,可以包括以下步骤:
步骤100、对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;
步骤200、测量所述第一信号的PAPR值;
步骤300、根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位。
在一种可能的实现方式中,所述根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位,可以包括:
根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
根据所述最大功率值,选取LNA的最大线性输入功率点;
根据所述最大线性输入功率点,确定对应的LNA的增益档位。
在一种可能的实现方式中,所述LNA具有多个最大线性输入功率点;所述根据所述最大功率值,选取LNA的最大线性输入功率点,可以包括:
在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
在一种可能的实现方式中,所述方法还可以包括:对LNA输出的第一信号进行模数转换,得到第一数字信号。
在一种可能的实现方式中,所述方法还可以包括:
将所述第一信号与本振信号混频,得到基带信号;
抑制所述基带信号中的带外干扰;
放大抑制带外干扰后的基带信号,得到第二信号;
对所述第二信号进行模数转换,得到第二数字信号。
在一种可能的实现方式中,所述方法还可以包括:
比较带外干扰与目标信号的大小,得到判定结果;
根据所述判定结果,修正所述PAPR值。
在一种可能的实现方式中,所述根据所述判定结果,修正所述PAPR值,可以包括:
在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
在一种可能的实现方式中,所述比较带外干扰与目标信号的大小,得到判定结果,可以包括:
通过LNA的输出功率及可变增益放大器VGA的输出功率,比较带外干扰与目标信号的大小;
在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的情况下,得到所述带外干扰大于所述目标信号的判定结果;
在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
需要说明的是,尽管以上述实施例作为示例介绍了低噪声放大器的调档方法如上,但本领域技术人员能够理解,本公开应不限于此。事实上,用户完全可根据个人喜好和/或实际应用场景灵活设定各实施方式,只要符合本公开的技术方案即可。
这样,本公开实施例,通过测量出接收信号中目标信号与干扰的总体平均功率及PAPR值,结合LNA的最大线性输入功率点进行调档,使接收信号的总功率峰值在进入LNA时恰好小于且最接近LNA的最大线性输入功率点,从而使信噪比达到最优,实现突发式宽带通信系统下LNA的智能调档。
图5示出根据本公开一实施例的用于低噪声放大器调档的终端设备800的框图。例如,终端设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,终端设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在终端设备800的操作。这些数据的示例包括用于在终端设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述终端设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触 摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当终端设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端设备800提供各个方面的状态评估。例如,传感器组件814可以检测到终端设备800的打开/关闭状态,组件的相对定位,例如所述组件为终端设备800的显示器和小键盘,传感器组件814还可以检测终端设备800或终端设备800一个组件的位置改变,用户与终端设备800接触的存在或不存在,终端设备800方位或加速/减速和终端设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端设备800和其他设备之间有线或无线方式的通信。终端设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端设备800可以被一个或多个应用专用集成电路 (ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由终端设备800的处理器820执行以完成上述方法。
图6示出根据本公开一实施例的用于低噪声放大器调档的网元设备1900的框图。例如,网元设备1900可以被提供为一服务器。参照图6,网元设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
网元设备1900还可以包括一个电源组件1926被配置为执行网元设备1900的电源管理,一个有线或无线网络接口1950被配置为将网元设备1900连接到网络,和一个输入输出(I/O)接口1958。网元设备1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由网元设备1900的处理组件1922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及 上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框 图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (19)

