WO2021098317A1 - 空调及空调控制方法 - Google Patents

空调及空调控制方法 Download PDF

Info

Publication number
WO2021098317A1
WO2021098317A1 PCT/CN2020/111003 CN2020111003W WO2021098317A1 WO 2021098317 A1 WO2021098317 A1 WO 2021098317A1 CN 2020111003 W CN2020111003 W CN 2020111003W WO 2021098317 A1 WO2021098317 A1 WO 2021098317A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
branch
heating
air conditioner
compressor
Prior art date
Application number
PCT/CN2020/111003
Other languages
English (en)
French (fr)
Inventor
张仕强
朱世强
李立民
金孟孟
周潮
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021098317A1 publication Critical patent/WO2021098317A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Definitions

  • the present disclosure belongs to the field of air-conditioning technology, and specifically relates to air-conditioning and air-conditioning control methods.
  • air-conditioning In winter, air-conditioning is used as a heating method to heat indoors. Related technology When the air conditioner is in heating operation, its heating effect is attenuated under low temperature conditions, and the heating effect to the room cannot be guaranteed, which in turn will give users a poor heating experience.
  • the present disclosure provides an air conditioner, including:
  • the refrigerant main circuit includes: a compressor, a gas-liquid separator, an outdoor heat exchanger, and an indoor heat exchanger;
  • the first heating branch is used to heat the liquid refrigerant discharged from the gas-liquid separator into a gaseous refrigerant and send it to the suction port of the compressor;
  • the shunt adjusting branch is used to shunt and adjust the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger;
  • the second heating branch is used to receive and heat the refrigerant delivered by the shunt adjusting branch, and then send it to the suction port through the first heating branch;
  • the first enthalpy increasing branch is used to receive the refrigerant heated by the second heating branch and send it to the enthalpy increasing port of the compressor;
  • the second enthalpy increasing branch is used to receive the refrigerant delivered by the shunt adjusting branch and exchange heat with the refrigerant in the refrigerant main circuit to absorb the heat of the refrigerant in the refrigerant main circuit, and then send it to the refrigerant Increase the enthalpy.
  • the air conditioner further includes: a high-pressure bypass branch for directly transporting the refrigerant discharged from the compressor to the outdoor heat exchanger.
  • the high-voltage bypass branch includes:
  • the high-pressure bypass valve is used for when the high-pressure bypass valve is opened, part of the refrigerant discharged from the compressor is directly sent to the outdoor heat exchanger through the high-pressure bypass branch.
  • the first heating branch includes:
  • the first heating mechanism the liquid inlet valve and the exhaust valve, wherein the liquid inlet of the first heating mechanism is connected to the liquid outlet of the gas-liquid separator through the liquid inlet valve, and the first heating mechanism
  • the exhaust port of the mechanism is connected to the suction port of the compressor through the exhaust valve.
  • the first heating branch further includes:
  • the gas balance valve is used to connect the gas-liquid separator and the first heating mechanism to balance the pressure between the gas-liquid separator and the first heating mechanism when the gas-liquid separator is opened .
  • the shunt adjusting branch includes:
  • the auxiliary throttling component is used to adjust the refrigerant in the shunt adjusting branch.
  • the second heating branch includes:
  • An intake valve for when the intake valve is opened, the second heating branch receives the refrigerant delivered by the shunt adjusting branch;
  • the second heating mechanism is used for heating the refrigerant conveyed by the second heating branch.
  • the first enthalpy increasing branch includes:
  • the first enthalpy increasing valve is used for receiving the refrigerant heated by the second heating branch after the first enthalpy increasing valve is opened, and sending it to the enthalpy increasing port.
  • the second enthalpy increasing branch includes:
  • the second enthalpy increasing valve is used for when the second enthalpy increasing valve is opened, the second enthalpy increasing branch receives the refrigerant conveyed by the split regulating branch;
  • the subcooler includes a first channel and a second channel, wherein the first channel is connected in series in the second enthalpy increasing branch, and the second channel is connected in series on the refrigerant main circuit and is located
  • the diversion adjusts the downstream position of the diversion of the branch.
  • the air conditioner further includes:
  • One end of the subcooling valve is communicated with the refrigerant output end of the first passage of the subcooler, and the other end is communicated with the refrigerant input end of the gas-liquid separator.
  • the main circuit further includes a four-way valve for switching whether the refrigerant discharged from the compressor is delivered to the indoor heat exchanger or the outdoor heat exchanger.
  • the present disclosure also provides an air conditioner, including:
  • the refrigerant main circuit includes: a compressor, a gas-liquid separator, an outdoor heat exchanger, and an indoor heat exchanger;
  • the shunt adjusting branch is used to shunt and adjust the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger;
  • the enthalpy increasing branch is used to receive the refrigerant delivered by the shunt adjusting branch and exchange heat with the refrigerant in the refrigerant main circuit to absorb the heat of the refrigerant in the main circuit of the refrigerant, and then send it to the compressor The enthalpy increase.
  • the enthalpy increasing branch includes:
  • the enthalpy increasing valve is used to receive the refrigerant delivered by the split regulating branch when the enthalpy increasing valve is opened;
  • the subcooler includes a first channel and a second channel, wherein the first channel is connected in series in the enthalpy increasing branch, and the second channel is connected in series on the refrigerant main circuit and is located in the Diversion adjusts the downstream position of the branch branch.
  • the present disclosure provides an air conditioner control method, which is applied to the air conditioner described in any of the above embodiments, and the air conditioner control method includes:
  • the air-conditioning heating operation includes: normal heating mode operation or defrosting heating mode operation.
  • the normal heating mode the refrigerant discharged from the compressor all flows to the indoor heat exchanger.
  • the defrosting heating mode part of the refrigerant discharged from the compressor is directly transported to the outdoor heat exchanger through the high-pressure bypass branch for defrosting the outdoor heat exchanger.
  • the judging which supplementary air condition is met during the heating operation of the air conditioner includes:
  • performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the first heating branch, the shunt adjusting branch, and the second heating branch are controlled to be connected to operate, so that the air
  • the liquid refrigerant of the liquid separator and the refrigerant delivered by the second heating branch are sent to the first heating branch, heated by the first heating branch, and then sent to the suction port of the compressor .
  • performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the first enthalpy increasing branch and the second enthalpy increasing branch are also controlled to be in conduction operation, through the first enthalpy increasing branch
  • the refrigerant heated by the second heating branch is transported to the enthalpy increasing port of the compressor, and the refrigerant that has absorbed the heat of the refrigerant in the main circuit of the refrigerant is transported to the compressor through the second enthalpy increasing branch.
  • the present disclosure also provides an air conditioner control method, wherein the method is applied to the air conditioner described in any of the above embodiments, and the air conditioner control method includes:
  • the heating operation of the air conditioner includes: normal heating mode operation.
  • the judging whether the heating operation of the air conditioner satisfies the enthalpy increase and air supplement condition includes:
  • the performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the enthalpy-increasing branch is controlled to operate, and the refrigerant that has absorbed the heat of the refrigerant in the main circuit of the refrigerant is transported through the enthalpy-increasing branch to the compression Enthalpy increase of the machine.
  • the present disclosure provides an air conditioner, including:
  • a memory on which an executable program is stored
  • the processor is configured to execute the executable program in the memory to implement the steps of the air conditioning control method described in any one of the above.
  • Figure 1 is a schematic structural diagram of an air conditioner provided by some embodiments of the present disclosure.
  • FIG. 2 is a schematic flowchart of an air conditioning control method provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of an air conditioner provided by some embodiments of the disclosure.
  • the present disclosure provides an air conditioner and an air conditioner control method, which help to improve the heating effect of the air conditioner on the room, thereby helping to improve the heating experience of the user.
  • Fig. 1 is a schematic structural diagram of an air conditioner provided by some embodiments of the present disclosure. As shown in Fig. 1, the air conditioner includes:
  • the refrigerant main circuit includes: a compressor 101, a gas-liquid separator 102, an outdoor heat exchanger 103, and an indoor heat exchanger 104;
  • the first heating branch is used to heat the liquid refrigerant discharged from the gas-liquid separator 102 into a gaseous refrigerant, and send it to the suction port of the compressor 101;
  • the shunt adjusting branch is used for shunting and adjusting the refrigerant flowing from the indoor heat exchanger 104 to the outdoor heat exchanger 103;
  • the second heating branch is used to receive and heat the refrigerant delivered by the shunt adjusting branch, and then send it to the suction port through the first heating branch;
  • the first enthalpy increasing branch is used to receive the refrigerant heated by the second heating branch and send it to the enthalpy increasing port of the compressor 101;
  • the second enthalpy increasing branch is used to receive the refrigerant delivered by the shunt adjusting branch and exchange heat with the refrigerant in the refrigerant main circuit to absorb the heat of the refrigerant in the refrigerant main circuit, and then send it to the refrigerant Increase the enthalpy.
  • the refrigerant main circuit is the most basic circuit for the heating/cooling function of the air conditioner, which includes components such as the compressor 101, the gas-liquid separator 102, the outdoor heat exchanger 103, and the indoor heat exchanger 104.
