WO2022105605A1 - 热泵系统及其控制方法、装置以及空调设备、存储介质 - Google Patents

热泵系统及其控制方法、装置以及空调设备、存储介质 Download PDF

Info

Publication number
WO2022105605A1
WO2022105605A1 PCT/CN2021/128424 CN2021128424W WO2022105605A1 WO 2022105605 A1 WO2022105605 A1 WO 2022105605A1 CN 2021128424 W CN2021128424 W CN 2021128424W WO 2022105605 A1 WO2022105605 A1 WO 2022105605A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
heat exchanger
control valve
way valve
valve
Prior art date
Application number
PCT/CN2021/128424
Other languages
English (en)
French (fr)
Inventor
杨智峰
尤文超
戴永福
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP21893752.2A priority Critical patent/EP4166860A4/en
Priority to US18/015,571 priority patent/US20230250982A1/en
Publication of WO2022105605A1 publication Critical patent/WO2022105605A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes

Definitions

  • the present disclosure is based on the CN application number CN202011297044.7 with an application date of November 18, 2020, and claims its priority, and the disclosure content of this CN application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the technical field of heat pumps, and in particular, to a heat pump system and a control method and device thereof, as well as air conditioning equipment and a storage medium.
  • air-conditioning equipment such as a constant temperature and humidity machine
  • an electric heating function When using the constant temperature and humidity machine, when the indoor humidity is greater than the set humidity, and the indoor temperature is less than or equal to the set humidity, in order to avoid temperature overshoot, the electric heating function is activated, and the electric heating system performs indoor heating work.
  • the present disclosure provides a heat pump system and a control method and device thereof, as well as air conditioning equipment and a storage medium.
  • a heat pump system including: an indoor unit, an outdoor unit, and a valve assembly; the indoor unit includes: a compressor, a first control valve, a first indoor heat exchanger, and a second indoor heat exchanger
  • the valve assembly is respectively connected with the exhaust port and the suction port of the compressor, the first end of the second indoor heat exchanger, and the first end of the outdoor unit.
  • the second end of the heat exchanger is connected with the second end of the outdoor unit; the valve assembly is used to control the flow direction and on-off of the refrigerant to form a refrigerant circuit; the first end of the first indoor heat exchanger is connected to the The exhaust port of the compressor is connected, and the second end is communicated with the second connecting pipeline between the second end of the second indoor heat exchanger and the second end of the outdoor unit through the first connecting pipeline ; wherein, the first control valve is arranged in the pipeline between the first end of the first indoor heat exchanger and the exhaust port of the compressor.
  • the outdoor unit includes: at least two outdoor heat exchangers.
  • the outdoor unit includes: a first outdoor heat exchanger and a second outdoor heat exchanger; the valve assembly is respectively connected with the first end of the first outdoor heat exchanger and the second outdoor heat exchanger.
  • the first end of the heat exchanger is connected; the second end of the first outdoor heat exchanger and the second end of the second outdoor heat exchanger exchange heat with the second indoor through the second connecting pipeline connected to the second end of the device.
  • the valve assembly includes: a first four-way valve and a second four-way valve; a first port of the first four-way valve and a first port of the second four-way valve are respectively connected to the The exhaust port of the compressor is connected, the second port of the first four-way valve and the second port of the second four-way valve are respectively connected to the first end of the second indoor heat exchanger; the The third port of the first four-way valve is connected to the first end of the second outdoor heat exchanger, and the third port of the second four-way valve is connected to the first end of the first outdoor heat exchanger; The fourth port of the first four-way valve and the fourth port of the second four-way valve are connected to the suction port of the compressor.
  • the valve assembly further includes: a second control valve and a third control valve; between the second port of the first four-way valve and the first end of the second indoor heat exchanger
  • the second control valve is arranged in the pipeline of the second control valve; the third control valve is arranged in the pipeline between the second port of the second four-way valve and the first end of the second indoor heat exchanger Control valve.
  • the outdoor unit includes: a liquid storage tank; the second end of the first outdoor heat exchanger and the second end of the second outdoor heat exchanger are respectively connected with the second end of the liquid storage tank. One end is connected; a third throttling device is arranged in the pipeline between the second end of the first outdoor heat exchanger and the first end of the liquid storage tank, and a third throttling device is arranged in the second outdoor heat exchanger A fourth throttling device is arranged in the pipeline between the second end of the liquid storage tank and the first end of the liquid storage tank; the second end of the liquid storage tank is connected with the second connecting pipeline.
  • the indoor unit includes: a fifth throttling device; provided in a third connecting pipeline between the suction port of the compressor and the second end of the first indoor heat exchanger There is the fifth throttling device.
  • the indoor unit includes: two sixth throttling devices; the first end of one sixth throttling device is communicated with the third connecting pipeline, and the second end is connected with the first and fourth throttling devices.
  • the second port of the through valve is communicated with the pipeline between the second control valve; the first end of the other sixth throttling device is communicated with the third connecting pipeline, and the second end is connected with the pipeline located in the second control valve.
  • the second port of the two-four-way valve communicates with the pipeline between the third control valve.
  • a stop valve is respectively provided in the pipeline between the first end of the first outdoor heat exchanger and the first end of the first outdoor heat exchanger; a stop valve is provided in the second connecting pipeline.
  • the outdoor unit includes: a first outdoor fan system and a second outdoor fan system, wherein the first outdoor fan system and the first outdoor heat exchanger are located in a first air duct, the The second outdoor fan system and the second outdoor heat exchanger are located in the second air duct.
  • the indoor unit includes: an indoor side fan system; the indoor side fan system, the first indoor heat exchanger and the second indoor heat exchanger are located in the same air duct; wherein the The indoor side return air generated by the indoor side fan system passes through the second indoor heat exchanger and the first indoor heat exchanger in sequence, or passes through the first indoor heat exchanger and the second indoor heat exchanger in sequence.
  • a first throttling device is provided in the first connecting line, and a second throttling device is provided on the second connecting line.
  • a control method for a heat pump system which is applied to control the above heat pump system, including: determining an operation mode of the heat pump system; controlling the heat pump according to a preset control strategy and based on the operation mode The valve assembly in the system and the action of the first control valve of the indoor unit.
  • the operation mode when the operation mode is the dehumidification and reheating mode or the first heating mode, by controlling the action of the first control valve, the first indoor heat exchanger of the indoor unit can use For reheating the air; when the operation mode is the cooling/dehumidifying mode, the defrosting mode or the second heating mode, the action of the first control valve is controlled to make the first indoor exchange The heater stops reheating the air.
  • a heat pump system control method which is applied to control the above heat pump system, including: determining an operation mode of the heat pump system; controlling the heat pump system according to a preset control strategy and based on the operation mode Actions of the first four-way valve, the second four-way valve, the first control valve, the second control valve and the third control valve.
  • the operating modes include: a cooling/dehumidifying mode, a first heating mode, a second heating mode, a first dehumidifying and reheating mode, a second dehumidifying and reheating mode, a third dehumidifying and reheating mode, At least one of the first defrost mode and the second defrost mode.
  • the first port of the first four-way valve is controlled to communicate with the third port, and the second port is communicated with the fourth port; and the control of the The first port of the second four-way valve is communicated with the third port, and the second port is communicated with the fourth port; and the first control valve is controlled to be in a cut-off state, and the second control valve and the third control valve are controlled for the conduction state.
  • the first port of the first four-way valve is controlled to communicate with the third port, and the second port is communicated with the fourth port; and the control of the The first port of the second four-way valve is communicated with the third port, and the second port is communicated with the fourth port; and the first control valve, the second control valve and the third control valve are controlled to be turned on state.
  • the first port of the first four-way valve is controlled to communicate with the second port, and the third port is communicated with the fourth port; and the control of the The first port of the second four-way valve is communicated with the third port, and the second port is communicated with the fourth port; the first control valve and the third control valve are controlled to be in a conducting state, and the second control valve is controlled to be cut-off status.
  • the first port of the first four-way valve is controlled to communicate with the third port, and the second port is communicated with the fourth port; and the control of the The first port of the second four-way valve is communicated with the second port, and the third port is communicated with the fourth port; the first control valve and the second control valve are controlled to be in a conducting state, and the third control valve is controlled The valve is closed.
  • the first port of the first four-way valve when the operating mode is the first heating mode, is controlled to communicate with the second port, and the third port is communicated with the fourth port;
  • the first port of the two-four-way valve is communicated with the second port, and the third port is communicated with the fourth port;
  • the first control valve, the second control valve and the third control valve are controlled to be in a conducting state.
  • the first port of the first four-way valve when the operating mode is the second heating mode, is controlled to communicate with the second port, and the third port is communicated with the fourth port;
  • the first port of the two-four-way valve is communicated with the second port, and the third port is communicated with the fourth port;
  • the first control valve is controlled to be in a cut-off state, and the second control valve and the third control valve are controlled to be On state.
  • the first port of the first four-way valve when the operating mode is the first defrosting mode, is controlled to communicate with the third port, and the second port is communicated with the fourth port; and the first port is controlled to communicate with the third port.
  • the first port of the two-four-way valve is communicated with the second port, and the third port is communicated with the fourth port; the first control valve and the second control valve are controlled to be in a cut-off state, and the third control valve is controlled to be On state.
  • the first port of the first four-way valve is controlled to communicate with the second port, and the third port is communicated with the fourth port;
  • the first port of the two-four-way valve is communicated with the third port, and the second port is communicated with the fourth port;
  • the first control valve and the third control valve are controlled to be in the cut-off state, and the second control valve is controlled to be On state.
  • the first throttle device when the first control valve is in an off state, the first throttle device is controlled to be in a closed state.
  • a control apparatus for a heat pump system comprising: a memory; and a processor coupled to the memory, the processor configured to execute, based on instructions stored in the memory, method as described above.
  • an air-conditioning apparatus comprising: the heat pump system as described above, and a control device for the heat pump system as described above.
  • a computer-readable storage medium storing computer instructions, the instructions being executed by a processor to execute the method as described above.
  • FIG. 1 is a schematic structural diagram of some embodiments of a heat pump system provided according to the present disclosure
  • FIG. 2 is a schematic flowchart of some embodiments of a control method for a heat pump system provided according to the present disclosure
  • FIG. 3 is a schematic structural diagram of other embodiments of the heat pump system provided according to the present disclosure.
  • FIG. 4 is a schematic diagram of a refrigerant flow path of a heat pump system in a cooling/dehumidifying mode according to an embodiment provided by the present disclosure
  • FIG. 5 is a schematic flowchart of other embodiments of the control method of the heat pump system provided according to the present disclosure.
  • FIG. 6 is a schematic diagram of a refrigerant flow path of a heat pump system in a first dehumidification and reheating mode according to an embodiment provided by the present disclosure
  • FIG. 7 is a schematic diagram of a refrigerant flow path of a heat pump system in a second dehumidification and reheating mode according to an embodiment provided by the present disclosure
  • FIG. 8 is a schematic diagram of a refrigerant flow path of a heat pump system in a third dehumidification and reheating mode according to an embodiment provided by the present disclosure
  • FIG. 9 is a schematic diagram of a refrigerant flow path of a heat pump system in a first heating mode according to an embodiment provided by the present disclosure
  • FIG. 10 is a schematic diagram of a refrigerant flow path of a heat pump system in a second heating mode according to an embodiment provided by the present disclosure
  • FIG. 11 is a schematic diagram of a refrigerant flow path of a heat pump system in a first defrost mode according to an embodiment provided by the present disclosure
  • FIG. 12 is a schematic diagram of a refrigerant flow path of a heat pump system in a second defrost mode according to an embodiment provided by the present disclosure
  • FIG. 13 is a block schematic diagram of some embodiments of a control apparatus for a heat pump system provided in accordance with the present disclosure.
  • the inventors of the present disclosure found that the above-mentioned related art has the following problems: if the electric heating system is used for heating, the power consumption of the constant temperature and humidity machine will increase, and the energy efficiency will be reduced.
  • the present disclosure provides a heat pump system and its control method, device, air conditioning equipment, and storage medium.
  • Using the heat pump system to realize functions such as dehumidification and reheating, heating and heating, can realize heat recovery, dehumidification and reheating, and make the outlet air temperature.
  • Adjustable, no electric heating system is required, which can reduce energy consumption and improve energy-saving performance;
  • using double outdoor heat exchangers can realize asynchronous defrosting and the refrigerant entering the indoor heat exchanger during defrosting can maintain a high pressure state, which can maintain
  • the heat output on the indoor side reduces the large fluctuation of the indoor temperature caused by the non-heating of the indoor side heat exchanger during defrosting, and improves the user's experience.
  • the present disclosure provides a heat pump system including an indoor unit 100 , an outdoor unit 200 and a valve assembly 001 .
  • the indoor unit includes a compressor 01 , a first control valve 06 , a first indoor heat exchanger 08 and a second indoor heat exchanger 09 .
  • the valve assembly 001 is respectively connected with the exhaust port and the suction port of the compressor 01, the first end of the second indoor heat exchanger 09, and the first end of the outdoor unit 200, and the second end of the second indoor heat exchanger 09 is connected to the The second end of the outdoor unit 200 is connected.
  • the valve assembly 001 can be implemented in various ways.