  1. 一种低噪声放大器的调档装置,其特征在于,包括:
    低噪声放大器LNA,用于对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;
    功率峰均比PAPR模块,用于测量所述第一信号的PAPR值;
    自动增益控制AGC模块,用于根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位。
  2. 根据权利要求1所述的装置,其特征在于,所述AGC模块,具体用于:
    根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
    根据所述最大功率值,选取LNA的最大线性输入功率点;
    根据所述最大线性输入功率点,确定对应的LNA的增益档位。
  3. 根据权利要求2所述的装置,其特征在于,所述LNA具有多个最大线性输入功率点;
    所述AGC模块,还用于:
    在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
  4. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    第一模数转换器ADC,用于对LNA输出的第一信号进行模数转换,并将转换后的第一数字信号输入到所述PAPR模块。
  5. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    混频器,用于将所述第一信号与本振信号混频,得到基带信号;
    选频滤波器,用于抑制所述基带信号中的带外干扰;
    可变增益放大器VGA,用于放大抑制带外干扰后的基带信号,得到第二信号;
    第二ADC,用于对所述第二信号进行模数转换,并将转换后的第二数字信号输入到所述AGC模块。
  6. 根据权利要求1-5之一所述的装置,其特征在于,所述AGC模块,还 用于:
    比较带外干扰与目标信号的大小,得到判定结果;
    根据所述判定结果,修正所述PAPR值。
  7. 根据权利要求6所述的装置,其特征在于,所述AGC模块,还用于:
    在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
    在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
  8. 根据权利要求6所述的装置,其特征在于,所述AGC模块,还用于:
    通过LNA的输出功率及VGA的输出功率,比较带外干扰与目标信号的大小;
    在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的情况下,得到所述带外干扰大于所述目标信号的判定结果;
    在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
  9. 一种低噪声放大器的调档方法,其特征在于,所述方法应用于低噪声放大器LNA的调档装置,包括:
    对接收信号进行放大,得到第一信号;所述接收信号包括:带外干扰及目标信号;
    测量所述第一信号的PAPR值;
    根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述PAPR值、所述LNA的最大线性输入功率点及所述第一信号的强度,调节所述LNA的增益档位,包括:
    根据所述第一信号的强度及所述PAPR值,得到所述接收信号的最大功率值;
    根据所述最大功率值,选取LNA的最大线性输入功率点;
    根据所述最大线性输入功率点,确定对应的LNA的增益档位。
  11. 根据权利要求10所述的方法,其特征在于,所述LNA具有多个最大线性输入功率点;
    所述根据所述最大功率值,选取LNA的最大线性输入功率点,包括:
    在满足所述最大功率值不大于最大线性输入功率点的情况下,选取数值最小的最大线性输入功率点。
  12. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    对LNA输出的第一信号进行模数转换,得到第一数字信号。
  13. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    将所述第一信号与本振信号混频,得到基带信号;
    抑制所述基带信号中的带外干扰;
    放大抑制带外干扰后的基带信号,得到第二信号;
    对所述第二信号进行模数转换,得到第二数字信号。
  14. 根据权利要求9-13之一所述的方法,其特征在于,所述方法还包括:
    比较带外干扰与目标信号的大小,得到判定结果;
    根据所述判定结果,修正所述PAPR值。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述判定结果,修正所述PAPR值,包括:
    在所述带外干扰小于所述目标信号的情况下,根据所述PAPR的统计值,得到所述PAPR值;
    在所述带外干扰大于所述目标信号的情况下,将所述PAPR的测量值与预设增量相加,得到所述PAPR值。
  16. 根据权利要求14所述的方法,其特征在于,所述比较带外干扰与目标信号的大小,得到判定结果,包括:
    通过LNA的输出功率及可变增益放大器VGA的输出功率,比较带外干扰与目标信号的大小;
    在所述LNA的输出功率与所述VGA的输出功率的差值大于预设阈值的情况下,得到所述带外干扰大于所述目标信号的判定结果;
    在所述LNA的输出功率与所述VGA的输出功率的差值不大于预设阈值的情况下,得到所述带外干扰小于所述目标信号的判定结果。
  17. 一种终端设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器存储的可执行指令时实现权利要求9至权利要求16中任意一项所述的方法。
  18. 一种网元设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器存储的可执行指令时实现权利要求9至权利要求16中任意一项所述的方法。
  19. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求9至16中任意一项所述的方法。
PCT/CN2020/111778 2019-11-18 2020-08-27 一种低噪声放大器的调档装置、方法、终端及网元设备 WO2021098328A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20891352.5A EP4064574A4 (en) 2019-11-18 2020-08-27 GEAR CHANGE APPARATUS AND METHOD FOR LOW NOISE AMPLIFIER, TERMINAL AND NETWORK ELEMENT DEVICE
US17/747,263 US12047102B2 (en) 2019-11-18 2022-05-18 Apparatus and method for adjusting level of low-noise amplifier (LNA), and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911128762.9 2019-11-18
CN201911128762.9A CN110912570B (zh) 2019-11-18 2019-11-18 一种低噪声放大器的调档装置、方法、终端及网元设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,263 Continuation US12047102B2 (en) 2019-11-18 2022-05-18 Apparatus and method for adjusting level of low-noise amplifier (LNA), and terminal device

Publications (1)