  • the gas-liquid separator 102 in the outdoor unit is prone to liquid accumulation.
  • the liquid refrigerant discharged from the gas-liquid separator 102 is heated by the first heating branch into a gaseous refrigerant, which is added to the compressor 101
  • the suction port supplements the suction port of the compressor 101, so that the refrigerant in the system is fully circulated to ensure the heat generation of the unit.
  • the refrigerant flowing out of the indoor heat exchanger 104 is divided through the diversion adjustment branch.
  • the second heating branch can also transport the refrigerant heated by itself to the enthalpy increasing port of the compressor 101 through the first enthalpy increasing branch to supplement air and increase the enthalpy to enhance the heating effect.
  • the split regulating branch A part of the refrigerant transported by the circuit can enter the second enthalpy increase branch to exchange heat with the refrigerant in the main circuit of the refrigerant to absorb the heat of the refrigerant in the main circuit of the refrigerant, and then send it to the enthalpy increase port of the compressor 101 for supplemental gas increase.
  • Enthalpy to enhance the heating effect.
  • the suction port and the enthalpy increasing port of the compressor 101 are supplemented to improve the indoor heating effect of the air conditioner, thereby helping to improve the heating experience of the user.
  • the air conditioner further includes: a high-pressure bypass branch for directly transporting the refrigerant discharged from the compressor 101 to the outdoor heat exchanger 103.
  • the high-voltage bypass branch includes:
  • the high-pressure bypass valve 105 is used for when the high-pressure bypass valve 105 is opened, part of the refrigerant discharged from the compressor 101 is directly sent to the outdoor heat exchanger 103 through the high-pressure bypass branch.
  • the high-pressure bypass valve 105 may be a solenoid valve.
  • the high-pressure bypass branch can realize that the air conditioner has a defrosting heating mode and a normal heating mode.
  • the defrosting heating mode means that the air conditioner continues to heat the room while defrosting, specifically: when the air conditioner is turned on
  • the high-pressure bypass branch is turned on, and part of the high-temperature refrigerant discharged from the compressor 101 enters the indoor heat exchanger 104 so that the air conditioner continues to heat the room, and the other part passes through the turned-on high-pressure bypass
  • the branch road directly enters the outdoor heat exchanger 103 to defrost the outdoor heat exchanger 103.
  • In the normal heating mode all the refrigerant discharged from the compressor 101 flows to the indoor heat exchanger 104 to heat the room.
  • the first heating branch includes:
  • the first heating mechanism 106 the liquid inlet valve 107 and the exhaust valve 108, wherein the liquid inlet of the first heating mechanism 106 is connected to the liquid outlet of the gas-liquid separator 102 through the liquid inlet valve 107, And the exhaust port of the first heating mechanism 106 is connected to the intake port of the compressor 101 through the exhaust valve 108.
  • the intake valve 107 and the exhaust valve 108 are both open, The first heating mechanism 106 heats the incoming liquid refrigerant to form a gaseous refrigerant, and then sends it to the suction port.
  • the first heating mechanism 106 itself has a space for accommodating the liquid refrigerant, and also has a heating device, such as an electric heating device.
  • a heating device such as an electric heating device.
  • the electric heating device of the first heating mechanism 106 works, the first heating mechanism 106 is collected The liquid refrigerant is heated to a gaseous refrigerant.
  • Both the inlet valve 107 and the exhaust valve 108 can be solenoid valves.
  • the inlet valve 107 and the exhaust valve 108 need to be opened at the same time, so that the first heating branch is connected. Furthermore, the gas refrigerant in the first heating branch is delivered to the suction port of the compressor 101.
  • the first heating branch further includes:
  • the gas balance valve 109 is used to connect the gas-liquid separator 102 and the first heating mechanism 106 to balance the gas-liquid separator 102 and the first heating mechanism when the gas-liquid separator 102 is opened 106 The pressure between the two.
  • the gas balance valve 109 can be a solenoid valve. By opening the gas balance valve 109, the pressure between the gas-liquid separator 102 and the first heating mechanism 106 is balanced, so that the gas-liquid separator 102 is delivered to the compressor.
  • the refrigerant at the suction port of 101 and the refrigerant sent to the suction port of the compressor 101 by the first heating mechanism 106 are in pressure balance.
  • the shunt adjusting branch includes:
  • the auxiliary throttling component 110 is used to adjust the refrigerant in the shunt adjusting branch.
  • the auxiliary throttling component 110 may adopt an electronic expansion valve, and the refrigerant diverted by the diverging adjusting branch is adjusted by the auxiliary throttling component 110 to provide the second heating branch and/or the second enthalpy increasing branch for use.
  • the second heating branch includes:
  • the intake valve 111 is used to receive the refrigerant delivered by the split regulating branch when the intake valve 111 is opened, the second heating branch;
  • the second heating mechanism 112 is used for heating the refrigerant conveyed by the second heating branch.
  • the intake valve 111 may be a solenoid valve.
  • the second heating branch is conductive and capable of receiving the refrigerant delivered by the shunt adjusting branch, and the second heating branch 112 is connected to the second heating branch through the second heating mechanism 112.
  • the delivered refrigerant is heated to deliver the heated refrigerant to the suction port of the compressor 101 through the first heating branch to supplement air to the suction port of the compressor 101 to improve the heating effect, or the second heating branch
  • the heated refrigerant is conveyed to the enthalpy increasing port of the compressor 101 through the first enthalpy increasing branch, so that the compressor 101 can increase the enthalpy and improve the heating effect.
  • the second heating mechanism 112 may be an electric heating device arranged on the outer wall of the second heating branch pipeline.
  • the first enthalpy increasing branch includes:
  • the first enthalpy increasing valve 113 is used for receiving the refrigerant heated by the second heating branch after the first enthalpy increasing valve 113 is opened, and sending it to the enthalpy increasing port.
  • the first enthalpy increasing valve 113 may be a solenoid valve. After the first enthalpy increasing valve 113 is opened, the first enthalpy increasing branch is connected to receive the refrigerant delivered by the second heating branch, and then it is delivered to the compressor 101 The enthalpy increase port of the compressor 101 increases the enthalpy to improve the heating effect.
  • the second enthalpy increasing branch includes:
  • the second enthalpy increasing valve 114 is used for when the second enthalpy increasing valve 114 is opened, the second enthalpy increasing branch receives the refrigerant delivered by the split regulating branch;
  • the subcooler 115 includes a first channel and a second channel, wherein the first channel is serially connected to the second enthalpy increasing branch, and the second channel is serially connected to the refrigerant main circuit, and Located at the downstream position of the branch of the branch adjusting branch.
  • the second enthalpy increasing valve 114 may be a solenoid valve. After the second enthalpy increasing valve 114 is opened, the second enthalpy increasing branch is conductive and capable of receiving the refrigerant delivered by the shunt adjusting branch, and the second enthalpy increasing branch receives The refrigerant is adjusted by the branch adjustment branch. After passing through the subcooler 115, it can exchange heat with the refrigerant in the main circuit of the refrigerant, absorb the heat of the refrigerant in the main circuit of the refrigerant, and then send it to the enthalpy port of the compressor 101. The compressor 101 increases the enthalpy to improve the heating effect.
  • the position downstream of the branch of the branch adjusting branch refers to the flow direction of the refrigerant flowing from the indoor heat exchanger 104 to the outdoor heat exchanger 103.
  • the subcooler 115 is shown in FIG. 1
  • the first channel of is arranged on the refrigerant main circuit between the branch of the shunt adjusting branch and the main throttling component 116.
  • the air conditioner further includes:
  • One end of the subcooling valve 117 is connected with the refrigerant output end of the first passage of the subcooler 115, and the other end is connected with the refrigerant input end of the gas-liquid separator 102.
  • the supercooling valve 117 can be a solenoid valve, and the refrigerant passing through the first passage can be controlled by the on and off of the supercooling valve 117.
  • the supercooling valve 117 when the supercooling valve 117 is closed, all the refrigerant passing through the first passage is input.
  • the subcooling valve 117 is opened, a part of the refrigerant passing through the first passage is input to the enthalpy increase port of the compressor 101, and the other part is sent to the refrigerant inlet of the gas-liquid separator 102, and passes through the gas-liquid separator 102.
  • the liquid separator 102 enters the suction port of the compressor 101, which can further improve the air supplement effect of the suction port of the compressor 101, thereby improving the heating effect of the compressor 101 under low temperature conditions.
  • the main circuit further includes: a four-way valve 118 for switching whether the refrigerant discharged from the compressor 101 is delivered to the indoor heat exchanger 104 or delivered to the outdoor heat exchanger 103.
  • the air conditioner can switch whether the refrigerant discharged from the compressor 101 is delivered to the indoor heat exchanger 104 or the outdoor heat exchanger 103.
  • the refrigerant from the compressor 101 is switched to the indoor heat exchanger 104 , Forming heating to the room, and cooling the room when switching the refrigerant from the compressor 101 to the outdoor heat exchanger 103.
  • cooling and heating please refer to the content of air conditioning in related technologies.
  • the four-way valve 118 does not need to be switched when the air conditioner is defrosting. It is only necessary to turn on the high-pressure bypass branch to make the compressor 101 Part of the discharged high-temperature refrigerant enters the indoor heat exchanger 104 so that the air conditioner can continue to heat the room, and the other part directly enters the outdoor heat exchanger 103 through the high-pressure bypass branch that is connected to the outdoor heat exchanger 103. Defrost, and then realize the indoor heating without stopping during defrosting, and realize the continuity of indoor heating.