  • the valve assembly 001 is used to control the flow direction and on-off of the refrigerant to form a refrigerant circuit. By controlling the action of the valve assembly 001, functions such as cooling and heating can be realized.
  • the first end of the first indoor heat exchanger 08 is connected to the exhaust port of the compressor 01, and the second end is connected to the second end of the second indoor heat exchanger 09 and the second end of the outdoor unit 200 through the first connecting pipeline 002.
  • the second connecting pipeline 003 between the ends is connected to the refrigerant circuit.
  • the first control valve 06 is provided in the pipeline between the first end of the first indoor heat exchanger 08 and the discharge port of the compressor 01 .
  • a first throttling device 12 is provided in the first connecting pipeline 001
  • a second throttling device 13 is provided on the second connecting pipeline 003 .
  • the first throttling device 12 and the second throttling device 13 may be electronic expansion valves or the like.
  • the first indoor heat exchanger 08 and the second indoor heat exchanger 09 may be various heat exchangers
  • the first control valve 06 may be various solenoid valves, ball valves, and the like.
  • the air usually sent out is relatively cool, and it needs to be reheated to supply the air.
  • electric heating is generally used to heat the air out.
  • the refrigerant output from the exhaust port of the compressor 01 can enter the first indoor heat exchanger 08, and the refrigerant output from the first indoor heat exchanger 08 passes through the first connecting pipeline 002 Entering the refrigerant circuit of the heat pump system, while retaining the basic functions of the heat pump system, when the indoor humidity is greater than the set humidity and the indoor temperature is less than or equal to the set humidity, in order to avoid temperature overshoot, the first indoor heat exchanger 08 is used to generate The heat of condensation is reheated to supply air.
  • the condensation heat generated by the first indoor heat exchanger 08 By using the condensation heat generated by the first indoor heat exchanger 08 to reheat the air, the air reheating function during dehumidification is realized, and the condensation heat generated by the first indoor heat exchanger 08 is used to realize the dehumidification and reheating function. Electric heating systems are more economical and energy efficient.
  • FIG. 2 is a schematic flowchart of some embodiments of a control method for a heat pump system provided according to the present disclosure, as shown in FIG. 2 :
  • Step 201 determining the operation mode of the heat pump system.
  • Step 203 according to the preset control strategy and the operation mode, control the valve components in the heat pump system and the actions of the first control valve of the indoor unit.
  • the operation mode includes at least one of a cooling/dehumidifying mode, a first heating mode, a second heating mode, a dehumidifying and reheating mode, a defrosting mode, and the like.
  • the control strategy can be set according to the design requirements. According to the control strategy and the operation mode, the valve assembly 001 in the heat pump system and the action of the first control valve 06 of the indoor unit are controlled to realize the cooling/dehumidification mode, the first heating mode, and the second heating mode. Heat mode, dehumidification reheat mode, defrost mode and other functions.
  • the action (conduction) of the first control valve 06 is controlled, so that the first indoor heat exchanger 08 of the indoor unit is used for The air is reheated.
  • the operation mode is the cooling/dehumidifying mode, the defrosting mode, and the second heating mode
  • the operation (closing) of the first control valve 06 is controlled to stop the operation of the first indoor heat exchanger 08 .
  • the condensation heat of the first indoor heat exchanger 08 may be used for reheating and air supply, or in the first heating mode, the condensation heat of the first indoor heat exchanger 08 may be used for heating.
  • the refrigerant output by the compressor 01 does not enter the first indoor heat exchanger 08, and the first indoor heat exchanger 08 stops working and does not generate condensation heat.
  • the outdoor unit 200 includes at least two outdoor heat exchangers, that is, the number of the outdoor heat exchangers is two or more, and the following description is made with the number of the outdoor heat exchangers being two.
  • the outdoor unit 200 includes a first outdoor heat exchanger 20 and a second outdoor heat exchanger 21 and a liquid storage tank 26 .
  • the valve assembly 001 is respectively connected to the first end of the first outdoor heat exchanger 20 and the first end of the second outdoor heat exchanger 21 .
  • the second end of the first outdoor heat exchanger 20 and the second end of the second outdoor heat exchanger 21 are connected to the second end of the second indoor heat exchanger 09 through a second connecting line 003 .
  • the first outdoor heat exchanger 20 and the second outdoor heat exchanger 21 may be various heat exchangers.
  • the outdoor unit 200 includes a first outdoor fan system 24 and a second outdoor fan system 25, the first outdoor fan system 24 and the first outdoor heat exchanger 20 are located in the first air duct, and the second outdoor fan system 25 exchanges heat with the second outdoor fan
  • the device 21 is located in the second air duct.
  • the first air duct and the second air duct are independent of each other.
  • the indoor unit 100 includes an indoor side fan system 07 .
  • the indoor side fan system 07, the first indoor heat exchanger 08 and the second indoor heat exchanger 09 are located in the same air duct, and the indoor side return air generated by the indoor side fan system 07 passes through the second indoor heat exchanger 09 and the first indoor side in turn.
  • the valve assembly includes a first four-way valve 02 and a second four-way valve 03 .
  • the first port D1 of the first four-way valve 02 and the first port D2 of the second four-way valve 03 are respectively connected to the exhaust port of the compressor 01, and the second port E1 of the first four-way valve 02 and the second four-way valve 02 are respectively connected
  • the second ports E2 of the valve 03 are respectively connected to the first ends of the second indoor heat exchangers 09 .
  • the third port C1 of the first four-way valve 02 is connected to the first end of the second outdoor heat exchanger 21, and the third port C2 of the second four-way valve 03 is connected to the first end of the first outdoor heat exchanger 20;
  • the fourth port S1 of the first four-way valve 02 and the fourth port S2 of the second four-way valve 03 are respectively connected to the suction ports of the compressor 01 .
  • the valve assembly also includes a second control valve 04 and a third control valve 05 .
  • the second control valve 04 and the third control valve 05 may be solenoid valves, ball valves, or the like.
  • a second control valve 04 is provided in the pipeline between the second port E1 of the first four-way valve 02 and the first end of the second indoor heat exchanger 09 .
  • a third control valve 05 is provided in the pipeline between the second port E2 of the second four-way valve 03 and the first end of the second indoor heat exchanger 09 respectively.
  • the refrigerant discharged from the exhaust port of the compressor 01 is divided into a first branch 60 and a second branch 61.
  • the first branch 60 is connected to the first end 40 of the first control valve 06, and the second branch
  • the path 61 is divided into two paths, the first path 62 is connected to the first port D1 of the first four-way valve 02 , and the second path 63 is connected to the first port D2 of the second four-way valve 03 .
  • the first control valve 06, the first indoor heat exchanger 08, and the first throttling device 12 are connected in series; the suction port of the compressor 01 is connected to the fourth port S1 of the first four-way valve 02 and the second four-way valve 03 respectively.
  • the fourth port S2 is connected.
  • the second port E1 of the first four-way valve 02 is connected to the first end 46 of the second control valve 04
  • the second port E2 of the second four-way valve 03 is connected to the first end 45 of the third control valve 05
  • the second The second end 47 of the control valve 04 and the second end 48 of the third control valve 05 are connected to the first end of the second indoor heat exchanger 09
  • the second end 48 of the third control valve 05 is connected to the second indoor heat exchanger
  • the connection point of 09 is g
  • the second indoor heat exchanger 09 and the second throttling device 13 are connected in series, the second port 50 of the first throttling device 12, the second port 51 of the second throttling device 13 and the stop valve 15 connected to port 52.
  • the first four-way valve 02 and the second four-way valve 03 When the first four-way valve 02 and the second four-way valve 03 are powered off, the first ports D1 and D2 of the first four-way valve 02 and the second four-way valve 03 communicate with the third ports C1 and C2 respectively, and the fourth The ports S1 and S2 are connected with the second ports E1 and E2 respectively; when the first four-way valve 02 and the second four-way valve 03 are powered on, the first ports of the first four-way valve 02 and the second four-way valve 03 D1 and D2 communicate with the second ports E1 and E2 respectively, and the fourth ports S1 and S2 communicate with the third ports C1 and C2 respectively.
  • the first control valve 06 , the second control valve 04 and the third control valve 05 are in a conducting state when powered on, and are in an off state when powered off.
  • the second end of the first outdoor heat exchanger 20 and the second end of the second outdoor heat exchanger 21 are respectively connected to the first end of the liquid storage tank 26; the second end of the first outdoor heat exchanger 20 is connected to the liquid storage tank 26.
  • a third throttling device 22 is arranged in the pipeline between the first ends of the tank 26 , and a third throttling device 22 is arranged in the pipeline between the second end of the second outdoor heat exchanger 21 and the first end of the liquid storage tank 26 .
  • the fourth throttling device 23; the second end of the liquid storage tank 26 is connected to the second connecting pipe 003.
  • the third throttling device 22 and the fourth throttling device 23 may be electronic expansion valves or the like.
  • the first outdoor heat exchanger 20 and the third throttling device 22 are connected in series, the second outdoor heat exchanger 21 and the fourth throttling device 23 are connected in series, and the port 70 of the third throttling device 22 and the port of the fourth throttling device 23 71 is connected to the first end 72 of the liquid storage tank 26 , and the second end 73 of the liquid storage tank 26 is connected to the port 74 of the shut-off valve 15 .
  • a fifth throttling device 10 is provided in the third connecting pipeline 004 between the suction port of the compressor 01 and the second end of the first indoor heat exchanger 08, and the fifth throttling device 10 may be a capillary tube or the like.
  • the fifth throttling device 10 is connected to the second port 53 of the first indoor heat exchanger 08 and the suction port of the compressor 01, and can switch the first indoor heat exchanger 08 to the low pressure side in the cooling/dehumidifying mode, and simultaneously The liquid refrigerant inside is discharged to avoid the problem of liquid storage in the first indoor heat exchanger 08 .
  • the sixth throttling device 11 may be a capillary tube or the like.
  • the first end of a sixth throttle device 11 is communicated with the third connecting pipeline 004, and the second end is communicated with the pipeline between the second port E1 of the first four-way valve 02 and the second control valve 04;
  • the first end of the other sixth throttle device 11 is communicated with the third connecting pipeline 004, and the second end is communicated with the pipeline between the second port E2 of the second four-way valve 03 and the third control valve 05 .
  • a sixth throttling device 11 is connected to the port 46 of the second control valve 04 and the suction port of the compressor 01, and can be discharged when the second control valve 04 is powered off (closed) in the second dehumidification and reheating mode.
  • the liquid refrigerant between the second port E1 of the first four-way valve 02 and the port 46 of the second control valve 04 avoids the problem of liquid slamming when the first four-way valve 02 is reversed.
  • the other sixth throttling device 11 is connected to the port 45 of the third control valve 05 and the suction port of the compressor 01.
  • the exhaust gas is discharged.
  • the liquid refrigerant traveling between the second port E2 of the second four-way valve 03 and the port 45 of the third control valve 05 avoids the problem of liquid slamming when the second four-way valve 03 is reversed.
  • FIG. 5 is a schematic flowchart of other embodiments of the control method of the heat pump system provided according to the present disclosure, as shown in FIG. 5 :
  • Step 501 determining the operation mode of the heat pump system.
  • Operation modes include cooling/dehumidification mode, first heating mode, second heating mode, first dehumidification and reheating mode, second dehumidification and reheating mode, third dehumidification and reheating mode, first defrosting mode, second dehumidification and reheating mode At least one of frost mode, etc.
  • Step 502 control the first four-way valve 02, the second four-way valve 03, the first control valve 06, the second control valve 04 and the third control valve 05 in the heat pump system according to the preset control strategy and the operation mode. action.
  • the first control valve 06 when the first control valve 06 is in a closed state, the first throttle device 12 is controlled to be in a closed state.
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the third port C1, and the second port E1 is communicated with the fourth port S1;
  • the first port D2 of the pass valve 03 is communicated with the third port C2, and the second port E2 is communicated with the fourth port S2; and the first control valve 06 is controlled to be in a cut-off state, and the second control valve 04 and the third control valve 05 are On state.
  • the refrigerant discharged from the exhaust port of the compressor 01 does not pass through the first indoor heat exchanger 08, and the first indoor heat exchanger 08 does not work.
  • the refrigerant discharged from the exhaust port of the compressor 01 passes through the first four-way valve 02, the cut-off valve 14, the second outdoor heat exchanger 21, the fourth throttling device 23, the liquid storage tank 26, the cut-off valve 15, the second section
  • the flow device 13 , the second indoor heat exchanger 09 , the first four-way valve 02 and the second four-way valve 03 are returned to the suction port of the compressor 01 .
  • the other refrigerant discharged from the exhaust port of the compressor 01 passes through the second four-way valve 03, the shut-off valve 14, the first outdoor heat exchanger 20, the third throttling device 22, the liquid storage tank 26, the shut-off valve 15, the second The throttle device 13 , the second indoor heat exchanger 09 , the first four-way valve 02 and the second four-way valve 03 return to the suction port of the compressor 01 .
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the third port C1, and the second port E1 is communicated with the fourth port S1;
  • the first port D2 of the two-four-way valve 03 is communicated with the third port C2, and the second port E2 is communicated with the fourth port S2; pass status.
  • the first refrigerant discharged from the exhaust port of the compressor 01 passes through the first indoor heat exchanger 08 and then passes through the first throttling device 12 and the second throttling device
  • the valve 13 enters the second indoor heat exchanger 09 .
  • the first indoor heat exchanger 08 generates condensation heat.
  • the second refrigerant discharged from the exhaust port of the compressor 01 passes through the first four-way valve 02, the shut-off valve 14, the second outdoor heat exchanger 21, the fourth throttling device 23, the liquid storage tank 26, the shut-off valve 15, the first The second throttling device 13 , the second indoor heat exchanger 09 , the first four-way valve 02 and the second four-way valve 03 return to the suction port of the compressor 01 .
  • the third-path refrigerant discharged from the exhaust port of the compressor 01 passes through the second four-way valve 03, the shut-off valve 14, the first outdoor heat exchanger 20, the third throttling device 22, the liquid storage tank 26, the shut-off valve 15, and the first outdoor heat exchanger 20.
  • the second throttling device 13 , the second indoor heat exchanger 09 , the first four-way valve 02 and the second four-way valve 03 return to the suction port of the compressor 01 .
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the second port E1, and the third port C1 is communicated with the fourth port S1;
  • the first port D2 of the two-four-way valve 03 is communicated with the third port C2, and the second port E2 is communicated with the fourth port S2;
