WO2022068281A1 - 空调系统及其除霜控制方法、存储介质、控制装置 - Google Patents

空调系统及其除霜控制方法、存储介质、控制装置 Download PDF

Info

Publication number
WO2022068281A1
WO2022068281A1 PCT/CN2021/101935 CN2021101935W WO2022068281A1 WO 2022068281 A1 WO2022068281 A1 WO 2022068281A1 CN 2021101935 W CN2021101935 W CN 2021101935W WO 2022068281 A1 WO2022068281 A1 WO 2022068281A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning system
valve
heat
compressor
Prior art date
Application number
PCT/CN2021/101935
Other languages
English (en)
French (fr)
Inventor
任滔
柴婷
宋强
孙辉
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2022068281A1 publication Critical patent/WO2022068281A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/873Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the invention relates to the technical field of air conditioners, in particular to an air conditioner system and a defrosting control method thereof, a storage medium and a control device.
  • the air-conditioning system mainly includes a compressor, an indoor heat exchanger, a throttling component and an outdoor heat exchanger that form the main circuit of the refrigerant.
  • the flow accompanied by the phase change of the refrigerant, can provide air of suitable temperature to the indoor space.
  • the outdoor unit of the air conditioner on the outdoor side is in a low temperature and high humidity environment. Therefore, when the air conditioning system operates in a low temperature environment for a long time, it is easy to form frost on the surface of the outdoor heat exchanger.
  • the heat exchange performance of the outdoor heat exchanger after frosting is significantly reduced, which will affect the operation of the air conditioning system.
  • the indoor heat exchanger acts as a condenser that emits heat
  • the indoor heat exchanger acts as an evaporator that emits cooling.
  • Air conditioning systems usually have cooling mode and heating mode
  • the defrosting methods for the air-conditioning system mainly include bypass defrosting and reverse cycle defrosting.
  • a part of the refrigerant is used for defrosting, so that the outdoor heat exchanger can be defrosted without changing the current heating mode of the air conditioning system; 2)
  • the reverse cycle defrosting is through the four-way commutation
  • the valve briefly switches the current heating mode to cooling mode, thereby removing the frost layer on the surface of the outdoor heat exchanger.
  • Bypass defrosting generally has the disadvantage of long defrosting time
  • reverse cycle defrosting has the advantage of completely removing the frost layer on the surface of the outdoor heat exchanger, and is widely used in the case of relatively high defrosting requirements.
  • the first aspect of the present invention provides a defrosting control method for an air-conditioning system
  • the air-conditioning system includes a compressor
  • a heater is configured on a pipeline connected to an air return port of the compressor
  • the control method includes: putting the air conditioning system in a defrosting mode; when the air conditioning system is in a defrosting mode, supplementing target heat to the refrigerant at the air return port of the compressor; wherein: the target heat includes: a first heat , the first heat is obtained by: bypassing a part of the high-temperature and high-pressure gaseous refrigerant at the exhaust port of the compressor to the pipeline of the air return port of the compressor, so as to return to the air return port of the compressor
  • the refrigerant at the compressor supplements the first heat;
  • the second heat is obtained by: making the heater provide the second heat in a set manner, so as to supplement the second heat to the refrigerant at the air return port of the compressor .
  • the defrosting mode of the air conditioning system can be optimized by adjusting the target heat quantity.
  • the setting method may be: keeping the power of the heater unchanged, but only supplementing a certain amount of heat to the refrigerant at the air return port of the compressor at intervals; and so on.
  • the "making the heater provide the second heat in a set manner" includes: adjusting the value of the second heat in a set manner, Therefore, the defrost mode based on the target heat can be completed within the set defrost time period.
  • the "adjusting the value of the second heat quantity in a set manner" includes: adjusting the value of the second heat quantity according to the ambient temperature.
  • the air-conditioning system includes a valve group
  • the "putting the air-conditioning system in a defrosting mode" includes: at least adjusting each valve group in the valve group. The opening and closing state of the valve, thereby putting the air conditioning system in defrost mode.
  • the air conditioning system includes a throttling component, an indoor heat exchanger and an outdoor heat exchanger
  • the valve group includes a first valve and a second valve , the third valve and the fourth valve
  • a first connecting pipeline is provided between the exhaust port of the compressor and the pipeline connecting the throttling component and the outdoor heat exchanger
  • the first valve is arranged in the first connecting pipeline
  • a second connection pipeline is arranged between the exhaust port of the compressor and the air return port of the compressor, and the second valve is arranged in the second connection pipeline
  • the third valve is arranged at the exhaust port of the compressor between the pipeline connecting the first valve and the second valve and the indoor heat exchanger
  • the fourth valve is arranged between the outdoor heat exchanger and the air return port of the compressor.
  • the “by adjusting the switching states of each valve in the valve group, so that the air-conditioning system is in a defrosting mode” includes: making the first The valve, the second valve and the fourth valve are opened, the third valve is closed, and the throttling member is closed, thereby placing the air conditioning system in a defrost mode.
  • the air-conditioning system can be placed in the defrosting mode on the premise that the heating cycle is suspended. In this way, it is possible to indirectly reduce the influence of the defrosting process on the heating experience of the indoor space. Specifically, at least no cooling is delivered to the indoor space during operation of the defrost mode as in the reverse cycle defrost mode.
  • a second aspect of the present invention provides a computer-readable storage medium in which a plurality of program codes are stored, and the program codes are adapted to be loaded and executed by a processor to perform defrosting control of the air-conditioning system according to any one of the foregoing method.
  • the computer-readable storage medium has all the technical effects of the defrosting control method for an air-conditioning system described in any one of the foregoing, and details are not described herein again.
  • a third aspect of the present invention provides a control device, the control device includes a processor, and the processor can call a program and execute the defrosting control method for an air-conditioning system described in any one of the foregoing.