  • the first heating branch can be used to heat the liquid refrigerant discharged from the gas-liquid separator into a gaseous refrigerant, and then send it to the suction port of the compressor to solve the problem of poor heating effect caused by accumulation of liquid.
  • the refrigerant heated by the second heating branch can be sent to the suction port.
  • the refrigerant heated by the second heating branch can also be sent to the enthalpy port of the compressor, and the second The refrigerant transported by the enthalpy increase branch can absorb heat from the refrigerant main circuit, and then is input to the enthalpy increase port of the compressor.
  • the suction port and the enthalpy port of the compressor are supplemented to enhance the heating effect of the air conditioner in the room, thereby helping to improve the heating experience of the user.
  • an air conditioner including:
  • the refrigerant main circuit includes: 101, a gas-liquid separator 102, an outdoor heat exchanger 103, and an indoor heat exchanger 104;
  • the shunt adjusting branch is used to shunt and adjust the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger;
  • the enthalpy increasing branch is used to receive the refrigerant delivered by the shunt adjusting branch and exchange heat with the refrigerant in the refrigerant main circuit to absorb the heat of the refrigerant in the main circuit of the refrigerant, and then send it to the compressor The enthalpy increase.
  • the enthalpy increasing branch includes:
  • the enthalpy increasing valve is used to receive the refrigerant delivered by the split regulating branch when the enthalpy increasing valve is opened;
  • the subcooler 115 includes a first channel and a second channel, wherein the first channel is connected in series in the enthalpy increasing branch, and the second channel is connected in series on the refrigerant main circuit and is located in the main circuit of the refrigerant.
  • the diversion adjusts the downstream position of the branch diversion.
  • the enthalpy increasing valve may be implemented as the second enthalpy increasing valve 114 in the embodiment of FIG. 1.
  • the shunt adjusting branch is used to shunt and adjust the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger, and the refrigerant transported by the enthalpy-increasing branch can absorb heat from the refrigerant main circuit, Then input to the enthalpy port of the compressor.
  • the enthalpy increase port of the compressor is supplemented to improve the heating effect of the air conditioner in the room, thereby helping to improve the heating experience of the user.
  • Fig. 2 is a schematic flow chart of an air conditioner control method provided by some embodiments of the present disclosure. The control method is applied to the air conditioner as described above. As shown in Fig. 2, the air conditioner control method includes the following steps:
  • Step S201 Determine which supplementary air condition the air conditioner heating operation meets, wherein the air conditioner heating operation includes: normal heating mode operation and defrost heating mode operation, in the normal heating mode, all The refrigerant discharged from the compressor 101 all flows to the indoor heat exchanger 104, and in the defrosting heating mode, part of the refrigerant discharged from the compressor 101 is directly delivered to the high-pressure bypass branch.
  • the outdoor heat exchanger 103 is used to defrost the outdoor heat exchanger 103;
  • the defrosting heating mode operation can be realized, that is, when the air conditioner is defrosting, the four-way valve 118 does not switch, and the high-pressure bypass branch is not switched.
  • the high-temperature refrigerant discharged from the compressor 101 enters the indoor heat exchanger 104 so that the air conditioner continues to heat the room, and the other part directly enters the outdoor heat exchanger 103 through the high-pressure bypass branch that is connected.
  • the outdoor heat exchanger 103 is defrosted, so that the indoor heating is not stopped during defrosting, and the continuity of the indoor heating is realized.
  • the normal heating mode whether it is an air conditioner with a defrosting heating mode function or an air conditioner without a defrosting heating mode function, the normal heating mode is the same.
  • the judging which supplementary air condition is met during the heating operation of the air conditioner includes:
  • the normal heating mode operation whether it is an air conditioner with a defrosting heating mode function or an air conditioner without a defrosting heating mode function, it is the same.
  • the suction superheat of the compressor 101 is less than or equal to the target suction superheat, which can indicate that the heating effect of the air conditioner is not good. It is necessary to supplement the air supply port of the compressor 101, which means that the suction supplement of the compressor 101 is satisfied. Air condition.
  • the air conditioner with the defrosting heating mode function turns on the defrosting heating mode, as shown in Figure 1, the high-pressure bypass branch is turned on and a part of the refrigerant is shunted, so that less refrigerant enters the indoor heat exchanger 104 , Reducing the heating effect of the indoor heat exchanger 104, and when the air conditioner turns on the defrosting heating mode, it also directly indicates that the gas-liquid separator 102 in the outdoor unit is more likely to have liquid accumulation problems, so when the defrosting heating is turned on In the mode, it can be directly determined that the suction and supplementary conditions of the compressor 101 are satisfied.
  • the compressor 101 when it is determined that the outdoor ambient temperature is less than or equal to the preset threshold temperature, and the unit load is greater than or equal to the preset threshold load, it indicates that the compressor 101 needs to be further increased in enthalpy to improve the heating effect.
  • Step S202 Perform corresponding air supplement control on the air conditioner according to the judgment result.
  • performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the first heating branch, the shunt adjusting branch, and the second heating branch are controlled to be connected to operate, so that the The liquid refrigerant of the gas-liquid separator 102 and the refrigerant delivered by the second heating branch are sent to the first heating branch, heated by the first heating branch, and then sent to the compressor 101 Inhale.
  • two ways of supplementing air to the suction port of the compressor 101 are performed at the same time.
  • One is to use the first heating branch to heat the liquid refrigerant discharged from the gas-liquid separator 102 into a gaseous refrigerant, and then send it to To the suction port of compressor 101, to solve the problem of poor heating effect caused by accumulation of liquid.
  • the other is to adjust the flow of the branch through the branch adjustment.
  • the second heating branch receives and heats the refrigerant delivered by the branch adjustment branch. Then it is delivered to the suction port of the compressor 101 by the first heating branch.
  • the following control can be performed.
  • the first heating mechanism 106 and the second heating mechanism 112 work, and the gas balance valve 109 and the liquid inlet valve 107 are opened for a certain period of time, so that the gas-liquid separator 102
  • the liquid refrigerant enters the first heating mechanism 106 and is heated into a gaseous refrigerant; then the intake valve 111 and the exhaust valve 108 are opened, and the first enthalpy increasing valve 113 and the second enthalpy increasing valve 114 are kept closed, so that the first heating mechanism
  • the refrigerant heated by 106 and the second heating mechanism 112 returns to the compressor 101.
  • performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the first enthalpy increasing branch and the second enthalpy increasing branch are also controlled to be in conduction operation.
  • the branch transports the refrigerant heated by the second heating branch to the enthalpy increase port of the compressor 101, and transports the refrigerant that has absorbed the heat of the refrigerant in the main circuit of the refrigerant through the second enthalpy increase branch to the The enthalpy increase port of the compressor 101.
  • the above-mentioned embodiment simultaneously performs two ways to add air to the enthalpy-increasing port of the compressor 101. As shown in FIG.
  • the first enthalpy-increasing branch conveys the refrigerant heated by the second heating branch to the enthalpy-increasing port of the compression molding machine, and the other is that the second enthalpy-increasing branch receives the refrigerant adjusted by the shunt adjusting branch and passes through the subcooler 115 At this time, it exchanges heat with the refrigerant in the main refrigerant circuit, absorbs the heat of the refrigerant in the main refrigerant circuit, and then transmits it to the enthalpy increase port of the compressor 101 to increase the enthalpy of the compressor 101 to improve the heating effect.
  • the shunt adjusting branch and the second heating branch shown in Fig. 1 are normally closed, including the closing of the valve and the closing of the heating.
  • the present disclosure also provides an air conditioner control method, wherein the method is applied to the air conditioner described in any of the above embodiments, and the air conditioner control method includes:
  • the heating operation of the air conditioner includes: normal heating mode operation.
  • the judging whether the heating operation of the air conditioner satisfies the enthalpy increase and air supplement condition includes:
  • the performing corresponding air supplement control on the air conditioner according to the judgment result includes:
  • the enthalpy-increasing branch is controlled to operate, and the refrigerant that has absorbed the heat of the refrigerant in the main circuit of the refrigerant is transported through the enthalpy-increasing branch to the compression Enthalpy increase of the machine.
  • the shunt adjusting branch is used to shunt and adjust the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger, and the refrigerant transported by the enthalpy-increasing branch can absorb heat from the refrigerant main circuit, Then input to the enthalpy port of the compressor.
  • the enthalpy increase port of the compressor is supplemented to improve the heating effect of the air conditioner in the room, thereby helping to improve the heating experience of the user.
  • FIG. 3 is a schematic structural diagram of an air conditioner provided by other embodiments of the present disclosure. As shown in FIG. 3, the air conditioner 3 includes:
  • a memory 301 on which an executable program is stored
  • the processor 302 is configured to execute the executable program in the memory 301 to implement the steps of any one of the above-mentioned air conditioning control methods.
  • each part of the present disclosure can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.