  • the first control valve 06 and the third control valve 05 are controlled to be in a conducting state, and the second control valve 05 is controlled.
  • the valve 04 is in a closed state.
  • the first refrigerant discharged from the exhaust port of the compressor 01 passes through the first indoor heat exchanger 08, and then passes through the first throttling device 12 and the second throttling device.
  • the valve 13 enters the second indoor heat exchanger 09 .
  • the first indoor heat exchanger 08 generates condensation heat.
  • the second refrigerant discharged from the exhaust port of the compressor 01 passes through the second four-way valve 03, the shut-off valve 14, the first outdoor heat exchanger 20, the third throttling device 22, and the liquid storage tank 26; through the third throttling Part of the refrigerant output from the device 22 can pass through the fourth throttling device 23 , the second outdoor heat exchanger 21 , the shut-off valve 14 , and the first four-way valve 02 to return to the suction port of the compressor 01 .
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the third port C1 , and the second port E1 and the fourth port
  • the port S1 is communicated;
  • the first port D2 of the second four-way valve 03 is controlled to communicate with the second port E2, and the third port C2 is communicated with the fourth port S2;
  • the first control valve 06 and the second control valve 04 are controlled to be in a conducting state , and control the third control valve 05 to be in the cut-off state.
  • the first refrigerant discharged from the exhaust port of the compressor 01 passes through the first indoor heat exchanger 08 and then passes through the first throttling device 12 and the second throttling device
  • the valve 13 enters the second indoor heat exchanger 09 .
  • the first indoor heat exchanger 08 generates condensation heat.
  • the second refrigerant discharged from the exhaust port of the compressor 01 passes through the first four-way valve 02, the shut-off valve 14, the second outdoor heat exchanger 21, the fourth throttling device 23, and the liquid storage tank 26; the fourth throttling device Part of the refrigerant output from 23 can pass through the third throttling device 22 , the first outdoor heat exchanger 20 , and the second four-way valve 03 to return to the suction port of the compressor 01 .
  • dehumidification and reheating are achieved through the cooperation of the first indoor heat exchanger 08 and the second indoor heat exchanger 09, and the second indoor heat exchanger 09 is responsible for dehumidification and cooling, due to the indoor humidity load and cooling load.
  • the output of the heat pump system is adjusted based on the greater of the wet load and the cooling load.
  • the wet load is greater than the cooling load, it will cause the indoor temperature to overshoot (the current indoor ambient temperature is lower than the set temperature).
  • the first indoor exchange The heater 08 intervenes to adjust the cooling load, that is, to compensate for the excessive cooling capacity of the output, so that the indoor temperature matches the set value.
  • the humidity load is generally the humidification load, and the constant temperature and humidity machine has a special humidifier, which does not involve the operation of the indoor heat exchanger;
  • the heat load in winter is mainly composed of the first indoor heat exchanger 08 and the second indoor heat exchanger 09
  • the first indoor heat exchanger 08 can be operated
  • the second indoor heat exchanger 09 can be operated
  • the first indoor heat exchanger 08 and the second indoor heat exchanger can be operated.
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the second port E1, and the third port C1 is communicated with the fourth port S1;
  • the first port D2 of the four-way valve 03 communicates with the second port E2, and the third port C2 communicates with the fourth port S2;
  • the first control valve 06, the second control valve 04 and the third control valve 05 are controlled to be in a conducting state.
  • the first indoor heat exchanger 08 As shown in FIG. 9 , in the first heating mode, after the first refrigerant discharged from the exhaust port of the compressor 01 passes through the first indoor heat exchanger 08, it enters the storage tank through the first throttling device 12 and the shut-off valve 15. Tank 26. The first indoor heat exchanger 08 generates condensation heat.
  • the second refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the first four-way valve 02 , the second indoor heat exchanger 09 , the second throttle device 13 , and the shut-off valve 15 .
  • the third-path refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the second four-way valve 03 , the second indoor heat exchanger 09 , the second throttle device 13 , and the shut-off valve 15 .
  • One channel of refrigerant output from the liquid storage tank 26 passes through the fourth throttling device 23, the second outdoor heat exchanger 21, the stop valve 14, and the first four-way valve 02, and returns to the suction port of the compressor 01;
  • the other refrigerant passes through the third throttling device 22 , the first outdoor heat exchanger 20 , the shut-off valve 14 , and the second four-way valve 03 , and returns to the suction port of the compressor 01 .
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the second port E1, and the third port C1 is communicated with the fourth port S1;
  • the first port D2 of the four-way valve 03 is communicated with the second port E2, and the third port C2 is communicated with the fourth port S2;
  • the first control valve 06 is controlled to be in a cut-off state, and the second control valve 04 and the third control valve 05 are controlled for the conduction state.
  • the refrigerant discharged from the exhaust port of the compressor 01 does not pass through the first indoor heat exchanger 08, and the first indoor heat exchanger 08 does not operate.
  • the second refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the first four-way valve 02 , the second indoor heat exchanger 09 , the second throttle device 13 , and the shut-off valve 15 .
  • the third-path refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the second four-way valve 03 , the second indoor heat exchanger 09 , the second throttle device 13 , and the shut-off valve 15 .
  • One channel of refrigerant output from the liquid storage tank 26 passes through the fourth throttling device 23, the second outdoor heat exchanger 21, the stop valve 14, and the first four-way valve 02, and returns to the suction port of the compressor 01;
  • the other refrigerant passes through the third throttling device 22 , the first outdoor heat exchanger 20 , the shut-off valve 14 , and the second four-way valve 03 , and returns to the suction port of the compressor 01 .
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the third port C1, and the second port E1 is communicated with the fourth port S1;
  • the first port D2 of the four-way valve 03 is communicated with the second port E2, and the third port C2 is communicated with the fourth port S2;
  • the first control valve 06 and the second control valve 04 are controlled to be in a cut-off state, and the third control valve 05 is controlled for the conduction state.
  • the refrigerant discharged from the discharge port of the compressor 01 does not pass through the first indoor heat exchanger 08, and the first indoor heat exchanger 08 does not operate.
  • the first refrigerant discharged from the exhaust port of the compressor 01 passes through the third throttling device 22,
  • the first outdoor heat exchanger 20, the shut-off valve 14, and the second four-way valve 03 are returned to the suction port of the compressor 01 to be defrosted.
  • the second refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the second four-way valve 03, the second indoor heat exchanger 09, the second throttle device 13, and the shut-off valve 15, and the liquid storage tank 26 outputs
  • the refrigerant passes through the third throttling device 22, the first outdoor heat exchanger 20, the shut-off valve 14, and the second four-way valve 03, and returns to the suction port of the compressor 01.
  • the first port D1 of the first four-way valve 02 is controlled to communicate with the second port E1, and the third port C1 is communicated with the fourth port S1;
  • the first port D2 of the four-way valve 03 is communicated with the third port C2, and the second port E2 is communicated with the fourth port S2;
  • the first control valve 06 and the third control valve 05 are controlled to be in a cut-off state, and the second control valve 04 is controlled for the conduction state.
  • the refrigerant discharged from the discharge port of the compressor 01 does not pass through the first indoor heat exchanger 08, and the first indoor heat exchanger 08 does not operate.
  • the first refrigerant discharged from the exhaust port of the compressor 01 passes through the fourth throttling device 23.
  • the second outdoor heat exchanger 21, the shut-off valve 14, and the first four-way valve 04 return to the suction port of the compressor 01 to perform defrosting treatment.
  • the second refrigerant discharged from the exhaust port of the compressor 01 enters the liquid storage tank 26 through the first four-way valve 02 , the second indoor heat exchanger 09 , the second throttle device 13 , and the shut-off valve 15 .
  • the refrigerant output from the liquid storage tank 26 passes through the fourth throttling device 23 , the second outdoor heat exchanger 21 , the shut-off valve 14 , and the first four-way valve 04 , and returns to the suction port of the compressor 01 .
  • the system when there is a cooling load or a humidity load in the room, the system first enters the cooling/dehumidifying mode, and the cooling load can be characterized by the functional relationship between the indoor ambient temperature and the set temperature, and the indoor humidity content can be used to characterize the cooling load.
  • a functional relationship of the difference from the set moisture content characterizes the moisture load.
  • the number of steps of the first throttling device 12 is increased, and the The heat exchange of the first indoor heat exchanger 08; if the heat exchange of the first indoor heat exchanger 08 is the largest (the heat exchange of the first outdoor heat exchanger 20 and the second outdoor heat exchanger 21 is minimized), still If the indoor heat load requirement is not met (the current indoor temperature is lower than the preset temperature), the second dehumidification and reheating mode or the third dehumidification and reheating mode is entered; the compressor 01 increases the capacity output and further increases the first indoor heat exchanger 08 The heat exchange is switched to the first outdoor heat exchanger 20 or the second outdoor heat exchanger 21 on the low pressure side, and the flow rate of the low pressure side output by the compressor 01 is divided, so as to maintain the heat exchange of the second indoor heat exchanger 09 Stay the same, keep humidity control stable.
  • the first heating mode or the second heating mode is entered, and the first defrosting mode or the second defrosting mode is triggered according to the condition corresponding to whether the outdoor heat exchanger needs to be defrosted.
  • the heat pump system uses double outdoor heat exchangers, and the first defrost mode and the second defrost mode can be used to achieve asynchronous defrosting, and the indoor heat exchanger still maintains a high pressure state during defrosting, maintaining the heat output of the indoor side and reducing the heat.
  • the small ordinary heat pump air conditioner defrosts, the indoor temperature fluctuates greatly due to the non-heating of the indoor heat exchanger.
  • the first control table corresponding to the operation mode of the heat pump system and the component control state is shown in Table 1 below:
  • Table 1 First control table of operating modes and component control states
  • the state of the components of the heat pump system can be controlled according to the operation mode, and the corresponding functions can be realized.
  • the components include the first throttle device 12, the second throttle device 13, and the third throttle device. device 22 and fourth throttling device 23 and so on.
  • Adjustment mode strategies for components can be set for different operation modes; when the heat pump system operates in different operation modes, the components are adjusted accordingly according to the adjustment mode strategies.
  • the output of the compressor 01 can be adjusted, the number of revolutions (the number of revolutions is the number of revolutions per unit time) can be adjusted for the indoor side fan system 07, the first outdoor fan system 24, and the second outdoor fan system 25, and the second throttle can be adjusted.
  • the opening of the device 13, the third throttling device 22, and the fourth throttling device 23 is adjusted; in the first dehumidification and reheating mode, the second dehumidification and reheating mode, and the third dehumidification and reheating mode, the first throttling can be The opening of the device 12 is adjusted; in the first heating mode, the second heating mode, the first defrosting mode and the second defrosting mode, the output of the compressor 01 can be adjusted, and the indoor side fan system 07 can be rotated.
  • Number adjustment, the opening of the second throttling device 13, the third throttling device 22, and the fourth throttling device 23 can be adjusted; in the first heating mode, the opening of the first throttling device 12 can be adjusted; In the first heating mode, the second heating mode and the first defrosting mode, the number of revolutions of the first outdoor fan system 24 can be adjusted; in the first heating mode, the second heating mode and the second defrosting mode In the mode, the number of revolutions of the second outdoor fan system 25 can be adjusted.
  • FIG. 13 is a block schematic diagram of some embodiments of a control apparatus for a heat pump system provided in accordance with the present disclosure.
  • the apparatus may include a memory 131 , a processor 132 , a communication interface 133 , and a bus 134 .
  • the memory 131 is used for storing instructions
  • the processor 132 is coupled to the memory 131
  • the processor 132 is configured to execute the control method for implementing the heat pump system in any of the above embodiments based on the instructions stored in the memory 131 .
  • the memory 131 may be a high-speed RAM memory, a non-volatile memory, or the like, and the memory 131 may also be a memory array.
  • the storage 131 may also be divided into blocks, and the blocks may be combined into virtual volumes according to certain rules.
  • the processor 132 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the control method of the heat pump system of the present disclosure.
  • the present disclosure provides an air conditioning apparatus including the heat pump system as in any of the above embodiments, and a control device for the heat pump system as in any of the above embodiments.
  • the air conditioning equipment may be a heat pump type constant temperature and humidity machine or the like.
  • the present disclosure provides a computer-readable storage medium storing computer instructions that, when executed by a processor, implement the control method of the heat pump system in any of the above embodiments.
  • the heat pump system and its control method, device, air conditioning equipment, and storage medium provided by the above-mentioned embodiments use the heat pump system to realize functions such as dehumidification and reheating, heating and heating, etc. by using condensation heat, which can realize heat recovery, dehumidification and reheating, and make the outlet air temperature adjustable. It does not need to use an electric heating system, which can reduce energy consumption and improve energy-saving performance; use dual outdoor heat exchangers to achieve asynchronous defrosting, and the indoor heat exchanger can maintain a high pressure state during defrosting, which can maintain indoor heat output. , reduce the large fluctuation of indoor temperature caused by the indoor heat exchanger not heating during defrosting, and improve the user's experience.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • computer-usable non-transitory storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the methods and systems of the present disclosure may be implemented in many ways.
  • the methods and systems of the present disclosure may be implemented in software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above-described order of steps of the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above unless specifically stated otherwise.
  • the present disclosure can also be implemented as programs recorded in a recording medium, the programs including machine-readable instructions for implementing methods according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种热泵系统及其控制方法、装置以及空调设备、存储介质,涉及热泵技术领域,在该热泵系统中:阀门组件(001)分别与压缩机(01)的排气口和吸气口、第二室内换热器(09)的第一端、室外机(200)的第一端连接,第二室内换热器(09)的第二端与室外机(200)的第二端连接;阀门组件(001)用于控制冷媒的流向和通断,形成冷媒回路;第一室内换热器(08)的第一端与压缩机(01)的排气口连接,第二端通过第一连接管路(002)与第二室内换热器(09)的第二端和室外机(200)的第二端之间的第二连接管路(003)相连通;第一控制阀(06)设置在第一室内换热器(08)的第一端与压缩机(01)的排气口之间的管路中。该系统、方法、装置、空调设备以及存储介质,不需使用电加热系统,能够降低能耗,提升节能性能,提高用户的使用感受度。