  • control device has all the technical effects of the defrosting control method of the air conditioning system described in any one of the foregoing, and will not be repeated here.
  • a fourth aspect of the present invention provides an air conditioning system, the air conditioning system includes a control module, and the control module is configured to execute the defrosting control method of the air conditioning system according to any one of the foregoing.
  • the air-conditioning system has all the technical effects of the defrosting control method of the air-conditioning system described in any one of the foregoing, and will not be repeated here.
  • FIG. 1 shows a schematic structural diagram of a chiller according to an embodiment of the present invention.
  • the air-conditioning system mainly includes a compressor that forms the main circuit of the refrigerant, an indoor heat exchanger, an outdoor heat exchanger, throttling components (such as capillary tubes, electronic expansion valves, etc.) and a four-way valve.
  • the air-conditioning system has a conventional cooling mode and a heating mode. Through the circulation of the refrigerant in the circuit formed by the compressor-condenser-throttle part-evaporator-compressor, along with the phase change of the refrigerant, heat can be exchanged indoors.
  • the surface of the appliance emits cooling/heating.
  • the air conditioning system when the refrigerant circulates along the circuit of compressor ⁇ indoor heat exchanger ⁇ outdoor heat exchanger ⁇ compressor, the air conditioning system is in a heating cycle. That is: when the air conditioning system is in the heating mode, the indoor heat exchanger acts as a condenser that emits heat; and when the refrigerant circulates along the circuit of the compressor ⁇ outdoor heat exchanger ⁇ indoor heat exchanger ⁇ compressor, the air conditioner The system is in a refrigeration cycle. That is, when the air-conditioning system is in the cooling mode, the indoor heat exchanger acts as an evaporator that emits cooling capacity.
  • supercritical CO 2 chiller is mainly realized by using water as a medium to release heat and cold energy to indoor space.
  • the refrigerant of the present invention is the natural working medium CO 2 , so the four-way valve is omitted and the chiller is limited to only operate in the heating mode, that is, the indoor heat exchanger corresponding to the indoor space is the condenser that emits heat, and the outdoor heat exchanger for the evaporator.
  • Both the condenser and the evaporator in the refrigerant main circuit have refrigerant coils corresponding to the aforementioned refrigerants and water coils corresponding to water.
  • the refrigerant coils are mainly used to participate in the formation of the aforementioned refrigerant main circuit, while the water coils are mainly It is used to participate in the formation of the water circulation loop, so as to ensure the sustainability of the main refrigerant circuit on the one hand, and to realize the release of heat/cold capacity to the target side on the other hand.
  • the refrigerant coil and the water coil are arranged in such a way that heat can be exchanged, such as overlapping. in particular:
  • the refrigerant flowing through the refrigerant coil exchanges heat with the water flowing through the water coil, thereby transferring the heat/cold energy generated by the phase change of the refrigerant to the water.
  • the types of condensers and evaporators can be shell and tube heat exchangers or casing heat exchangers. Both ends of the water coil of the condenser are respectively connected to the first target side to form a thermal cycle system capable of releasing heat to the user end.
  • hot water supply, heating supply, etc. can be realized to the user end; both ends of the water coil of the evaporator are respectively connected to the second target side to form a cold circulation system capable of releasing cold energy.
  • cooling capacity can be provided to the refrigerated space, etc.
  • FIG. 1 shows a schematic structural diagram of a chiller according to an embodiment of the present invention.
  • the chiller includes a compressor 1, a gas-liquid separator 2, an indoor heat exchanger 3, an electronic expansion valve 4 as a throttling component, and an outdoor heat exchanger 5, and the chiller includes a valve group.
  • the function of setting the valve group is: when the outdoor heat exchanger needs to be defrosted, it can be defrosted by introducing the high temperature and high pressure gaseous refrigerant discharged from the exhaust port of the compressor to the outdoor heat exchanger, and at the same time, the compressed air can be defrosted.
  • a part of the high-temperature and high-pressure gaseous refrigerant discharged from the exhaust port of the compressor is bypassed to the air return port of the compressor to increase the temperature of the refrigerant at the air return port.
  • the valve group includes a first valve 61 , a second valve 62 , a third valve 63 and a fourth valve 64 , for example, the four valves are all solenoid valves.
  • a first connecting pipeline is arranged between the exhaust port of the compressor and the pipeline connecting the electromagnetic expansion valve and the outdoor heat exchanger, and the first valve is arranged on the first connecting pipeline; the exhaust port of the compressor and the gas
  • a second connection pipeline is arranged between the inlets of the liquid separator, and the second valve is arranged in the second connection pipeline; the exhaust port of the compressor is connected with the pipeline of the first valve and the second valve and the indoor heat exchanger.
  • a third valve is arranged between the outdoor heat exchanger and the gas-liquid separator; a fourth valve is arranged between the outdoor heat exchanger and the gas-liquid separator, a heater is arranged between the gas-liquid separator and the fourth valve, and the second connecting pipeline corresponds to the gas-liquid separator.
  • One end of the inlet is specifically arranged between the heater and the inlet of the gas-liquid separator.
  • the chiller of the present invention when the first valve and the second valve are closed, and the third valve and the fourth valve are opened, the chiller of the present invention can be in the normal heating mode (heating cycle), during which the electronic expansion valve is normally opened, and the cold water is The unit is heating normally.
  • the flow direction of the refrigerant is shown by the dotted arrow in the figure. It can be seen that when the first valve and the second valve are closed, and the third valve and the fourth valve are open, the chiller of the present invention is equivalent to a common chiller.
  • the chiller of the present invention can be in the defrosting mode, during which the electronic expansion valve is closed and the heater provides heat as needed.