Abstract

一种空调及空调控制方法,属于空调技术领域。空调包括:冷媒主回路,所述冷媒主回路包括:压缩机(101)、气液分离器(102)、室外换热器(103)和室内换热器(104);第一加热支路,将气液分离器(102)排出的液态冷媒加热成气态冷媒,送至压缩机(101)的吸气口;分流调节支路,对从室内换热器(104)流向室外换热器(103)的冷媒进行分流调节;第二加热支路,接收分流调节支路输送的冷媒,进行加热,然后通过第一加热支路送至吸气口;第一增焓支路,接收经第二加热支路加热的冷媒,送至压缩机(101)的增焓口;第二增焓支路,接收分流调节支路输送的冷媒,与冷媒主回路中的冷媒进行热交换,以吸收冷媒主回路冷媒的热量,然后送至增焓口。有助于提升空调对室内的制热效果。

Description

空调及空调控制方法
相关申请的交叉引用
本公开是以CN申请号为201911125947.4,申请日为2019年11月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开属于空调技术领域,具体涉及空调及空调控制方法。
背景技术
冬季时,空调作为一种采暖手段,用来对室内进行制热。相关技术空调在制热运行时,在低温条件下,其制热效果衰减,无法保证对室内的制热效果,进而会给用户带来较差的制热使用体验。
发明内容
第一方面,
本公开提供一种空调,包括:
冷媒主回路,所述冷媒主回路包括:压缩机、气液分离器、室外换热器和室内换热器;
第一加热支路,用于将所述气液分离器排出的液态冷媒加热成气态冷媒,并送至所述压缩机的吸气口;
分流调节支路,用于对从所述室内换热器流向所述室外换热器的冷媒进行分流调节;
第二加热支路,用于接收所述分流调节支路输送的冷媒,并进行加热,然后通过所述第一加热支路送至所述吸气口;
第一增焓支路,用于接收经所述第二加热支路加热的冷媒,并送至所述压缩机的增焓口;
第二增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述增焓口。
在本公开一些实施例中,所述空调还包括:高压旁通支路,用于将所述压缩机排出的冷媒直接输送至所述室外换热器。
在本公开一些实施例中,所述高压旁通支路包括:
高压旁通阀,用于当所述高压旁通阀打开后,所述压缩机排出的部分冷媒经所述高压旁通支路直接送入所述室外换热器。
在本公开一些实施例中,所述第一加热支路包括:
第一加热机构、进液阀和排气阀,其中,所述第一加热机构的进液口通过所述进液阀与所述气液分离器的排液口连接,以及所述第一加热机构的排气口通过所述排气阀与所述压缩机的吸气口连接,当所述进液阀和所述排气阀均打开时,所述第一加热机构对进入的液态冷媒进行加热,形成气态冷媒,然后送至所述吸气口。
在本公开一些实施例中,所述第一加热支路还包括:
气平衡阀,用于连接所述气液分离器和所述第一加热机构,以当所述气平衡阀打开后,平衡所述气液分离器和所述第一加热机构两者间的压力。
在本公开一些实施例中,所述分流调节支路包括:
辅助节流部件,用于对所述分流调节支路中的冷媒进行调节。
在本公开一些实施例中,所述第二加热支路包括:
进气阀,用于当所述进气阀打开时,所述第二加热支路接收所述分流调节支路输送的冷媒;
第二加热机构,用于对所述第二加热支路输送的冷媒进行加热。
在本公开一些实施例中,所述第一增焓支路包括:
第一增焓阀,用于当所述第一增焓阀打开后,接收经所述第二加热支路加热的冷媒,并送至所述增焓口。
在本公开一些实施例中,所述第二增焓支路包括:
第二增焓阀,用于当所述第二增焓阀打开后,所述第二增焓支路接收所述分流调节支路输送的冷媒;
过冷器,包括第一通道和第二通道,其中,所述第一通道串接在所述第二增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
在本公开一些实施例中,所述空调还包括:
过冷阀,一端与所述过冷器的所述第一通道的冷媒输出端连通,另一端与所述气液分离器的冷媒输入端连通。
在本公开一些实施例中,所述主回路还包括:四通阀,用于切换所述压缩机排出的冷媒是输送至所述室内换热器还是输送至所述室外换热器。
本公开还提供一种空调,包括:
冷媒主回路,所述冷媒主回路包括:压缩机、气液分离器、室外换热器和室内换热器;
分流调节支路,用于对从所述室内换热器流向所述室外换热器的冷媒进行分流调节;
增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述压缩机的增焓口。
在本公开一些实施例中,所述增焓支路包括:
增焓阀,用于当所述增焓阀打开后,所述增焓支路接收所述分流调节支路输送的冷媒;
过冷器,包括第一通道和第二通道,其中,所述第一通道串接在所述增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
第二方面,
本公开提供一种空调控制方法,所述方法应用于如上述任一实施例中所述的空调,所述空调控制方法包括:
判断所述空调制热运行满足何种补气条件;
根据判断结果对所述空调进行相应的补气控制;
其中,所述空调制热运行包括:正常制热模式运行或化霜制热模式运行,在所述正常制热模式下,所述压缩机排出的冷媒全部流向所述室内换热器,而在所述化霜制热模式下,所述压缩机排出的部分冷媒经所述高压旁通支路直接输送至所述室外换热器,用于对所述室外换热器进行化霜。
在本公开一些实施例中,所述判断空调制热运行时满足何种补气条件,包括:
在开启正常制热模式后,如果判断出所述压缩机的吸气过热度小于或者等于目标吸气过热度,或者,当开启化霜制热模式时,则判断出满足所述压缩机的吸气补气条件;或者,
当判断出室外环境温度小于或者等于预设阈值温度、机组负荷大于或者等于预设阈值负荷时,则判断出满足所述压缩机的增焓补气条件。
在本公开一些实施例中,根据判断结果对所述空调进行相应的补气控制,包括:
如果判断出满足所述压缩机的吸气补气条件,则控制所述第一加热支路、所述分流调节支路和所述第二加热支路三者导通运行,以将所述气液分离器的液体冷媒和所述第二加热支路输送的冷媒送至所述第一加热支路,经所述第一加热支路加热后,再送至所述压缩机的所述吸气口。
在本公开一些实施例中,根据判断结果对所述空调进行相应的补气控制,包括:
如果还判断出满足所述压缩机的增焓补气条件,则还控制所述第一增焓支路和所述第二增焓支路两者导通运行,通过所述第一增焓支路输送经所述第二加热支路加热的冷媒至 所述压缩机的增焓口,以及通过所述第二增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机的增焓口。
本公开还提供一种空调控制方法,其中,所述方法应用于如上述任一实施例中所述的空调,所述空调控制方法包括:
判断所述空调制热运行是否满足增焓补气条件;
根据判断结果对所述空调进行相应补气控制;
其中,所述空调制热运行包括:正常制热模式运行。
在本公开一些实施例中,所述判断所述空调制热运行是否满足增焓补气条件,包括:
在开启正常制热模式后,当判断出室外环境温度小于或者等于预设阈值温度、且机组负荷大于或者等于预设阈值负荷时,则判断出满足所述压缩机的增焓补气条件。
在本公开一些实施例中,所述根据判断结果对所述空调进行相应补气控制,包括:
如果判断出满足所述压缩机的增焓补气条件,则控制所述增焓支路导通运行,通过所述增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机的增焓口。
第三方面,
本公开提供一种空调,包括:
存储器,其上存储有可执行程序;
处理器,用于执行所述存储器中的所述可执行程序,以实现上述中任一项所述空调控制方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的空调的结构示意图;
图2为本公开一些实施例提供的空调控制方法的流程示意图;
图3为本公开一些实施例提供的空调的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人发现:相关技术空调在制热运行时,在低温条件下,其制热效果衰减,无法保证对室内的制热效果,进而会给用户带来较差的制热使用体验。
为至少在一定程度上克服相关技术中存在的问题,本公开提供空调及空调控制方法,有助于提升空调对室内的制热效果,进而有助于提升用户的制热使用体验。
为实现以上目的,本公开采用如下技术方案:
图1为本公开一些实施例提供的空调的结构示意图,如图1所示,该空调包括:
冷媒主回路,所述冷媒主回路包括:压缩机101、气液分离器102、室外换热器103和室内换热器104;
第一加热支路,用于将所述气液分离器102排出的液态冷媒加热成气态冷媒,并送至所述压缩机101的吸气口;
分流调节支路,用于对从所述室内换热器104流向所述室外换热器103的冷媒进行分流调节;
第二加热支路,用于接收所述分流调节支路输送的冷媒,并进行加热,然后通过所述第一加热支路送至所述吸气口;
第一增焓支路,用于接收经所述第二加热支路加热的冷媒,并送至所述压缩机101的增焓口;
第二增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述增焓口。
具体的,冷媒主回路是空调形成制热/制冷功能的最基本的回路,其包括压缩机101、气液分离器102、室外换热器103和室内换热器104等部件。
冬季空调制热运行时,室外机中的气液分离器102容易发生积液问题,通过第一加热支路将气液分离器102排出的液态冷媒加热成气态冷媒,并补充到压缩机101的吸气口,为压缩机101的吸气口补气,使系统中冷媒充分循环,保证机组制热量,同时,通过分流调节支路对从室内换热器104流出的冷媒进行分流,分流的冷媒一部分可以输送至第二加热支路,通过第二加热支路进行加热,然后再由第二加热支路输送至第一加热支路,经第一加热支路进行再次加热,进一步加强对压缩机101吸气口的补气,提升制热效果。同时,第二加热支路还可以将经其自身加热的冷媒通过第一增焓支路输送至压缩机101的增焓口,进行补气增焓,来加强制热效果,另外,分流调节支路输送的一部分冷媒可以进入第二增焓支路中,与冷媒主回路中的冷媒进行热交换,以吸收冷媒主回路冷媒的热量,然后送至压缩机101的增焓口,进行补气增焓,来加强制热效果。通过上述多方面对压缩机101的吸气口和增焓口进行补气,来提升空调对室内的制热效果,进而有助于提升用户的制热使用体验。
在本公开一些实施例中,所述空调还包括:高压旁通支路,用于将所述压缩机101排出的冷媒直接输送至所述室外换热器103。
在本公开一些实施例中,所述高压旁通支路包括:
高压旁通阀105,用于当所述高压旁通阀105打开后,所述压缩机101排出的部分冷媒经所述高压旁通支路直接送入所述室外换热器103。在具体应用中,高压旁通阀105可以采用电磁阀。
具体的,通过高压旁通支路可实现空调具有化霜制热模式和正常制热模式,化霜制热模式即是空调在化霜的同时继续对室内进行制热,具体为:当空调开启化霜制热模式时,高压旁通支路导通,压缩机101所排出的高温冷媒,一部分进入室内换热器104,以使空调继续对室内进行制热,另一部分通过导通的高压旁通支路直接进入室外换热器103中,对室外换热器103进行化霜。而在正常制热模式下,压缩机101排出的冷媒全部流向室内换热器104,对室内进行制热。
在本公开一些实施例中,所述第一加热支路包括:
第一加热机构106、进液阀107和排气阀108,其中,所述第一加热机构106的进液口通过所述进液阀107与所述气液分离器102的排液口连接,以及所述第一加热机构106的排气口通过所述排气阀108与所述压缩机101的吸气口连接,当所述进液阀107和所述排气阀108均打开时,所述第一加热机构106对进入的液态冷媒进行加热,形成气态冷媒,然后送至所述吸气口。
具体的,第一加热机构106自身具有一个容纳液态冷媒的空间,以及还具有一个加热装置,比如,电加热装置,当第一加热机构106的电加热装置工作时,将第一加热机构106收集的液态冷媒加热成气态冷媒。
进液阀107和排气阀108均可以采用电磁阀,在第一加热支路导通运行时,需要让进液阀107和排气阀108同时开启,使第一加热支路形成导通,进而将第一加热支路中的气体冷媒输送至压缩机101的吸气口。
在本公开一些实施例中,所述第一加热支路还包括:
气平衡阀109,用于连接所述气液分离器102和所述第一加热机构106,以当所述气平衡阀109打开后,平衡所述气液分离器102和所述第一加热机构106两者间的压力。
具体的,气平衡阀109可以采用电磁阀,通过气平衡阀109的开启,让气液分离器102和第一加热机构106两者间的压力平衡,以使气液分离器102输送给压缩机101吸气口的冷媒与第一加热机构106送给压缩机101吸气口的冷媒两者压力平衡。
在本公开一些实施例中,所述分流调节支路包括:
辅助节流部件110,用于对所述分流调节支路中的冷媒进行调节。
具体的,辅助节流部件110可以采用电子膨胀阀,通过辅助节流部件110对分流调节支路分流的冷媒进行调节,以提供给第二加热支路和/或第二增焓支路使用。
在本公开一些实施例中,所述第二加热支路包括:
进气阀111,用于当所述进气阀111打开时,所述第二加热支路接收所述分流调节支路输送的冷媒;
第二加热机构112,用于对所述第二加热支路输送的冷媒进行加热。
具体的,进气阀111可以采用电磁阀,在进气阀111打开后,第二加热支路形成导通能够接收分流调节支路输送的冷媒,通过第二加热机构112对第二加热支路输送的冷媒进行加热,以将经加热的冷媒通过第一加热支路输送至压缩机101的吸气口,以对压缩机101吸气口补气,提升制热效果,或者,第二加热支路将经加热的冷媒通过第一增焓支路输送 至压缩机101的增焓口,使压缩机101进行增焓,提升制热效果。
在具体应用中,第二加热机构112可以是设置于第二加热支路管路外壁的电加热装置。
在本公开一些实施例中,所述第一增焓支路包括:
第一增焓阀113,用于当所述第一增焓阀113打开后,接收经所述第二加热支路加热的冷媒,并送至所述增焓口。
具体的,第一增焓阀113可以采用电磁阀,在第一增焓阀113打开后,第一增焓支路形成导通能够接收第二加热支路输送的冷媒,然后输送至压缩机101的增焓口,让压缩机101增焓提升制热效果。
在本公开一些实施例中,所述第二增焓支路包括:
第二增焓阀114,用于当所述第二增焓阀114打开后,所述第二增焓支路接收所述分流调节支路输送的冷媒;
过冷器115,包括第一通道和第二通道,其中,所述第一通道串接在所述第二增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
具体的,第二增焓阀114可以采用电磁阀,在第二增焓阀114打开后,第二增焓支路形成导通能够接收分流调节支路输送的冷媒,第二增焓支路接收的冷媒是经分流调节支路调节的,在通过过冷器115,能与冷媒主回路中的冷媒进行热交换,吸收冷媒主回路冷媒的热量,然后输送至压缩机101的增焓口,让压缩机101增焓提升制热效果。
上述实施例中,位于所述分流调节支路分流处的下游位置,是参照从所述室内换热器104流向所述室外换热器103的冷媒流向,图1中示出了过冷器115的第一通道设置在分流调节支路分流处与主节流部件116之间的冷媒主回路上。
在本公开一些实施例中,所述空调还包括:
过冷阀117,一端与所述过冷器115的所述第一通道的冷媒输出端连通,另一端与所述气液分离器102的冷媒输入端连通。
具体的,过冷阀117可以采用电磁阀,通过过冷阀117的通断,可以对经第一通道的冷媒进行控制,比如,在过冷阀117关闭时,经第一通道的冷媒全部输入到压缩机101的增焓口;而在过冷阀117打开时,经第一通道的冷媒一部分输入到压缩机101的增焓口,另一部分输送至气液分离器102的冷媒进口,通过气液分离器102进入压缩机101的吸气口,能进一步提升压缩机101的吸气口的补气效果,进而提升低温情况下压缩机101的制热效果。
在本公开一些实施例中,所述主回路还包括:四通阀118,用于切换所述压缩机101排出的冷媒是输送至所述室内换热器104还是输送至所述室外换热器103。
具体的,空调通过切换四通阀118,可以切换压缩机101排出的冷媒是输送至室内换热器104还是输送至室外换热器103,当切换输送压缩机101冷媒至室内换热器104时,形成对室内制热,而当切换输送压缩机101冷媒至室外换热器103时,形成对室内制冷。对于制冷制热的切换可以参照相关技术中空调内容。
如图1所示,因空调中增加了一个高压旁通支路,空调在化霜时,不需要进行四通阀118的切换,只需要将高压旁通支路导通,使压缩机101所排出的高温冷媒,一部分进入室内换热器104,以使空调继续对室内进行制热,另一部分通过导通的高压旁通支路直接进入室外换热器103中,对室外换热器103进行化霜,进而实现化霜时不停止对室内制热,实现对室内制热的连续性。