Description

热泵系统及其控制方法、装置以及空调设备、存储介质
相关申请的交叉引用
本公开是以CN申请号为CN202011297044.7申请日为2020年11月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及热泵技术领域,尤其涉及一种热泵系统及其控制方法、装置以及空调设备、存储介质。
背景技术
目前,空调设备,例如恒温恒湿机等,通常都配置有电加热功能。在恒温恒湿机使用时,当室内湿度大于设定湿度,且室内温度小于或等于设定湿度时,为避免温度超调,启动电加热功能,电加热系统进行室内加热工作。
发明内容
本公开提供一种热泵系统及其控制方法、装置以及空调设备、存储介质。
根据本公开的第一方面,提供一种热泵系统,包括:室内机、室外机和阀门组件;所述室内机包括:压缩机、第一控制阀、第一室内换热器和第二室内换热器;所述阀门组件分别与所述压缩机的排气口和吸气口、所述第二室内换热器的第一端、所述室外机的第一端连接,所述第二室内换热器的第二端与所述室外机的第二端连接;所述阀门组件用于控制冷媒的流向和通断,形成冷媒回路;所述第一室内换热器的第一端与所述压缩机的排气口连接,第二端通过第一连接管路与所述第二室内换热器的第二端和所述室外机的第二端之间的第二连接管路相连通;其中,所述第一控制阀设置在所述第一室内换热器的第一端与所述压缩机的排气口之间的管路中。
在一些实施例中,所述室外机包括:至少两个室外换热器。
在一些实施例中,所述室外机包括:第一室外换热器和第二室外换热器;所述阀门组件分别与所述第一室外换热器的第一端、所述第二室外换热器的第一端连接;所述第一室外换热器的第二端和所述第二室外换热器的第二端通过所述第二连接管路与所述第二室内换热器的第二端连接。
在一些实施例中,所述阀门组件包括:第一四通阀和第二四通阀;所述第一四通阀的第一端口和所述第二四通阀的第一端口分别与所述压缩机的排气口连接,所述第一四通阀的第二端口和所述第二四通阀的第二端口分别与所述第二室内换热器的第一端连接;所述第一四通阀的第三端口和所述第二室外换热器的第一端连接,所述第二四通阀的第三端口与所述第一室外换热器的第一端连接;所述第一四通阀的第四端口和所述第二四通阀的第四端口与所述压缩机的吸气口连接。
在一些实施例中,所述阀门组件还包括:第二控制阀和第三控制阀;在所述第一四通阀的第二端口与所述第二室内换热器的第一端之间的管路中设置有所述第二控制阀;在所述第二四通阀的第二端口与所述第二室内换热器的第一端之间的管路中设置有所述第三控制阀。
在一些实施例中,所述室外机包括:储液罐;所述第一室外换热器的第二端和所述第二室外换热器的第二端分别与所述储液罐的第一端连接;在所述第一室外换热器的第二端与所述储液罐的第一端之间的管路中设置有第三节流装置,在所述第二室外换热器的第二端与所述储液罐的第一端之间的管路中设置有第四节流装置;所述储液罐的第二端与所述第二连接管道连接。
在一些实施例中,所述室内机包括:第五节流装置;在所述压缩机的吸气口与所述第一室内换热器的第二端之间的第三连接管路中设置有所述第五节流装置。
在一些实施例中,所述室内机包括:两个第六节流装置;一个第六节流装置的第一端与所述第三连接管路连通,第二端与位于所述第一四通阀的第二端口与所述第二控制阀之间的管路相连通;另一个第六节流装置的第一端与所述第三连接管路连通,第二端与位于所述第二四通阀的第二端口与所述第三控制阀之间的管路相连通。
在一些实施例中,在所述第一四通阀的第三端口和所述第二室外换热器的第一端之间的管路中、在所述第二四通阀的第三端口与所述第一室外换热器的第一端之间的管路中分别设置有截止阀;在所述第二连接管路中设置有截止阀。
在一些实施例中,所述室外机包括:第一室外风机系统和第二室外风机系统,其中,所述第一室外风机系统与所述第一室外换热器位于第一风道内,所述第二室外风机系统与所述第二室外换热器位于处于第二风道内。
在一些实施例中,所述室内机包括:室内侧风机系统;所述室内侧风机系统、所述第一室内换热器和所述第二室内换热器位于同一风道内;其中,所述室内侧风机系 统产生的室内侧回风依次经过所述第二室内换热器和所述第一室内换热器,或者依次经过第一室内换热器和所述第二室内换热器。
在一些实施例中,在所述第一连接管路中设置有第一节流装置,在所述第二连接管路上设置有第二节流装置。
根据本公开的第二方面,提供一种热泵系统的控制方法,应用于控制如上的热泵系统,包括:确定热泵系统的运行模式;根据预设的控制策略并基于所述运行模式控制所述热泵系统中的阀门组件以及室内机的第一控制阀的动作。
在一些实施例中,当所述运行模式为除湿再热模式或第一制热模式时,通过控制所述第一控制阀的动作,以使所述室内机的所述第一室内换热器用于对空气进行再热;在所述运行模式为制冷/除湿模式、化霜模式或第二制热模式的情况下,通过控制所述第一控制阀的动作,以使所述第一室内换热器停止对空气进行再热。
根据本公开的第三方面,提供一种热泵系统控制方法,应用于控制如上的热泵系统,包括:确定热泵系统的运行模式;根据预设的控制策略并基于所述运行模式控制所述热泵系统中的第一四通阀、第二四通阀、第一控制阀、第二控制阀和第三控制阀的动作。
在一些实施例中,所述运行模式包括:制冷/除湿模式、第一制热模式、第二制热模式、第一除湿再热模式、第二除湿再热模式、第三除湿再热模式、第一化霜模式、第二化霜模式中的至少一种。
在一些实施例中,当所述运行模式为所述制冷/除湿模式时,控制所述第一四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制所述第二四通阀的第一端口与第三端口连通、第二端口与第四端口连通;并且,控制所述第一控制阀为截止状态、所述第二控制阀和所述第三控制阀为导通状态。
在一些实施例中,当所述运行模式为第一除湿再热模式时,控制所述第一四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制所述第二四通阀的第一端口与第三端口连通、第二端口与第四端口连通;并且,控制所述第一控制阀、所述第二控制阀和所述第三控制阀为导通状态。
在一些实施例中,当所述运行模式为第二除湿再热模式时,控制所述第一四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第二四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制第一控制阀、所述第三控制阀为导通状态,并且控制所述第二控制阀为截止状态。
在一些实施例中,当所述运行模式为第三除湿再热模式时,控制所述第一四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制所述第二四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第一控制阀、所述第二控制阀为导通状态,并且控制所述第三控制阀为截止状态。
在一些实施例中,当所述运行模式为第一制热模式时,控制所述第一四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第二四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第一控制阀、所述第二控制阀和所述第三控制阀为导通状态。
在一些实施例中,当所述运行模式为第二制热模式时,控制所述第一四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第二四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第一控制阀为截止状态,并且控制所述第二控制阀和所述第三控制阀为导通状态。
在一些实施例中,当所述运行模式为第一化霜模式时,控制所述第一四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制所述第二四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第一控制阀和所述第二控制阀为截止状态,并且控制所述第三控制阀为导通状态。
在一些实施例中,当所述运行模式为第二化霜模式时,控制所述第一四通阀的第一端口与第二端口连通、第三端口与第四端口连通;控制所述第二四通阀的第一端口与第三端口连通、第二端口与第四端口连通;控制所述第一控制阀和所述第三控制阀为截止状态,并且控制所述第二控制阀为导通状态。
在一些实施例中,当所述第一控制阀为截止状态时,控制第一节流装置为关闭状态。
根据本公开的第四方面,提供一种热泵系统的控制装置,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如上所述的方法。
根据本公开的第五方面,提供一种空调设备,包括:如上所述的热泵系统,以及如上的热泵系统的控制装置。
根据本公开的第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如上所述的方法。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开提供的热泵系统的一些实施例的结构示意图;
图2为根据本公开提供的热泵系统的控制方法的一些实施例的流程示意图;
图3为根据本公开提供的热泵系统的另一些实施例的结构示意图;
图4为根据本公开提供的实施例的在制冷/除湿模式下的热泵系统冷媒流路示意图;
图5为根据本公开提供的热泵系统的控制方法的另一些实施例的流程示意图;
图6为根据本公开提供的实施例的在第一除湿再热模式下的热泵系统冷媒流路示意图;
图7为根据本公开提供的实施例的在第二除湿再热模式下的热泵系统冷媒流路示意图;
图8为根据本公开提供的实施例的在第三除湿再热模式下的热泵系统冷媒流路示意图;
图9为根据本公开提供的实施例的在第一制热模式下的热泵系统冷媒流路示意图;
图10为根据本公开提供的实施例的在第二制热模式下的热泵系统冷媒流路示意图;
图11为根据本公开提供的实施例的在第一化霜模式下的热泵系统冷媒流路示意图;
图12为根据本公开提供的实施例的在第二化霜模式下的热泵系统冷媒流路示意图;
图13为根据本公开提供的热泵系统的控制装置的一些实施例的模块示意图。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施 例仅仅用以解释本公开,并不用于限定本公开。
由此,本说明书中所指出的一个特征将用于说明本公开的一个实施方式的其中一个特征,而不是暗示本公开的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
下面结合附图以及实施例对本公开的原理及结构进行详细说明。
本公开的发明人发现上述相关技术中存在如下问题:如果使用电加热系统进行加热,则会使恒温恒湿机的耗电增加,能效降低。
鉴于此,本公开提供了一种热泵系统及其控制方法、装置以及空调设备、存储介质,使用热泵系统实现除湿再热、制热升温等功能,可以实现热回收除湿再热并且使出风温度可调,不需使用电加热系统,能够降低能耗,提升节能性能;使用双室外侧换热器,可以实现异步化霜且化霜时进入室内侧换热器的冷媒保持高压状态,能够保持室内侧热量输出,减小化霜时因室内侧换热器不制热导致的室内温度大幅波动,提高用户的使用感受度。
在一些实施例中,如图1所示,本公开提供一种热泵系统,包括室内机100、室外机200和阀门组件001。室内机包括压缩机01、第一控制阀06、第一室内换热器08和第二室内换热器09。