  • the flow direction of the refrigerant is shown by the dotted arrow in the figure.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the exhaust port of the compressor is divided into two paths, wherein: one path directly leads to the outdoor heat exchanger through the first valve (fully open), so as to release the heat carried by the high-temperature and high-pressure gaseous refrigerant to the
  • the outdoor heat exchanger is defrosted, and then it is throttled to the low-pressure gaseous refrigerant through the fourth valve.
  • the low-temperature and low-pressure gaseous refrigerant is heated by the heater and reaches the inlet of the gas-liquid separator; the other is bypassed through the second valve. to the inlet of the gas-liquid separator.
  • the two refrigerants converge before the inlet of the gas-liquid separator, and after the gas-liquid separation of the gas-liquid separator, they enter the compressor through the return port of the compressor. This completes a cycle.
  • the chiller of the present invention realizes the defrosting operation of the outdoor heat exchanger by defrosting first and then throttling. Also, during defrosting, the indoor heat exchanger does not participate in the circulation of the refrigerant due to the closing of the electronic expansion valve.
  • the chiller of the present invention is provided with a heater at the inlet of the gas-liquid separator, and the heater can supplement heat for the refrigerant at the air return port, so that the heat supplement realized by the valve group and the realization of the heater can be realized. Combined with the heat supplement, the defrosting quality of the chiller is improved.
  • the heater of the present invention selects a thick-film heater or an electromagnetic heater, and the heater is used to heat the refrigerant pipeline upstream of the gas-liquid separator. Heating is performed to supplement heat for the refrigerant.
  • the chiller of the present invention bypasses a part of the high temperature and high pressure gaseous refrigerant to the air return port of the compressor by setting a second valve, which increases the refrigerant temperature at the air return port of the compressor to a certain extent.
  • a heater at the air return port of the compressor, the low-temperature and low-pressure gaseous refrigerant entering the compressor can be heated.
  • the present invention adjusts the heating power of the heater through the ambient temperature, and supplements the heat to the heater.
  • the increase and decrease control is carried out, so that the defrosting time under different ambient temperatures is basically the same.
  • the method of increase and decrease control is as follows:
  • Table 1 shows the additional heating capacity (kW) per unit of rated heat capacity (per kW) at different ambient temperatures.
  • the total heating amount to be supplemented by the heater for defrosting can be calculated according to formula (1) (it is understandable that the heat required by the refrigerant at the air return port of the compressor during defrosting can be obtained according to experiments and analysis.
  • this part of the heat is formed by the aforementioned bypass heat (hereinafter the first heat) and the total heating amount (hereinafter the second heat) supplemented by the current heater.
  • Total heating capacity is the heat required by the refrigerant at the air return port of the compressor during defrosting.
  • the heat required by the refrigerant at the air return port of the compressor during defrosting is the heat after removing the bypass heat mentioned above, that is, the first heat 2 calories).
  • T is the ambient temperature
  • the unit is °C
  • q is the heating amount that needs to be supplemented during defrosting in unit rated heat (per kW), the unit is kW/kW
  • Q is the total heating amount that needs to be supplemented for defrosting, the unit is kW
  • W is the rated heat output of the air-conditioning system, in kW.
  • the experimental data shows that when the heater supplements heat to the refrigerant at the air return port of the compressor according to the curve corresponding to formula (2), it can ensure that the defrosting time is about 600s (ie 10min) when the ambient temperature changes. In this way, even when the chiller is in a low temperature environment such as winter, the defrosting quality of complete defrosting and the stable defrosting time required for defrosting can be basically maintained.
  • the chiller of the invention through the setting of the valve group, on the one hand, part (most) of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor is led to the outdoor heat exchanger, so that the heat carried by it is used for the outdoor heat exchanger.
  • the defrosting operation of the heat exchanger bypasses another part (a small part) of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor to the return air port of the compressor, and uses the heat carried by it to the gas-liquid separator.
  • the refrigerant is heated to increase the temperature of the refrigerant at the return port of the compressor.
  • a heater is arranged at the inlet of the gas-liquid separator, and the heat supplement level of the heater is adjusted, so that the combination of bypass and supplementary heating can be achieved to ensure stable performance at different ambient temperatures.
  • the present invention can realize the following defrosting control method for the chiller, and the method specifically includes the following steps:
  • the defrosting time can be approximately as before on the premise of ensuring the defrosting quality. 10min mentioned in the text.
  • the chiller further includes a control module, and the above control method can be performed on the chiller through the control module.
  • control module may include hardware, software or a combination of both.
  • a module may include hardware circuits, various suitable sensors, communication ports, memory, and may also include software parts, such as program codes, or a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor, or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor may be implemented in software, hardware, or a combination of the two.
  • Non-transitory computer-readable storage media include any suitable media that can store program code, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random-access memory, and the like.
  • the present invention can implement all or part of the process in its control method, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code can be in the form of source code, object code, executable file or some intermediate form, etc.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory, random access memory, electrical carrier signal , telecommunication signals, and software distribution media.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
  • control module since the setting of the control module is only to describe the functional units of the system of the present invention, the physical device corresponding to the control module may be the processor itself, or a part of software in the processor, a part of hardware, Or part of a combination of software and hardware. Therefore, the number of control modules being one is merely illustrative.
  • control module can be divided adaptively according to the actual situation.
  • the specific disassembly form of the control module will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solution after the disassembly will fall within the protection scope of the present invention.