Publication Number Publication Date
WO2021098328A1 true WO2021098328A1 (zh) 2021-05-27

Family

ID=69818066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111778 WO2021098328A1 (zh) 2019-11-18 2020-08-27 一种低噪声放大器的调档装置、方法、终端及网元设备

Country Status (4)

Country Link
US (1) US12047102B2 (zh)
EP (1) EP4064574A4 (zh)
CN (1) CN110912570B (zh)
WO (1) WO2021098328A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912570B (zh) * 2019-11-18 2021-07-06 展讯通信(上海)有限公司 一种低噪声放大器的调档装置、方法、终端及网元设备
WO2021203670A1 (zh) * 2020-04-06 2021-10-14 华为技术有限公司 一种信号处理方法和接收机
CN111490833B (zh) * 2020-04-23 2022-07-22 北京字节跳动网络技术有限公司 天线的发射信号的调整方法、装置、系统及介质
CN112312534B (zh) * 2020-10-30 2022-08-16 展讯通信(天津)有限公司 接收链路增益的调整方法、系统以及智能终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171746A (zh) * 2005-03-11 2008-04-30 高通股份有限公司 无线接收机的自动增益控制
US20080225168A1 (en) * 2007-03-14 2008-09-18 Chris Ouslis Method and apparatus for processing a television signal with a coarsely positioned if frequency
CN102405595A (zh) * 2009-04-21 2012-04-04 高通股份有限公司 基于波形线性的pa增益状态切换
CN204465876U (zh) * 2015-03-10 2015-07-08 浙江金天地通讯工程有限公司 多业务分布系统的覆盖装置
CN107211379A (zh) * 2015-02-06 2017-09-26 高通股份有限公司 控制毫米波相控阵系统的增益的方法和装置
CN208028859U (zh) * 2018-07-30 2018-10-30 无锡华测电子系统有限公司 一种基于开关电路的收发系统增益控制电路
CN108781120A (zh) * 2016-03-15 2018-11-09 康普技术有限责任公司 基站的射频rf前端的增益控制
CN110912570A (zh) * 2019-11-18 2020-03-24 展讯通信(上海)有限公司 一种低噪声放大器的调档装置、方法、终端及网元设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498927B2 (en) * 2001-03-28 2002-12-24 Gct Semiconductor, Inc. Automatic gain control method for highly integrated communication receiver
TWI335175B (en) * 2006-01-27 2010-12-21 Himax Tech Inc Impulsive noise canceller and method thereof
CN100490499C (zh) * 2006-02-24 2009-05-20 奇景光电股份有限公司 脉冲噪声抑制器及其方法
US8331892B2 (en) * 2008-03-29 2012-12-11 Qualcomm Incorporated Method and system for DC compensation and AGC
US7952504B2 (en) * 2009-06-19 2011-05-31 Mediatek Inc. Gain control method and electronic apparatus capable of gain control
US8582699B2 (en) * 2009-07-30 2013-11-12 Texas Instruments Incorporated Maintaining ADC input magnitude from digital par and peak value
US9112634B2 (en) * 2012-02-10 2015-08-18 Qualcomm Incorporated Reducing network acquisition time
US10050817B2 (en) * 2014-05-17 2018-08-14 John David Terry Method and apparatus for controlling out-of-band interference and error vector magnitude (EVM)using peak-to-average-power-ratio (PAPR) reduction with constraints
US9264280B1 (en) * 2015-01-23 2016-02-16 Freescale Semiconductor, Inc. Automatic received gain control
CN107276621B (zh) * 2017-06-01 2019-03-29 博流智能科技(南京)有限公司 兼顾多种应用场景的接收机自动增益控制系统及方法
CN107565998A (zh) * 2017-08-25 2018-01-09 东南大学 一种适用于WiFi接收机的自动增益控制系统及方法
KR102327032B1 (ko) * 2017-12-29 2021-11-16 한국전자통신연구원 대역내 전이중 송수신 방법 및 장치
CN108900171A (zh) * 2018-07-23 2018-11-27 上海亮牛半导体科技有限公司 一种适配零中频射频接收机的agc装置和方法
US10742185B1 (en) * 2019-03-28 2020-08-11 Silicon Laboratories Inc. System and method of operating automatic gain control in the presence of high peak-to-average ratio blockers
US11172455B2 (en) * 2019-07-16 2021-11-09 Microsoft Technology Licensing, Llc Peak to average power output reduction of RF systems utilizing error correction
CN110445562B (zh) * 2019-08-15 2022-02-08 展讯通信(上海)有限公司 增益控制方法、装置、中继设备及存储介质
US11152966B1 (en) * 2019-09-10 2021-10-19 Amazon Technologies, Inc. Digital active interference cancellation for full duplex transmit-receive (TX-RX) concurrency