本公开上述实施例采用以上技术方案,至少具备以下有益效果:
通过本公开上述实施例,利用第一加热支路能够将气液分离器排出的液态冷媒加热成气态冷媒,然后送至压缩机的吸气口,解决积液导致制热效果变差的问题,以及利用第一加热支路还能够将经第二加热支路加热的冷媒送至吸气口,同时,经第二加热支路加热的冷媒还能送入压缩机的增焓口,以及第二增焓支路输送的冷媒能从冷媒主回路中吸热,然后输入至压缩机的增焓口。通过上述多方面对压缩机的吸气口和增焓口进行补气,来提升空调对室内的制热效果,进而有助于提升用户的制热使用体验。
如图1所示,本公开还提供一种空调,包括:
冷媒主回路,所述冷媒主回路包括:101、气液分离器102、室外换热器103和室内换热器104;
分流调节支路,用于对从所述室内换热器流向所述室外换热器的冷媒进行分流调节;
增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述压缩机的增焓口。
在本公开一些实施例中,如图1所示,所述增焓支路包括:
增焓阀,用于当所述增焓阀打开后,所述增焓支路接收所述分流调节支路输送的冷媒;
过冷器115,包括第一通道和第二通道,其中,所述第一通道串接在所述增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
在本公开一些实施例中,所述增焓阀可以实现为图1实施例的第二增焓阀114。
通过本公开上述实施例,利用分流调节支路对从所述室内换热器流向所述室外换热器 的冷媒进行分流调节,以及增焓支路输送的冷媒能从冷媒主回路中吸热,然后输入至压缩机的增焓口。通过上述多方面对压缩机的增焓口进行补气,来提升空调对室内的制热效果,进而有助于提升用户的制热使用体验。
图2为本公开一些实施例提供的空调控制方法的流程示意图,该控制方法应用于如上述任一项的所述空调,如图2所示,该空调控制方法包括如下步骤:
步骤S201、判断所述空调制热运行满足何种补气条件,其中,所述空调制热运行包括:正常制热模式运行和化霜制热模式运行,在所述正常制热模式下,所述压缩机101排出的冷媒全部流向所述室内换热器104,而在所述化霜制热模式下,所述压缩机101排出的部分冷媒经所述高压旁通支路直接输送至所述室外换热器103,用于对所述室外换热器103进行化霜;
具体的,在如图1所示的空调中,因具有高压旁通支路,可以实现化霜制热模式运行,即在空调化霜时,四通阀118不进行切换,将高压旁通支路导通,使压缩机101所排出的高温冷媒,一部分进入室内换热器104,以使空调继续对室内进行制热,另一部分通过导通的高压旁通支路直接进入室外换热器103中,对室外换热器103进行化霜,进而实现化霜时不停止对室内制热,实现对室内制热的连续性。
对于正常制热模式,无论是具有化霜制热模式功能的空调,还是不具有化霜制热模式功能的空调,运行正常制热模式都是一样的。
在本公开一些实施例中,所述判断空调制热运行时满足何种补气条件,包括:
在开启正常制热模式后,如果判断出所述压缩机101的吸气过热度小于或者等于目标吸气过热度,或者,当开启化霜制热模式时,则判断出满足所述压缩机101的吸气补气条件。
具体的,在正常制热模式运行下,无论是具有化霜制热模式功能的空调,还是不具有化霜制热模式功能的空调,都是一样的,在正常制热运行过程中,当判断出压缩机101的吸气过热度小于或者等于目标吸气过热度,可以表征空调制热效果不好,需要对压缩机101的补气口进行补气,也即满足了压缩机101的吸气补气条件。而当具有化霜制热模式功能的空调开启化霜制热模式时,如图1所示,高压旁通支路导通,分流了一部分冷媒,使进入室内换热器104中的冷媒变少,降低了室内换热器104的制热效果,同时空调开启化霜制热模式时,也直接表明室外机中的气液分离器102更大几率存在积液问题,因而当开启化霜制热模式时,可以直接判断出满足压缩机101的吸气补气条件。
或者,当判断出室外环境温度小于或者等于预设阈值温度、机组负荷大于或者等于预 设阈值负荷时,则判断出满足所述压缩机101的增焓补气条件。
具体的,当判断出室外环境温度小于或者等于预设阈值温度、机组负荷大于或者等于预设阈值负荷时,表明需要对压缩机101进一步进行增焓,来提升制热效果。
步骤S202、根据判断结果对所述空调进行相应的补气控制。
在本公开一些实施例中,根据判断结果对所述空调进行相应的补气控制,包括:
如果判断出满足所述压缩机101的吸气补气条件,则控制所述第一加热支路、所述分流调节支路和所述第二加热支路三者导通运行,以将所述气液分离器102的液体冷媒和所述第二加热支路输送的冷媒送至所述第一加热支路,经所述第一加热支路加热后,再送至所述压缩机101的所述吸气口。
具体的,上述实施例同时进行了两种对压缩机101吸气口补气的方式,一种是利用第一加热支路能够将气液分离器102排出的液态冷媒加热成气态冷媒,然后送至压缩机101的吸气口,解决积液导致制热效果变差的问题,另一种是通过分流调节支路的分流调节,第二加热支路接收并加热分流调节支路输送的冷媒,然后利用第一加热支路输送到压缩机101的吸气口。
在具体应用中,如图1所述,可以进行如下控制,第一加热机构106和第二加热机构112工作,让气平衡阀109和进液阀107开启一定时间,使气液分离器102中的液态冷媒进入第一加热机构106,被加热成气态冷媒;然后进气阀111和排气阀108开启,第一增焓阀113和第二增焓阀114保持关闭,使经第一加热机构106和第二加热机构112加热后的冷媒回流到压缩机101。
在本公开一些实施例中,根据判断结果对所述空调进行相应的补气控制,包括:
如果还判断出满足所述压缩机101的增焓补气条件,则还控制所述第一增焓支路和所述第二增焓支路两者导通运行,通过所述第一增焓支路输送经所述第二加热支路加热的冷媒至所述压缩机101的增焓口,以及通过所述第二增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机101的增焓口。
具体的,在判断出满足所述压缩机101的增焓补气条件后,上述实施例同时进行了两种对压缩机101增焓口补气的方式,如图1所述,一种是利用第一增焓支路输送经第二加热支路加热的冷媒至压塑机的增焓口,另一种是第二增焓支路接收分流调节支路调节的冷媒,在通过过冷器115时,与冷媒主回路中的冷媒进行热交换,吸收冷媒主回路冷媒的热量,然后输送至压缩机101的增焓口,让压缩机101增焓提升制热效果。
对于图1所示的第一加热支路、分流调节支路和第二加热支路,三者常态下是关闭的, 包括阀的关闭,加热的关闭。
本公开还提供一种空调控制方法,其中,所述方法应用于如上述任一实施例中所述的空调,所述空调控制方法包括:
判断所述空调制热运行是否满足增焓补气条件;
根据判断结果对所述空调进行相应补气控制;
其中,所述空调制热运行包括:正常制热模式运行。
在本公开一些实施例中,所述判断所述空调制热运行是否满足增焓补气条件,包括:
在开启正常制热模式后,当判断出室外环境温度小于或者等于预设阈值温度、且机组负荷大于或者等于预设阈值负荷时,则判断出满足所述压缩机的增焓补气条件。
在本公开一些实施例中,所述根据判断结果对所述空调进行相应补气控制,包括:
如果判断出满足所述压缩机的增焓补气条件,则控制所述增焓支路导通运行,通过所述增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机的增焓口。
通过本公开上述实施例,利用分流调节支路对从所述室内换热器流向所述室外换热器的冷媒进行分流调节,以及增焓支路输送的冷媒能从冷媒主回路中吸热,然后输入至压缩机的增焓口。通过上述多方面对压缩机的增焓口进行补气,来提升空调对室内的制热效果,进而有助于提升用户的制热使用体验。
图3为本公开另一些实施例提供的空调的结构示意图,如图3所示,该空调3包括:
存储器301,其上存储有可执行程序;
处理器302,用于执行所述存储器301中的所述可执行程序,以实现上述中任一项所述空调控制方法的步骤。
关于上述实施例中的空调,其处理器302执行存储器301中的程序的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方 案。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (20)