  • control method constituted in the above specific manner is described as an example, those skilled in the art can understand that the present invention should not be limited thereto. In fact, the user can flexibly adjust the relevant steps, parameters in the steps and other elements according to the actual application scenarios and other situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调技术领域,具体提供了一种空调系统及其除霜控制方法、存储介质、控制装置,所述空调系统包括压缩机,连接至所述压缩机的回气口的管路上配置有加热器,所述控制方法包括:使空调系统处于除霜模式;在空调系统处于除霜模式的情形下,向压缩机的回气口处的冷媒补充目标热量;其中:所述目标热量包括:第一热量,该第一热量的获得方式为:通过将压缩机的排气口处的高温高压气态冷媒中的一部分旁通至所述压缩机的回气口的管路的方式补充第一热量;第二热量,该第二热量的获得方式为:使加热器以设定的方式提供第二热量的方式补充第二热量。通过这样的设置方式,能够谋求优化空调系统的除霜模式。

Description

空调系统及其除霜控制方法、存储介质、控制装置 技术领域
本发明涉及空调技术领域,具体涉及一种空调系统及其除霜控制方法、存储介质、控制装置。
背景技术
空调系统主要包括形成冷媒主回路的压缩机、室内换热器、节流部件和室外换热器,通过冷媒在压缩机-冷凝器-节流部件-蒸发器-压缩机形成的回路中的循环流动,伴随着冷媒的相变,可以向室内空间提供温度适合的空气。空调系统在低温环境运行于制热模式时,位于室外侧的空调室外机处于低温高湿的环境,因此当空调系统较长时间在低温环境下运行时容易在室外换热器的表面结霜,结霜后的室外换热器的换热性能明显下降,从而会影响空调系统的运行。因此,为了保证空调系统能够正常运行,需要对结霜后的室外换热器进行除霜操作。如在空调系统处于制热模式的情形下,室内换热器作为发放热量的冷凝器,而在空调系统处于制冷模式的情形下,室内换热器作为发放冷量的蒸发器。空调系统通常具有制冷模式和制热模式,
目前对空调系统进行除霜的方式主要包括旁通除霜和逆循环除霜两种,其中:1)旁通除霜是通过增加单独用于除霜的支路的方式,在不改变制热模式的前提下,将冷媒中的一部分用作除霜,从而在空调系统不改变当前的制热模式的前提下对室外换热器进行除霜;2)逆循环除霜是通过四通换向阀将当前的制热模式短暂地切换为制冷模式,从而将室外换热器表面的霜层去除。旁通除霜普遍存在除霜时间较长的缺陷, 逆循环除霜由于具有能够彻底地去除室外换热器表面的霜层的优点,在除霜要求相对高的情形下被广泛地采用。
对于常规的除霜操作而言,环境温度越低除霜时间越长、影响用户的制热体验的时间自然就越长。此外,在低温环境下,还会出现除霜不彻底的现象,从而在除霜结束之后持续影响空调系统的运行。对于超临界CO 2空调系统来说,由于普通的四通换向阀无法承受空调系统的极高压力,因此无法通过借助于四通换向阀切换来实现空调系统的除霜流路控制。而且,简单地使用四通换向阀切换的逆循环除霜会伴随着原本制热的室内空间变为制冷,因此属于以牺牲用户的制热体验为前提的除霜方式。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
考虑到“无法通过借助于四通阀的换向来实现空调系统的除霜流路控制”以及“简单地使用四通换向阀切换的逆循环除霜属于以牺牲用户的制热体验为前提的除霜方式”两方面的因素,本发明第一方面提供了一种空调系统的除霜控制方法,所述空调系统包括压缩机,连接至所述压缩机的回气口的管路上配置有加热器,所述控制方法包括:使空调系统处于除霜模式;在空调系统处于除霜模式的情形下,向压缩机的回气口处的冷媒补充目标热量;其中:所述目标热量包括:第一热量,该第一热量的获得方式为:通过将压缩机的排气口处的高温高压气态冷媒中的一部分旁通至所述压缩机的回气口的管路,从而向所述压缩机的回气口处的冷媒补充第一热量;第二热量,该第二热量的获得方式为:使加热器以设定的方式提供第二热量,从而向所述压缩机的回气口处的冷媒补充第二热量。
通过这样的设置,能够谋求优化空调系统的除霜模式。
具体而言,通过以设定的方式提供第二热量,能够谋求由第一热量和第二热量汇聚而成的目标热量能够更好地满足除霜模式下对进入压缩机回气口处的冷媒进行热量补充需求。在此基础上,能够通过对目标热量进行调整,优化空调系统的除霜模式。如设定的方式可以是:使加热器的功率保持不变、但仅间隔性地向压缩机的回气口处的冷媒补充一定的热量;等。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,所述的“使加热器以设定的方式提供第二热量”包括:以设定的方式调整第二热量的值,从而使基于目标热量的除霜模式能够在设定除霜时长内完成。
通过这样的设置,能够谋求缩短空调系统的除霜时长。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,所述的“以设定的方式调整第二热量的值”包括:根据环境温度,调整第二热量的值。
通过这样的设置,给出了调整第二热量时所参考的外部的量。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,“根据环境温度,调整第二热量的值”具体为:
Q=q*W       (1)
q=0.029239766*(0.01474*T 2-0.545397*T+1.035563)    (2)
其中,Q为第二热量,单位为kW;T为环境温度,单位为℃;q为单位额定制热量在除霜时需补充的加热量,单位为kW/kW;W为空调系统的额定制热量,单位为kW。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,所述空调系统包括阀门组,所述的“使空调系统处于除霜模式”包括:至少通过调整所述阀门组中各阀门的开关状态,从而使空调系统处于除霜模式。
通过这样的设置,给出了使空调系统处于除霜模式的一类实现方式。具体而言,通过增设阀门组的方式实现。