阀门组件001分别与压缩机01的排气口和吸气口、第二室内换热器09的第一端、室外机200的第一端连接,第二室内换热器09的第二端与室外机200的第二端连接。阀门组件001可以有多种实现方式,阀门组件001用于控制冷媒的流向和通断,形成冷媒回路,通过控制阀门组件001的动作能够实现制冷、制热等功能。
第一室内换热器08的第一端与压缩机01的排气口连接,第二端通过第一连接管路002与第二室内换热器09的第二端和室外机200的第二端之间的第二连接管路003相连通,接入冷媒回路。第一控制阀06设置在第一室内换热器08的第一端与压缩机01的排气口之间的管路中。
在第一连接管路001中设置有第一节流装置12,在第二连接管路003上设置有第二节流装置13。第一节流装置12和第二节流装置13可以为电子膨胀阀等。第一室内换热器08和第二室内换热器09可以为多种换热器,第一控制阀06可以为多种电磁阀、球阀等。
热泵系统在除湿功能下通常送出的风比较凉,需要再热送风,现在有技术中一般采用电加热的方式对出风进行加热。通过控制第一控制阀06的导通或截止,压缩机01的排气口输出的冷媒可以进入第一室内换热器08,第一室内换热器08输出的冷媒通过第一连接管路002进入热泵系统的冷媒回路,在保留热泵系统的基本功能的同时,当室内湿度大于设定湿度,且室内温度小于等于设定湿度时,为避免温度超调,利用第一室内换热器08产生的冷凝热进行再热送风。通过利用第一室内换热器08产生的冷凝热对空气进行再热,实现除湿时的空气再热功能,使用第一室内换热器08产生的冷凝热来实现除湿再热功能,相比于电加热系统更加经济和节能。
图2为根据本公开提供的热泵系统的控制方法的一些实施例的流程示意图,如图2所示:
步骤201,确定热泵系统的运行模式。
步骤203,根据预设的控制策略并基于运行模式控制热泵系统中阀门组件以及室内机的第一控制阀的动作。
运行模式包括制冷/除湿模式、第一制热模式、第二制热模式、除湿再热模式、化霜模式等中的至少一种。控制策略可以根据设计需求进行设置,根据控制策略并基于运行模式控制热泵系统中阀门组件001以及室内机的第一控制阀06的动作,实现制冷/除湿模式、第一制热模式、第二制热模式、除湿再热模式、化霜模式等功能。
在一些实施例中,当运行模式为除湿再热、第一制热模式时,通过控制第一控制阀06的动作(导通),以使室内机的第一室内换热器08用于对空气再热。在运行模式为制冷/除湿模式、化霜模式、第二制热模式的情况下,通过控制第一控制阀06的动作(关闭),以使第一室内换热器08停止工作。
在除湿再热模式下,可以利用第一室内换热器08的冷凝热进行再热送风,或者在第一制热模式下,也可以利用第一室内换热器08的冷凝热进行加热。在制冷/除湿模式、化霜模式、第二制热模式等模式下,压缩机01输出的冷媒不进入第一室内换热器08,第一室内换热器08停止工作,不产生冷凝热。
在一些实施例中,室外机200包括至少两个室外换热器,即室外换热器的数量为两个或两个以上,下面以室外换热器的数量为两个进行说明。如图3所示,室外机200包括第一室外换热器20和第二室外换热器21和储液罐26。阀门组件001分别与第一室外换热器20的第一端、第二室外换热器21的第一端连接。第一室外换热器20的第二端和第二室外换热器21的第二端通过第二连接管路003与第二室内换热器09的 第二端连接。第一室外换热器20和第二室外换热器21可以为多种换热器。
室外机200包括第一室外风机系统24和第二室外风机系统25,第一室外风机系统24与第一室外换热器20位于第一风道内,第二室外风机系统25与第二室外换热器21位于处于第二风道内。第一风道和第二风道相互独立。
室内机100包括室内侧风机系统07。室内侧风机系统07、第一室内换热器08和第二室内换热器09位于同一风道内,室内侧风机系统07产生的室内侧回风依次经过第二室内换热器09和第一室内换热器07。
在一些实施例中,如图4所示,阀门组件包括第一四通阀02和第二四通阀03。第一四通阀02的第一端口D1和第二四通阀03的第一端口D2分别与压缩机01的排气口连接,第一四通阀02的第二端口E1和第二四通阀03的第二端口E2分别与第二室内换热器09的第一端连接。
第一四通阀02的第三端口C1和第二室外换热器21的第一端连接,第二四通阀03的第三端口C2与第一室外换热器20的第一端连接;第一四通阀02的第四端口S1和第二四通阀03的第四端口S2分别与压缩机01的吸气口连接。
阀门组件还包括第二控制阀04和第三控制阀05。第二控制阀04和第三控制阀05可以是电磁阀、球阀等。在第一四通阀02的第二端口E1与第二室内换热器09的第一端之间的管路中设置有第二控制阀04。在第二四通阀03的第二端口E2分别与第二室内换热器09的第一端之间的管路中设置有第三控制阀05。在第一四通阀02的第三端口C1和第二室外换热器21的第一端之间的管路中、第二四通阀03的第三端口C2与第一室外换热器20的第一端之间的管路中分别设置有截止阀14。在第二连接管路003中设置有截止阀15。
如图4所示,压缩机01的排气口排出的冷媒分成第一支路60和第二支路61,第一支路60与第一控制阀06的第一端40相连,第二支路61分成二路,第一路62与第一四通阀02的第一端口D1相连,第二路63与第二四通阀03的第一端口D2相连。第一控制阀06、第一室内换热器08、第一节流装置12串联;压缩机01的吸气口分别与第一四通阀02的第四端口S1和第二四通阀03的第四端口S2相连。
第一四通阀02的第二端口E1与第二控制阀04的第一端46相连,第二四通阀03的第二端口E2与第三控制阀05的第一端45相连,第二控制阀04的第二端47、第三控制阀05的第二端48与第二室内换热器09的第一端相连,第三控制阀05的第二端48和第二室内换热器09的连接点为g,第二室内换热器09和第二节流装置13串联, 第一节流装置12的第二端口50、第二节流装置13的第二端口51与截止阀15的端口52相连。
当第一四通阀02和第二四通阀03掉电时,第一四通阀02和第二四通阀03的第一端口D1,D2分别和第三端口C1,C2连通、第四端口S1,S2分别和第二端口E1,E2端连通;当第一四通阀02和第二四通阀03得电时,第一四通阀02和第二四通阀03的第一端口D1,D2分别和第二端口E1,E2连通、第四端口S1,S2分别和第三端口C1,C2连通。第一控制阀06、第二控制阀04和第三控制阀05通电时为导通状态,掉电时为截止状态。
第一室外换热器20的第二端和第二室外换热器21的第二端分别与储液罐26的第一端连接;在第一室外换热器20的第二端与储液罐26的第一端之间的管路中设置有第三节流装置22,在第二室外换热器21的第二端与储液罐26的第一端之间的管路中设置有第四节流装置23;储液罐26的第二端与第二连接管道003连接。第三节流装置22和第四节流装置23可以为电子膨胀阀等。
第一室外换热器20和第三节流装置22串联,第二室外换热器21和第四节流装置23串联,第三节流装置22的端口70和第四节流装置23的端口71和储液罐26的第一端72连接,储液罐26的第二端73和截止阀15的端口74连接。
在压缩机01的吸气口与第一室内换热器08的第二端之间的第三连接管路004中设置有第五节流装置10,第五节流装置10可以为毛细管等。第五节流装置10连接第一室内换热器08的第二端口53和压缩机01的吸气口,可以在制冷/除湿模式时,将第一室内换热器08切换至低压侧,同时排走里面的液态制冷剂,避免第一室内换热器08存液的问题。
设置两个第六节流装置11,第六节流装置11可以为毛细管等。一个第六节流装置11的第一端与第三连接管路004连通,第二端与位于第一四通阀02的第二端口E1与第二控制阀04之间的管路相连通;另一个第六节流装置11的第一端与第三连接管路004连通,第二端与位于第二四通阀03的第二端口E2与第三控制阀05之间的管路相连通。
一个第六节流装置11连接第二控制阀04的端口46和压缩机01的吸气口,可以在第二除湿再热模式时,当第二控制阀04掉电(关闭)后,排走在第一四通阀02的第二端口E1至第二控制阀04的端口46之间的液态制冷剂,避免第一四通阀02换向时的液击问题。
另一个第六节流装置11连接第三控制阀05的端口45和压缩机01的吸气口,可以在第三除湿再热模式时,当第三控制阀05掉电(关闭)后,排走在第二四通阀03的第二端口E2至第三控制阀05的端口45之间的液态制冷剂,避免第二四通阀03换向时的液击问题。
图5为根据本公开提供的热泵系统的控制方法的另一些实施例的流程示意图,如图5所示:
步骤501,确定热泵系统的运行模式。运行模式包括制冷/除湿模式、第一制热模式、第二制热模式、第一除湿再热模式、第二除湿再热模式、第三除湿再热模式、第一化霜模式、第二化霜模式等中的至少一种。
步骤502,根据预设的控制策略并基于运行模式控制热泵系统中的第一四通阀02、第二四通阀03、第一控制阀06、第二控制阀04和第三控制阀05的动作。其中,当第一控制阀06为截止状态时,控制第一节流装置12为关闭状态。
在一些实施例中,当运行模式为制冷/除湿模式时,控制第一四通阀02的第一端口D1与第三端口C1连通、第二端口E1与第四端口S1连通;控制第二四通阀03的第一端口D2与第三端口C2连通、第二端口E2与第四端口S2连通;并且,控制第一控制阀06为截止状态、第二控制阀04和第三控制阀05为导通状态。
如图4所示,在制冷/除湿模式下,压缩机01的排气口排出的冷媒不通过第一室内换热器08,第一室内换热器08不进行工作。压缩机01的排气口排出的一路冷媒通过第一四通阀02、截止阀14、第二室外换热器21、第四节流装置23、储液罐26、截止阀15、第二节流装置13、第二室内换热器09、第一四通阀02和第二四通阀03,返回至压缩机01的吸气口。
压缩机01的排气口排出的另一路冷媒通过第二四通阀03、截止阀14、第一室外换热器20、第三节流装置22、储液罐26、截止阀15、第二节流装置13、第二室内换热器09、第一四通阀02和第二四通阀03,返回至压缩机01的吸气口。
在一些实施例中,当运行模式为第一除湿再热模式时,控制第一四通阀02的第一端口D1与第三端口C1连通、第二端口E1与第四端口S1连通;控制第二四通阀03的第一端口D2与第三端口C2连通、第二端口E2与第四端口S2连通;并且,控制第一控制阀06、第二控制阀04和第三控制阀05为导通状态。
如图6所示,在第一除湿再热模式下,压缩机01的排气口排出的第一路冷媒通过第一室内换热器08后,通过第一节流装置12、第二节流阀13进入第二室内换热器 09。第一室内换热器08产生冷凝热。
压缩机01的排气口排出的第二路冷媒通过第一四通阀02、截止阀14、第二室外换热器21、第四节流装置23、储液罐26、截止阀15、第二节流装置13、第二室内换热器09、第一四通阀02和第二四通阀03,返回至压缩机01的吸气口。
压缩机01的排气口排出的第三路冷媒通过第二四通阀03、截止阀14、第一室外换热器20、第三节流装置22、储液罐26、截止阀15、第二节流装置13、第二室内换热器09、第一四通阀02和第二四通阀03,返回至压缩机01的吸气口。
在一些实施例中,当运行模式为第二除湿再热模式时,控制第一四通阀02的第一端口D1与第二端口E1连通、第三端口C1与第四端口S1连通;控制第二四通阀03的第一端口D2与第三端口C2连通、第二端口E2与第四端口S2连通;控制第一控制阀06、第三控制阀05为导通状态,并且控制第二控制阀04为截止状态。