  1. 一种空调,包括:
    冷媒主回路,所述冷媒主回路包括:压缩机、气液分离器、室外换热器和室内换热器;
    第一加热支路,用于将所述气液分离器排出的液态冷媒加热成气态冷媒,并送至所述压缩机的吸气口;
    分流调节支路,用于对从所述室内换热器流向所述室外换热器的冷媒进行分流调节;
    第二加热支路,用于接收所述分流调节支路输送的冷媒,并进行加热,然后通过所述第一加热支路送至所述吸气口;
    第一增焓支路,用于接收经所述第二加热支路加热的冷媒,并送至所述压缩机的增焓口;
    第二增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述增焓口。
  2. 根据权利要求1所述的空调,还包括:高压旁通支路,用于将所述压缩机排出的冷媒直接输送至所述室外换热器。
  3. 根据权利要求2所述的空调,其中,所述高压旁通支路包括:
    高压旁通阀,用于当所述高压旁通阀打开后,所述压缩机排出的部分冷媒经所述高压旁通支路直接送入所述室外换热器。
  4. 根据权利要求1所述的空调,其中,所述第一加热支路包括:
    第一加热机构、进液阀和排气阀,其中,所述第一加热机构的进液口通过所述进液阀与所述气液分离器的排液口连接,以及所述第一加热机构的排气口通过所述排气阀与所述压缩机的吸气口连接,当所述进液阀和所述排气阀均打开时,所述第一加热机构对进入的液态冷媒进行加热,形成气态冷媒,然后送至所述吸气口。
  5. 根据权利要求4所述的空调,其中,所述第一加热支路还包括:
    气平衡阀,用于连接所述气液分离器和所述第一加热机构,以当所述气平衡阀打开后,平衡所述气液分离器和所述第一加热机构两者间的压力。
  6. 根据权利要求1所述的空调,其中,所述分流调节支路包括:
    辅助节流部件,用于对所述分流调节支路中的冷媒进行调节。
  7. 根据权利要求1所述的空调,其中,所述第二加热支路包括:
    进气阀,用于当所述进气阀打开时,所述第二加热支路接收所述分流调节支路输送的冷媒;
    第二加热机构,用于对所述第二加热支路输送的冷媒进行加热。
  8. 根据权利要求1所述的空调,其中,所述第一增焓支路包括:
    第一增焓阀,用于当所述第一增焓阀打开后,接收经所述第二加热支路加热的冷媒,并送至所述增焓口。
  9. 根据权利要求1所述的空调,其中,所述第二增焓支路包括:
    第二增焓阀,用于当所述第二增焓阀打开后,所述第二增焓支路接收所述分流调节支路输送的冷媒;
    过冷器,包括第一通道和第二通道,其中,所述第一通道串接在所述第二增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
  10. 根据权利要求9所述的空调,还包括:
    过冷阀,一端与所述过冷器的所述第一通道的冷媒输出端连通,另一端与所述气液分离器的冷媒输入端连通。
  11. 根据权利要求1-10任一项所述的空调,其中,所述主回路还包括:四通阀,用于切换所述压缩机排出的冷媒是输送至所述室内换热器还是输送至所述室外换热器。
  12. 一种空调,包括:
    冷媒主回路,所述冷媒主回路包括:压缩机、气液分离器、室外换热器和室内换热器;
    分流调节支路,用于对从所述室内换热器流向所述室外换热器的冷媒进行分流调节;
    增焓支路,用于接收所述分流调节支路输送的冷媒,并与所述冷媒主回路中的冷媒进行热交换,以吸收所述冷媒主回路冷媒的热量,然后送至所述压缩机的增焓口。
  13. 根据权利要求12所述的空调,其中,所述增焓支路包括:
    增焓阀,用于当所述增焓阀打开后,所述增焓支路接收所述分流调节支路输送的冷媒;
    过冷器,包括第一通道和第二通道,其中,所述第一通道串接在所述增焓支路中,所述第二通道串接在所述冷媒主回路上、且位于所述分流调节支路分流处的下游位置。
  14. 一种空调控制方法,其中,所述方法应用于如权利要求1-13任一项所述的空调,所述空调控制方法包括:
    判断所述空调制热运行满足何种补气条件;
    根据判断结果对所述空调进行相应的补气控制;
    其中,所述空调制热运行包括:正常制热模式运行或者化霜制热模式运行,在所述正常制热模式下,所述压缩机排出的冷媒全部流向所述室内换热器,而在所述化霜制热模式下,所述压缩机排出的部分冷媒直接输送至所述室外换热器,用于对所述室外换热器进行化霜。
  15. 根据权利要求14所述的方法,其中,所述判断空调制热运行时满足何种补气条件,包括:
    在开启正常制热模式后,如果判断出所述压缩机的吸气过热度小于或者等于目标吸气过热度,或者,当开启化霜制热模式时,则判断出满足所述压缩机的吸气补气条件;或者,
    当判断出室外环境温度小于或者等于预设阈值温度、且机组负荷大于或者等于预设阈值负荷时,则判断出满足所述压缩机的增焓补气条件。
  16. 根据权利要求14或15所述的方法,其特征在于,根据判断结果对所述空调进行相应的补气控制,包括:
    如果判断出满足所述压缩机的吸气补气条件,则控制所述第一加热支路、所述分流调节支路和所述第二加热支路三者导通运行,以将所述气液分离器的液体冷媒和所述第二加热支路输送的冷媒送至所述第一加热支路,经所述第一加热支路加热后,再送至所述压缩机的所述吸气口。
  17. 根据权利要求16所述的方法,其中,根据判断结果对所述空调进行相应的补气控制,包括:
    如果还判断出满足所述压缩机的增焓补气条件,则还控制所述第一增焓支路和所述第二增焓支路两者导通运行,通过所述第一增焓支路输送经所述第二加热支路加热的冷媒至所述压缩机的增焓口,以及通过所述第二增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机的增焓口。
  18. 一种空调控制方法,其中,所述方法应用于如权利要求12或13所述的空调,所述空调控制方法包括:
    判断所述空调制热运行是否满足增焓补气条件;
    根据判断结果对所述空调进行相应补气控制;
    其中,所述空调制热运行包括:正常制热模式运行。
  19. 根据权利要求18所述的方法,其中,所述根据判断结果对所述空调进行相应补气 控制,包括:
    如果判断出满足所述压缩机的增焓补气条件,则控制所述增焓支路导通运行,通过所述增焓支路输送吸收了所述冷媒主回路冷媒热量的冷媒至所述压缩机的增焓口。
  20. 一种空调,包括:
    存储器,其上存储有可执行程序;
    处理器,用于执行所述存储器中的所述可执行程序,以实现权利要求14-20中任一项所述空调控制方法的步骤。
PCT/CN2020/111003 2019-11-18 2020-08-25 空调及空调控制方法 WO2021098317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911125947.4 2019-11-18
CN201911125947.4A CN110836417A (zh) 2019-11-18 2019-11-18 空调及空调控制方法