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171746A (zh) * 2005-03-11 2008-04-30 高通股份有限公司 无线接收机的自动增益控制
US20080225168A1 (en) * 2007-03-14 2008-09-18 Chris Ouslis Method and apparatus for processing a television signal with a coarsely positioned if frequency
CN102405595A (zh) * 2009-04-21 2012-04-04 高通股份有限公司 基于波形线性的pa增益状态切换
CN107211379A (zh) * 2015-02-06 2017-09-26 高通股份有限公司 控制毫米波相控阵系统的增益的方法和装置
CN204465876U (zh) * 2015-03-10 2015-07-08 浙江金天地通讯工程有限公司 多业务分布系统的覆盖装置
CN108781120A (zh) * 2016-03-15 2018-11-09 康普技术有限责任公司 基站的射频rf前端的增益控制
CN208028859U (zh) * 2018-07-30 2018-10-30 无锡华测电子系统有限公司 一种基于开关电路的收发系统增益控制电路
CN110912570A (zh) * 2019-11-18 2020-03-24 展讯通信(上海)有限公司 一种低噪声放大器的调档装置、方法、终端及网元设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064574A4 *
WENCHENG CHEN ; JIA SONG ; DERONG CHEN ; WEI LI ; T. AARON GULLIVER: "Performance of OFDM with AGC at 340 MHz", COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2011 IEEE PACIFIC RIM CONFERENCE ON, IEEE, 23 August 2011 (2011-08-23), pages 422 - 425, XP031971190, ISBN: 978-1-4577-0252-5, DOI: 10.1109/PACRIM.2011.6032930 *

Also Published As

Publication number Publication date
EP4064574A1 (en) 2022-09-28
CN110912570B (zh) 2021-07-06
CN110912570A (zh) 2020-03-24
EP4064574A4 (en) 2023-01-18
US12047102B2 (en) 2024-07-23
US20220278704A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021098328A1 (zh) 一种低噪声放大器的调档装置、方法、终端及网元设备
US10705791B2 (en) Volume adjustment method and terminal
JP5600325B2 (ja) 受信機の直交位相信号経路における自動利得制御を管理するための回路、システム、および方法
US8428535B1 (en) Receiver dynamic power management
JP5684430B2 (ja) 複数のワイヤレスプロトコルを実装するワイヤレスデバイスにおける適応型rf飽和検出
KR100735326B1 (ko) 서브샘플링 구조를 갖는 저전력 무선 송수신기
JP4706871B2 (ja) ダイバーシティ受信装置及びその利得調整方法
US9667212B2 (en) Gain control method, module, and wireless signal receiver using the same
US8676140B2 (en) Efficient scheme for automatic gain control in communication systems
JP4574687B2 (ja) Rf受信装置
JP6758957B2 (ja) 制御装置、制御方法、及びプログラム
US10368163B2 (en) Headset power supply and input voltage recognition
KR20090092136A (ko) 전력제어 방법 및 이를 수행하는 블루투스 장치
CN106936468B (zh) 信号处理方法及装置
KR102073903B1 (ko) 무선 송신 장치에서 신호 이득을 제어하기 위한 장치 및 방법
JP2009177568A (ja) 受信装置とこれを用いた電子機器
WO2023206162A1 (zh) 一种功率控制方法、装置、设备及存储介质
JP2011035601A (ja) 無線通信装置および無線通信装置の制御プログラム
KR100724947B1 (ko) 불연속 전송 시스템의 수신기를 위한 자동 이득 제어장치및 방법
US8989689B2 (en) Apparatus and method for preventing occurrence of electromagnetic interference in portable terminal
JP2012034222A (ja) 無線装置
JP4636114B2 (ja) 音声出力装置
JP5297487B2 (ja) 受信装置及び利得制御方法
JP2006020035A (ja) 無線通信装置
KR20060014815A (ko) 송신 전력 세기에 따른 매칭기능을 가지는 무선통신단말기 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891352

Country of ref document: EP

Effective date: 20220620