如图7所示,在第二除湿再热模式下,压缩机01的排气口排出的第一路冷媒通过第一室内换热器08后,通过第一节流装置12、第二节流阀13进入第二室内换热器09。第一室内换热器08产生冷凝热。
压缩机01的排气口排出的第二路冷媒通过第二四通阀03、截止阀14、第一室外换热器20、第三节流装置22、储液罐26;通过第三节流装置22输出的部分冷媒可以通过第四节流装置23、第二室外换热器21、截止阀14、第一四通阀02,返回压缩机01的吸气口。
在一些实施例中,如图8所示,当运行模式为第三除湿再热模式时,控制第一四通阀02的第一端口D1与第三端口C1连通、第二端口E1与第四端口S1连通;控制第二四通阀03的第一端口D2与第二端口E2连通、第三端口C2与第四端口S2连通;控制第一控制阀06、第二控制阀04为导通状态,并且控制第三控制阀05为截止状态。
如图8所示,在第三除湿再热模式下,压缩机01的排气口排出的第一路冷媒通过第一室内换热器08后,通过第一节流装置12、第二节流阀13进入第二室内换热器09。第一室内换热器08产生冷凝热。
压缩机01的排气口排出的第二路冷媒通过第一四通阀02、截止阀14、第二室外换热器21、第四节流装置23、储液罐26;第四节流装置23输出的部分冷媒可以通过第三节流装置22、第一室外换热器20、第二四通阀03,返回至压缩机01的吸气口。
在一些实施例中,除湿再热是通过第一室内换热器08和第二室内换热器09相互配合实现的,第二室内换热器09负责除湿和降温,由于室内湿负荷和冷负荷不相等, 热泵系统输出以湿负荷和冷负荷的大者为调节依据,当湿负荷大于冷负荷,会导致室内温度超调(当前室内环境温度低于设定温度),这时第一室内换热器08介入调节冷负荷,即补偿输出过大的制冷量,使得室内温度和设定值匹配。
在制热过程中,湿负荷一般是加湿负荷,恒温恒湿机有专用加湿器,不涉及室内换热器动作;冬季热负荷主要由第一室内换热器08和第二室内换热器09相互配合实现的,共有三种状态,根据热负荷需求不同,可以是第一室内换热器08工作、第二室内换热器09工作、第一室内换热器08和第二室内换热器09共同工作。
在一些实施例中,当运行模式为第一制热模式时,控制第一四通阀02的第一端口D1与第二端口E1连通、第三端口C1与第四端口S1连通;控制第二四通阀03的第一端口D2与第二端口E2连通、第三端口C2与第四端口S2连通;控制第一控制阀06、第二控制阀04和第三控制阀05为导通状态。
如图9所示,在第一制热模式下,压缩机01的排气口排出的第一路冷媒通过第一室内换热器08后,通过第一节流装置12、截止阀15进入储液罐26。第一室内换热器08产生冷凝热。
压缩机01的排气口排出的第二路冷媒通过第一四通阀02、第二室内换热器09、第二节流装置13、截止阀15,进入储液罐26。压缩机01的排气口排出的第三路冷媒通过第二四通阀03、第二室内换热器09、第二节流装置13、截止阀15,进入储液罐26。
储液罐26输出的一路冷媒经过第四节流装置23、第二室外换热器21、截止阀14、第一四通阀02,返回压缩机01的吸气口;储液罐26输出的另一路冷媒经过第三节流装置22、第一室外换热器20、截止阀14、第二四通阀03,返回压缩机01的吸气口。
在一些实施例中,当运行模式为第二制热模式时,控制第一四通阀02的第一端口D1与第二端口E1连通、第三端口C1与第四端口S1连通;控制第二四通阀03的第一端口D2与第二端口E2连通、第三端口C2与第四端口S2连通;控制第一控制阀06为截止状态,并且控制第二控制阀04和第三控制阀05为导通状态。
如图10所示,在第二制热模式下,压缩机01的排气口排出的冷媒不通过第一室内换热器08,第一室内换热器08不进行工作。压缩机01的排气口排出的第二路冷媒通过第一四通阀02、第二室内换热器09、第二节流装置13、截止阀15,进入储液罐26。压缩机01的排气口排出的第三路冷媒通过第二四通阀03、第二室内换热器09、第二节流装置13、截止阀15,进入储液罐26。
储液罐26输出的一路冷媒经过第四节流装置23、第二室外换热器21、截止阀14、第一四通阀02,返回压缩机01的吸气口;储液罐26输出的另一路冷媒经过第三节流装置22、第一室外换热器20、截止阀14、第二四通阀03,返回压缩机01的吸气口。
在一些实施例中,当运行模式为第一化霜模式时,控制第一四通阀02的第一端口D1与第三端口C1连通、第二端口E1与第四端口S1连通;控制第二四通阀03的第一端口D2与第二端口E2连通、第三端口C2与第四端口S2连通;控制第一控制阀06和第二控制阀04为截止状态,并且控制第三控制阀05为导通状态。
如图11所示,在第一化霜模式下,压缩机01的排气口排出的冷媒不通过第一室内换热器08,第一室内换热器08不进行工作。
压缩机01的排气口排出的第一路冷媒通过第一四通阀02、截止阀14、第二室外换热器21、第四节流装置23后,通过经过第三节流装置22、第一室外换热器20、截止阀14、第二四通阀03,返回压缩机01的吸气口,进行化霜处理。压缩机01的排气口排出的第二路冷媒通过第二四通阀03、第二室内换热器09、第二节流装置13、截止阀15进入储液罐26,储液罐26输出的冷媒经过第三节流装置22、第一室外换热器20、截止阀14、第二四通阀03,返回压缩机01的吸气口。
在一些实施例中,当运行模式为第二化霜模式时,控制第一四通阀02的第一端口D1与第二端口E1连通、第三端口C1与第四端口S1连通;控制第二四通阀03的第一端口D2与第三端口C2连通、第二端口E2与第四端口S2连通;控制第一控制阀06和第三控制阀05为截止状态,并且控制第二控制阀04为导通状态。
如图12所示,在第二化霜模式下,压缩机01的排气口排出的冷媒不通过第一室内换热器08,第一室内换热器08不进行工作。压缩机01的排气口排出的第一路冷媒通过第二四通阀03、截止阀14、第一室外换热器20、第三节流装置22后,通过经过第四节流装置23、第二室外换热器21、截止阀14、第一四通阀04,返回压缩机01的吸气口,进行化霜处理。
压缩机01的排气口排出的第二路冷媒通过第一四通阀02、第二室内换热器09、第二节流装置13、截止阀15进入储液罐26。储液罐26输出的冷媒经过第四节流装置23、第二室外换热器21、截止阀14、第一四通阀04,返回压缩机01的吸气口。
在一些实施例中,当室内有冷负荷或湿负荷时,系统先进入制冷/除湿模式,可以使用室内环境温度与设定温度的差值的函数关系式表征冷负荷,可以使用室内含湿量与设定含湿量的差值的函数关系式表征湿负荷。当湿负荷大于冷负荷时,例如,含 湿量未到设定值,但室内温度已经比设定低,则会进入第一除湿再热模式。
当在第一除湿再热模式下,如果湿负荷已达到预设值,但热负荷不满足(当前室内温度比预设温度低),则第一节流装置12的步数开大,增大第一室内换热器08的换热量;如果第一室内换热器08的换热量最大(第一室外换热器20、第二室外换热器21换热量降至最低),仍不满足室内热负荷要求(当前室内温度比预设温度低),则进入第二除湿再热模式或第三除湿再热模式;压缩机01提高能力输出,进一步增大第一室内换热器08的换热量,切换至低压侧的第一室外换热器20或第二室外换热器21,分流压缩机01多输出的低压侧流量,从而保持第二室内换热器09的换热量保持不变,保持控湿的稳定。
当室内有热负荷需求时,则进入第一制热模式或第二制热模式,第一化霜模式或第二化霜模式根据对应室外侧换热器是否需要化霜对应的条件而触发。
当室内温度小于设定温度,需要升温,但热泵系统会存在室外换热器结霜化霜的问题,会导致温度波动不满足要求,此时需要进行化霜。热泵系统使用双室外侧换热器,采用第一化霜模式和第二化霜模式可以做到异步化霜,且化霜时室内侧换热器依然保持高压状态,保持室内侧热量输出,减小普通热泵空调化霜时因室内侧换热器不制热导致的室内温度大幅波动。
在一些实施例中,热泵系统的运行模式与部件控制状态对应的第一控制表如下表1所示:
Figure PCTCN2021128424-appb-000001
Figure PCTCN2021128424-appb-000002
表1-运行模式与部件控制状态的第一控制表
热泵系统的运行模式与部件控制状态对应的第二控制表如下表2所示:
Figure PCTCN2021128424-appb-000003
表2-运行模式与部件控制状态的第二控制表
可以根据上面的第一控制表和第二控制表,根据运行模式控制热泵系统的部件的状态,实现相应的功能,部件包括第一节流装置12、第二节流装置13、第三节流装置22和第四节流装置23等。可以针对不同的运行模式,设置对于部件的调节方式策略;当热泵系统在不同运行模式下运行时,根据调节方式策略对部件进行相应的调节处理。
例如,根据上面的第一控制表和第二控制表中的括号内的调节方式,在制冷/除湿模式、第一除湿再热模式、第二除湿再热模式和第三除湿再热模式下,可以对压缩机01进行输出调节,对室内侧风机系统07、第一室外风机系统24、第二室外风机系统25进行转数(转数为单位时间内的旋转次数)调节,对第二节流装置13、第三节流装置22、第四节流装置23进行开度调节;在第一除湿再热模式、第二除湿再热模式和第三除湿再热模式下,可以对第一节流装置12进行开度调节;在第一制热模式、第二制热模式、第一化霜模式和第二化霜模式下,可以对压缩机01进行输出调节, 对室内侧风机系统07进行转数调节,对第二节流装置13、第三节流装置22、第四节流装置23进行开度调节;在第一制热模式下,可以对第一节流装置12进行开度调节;在第一制热模式、第二制热模式和第一化霜模式下,可以对第一室外风机系统24进行转数调节;在第一制热模式、第二制热模式和第二化霜模式下,可以对第二室外风机系统25进行转数调节。
在一些实施例中,图13为根据本公开提供的热泵系统的控制装置的一些实施例的模块示意图。如图13所示,该装置可包括存储器131、处理器132、通信接口133以及总线134。存储器131用于存储指令,处理器132耦合到存储器131,处理器132被配置为基于存储器131存储的指令执行实现上述任一实施例中的热泵系统的控制方法。
存储器131可以为高速RAM存储器、非易失性存储器(non-volatile memory)等,存储器131也可以是存储器阵列。存储器131还可能被分块,并且块可按一定的规则组合成虚拟卷。处理器132可以为中央处理器CPU,或专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开的热泵系统的控制方法的一个或多个集成电路。
在一些实施例中,本公开提供一种空调设备,包括如上任一实施例的热泵系统,以及如上任一实施例的热泵系统的控制装置。空调设备可以为热泵型的恒温恒湿机等。
在一些实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一些实施例中的热泵系统的控制方法。
上述实施例提供的热泵系统及其控制方法、装置以及空调设备、存储介质,使用热泵系统利用冷凝热实现除湿再热、制热升温等功能,可以实现热回收除湿再热并且使出风温度可调,不需使用电加热系统,能够降低能耗,提升节能性能;使用双室外侧换热器,实现异步化霜且化霜时室内侧换热器可以保持高压状态,能够保持室内侧热量输出,减小化霜时因室内侧换热器不制热导致的室内温度大幅波动,提高用户的使用感受度。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算 机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (28)