可以理解的是,在能够使空调系统处于除霜模式的前提下,本领域技术人员可以根据实际情况选择阀门的个数、设置位置以及相应的开关逻辑等。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,所述空调系统包括节流部件、室内换热器和室外换热器,所述阀门组包括第一阀、第二阀、第三阀和第四阀,压缩机的排气口和连接节流部件与室外换热器的管路之间设置有第一连接管路,所述第一阀设置于第一连接管路;压缩机的排气口和压缩机的回气口之间设置有第二连接管路,所述第二阀设置于第二连接管路;所述第三阀设置于压缩机的排气口处连接所述第一阀和所述第二阀的管路和室内换热器之间;所述第四阀设置于室外换热器和压缩机的回气口之间。
通过这样的设置,给出了阀门组的一种具体形式。
对于上述空调系统的除霜控制方法,在一种可能的实施方式中,所述的“通过调整所述阀门组中各阀门的开关状态,从而使空调系统处于除霜模式”包括:使第一阀、第二阀和第四阀打开,第三阀关闭,并使节流部件关闭,从而使空调系统处于除霜模式。
通过这样的设置,给出了对应于阀门组的一种具体的开关控制逻辑。
此外,通过节流部件的关停,实现了在制热循环暂停的前提下使空调系统处于除霜模式。这样一来,能够谋求间接地降低除霜过程对室内空间的制热体验的影响。具体而言,至少没有如逆循环除霜模式那样,在除霜模式运行期间向室内空间发放了冷量。
本发明第二方面提供了一种计算机可读存储介质,其中存储有多条程序代码,所述程序代码适于由处理器加载并运行以执行前述任一项所述的空调系统的除霜控制方法。
可以理解的是,该计算机可读存储介质具有前述任一项所述的空调系统的除霜控制方法的所有技术效果,在此不再赘述。
本发明第三方面提供了一种控制装置,所述控制装置包括处理器,所述处理器能够调用程序并执行前述任一项所述的空调系统的除霜控制方法。
可以理解的是,该控制装置具有前述任一项所述的空调系统的除霜控制方法的所有技术效果,在此不再赘述。
本发明第四方面提供了一种空调系统,该空调系统包括控制模块,所述控制模块用于执行前述任一项所述的空调系统的除霜控制方法。
可以理解的是,该空调系统具有前述任一项所述的空调系统的除霜控制方法的所有技术效果,在此不再赘述。
附图说明
下面参照附图并参照空调系统为超临界CO 2冷水机组的为例来描述本发明。附图中:
图1示出本发明一种实施例的冷水机组的结构示意图。
附图标记列表:
1、压缩机;2、气液分离器;3、室内换热器;4、电子膨胀阀;5、室外换热器;61、第一阀;62、第二阀;63、第三阀;64、第四阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节,本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的灶具原理等未作详细描述,以便于凸显本发明的主旨。
空调系统主要包括形成冷媒主回路的压缩机、室内换热器、室外换热器、节流部件(如毛细管、电子膨胀阀等)和四通阀,通过切换四通阀的连通方式,能够使空调系统具有常规的制冷模式和制热模式,通过冷媒在压缩机-冷凝器-节流部件-蒸发器-压缩机形成的回路中的循环流动,伴随着冷媒的相变,可以向室内换热器的表面发放冷量/热量。具体而言:当冷媒沿压缩机→室内换热器→室外换热器→压缩机的回路循环流动时,空调系统处于制热循环。即:在空调系统处于制热模式的情 形下,室内换热器作为发放热量的冷凝器;而当冷媒沿压缩机→室外换热器→室内换热器→压缩机的回路循环流动时,空调系统处于制冷循环。即:在空调系统处于制冷模式的情形下,室内换热器作为发放冷量的蒸发器。
超临界CO 2冷水机组作为空调系统的一种具体的应用形式,其向室内空间发放热量和冷量主要是以水作为介质来实现的。同时本发明的冷媒为自然工质CO 2,因此省略了四通阀且限定冷水机组仅运行于制热模式,即对应于室内空间的室内换热器为发放热量的冷凝器,室外换热器为蒸发器。冷媒主回路中的冷凝器和蒸发器均具有对应于前述的冷媒的冷媒盘管以及对应于水的水盘管,冷媒盘管主要用于参与形成前述的冷媒主回路,而水盘管则主要用于参与形成水循环回路,从而一方面保证冷媒主回路的可持续性,另一方面实现向目标侧的热量/冷量的发放。冷媒盘管和水盘管之间以可以交换热量的方式设置,如叠置等。具体而言:
流经冷媒盘管的冷媒与流经水盘管的水发生换热,从而将冷媒相变产生的热量/冷量转移至水中。如冷凝器和蒸发器的类型可以为管壳式换热器或者套管式换热器等。冷凝器的水盘管的两端分别连接至第一目标侧从而形成能够向用户端发放热量的热循环系统。如可以向用户端实现热水供应、采暖供应等;蒸发器的水盘管的两端分别连接至第二目标侧从而形成能够发放冷量的冷循环系统。如可以向冷冻空间等提供冷量等。
参照图1,图1示出本发明一种实施例的冷水机组的结构示意图。如图1所示,冷水机组包括压缩机1、气液分离器2、室内换热器3、作为节流部件的电子膨胀阀4以及室外换热器5,且冷水机组包括阀门组。设置阀门组的作用是:在需要对室外换热器进行除霜时,能够通过将压 缩机的排气口排出的高温高压气态冷媒引至室外换热器对其进行除霜,同时,将压缩机的排气口排出的高温高压气态冷媒中的一部分旁通至压缩机的回气口以提高回气口处的冷媒温度。
进一步参照图1,阀门组包括第一阀61、第二阀62、第三阀63和第四阀64,如四个阀均为电磁阀。具体地:压缩机的排气口和连接电磁膨胀阀与室外换热器的管路之间设置有第一连接管路,第一阀设置于第一连接管路;压缩机的排气口和气液分离器的进口之间设置有第二连接管路,第二阀设置于第二连接管路;压缩机的排气口处连接第一阀和第二阀的管路和室内换热器之间设置有第三阀;室外换热器和气液分离器之间设置有第四阀,气液分离器和第四阀之间设置有加热器,第二连接管路对应于气液分离器的进口的一端具体设置于加热器和气液分离器的进口之间。
基于上述结构,使第一阀和第二阀关闭、第三阀和第四阀打开,本发明的冷水机组即可处于正常的制热模式(供暖循环)时,期间电子膨胀阀正常打开,冷水机组正常供暖。冷媒的流向见图中的虚线箭头。可以看出,在第一阀和第二阀关闭、第三阀和第四阀打开的情形下,本发明的冷水机组相当于普通的冷水机组。
基于上述结构,使第一阀、第二阀和第四阀打开,第三阀关闭,本发明的冷水机组即可处于除霜模式,期间电子膨胀阀关闭、加热器按需提供热量。冷媒的流向见图中的虚线箭头。具体地:压缩机排气口排出的高温高压气态冷媒分为两路,其中:一路经过第一阀(全开)直接通往室外换热器,从而将高温高压的气态冷媒携带的热量发放至室外换热器对其进行除霜操作,之后,再经过第四阀节流为低压气态冷媒,低温低压气态冷媒经过加热器加热后到达气液分离器的进口;另一路经第二阀旁通至气液分离器的进口。两路冷媒在气液分离器的进口前汇合, 经气液分离器近期气液分离之后经压缩机的回气口进入压缩机。如此即完成一个循环。