Publications (1)

Publication Number Publication Date
WO2021098317A1 true WO2021098317A1 (zh) 2021-05-27

Family

ID=69576758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111003 WO2021098317A1 (zh) 2019-11-18 2020-08-25 空调及空调控制方法

Country Status (2)

Country Link
CN (1) CN110836417A (zh)
WO (1) WO2021098317A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法
CN110836417A (zh) * 2019-11-18 2020-02-25 珠海格力电器股份有限公司 空调及空调控制方法
CN111197877B (zh) * 2020-02-26 2023-12-19 珠海格力电器股份有限公司 压力调节器、室外机、空调系统及空调系统的控制方法
CN111412709A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 空调器
CN112629082A (zh) * 2021-01-08 2021-04-09 珠海格力电器股份有限公司 一种制热控制系统、多联机空调系统及制热控制方法
WO2022222587A1 (zh) * 2021-04-20 2022-10-27 芜湖美智空调设备有限公司 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机
CN113757936B (zh) * 2021-09-13 2023-01-03 海信空调有限公司 空调控制系统、空调器及空调器的控制方法
CN115127265A (zh) * 2022-07-13 2022-09-30 珠海格力电器股份有限公司 汽液分离器、空调及冷媒补充控制方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033117A (ja) * 1999-05-19 2001-02-09 Daikin Ind Ltd 冷凍装置
JP2008275249A (ja) * 2007-04-27 2008-11-13 Hitachi Appliances Inc 冷凍サイクル
CN102620463A (zh) * 2012-03-27 2012-08-01 美的集团有限公司 一种新型低温强热型多联机系统
CN203163329U (zh) * 2013-03-11 2013-08-28 广东美的制冷设备有限公司 空调器
CN104896785A (zh) * 2015-05-15 2015-09-09 广东美的暖通设备有限公司 一种喷气增焓多联机空调系统及其控制方法
CN105371548A (zh) * 2015-12-11 2016-03-02 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
CN105485767A (zh) * 2015-12-22 2016-04-13 珠海格力电器股份有限公司 多联机空调系统和控制方法
CN109405317A (zh) * 2018-09-25 2019-03-01 青岛海尔空调电子有限公司 用于空调器的补气增焓管路系统
CN109798701A (zh) * 2019-03-21 2019-05-24 珠海格力电器股份有限公司 用于连续制热的空调控制系统、空调控制方法及空调
CN110173941A (zh) * 2019-06-21 2019-08-27 珠海格力电器股份有限公司 空调系统
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法
CN110836417A (zh) * 2019-11-18 2020-02-25 珠海格力电器股份有限公司 空调及空调控制方法
CN110966797A (zh) * 2019-12-10 2020-04-07 珠海格力电器股份有限公司 一种车辆热泵空调系统及其控制方法
CN210801718U (zh) * 2019-10-23 2020-06-19 珠海格力电器股份有限公司 可连续制热的空调
CN211551798U (zh) * 2019-11-18 2020-09-22 珠海格力电器股份有限公司 空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366992C (zh) * 2005-11-25 2008-02-06 珠海格力电器股份有限公司 低温空调热泵系统及使用该系统降低温度调节波动的方法
CN105091405A (zh) * 2015-07-22 2015-11-25 珠海格力电器股份有限公司 空调室外机及提高空调机组吸气量的方法
CN105509364B (zh) * 2016-02-02 2018-09-07 珠海格力电器股份有限公司 空调系统及喷气过热度调节方法
WO2019000868A1 (zh) * 2017-06-30 2019-01-03 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
CN109442788B (zh) * 2018-10-08 2021-02-23 珠海格力电器股份有限公司 空调的化霜方法和空调

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033117A (ja) * 1999-05-19 2001-02-09 Daikin Ind Ltd 冷凍装置
JP2008275249A (ja) * 2007-04-27 2008-11-13 Hitachi Appliances Inc 冷凍サイクル
CN102620463A (zh) * 2012-03-27 2012-08-01 美的集团有限公司 一种新型低温强热型多联机系统
CN203163329U (zh) * 2013-03-11 2013-08-28 广东美的制冷设备有限公司 空调器
CN104896785A (zh) * 2015-05-15 2015-09-09 广东美的暖通设备有限公司 一种喷气增焓多联机空调系统及其控制方法
CN105371548A (zh) * 2015-12-11 2016-03-02 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
CN105485767A (zh) * 2015-12-22 2016-04-13 珠海格力电器股份有限公司 多联机空调系统和控制方法
CN109405317A (zh) * 2018-09-25 2019-03-01 青岛海尔空调电子有限公司 用于空调器的补气增焓管路系统
CN109798701A (zh) * 2019-03-21 2019-05-24 珠海格力电器股份有限公司 用于连续制热的空调控制系统、空调控制方法及空调
CN110173941A (zh) * 2019-06-21 2019-08-27 珠海格力电器股份有限公司 空调系统
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法
CN210801718U (zh) * 2019-10-23 2020-06-19 珠海格力电器股份有限公司 可连续制热的空调
CN110836417A (zh) * 2019-11-18 2020-02-25 珠海格力电器股份有限公司 空调及空调控制方法
CN211551798U (zh) * 2019-11-18 2020-09-22 珠海格力电器股份有限公司 空调
CN110966797A (zh) * 2019-12-10 2020-04-07 珠海格力电器股份有限公司 一种车辆热泵空调系统及其控制方法

Also Published As

Publication number Publication date
CN110836417A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2021098317A1 (zh) 空调及空调控制方法
US11009270B2 (en) Heat pump air conditioning system and control method
US10443882B2 (en) Outside-air processing device and air-conditioning apparatus
WO2015188656A1 (zh) 双级压缩空调系统及其控制方法
US20180340700A1 (en) Variable refrigerant flow system
CN104534732B (zh) 空调器
WO2019134509A1 (zh) 室外机、空调系统及控制方法
CN111121353A (zh) 一种可提高换热性能的空调及其控制方法
CN104329824A (zh) 多联式空调系统及其控制方法
CN109186026B (zh) 空调系统及其控制方法
WO2020186906A1 (zh) 空调器化霜控制方法及空调器
CN104154673A (zh) 一种三管制热回收多联机系统的制冷方法及系统
WO2018076934A1 (zh) 空调及其制冷系统
CN104110776A (zh) 一种空调系统及其控制方法
CN203024273U (zh) 多联室内机及多联式空调系统
WO2022068281A1 (zh) 空调系统及其除霜控制方法、存储介质、控制装置
CN211551798U (zh) 空调
JP2015004482A (ja) 給湯及び空調システム
WO2022105605A1 (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
CN112594918B (zh) 空调换热系统及空调换热系统的控制方法
JP6675961B2 (ja) 冷房機能付きヒートポンプ給湯機
EP1983277A2 (en) Refrigeration cycle apparatus
WO2020057210A1 (zh) 一种热回收多联机冷暖切换装置、多联机及控制方法
CN211424782U (zh) 热氟除霜装置及空调机组
CN202734373U (zh) 一种带除霜功能的热泵空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889963

Country of ref document: EP

Kind code of ref document: A1