  1. 一种热泵系统,包括:
    室内机(100)、室外机(200)和阀门组件(001);所述室内机包括:压缩机(01)、第一控制阀(06)、第一室内换热器(08)和第二室内换热器(09);
    所述阀门组件分别与所述压缩机(01)的排气口和吸气口、所述第二室内换热器(09)的第一端、所述室外机(200)的第一端连接,所述第二室内换热器(09)的第二端与所述室外机(200)的第二端连接;所述阀门组件用于控制冷媒的流向和通断,形成冷媒回路;
    所述第一室内换热器(08)的第一端与所述压缩机(01)的排气口连接,第二端通过第一连接管路(002)与所述第二室内换热器(09)的第二端和所述室外机(200)的第二端之间的第二连接管路(003)相连通;其中,所述第一控制阀(06)设置在所述第一室内换热器(08)的第一端与所述压缩机(01)的排气口之间的管路中。
  2. 如权利要求1所述的热泵系统,其中,
    所述室外机包括:至少两个室外换热器。
  3. 如权利要求2所述的热泵系统,其中,
    所述室外机包括:第一室外换热器(20)和第二室外换热器(21);
    所述阀门组件分别与所述第一室外换热器(20)的第一端、所述第二室外换热器(21)的第一端连接;所述第一室外换热器(20)的第二端和所述第二室外换热器(21)的第二端通过所述第二连接管路(003)与所述第二室内换热器(09)的第二端连接。
  4. 如权利要求3所述的热泵系统,其中,
    所述阀门组件包括:第一四通阀(02)和第二四通阀(03);
    所述第一四通阀(02)的第一端口(D1)和所述第二四通阀(03)的第一端口(D2)分别与所述压缩机(01)的排气口连接,所述第一四通阀(02)的第二端口(E1)和所述第二四通阀(03)的第二端口(E2)分别与所述第二室内换热器(09)的第一端连接;所述第一四通阀(02)的第三端口(C1)和所述第二室外换热器(21)的第一端连接,所述第二四通阀(03)的第三端口(C2)与所述第一室外换热器(21)的第一端连接;所述第一四通阀(02)的第四端口(S1)和所述第二四通阀(03)的第四端口(S2)与所述压缩机(01)的吸气口连接。
  5. 如权利要求4所述的热泵系统,其中,
    所述阀门组件还包括:第二控制阀(04)和第三控制阀(05);
    在所述第一四通阀(02)的第二端口(E1)与所述第二室内换热器(09)的第一端之间的管路中设置有所述第二控制阀(04);在所述第二四通阀(03)的第二端口(E2)与所述第二室内换热器(09)的第一端之间的管路中设置有所述第三控制阀(05)。
  6. 如权利要求5的热泵系统,其中,
    所述室外机包括:储液罐(26);所述第一室外换热器(20)的第二端和所述第二室外换热器(21)的第二端分别与所述储液罐(26)的第一端连接;在所述第一室外换热器(20)的第二端与所述储液罐(26)的第一端之间的管路中设置有第三节流装置(22),在所述第二室外换热器(21)的第二端与所述储液罐(26)的第一端之间的管路中设置有第四节流装置(23);所述储液罐(26)的第二端与所述第二连接管路(003)连接。
  7. 如权利要求5所述的热泵系统,其中,所述室内机包括:第五节流装置(10);
    在所述压缩机(01)的吸气口与所述第一室内换热器(08)的第二端之间的第三连接管路(004)中设置有所述第五节流装置(10)。
  8. 如权利要求7所述的热泵系统,其中,所述室内机包括:两个第六节流装置(11);一个第六节流装置的第一端与所述第三连接管路(004)连通,第二端与位于所述第一四通阀(02)的第二端口与所述第二控制阀(04)之间的管路相连通;另一个第六节流装置的第一端与所述第三连接管路(004)连通,第二端与位于所述第二四通阀(03)的第二端口与所述第三控制阀(05)之间的管路相连通。
  9. 如权利要求4所述的热泵系统,其中,
    在所述第一四通阀(02)的第三端口(C1)和所述第二室外换热器(21)的第一端之间的管路中、在所述第二四通阀(03)的第三端口(C2)与所述第一室外换热器(20)的第一端之间的管路中分别设置有截止阀(14);在所述第二连接管路(003)中设置有截止阀(15)。
  10. 如权利要求3所述的热泵系统,其中,
    所述室外机包括:第一室外风机系统(24)和第二室外风机系统(25),其中,所述第一室外风机系统(24)与所述第一室外换热器(20)位于第一风道内,所述第二室外风机系统(25)与所述第二室外换热器(21)位于处于第二风道内。
  11. 如权利要求1所述的热泵系统,其中,
    所述室内机包括:室内侧风机系统(07);所述室内侧风机系统(07)、所述第一室内换热器(08)和所述第二室内换热器(09)位于同一风道内;其中,所述室内侧风机系统(07)产生的室内侧回风依次经过所述第二室内换热器(09)和所述第一室内换热器(08),或者依次经过所述第一室内换热器(08)和所述第二室内换热器(09)。
  12. 如权利要求1所述的热泵系统,其中,
    在所述第一连接管路(002)中设置有第一节流装置(12),在所述第二连接管路(003)中设置有第二节流装置(13)。
  13. 一种热泵系统的控制方法,应用于控制如权利要求1~12任一项所述的热泵系统,包括:
    确定热泵系统的运行模式;
    根据预设的控制策略并基于所述运行模式控制所述热泵系统中的阀门组件以及室内机的第一控制阀的动作。
  14. 如权利要求13所述的方法,还包括:
    当所述运行模式为除湿再热模式或第一制热模式时,通过控制所述第一控制阀的动作,以使所述室内机的所述第一室内换热器用于对空气进行再热;
    在所述运行模式为制冷/除湿模式、化霜模式或第二制热模式的情况下,通过控制所述第一控制阀的动作,以使所述第一室内换热器停止对空气进行再热。
  15. 一种热泵系统的控制方法,应用于控制如权利要求5~8任一项所述的热泵系统,包括:
    确定热泵系统的运行模式;
    根据预设的控制策略并基于所述运行模式控制所述热泵系统中的第一四通阀(02)、第二四通阀(03)、第一控制阀(06)、第二控制阀(04)和第三控制阀(05)的动作。
  16. 如权利要求15所述的方法,其中,
    所述运行模式包括:制冷/除湿模式、第一制热模式、第二制热模式、第一除湿再热模式、第二除湿再热模式、第三除湿再热模式、第一化霜模式、第二化霜模式中的至少一种。
  17. 如权利要求16所述的方法,还包括:
    当所述运行模式为所述制冷/除湿模式时,控制所述第一四通阀(02)的第一端 口(D1)与第三端口(C1)连通、第二端口(E1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第三端口(C2)连通、第二端口(E2)与第四端口(S2)连通;并且,控制所述第一控制阀(06)为截止状态、所述第二控制阀(04)和所述第三控制阀(05)为导通状态。
  18. 如权利要求16所述的方法,还包括:
    当所述运行模式为第一除湿再热模式时,控制所述第一四通阀(02)的第一端口(D1)与第三端口(C1)连通、第二端口(E1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第三端口(C2)连通、第二端口(E2)与第四端口(S2)连通;并且,控制所述第一控制阀(06)、所述第二控制阀(04)和所述第三控制阀(05)为导通状态。
  19. 如权利要求16所述的方法,还包括:
    当所述运行模式为第二除湿再热模式时,控制所述第一四通阀(02)的第一端口(D1)与第二端口(E1)连通、第三端口(C1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第三端口(C2)连通、第二端口(E2)与第四端口(S2)连通;控制第一控制阀(06)、所述第三控制阀(05)为导通状态,并且控制所述第二控制阀(04)为截止状态。
  20. 如权利要求16所述的方法,还包括:
    当所述运行模式为第三除湿再热模式时,控制所述第一四通阀(02)的第一端口(D1)与第三端口(C1)连通、第二端口(E1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第二端口(E2)连通、第三端口(C2)与第四端口(S2)连通;控制所述第一控制阀(06)、所述第二控制阀(04)为导通状态,并且控制所述第三控制阀(05)为截止状态。
  21. 如权利要求16所述的方法,还包括:
    当所述运行模式为第一制热模式时,控制所述第一四通阀(02)的第一端口(D1)与第二端口(E1)连通、第三端口(C1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第二端口(E2)连通、第三端口(C2)与第四端口(S2)连通;控制所述第一控制阀(06)、所述第二控制阀(04)和所述第三控制阀(05)为导通状态。
  22. 如权利要求16所述的方法,还包括:
    当所述运行模式为第二制热模式时,控制所述第一四通阀(02)的第一端口(D1) 与第二端口(E1)连通、第三端口(C1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第二端口(E2)连通、第三端口(C2)与第四端口(S2)连通;控制所述第一控制阀(06)为截止状态,并且控制所述第二控制阀(04)和所述第三控制阀(05)为导通状态。
  23. 如权利要求16所述的方法,还包括:
    当所述运行模式为第一化霜模式时,控制所述第一四通阀(02)的第一端口(D1)与第三端口(C1)连通、第二端口(E1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第二端口(E2)连通、第三端口(C2)与第四端口(S2)连通;控制所述第一控制阀(06)和所述第二控制阀(04)为截止状态,并且控制所述第三控制阀(05)为导通状态。
  24. 如权利要求16所述的方法,还包括:
    当所述运行模式为第二化霜模式时,控制所述第一四通阀(02)的第一端口(D1)与第二端口(E1)连通、第三端口(C1)与第四端口(S1)连通;控制所述第二四通阀(03)的第一端口(D2)与第三端口(C2)连通、第二端口(E2)与第四端口(S2)连通;控制所述第一控制阀(06)和所述第三控制阀(05)为截止状态,并且控制所述第二控制阀(04)为导通状态。
  25. 如权利要求15所述的方法,还包括:
    当所述第一控制阀(06)为截止状态时,控制第一节流装置(12)为关闭状态。
  26. 一种热泵系统的控制装置,包括:
    存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求13至14中任一项所述的方法,或执行如权利要求15至25中任一项所述的方法。
  27. 一种空调设备,包括:如权利要求1至12中任一项所述的热泵系统,以及如权利要求26所述的热泵系统的控制装置。
  28. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求13至14中任一项所述的方法,或执行如权利要求15至25中任一项所述的方法。
PCT/CN2021/128424 2020-11-18 2021-11-03 热泵系统及其控制方法、装置以及空调设备、存储介质 WO2022105605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21893752.2A EP4166860A4 (en) 2020-11-18 2021-11-03 HEAT PUMP SYSTEM, ASSOCIATED CONTROL METHOD AND ASSOCIATED APPARATUS, AND AIR CONDITIONING DEVICE AND STORAGE MEDIUM
US18/015,571 US20230250982A1 (en) 2020-11-18 2021-11-03 Heat Pump System, Control Method and Apparatus Thereof, Air Conditioning Device and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011297044.7A CN112228977B (zh) 2020-11-18 2020-11-18 热泵系统及其控制方法、装置以及空调设备、存储介质
CN202011297044.7 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022105605A1 true WO2022105605A1 (zh) 2022-05-27