可以看出,本发明的冷水机组基于前述的阀门组,通过先除霜后节流的方式实现了对室外换热器的除霜操作。并且,在除霜期间,室内换热器由于电子膨胀阀的关闭而不参于冷媒的循环。
在此基础上,本发明的冷水机组在气液分离器的进口处设置加热器,该加热器能够为回气口处的冷媒补充热量,从而能够谋求通过阀门组实现的热量补充以及通过加热器实现的热量补充相结合,改善冷水机组的除霜品质。
由于普通电热丝加热器在较短管段上实现大功率加热时存在一定的安全隐患,本发明的加热器选用厚膜加热器或电磁加热器,通过加热器对气液分离器的上游的冷媒管道进行加热从而为冷媒补充热量。
不过,当冷水机组运行在低温工况时,除霜不彻底的原因主要是压缩机的回气口处的温度过低,导致压缩机的效率降低、除霜效果不佳。针对该问题,本发明的冷水机组通过设置第二阀的方式将一部分高温高压气态冷媒旁通至压缩机的回气口,在一定程度上增加了压缩机的回气口处的冷媒温度。另一方面,通过在压缩机的回气口处设置加热器,能够对进入压缩机的低温低压气态冷媒进行加热。在此基础上,更进一步地,通过对加热器的加热功率进行控制,从而能够谋求更好地迎合低温低压气态冷媒实际所需的热量补充。总之,通过旁通热量(热量大致为定量)与加热器补充热量(热量可按需调整)的结合,能够谋求有效地防止压缩机机的回气口出现带液等风险,提高了压缩机的效率,最终结合前述的冷媒循环,最终使得除霜效果更彻底。
需要说明的是,在其他条件相同的情形下,由于外部的环境温度越低,除霜所需的时间往往越长,因此本发明通过环境温度调节加热器的加热功率,对加热器补充的热量进行增减控制,从而谋求在不同环境温度下的除霜时间基本一致。增减控制的方式具体为:
参照表1,表1示出了不同环境温度下单位额定制热量(每kW)需补充的加热量(kW)。在此基础上,可以根据公式(1)计算出除霜需加热器补充的总加热量(可以理解的是,除霜时压缩机的回气口处的冷媒所需的热量可以根据实验、分析得出,在本发明中,这部分热量是通过前述的旁通热量(下文中的第一热量)和当前的加热器补充的总加热量(下文中的第二热量)构成,显然,此处的“总加热量”为除霜时压缩机的回气口处的冷媒所需的热量除霜时压缩机的回气口处的冷媒所需的热量去除了前文中的旁通热量之后的热量,即第二热量)。
表1不同环境温度下单位额定制热量需补充的加热量
环境温度 单位额定制热量需补充的加热量
2 0
-7 0.163
-12 0.284
-15 0.366
-20 0.522
基于此,发明人结合除霜能耗和环境温度之间的关系,并以除霜时间趋于相同为所谋求的目标因素,通过实验和分析,拟合得到了不同的环境温度下需要加热器补充的加热量的、对应于公式(2)的曲线。
Q=q*W     (1)
q=0.029239766*(0.01474*T 2-0.545397*T+1.035563)    (2)
其中,T为环境温度,单位为℃;q为单位额定制热量(每kW)在除霜时需补充的加热量,单位为kW/kW;Q为除霜需补充的总加热量,单位为kW;W为空调系统的额定制热量,单位为kW。
需要说明的是,尤其是对于公式(2)而言,由于公式对应的是按照数值之间的关系拟合出的曲线,因此公式(2)应当仅理解为:按照上述参数的单位进行取值的前提下,公式的左边和右边在数值上相等。
实验数据表明,当加热器按照对应于公式(2)的曲线向压缩机的回气口处的冷媒补充热量时,可保证环境温度发生变化时,除霜时间都约为600s(即10min)。这样一来,即使在冷水机组处于如冬季等低温环境时,也可保证彻底除霜的除霜品质以及基本维持除霜所需的稳定的除霜时间。
可以看出,在发明的冷水机组中,通过阀门组的设置,一方面将压缩机排出的高温高压气态冷媒的一部分(大部分)引至室外换热器从而将其携带的热量用于对室外换热器的除霜操作,另一方面将压缩机排出的高温高压气态冷媒的另一部分(小部分)旁通至压缩机的回气口、将其携带的热量用于对进入气液分离器的冷媒进行加热从而提高压缩机的回气口处的冷媒温度。同时,本发明通过在气液分离器的进口设置加热器,并且对该加热器的热量补充水平进行调节,从而能够谋求通过旁通与补充加热的结合,保证在不同环境温度下均能够获得稳定的除霜效果和大致相同的除霜时间。
基于上述的具体的阀门组及其开关控制逻辑以及加热器及其补充的热量所参照的拟合曲线,本发明能够实现如下的冷水机组的除霜控制方法,该方法具体包括如下步骤:
S10、使第一阀、第二阀和第四阀打开,第三阀关闭,并使电子膨胀阀关闭,使冷水机组在不向室内空间发放冷量的前提下进入除霜模式;
S20、通过调节第二电磁阀的开度,向压缩机的回气口处的冷媒补充第一热量;
S30、根据检测的环境温度,按照前述的公式(1)和公式(2)向压缩机的回气口处的冷媒补充第二热量;
在压缩机的回气口处的冷媒得到了汇聚会后的第一热量和第二热量(目标热量)的情形下,即可在保证除霜品质的前提下,能够谋求除霜时间大约为如前文中提到的10min。
基于上述冷水机组的除霜控制方法,冷水机组还包括控制模块,可以通过控制模块来对冷水机组进行如上的控制方法。
在本发明的描述中,“控制模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。
本领域技术人员能够理解的是,本发明实现其控制方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机 程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器、随机存取存储器、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
进一步,应该理解的是,由于控制模块的设定仅仅是为了说明本发明的系统的功能单元,因此控制模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,控制模块的数量为一个仅仅是示意性的。
本领域技术人员能够理解的是,可以根据实际情况,对控制模块进行适应性地拆分。对控制模块的具体拆分形式并不会导致技术方案偏离本发明的原理,因此,拆分之后的技术方案都将落入本发明的保护范围内。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时执行或以其他顺序执行,也可以增加、替换或者省略某些步骤,这些变化都在本发明的保护范围之内等。