Family

ID=74123773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128424 WO2022105605A1 (zh) 2020-11-18 2021-11-03 热泵系统及其控制方法、装置以及空调设备、存储介质

Country Status (4)

Country Link
US (1) US20230250982A1 (zh)
EP (1) EP4166860A4 (zh)
CN (1) CN112228977B (zh)
WO (1) WO2022105605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200121A (zh) * 2022-07-12 2022-10-18 珠海格力电器股份有限公司 一种空调系统的控制装置、方法和空调系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112228977B (zh) * 2020-11-18 2024-04-30 珠海格力电器股份有限公司 热泵系统及其控制方法、装置以及空调设备、存储介质
CN115930407A (zh) * 2022-11-28 2023-04-07 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质
CN117346386B (zh) * 2023-10-08 2024-05-14 北京华远同创控股有限公司 一种空气能一体化热泵机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002124A (ja) * 2008-06-20 2010-01-07 Toyo Eng Works Ltd 除湿再熱空調装置
KR20170070865A (ko) * 2015-11-23 2017-06-23 삼에이치텍 주식회사 에너지 절약형 항온항습기의 냉각제습용 재열제어시스템
CN109341156A (zh) * 2018-12-06 2019-02-15 珠海格力电器股份有限公司 空调系统、空调控制方法和装置、计算机可读存储介质
CN210118895U (zh) * 2019-06-04 2020-02-28 多路发环境净化技术(福建)有限公司 一种调温型除湿再热系统
CN111811035A (zh) * 2020-07-22 2020-10-23 南京天加环境科技有限公司 一种除湿再热的单元式空调系统及其控制方法
CN112228977A (zh) * 2020-11-18 2021-01-15 珠海格力电器股份有限公司 热泵系统及其控制方法、装置以及空调设备、存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2213248B (en) * 1987-12-21 1991-11-27 Sanyo Electric Co Air-conditioning apparatus
JP3042797B2 (ja) * 1991-03-22 2000-05-22 株式会社日立製作所 空気調和機
JP2001317831A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd 空気調和機
JP2004020086A (ja) * 2002-06-18 2004-01-22 Matsushita Electric Ind Co Ltd 除湿乾燥空調装置
KR100962657B1 (ko) * 2008-05-29 2010-06-11 모아기연 주식회사 히트펌프 시스템 및 이를 이용한 제습 운전 방법
CN101487609B (zh) * 2008-12-24 2011-06-08 北京航空航天大学 液体除湿多功能空气源热泵系统及其运行方法
US8931298B2 (en) * 2009-08-28 2015-01-13 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
CN109386888B (zh) * 2014-02-21 2021-04-06 大金工业株式会社 空调装置
KR101656174B1 (ko) * 2015-02-11 2016-09-08 한국교통대학교산학협력단 송풍기 모듈을 이용한 제습시스템 및 그 제습시스템의 작동방법
JP6599002B2 (ja) * 2016-06-14 2019-10-30 三菱電機株式会社 空気調和装置
WO2019146070A1 (ja) * 2018-01-26 2019-08-01 三菱電機株式会社 冷凍サイクル装置
CN109631427A (zh) * 2018-11-27 2019-04-16 珠海格力电器股份有限公司 一种除湿控制方法及机组
CN110173917B (zh) * 2019-06-21 2023-07-18 珠海格力电器股份有限公司 空调系统及其控制方法
CN110657505A (zh) * 2019-09-23 2020-01-07 广东芬尼克兹节能设备有限公司 一种除湿机系统、除湿机及控制方法
CN111336711A (zh) * 2020-03-09 2020-06-26 珠海格力电器股份有限公司 热泵系统及其相应的除霜控制方法
CN213480647U (zh) * 2020-11-18 2021-06-18 珠海格力电器股份有限公司 热泵系统及其空调设备
CN112556233B (zh) * 2020-12-22 2024-03-15 珠海格力电器股份有限公司 热泵系统及其控制方法、控制装置以及空调设备、存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002124A (ja) * 2008-06-20 2010-01-07 Toyo Eng Works Ltd 除湿再熱空調装置
KR20170070865A (ko) * 2015-11-23 2017-06-23 삼에이치텍 주식회사 에너지 절약형 항온항습기의 냉각제습용 재열제어시스템
CN109341156A (zh) * 2018-12-06 2019-02-15 珠海格力电器股份有限公司 空调系统、空调控制方法和装置、计算机可读存储介质
CN210118895U (zh) * 2019-06-04 2020-02-28 多路发环境净化技术(福建)有限公司 一种调温型除湿再热系统
CN111811035A (zh) * 2020-07-22 2020-10-23 南京天加环境科技有限公司 一种除湿再热的单元式空调系统及其控制方法
CN112228977A (zh) * 2020-11-18 2021-01-15 珠海格力电器股份有限公司 热泵系统及其控制方法、装置以及空调设备、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166860A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200121A (zh) * 2022-07-12 2022-10-18 珠海格力电器股份有限公司 一种空调系统的控制装置、方法和空调系统
CN115200121B (zh) * 2022-07-12 2024-01-19 珠海格力电器股份有限公司 一种空调系统的控制装置、方法和空调系统

Also Published As

Publication number Publication date
CN112228977A (zh) 2021-01-15
EP4166860A1 (en) 2023-04-19
US20230250982A1 (en) 2023-08-10
EP4166860A4 (en) 2024-03-06
CN112228977B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2022105605A1 (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
WO2020062606A1 (zh) 冷媒循环系统及其控制方法、空气调节装置
CN111256290B (zh) 一种热泵空调
CN112556233B (zh) 热泵系统及其控制方法、控制装置以及空调设备、存储介质
CN104315743A (zh) 可调温房间除湿空调器
US11747057B2 (en) Heat pump system
CN111811035A (zh) 一种除湿再热的单元式空调系统及其控制方法
CN214148412U (zh) 热泵系统和空调设备
CN104848497A (zh) 一种空气调节器
US11828507B2 (en) Air conditioning system and control method therefor
CN213480647U (zh) 热泵系统及其空调设备
CN112268381B (zh) 热泵系统及其控制方法、控制装置以及空调设备、存储介质
CN112228992B (zh) 热泵系统及其控制方法、控制装置以及空调设备、存储介质
CN213873264U (zh) 空调系统
CN111811036A (zh) 一种除湿再热多联式空调系统及其控制方法
CN112797659A (zh) 空调器及其控制方法
CN213514499U (zh) 热泵系统和空调设备
CN112577101A (zh) 空调器及其控制方法
CN112303954B (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
CN113266890A (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质
CN210892244U (zh) 换热系统
WO2021047158A1 (zh) 空调器及其控制方法
CN210004512U (zh) 恒温除湿空调器
CN112555982A (zh) 一种温湿双控空调系统
CN214581441U (zh) 空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021893752

Country of ref document: EP

Effective date: 20230110

NENP Non-entry into the national phase

Ref country code: DE