需要说明的是,尽管以如上具体方式所构成的控制方法作为示例进行了介绍,但本领域技术人员能够理解,本发明应不限于此。事实上,用户完全可根据以及实际应用场景等情形灵活地调整相关的步骤、步骤中的参数等要素。
至此,已经结合优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调系统的除霜控制方法,其特征在于,所述空调系统包括压缩机,连接至所述压缩机的回气口的管路上配置有加热器,所述控制方法包括:
    使空调系统处于除霜模式;
    在空调系统处于除霜模式的情形下,向压缩机的回气口处的冷媒补充目标热量;其中:
    所述目标热量包括:
    第一热量,该第一热量的获得方式为:
    通过将压缩机的排气口处的高温高压气态冷媒中的一部分旁通至所述压缩机的回气口的管路,从而向所述压缩机的回气口处的冷媒补充第一热量;
    第二热量,该第二热量的获得方式为:
    使加热器以设定的方式提供第二热量,从而向所述压缩机的回气口处的冷媒补充第二热量。
  2. 根据权利要求1所述的空调系统的除霜控制方法,其特征在于,所述的“使加热器以设定的方式提供第二热量”包括:
    以设定的方式调整第二热量的值,从而使基于目标热量的除霜模式能够在设定除霜时长内完成。
  3. 根据权利要求2所述的空调系统的除霜控制方法,其特征在于,所述的“以设定的方式调整第二热量的值”包括:
    根据环境温度,调整第二热量的值。
  4. 根据权利要求3所述的空调系统的除霜控制方法,其特征在于,“根据环境温度,调整第二热量的值”具体为:
    Q=q*W                                         (1)
    q=0.029239766*(0.01474*T 2-0.545397*T+1.035563) (2)
    其中,Q为第二热量,单位为kW;T为环境温度,单位为℃;q为单位额定制热量在除霜时需补充的加热量,单位为kW/kW;W为空调系统的额定制热量,单位为kW。
  5. 根据权利要求1至4中任一项所述的空调系统的除霜控制方法,其特征在于,所述空调系统包括阀门组,所述的“使空调系统处于除霜模式”包括:
    至少通过调整所述阀门组中各阀门的开关状态,从而使空调系统处于除霜模式。
  6. 根据权利要求5所述的空调系统的除霜控制方法,其特征在于,所述空调系统包括节流部件、室内换热器和室外换热器,所述阀门组包括第一阀、第二阀、第三阀和第四阀,
    压缩机的排气口和连接节流部件与室外换热器的管路之间设置有第一连接管路,所述第一阀设置于第一连接管路;
    压缩机的排气口和压缩机的回气口之间设置有第二连接管路,所述第二阀设置于第二连接管路;
    所述第三阀设置于压缩机的排气口处连接所述第一阀和所述第二阀的管路和室内换热器之间;
    所述第四阀设置于室外换热器和压缩机的回气口之间。
  7. 根据权利要求6所述的空调系统的除霜控制方法,其特征在于,所述的“至少通过调整所述阀门组中各阀门的开关状态,从而使空调系统处于除霜模式”包括:
    使第一阀、第二阀和第四阀打开,第三阀关闭,并使节流部件关闭,从而使空调系统处于除霜模式。
  8. 一种计算机可读存储介质,其中存储有多条程序代码,其特征在于,所述程序代码适于由处理器加载并运行以执行权利要求1至7中任一项所述的空调系统的除霜控制方法。
  9. 一种控制装置,其特征在于,所述控制装置包括处理器,所述处理器能够调用程序并执行权利要求1至7中任一项所述的空调系统的除霜控制方法。
  10. 一种空调系统,其特征在于,该空调系统包括控制模块,所述控制模块用于执行权利要求1至7中任一项所述的空调系统的除霜控制方法。
PCT/CN2021/101935 2020-11-30 2021-06-24 空调系统及其除霜控制方法、存储介质、控制装置 WO2022068281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011381460.5A CN112611073A (zh) 2020-11-30 2020-11-30 空调系统及其除霜控制方法、存储介质、控制装置
CN202011381460.5 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022068281A1 true WO2022068281A1 (zh) 2022-04-07

Family

ID=75229807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101935 WO2022068281A1 (zh) 2020-11-30 2021-06-24 空调系统及其除霜控制方法、存储介质、控制装置

Country Status (2)

Country Link
CN (1) CN112611073A (zh)
WO (1) WO2022068281A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115875734A (zh) * 2023-02-14 2023-03-31 宁波奥克斯电气股份有限公司 一种不换向化霜的多联机空调及控制方法、存储介质
CN115950051A (zh) * 2023-01-29 2023-04-11 宁波奥克斯电气股份有限公司 一种空调化霜结构及其化霜方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611073A (zh) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 空调系统及其除霜控制方法、存储介质、控制装置
CN113639491B (zh) * 2021-07-07 2023-03-31 青岛海尔空调电子有限公司 用于热泵设备除霜的方法、装置和热水机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2561123A1 (en) * 2005-09-28 2007-03-28 H-Tech, Inc. Heat pump system having a defrost mechanism for low ambient air temperature operation
CN102022807A (zh) * 2009-09-11 2011-04-20 Lg电子株式会社 空调机及其控制方法
CN102175052A (zh) * 2008-03-18 2011-09-07 Lg电子株式会社 空调及其控制方法
CN203163329U (zh) * 2013-03-11 2013-08-28 广东美的制冷设备有限公司 空调器
CN112611073A (zh) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 空调系统及其除霜控制方法、存储介质、控制装置
CN112611074A (zh) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 空调系统及其除霜控制方法、存储介质、控制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772574B1 (ko) * 2005-12-27 2007-11-02 안병민 복합 냉난방 시스템의 제상장치
CN102230650A (zh) * 2011-05-25 2011-11-02 宁波奥克斯空调有限公司 一种多制热模式的空调系统
CN103574966B (zh) * 2012-07-30 2015-09-09 珠海格力电器股份有限公司 热泵式空调系统及其除霜方法
CN106885391A (zh) * 2017-02-28 2017-06-23 广东美的制冷设备有限公司 一种空调器及其控制方法
CN107152820B (zh) * 2017-06-19 2020-05-29 青岛海尔空调器有限总公司 一种空调器及其控制方法
CN109855234A (zh) * 2018-11-12 2019-06-07 青岛海尔空调器有限总公司 空调器及其制热控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2561123A1 (en) * 2005-09-28 2007-03-28 H-Tech, Inc. Heat pump system having a defrost mechanism for low ambient air temperature operation
CN102175052A (zh) * 2008-03-18 2011-09-07 Lg电子株式会社 空调及其控制方法
CN102022807A (zh) * 2009-09-11 2011-04-20 Lg电子株式会社 空调机及其控制方法
CN203163329U (zh) * 2013-03-11 2013-08-28 广东美的制冷设备有限公司 空调器
CN112611073A (zh) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 空调系统及其除霜控制方法、存储介质、控制装置
CN112611074A (zh) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 空调系统及其除霜控制方法、存储介质、控制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950051A (zh) * 2023-01-29 2023-04-11 宁波奥克斯电气股份有限公司 一种空调化霜结构及其化霜方法
CN115875734A (zh) * 2023-02-14 2023-03-31 宁波奥克斯电气股份有限公司 一种不换向化霜的多联机空调及控制方法、存储介质
CN115875734B (zh) * 2023-02-14 2024-05-10 宁波奥克斯电气股份有限公司 一种不换向化霜的多联机空调及控制方法、存储介质

Also Published As

Publication number Publication date
CN112611073A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022068281A1 (zh) 空调系统及其除霜控制方法、存储介质、控制装置
US9593872B2 (en) Heat pump
CN108224840B (zh) 一种热泵空调系统和控制方法
CN109990429B (zh) 一种空调器化霜控制方法及空调器
CN107084562A (zh) 一种空调器及空调器的控制方法
CN112594871B (zh) 一种具有双四通阀多功能多联机系统的化霜控制方法
CN109579356B (zh) 一种带有热回收功能的温控多联机热泵系统及控制方法
WO2022267886A1 (zh) 空调器的防结霜控制方法及空调器
KR100712196B1 (ko) 히트펌프 시스템 및 실외기 제상 방법
CN112611074A (zh) 空调系统及其除霜控制方法、存储介质、控制装置
CN112594985B (zh) 一种具有双四通阀多功能多联机系统的回油控制方法
EP2375187A2 (en) Heat pump apparatus and operation control method of heat pump apparatus
JP4622901B2 (ja) 空気調和装置
CN107401851B (zh) 空调器系统以及空调器系统不停机除霜的控制方法
WO2022222587A1 (zh) 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机
CN114198872B (zh) 一种机房空调、机房空调的运行控制方法及装置
CN110986440B (zh) 热氟除霜装置、空调机组及除霜控制方法
JP2007051820A (ja) 空気調和装置
CN109282520B (zh) 涡流管与压缩式复合的直膨式空调系统及控制方法
CN111928343A (zh) 一种热泵空调系统及其除霜方法
CN112628887A (zh) 空调器及其除霜控制方法、存储介质、控制装置
JP7306582B2 (ja) 冷凍サイクル装置
JP2001201217A (ja) 空気調和機
JP4774858B2 (ja) 空気調和装置
CN112361640B (zh) 一种空调系统及其除霜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873943

Country of ref document: EP

Kind code of ref document: A1