WO2020186906A1 - 空调器化霜控制方法及空调器 - Google Patents

空调器化霜控制方法及空调器 Download PDF

Info

Publication number
WO2020186906A1
WO2020186906A1 PCT/CN2020/070924 CN2020070924W WO2020186906A1 WO 2020186906 A1 WO2020186906 A1 WO 2020186906A1 CN 2020070924 W CN2020070924 W CN 2020070924W WO 2020186906 A1 WO2020186906 A1 WO 2020186906A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
heat exchanger
air conditioner
defrosting
way valve
Prior art date
Application number
PCT/CN2020/070924
Other languages
English (en)
French (fr)
Inventor
古汤汤
Original Assignee
宁波奥克斯电气股份有限公司
奥克斯空调股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波奥克斯电气股份有限公司, 奥克斯空调股份有限公司 filed Critical 宁波奥克斯电气股份有限公司
Publication of WO2020186906A1 publication Critical patent/WO2020186906A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves

Definitions

  • the embodiment of the present disclosure relates to a defrosting control method for an air conditioner and an air conditioner.
  • the embodiments of the present disclosure aim to provide a defrosting control method for an air conditioner, so that the indoor side heat exchanger can maintain continuous heat in the defrost mode and improve the thermal performance of the entire mechanism.
  • a defrosting control method for an air conditioner includes a compressor, an indoor side heat exchanger, a flash evaporator, a first throttling element, a first two-way valve, and an outdoor side heat exchanger.
  • the air conditioner defrosting control method includes :
  • the first throttling element In the heating mode, the first throttling element is opened, the first two-way valve is closed, and the refrigerant passes through the compressor, indoor heat exchanger, flash evaporator, first throttling element and outdoor heat exchange in sequence And return to the compressor to form a circulation path;
  • the first throttling element In the defrosting mode, the first throttling element is closed, the first two-way valve is opened, and the refrigerant passes through the compressor, the indoor heat exchanger, the flash evaporator, the first two-way valve and the outdoor heat exchange in sequence And return to the compressor to form a circulation path.
  • the second throttling element arranged between the outlet of the flasher and the return port of the compressor is turned on to form a branch, and the refrigerant in the branch is connected to the outdoor heat exchanger The output defrosted refrigerant is mixed at the air return port of the compressor.
  • the opening degree of the second throttle element is adjusted to control the pressure and temperature of the refrigerant on the return air side.
  • the opening degree of the second throttle element is determined by the return air temperature and return air superheat after defrosting.
  • the return air pressure is obtained through a pressure valve provided in the pipeline at the return air port of the compressor, which is used to adjust the opening degree of the second throttle element.
  • the opening degree of the third throttle element between the outlet of the indoor heat exchanger and the inlet of the flash evaporator is adjusted to maintain the indoor heat exchange temperature and control the outdoor defrosting time.
  • the opening degree of the third throttle element is determined by the temperature of the inner and outer plates.
  • the air conditioner defrosting control system further includes a four-way valve.
  • the four-way valve When the heating mode and the defrosting mode are switched between, the four-way valve has the same communication mode, and the communication mode is that the compressor outlet is connected to the room.
  • the inlet of the side heat exchanger and the outlet of the outdoor side heat exchanger are connected to the compressor return port.
  • a second two-way valve provided between the outlet of the flash evaporator and the air supply port of the compressor is opened.
  • the air conditioner defrosting control method described in the embodiments of the present disclosure has the following advantages:
  • the defrosting is achieved by using the medium pressure refrigerant on the outside, and the refrigerant of the second defrosting branch is directly connected to the first defrosting branch without passing through the outdoor side.
  • the outflowing refrigerant is mixed to ensure that the pressure of the refrigerant on the return side of the compressor is not too low. After the refrigerant is sucked by the compressor, the medium temperature and high pressure refrigerant enters the evaporator for heat exchange, thereby improving the heating performance of the entire air conditioner.
  • Another purpose of the embodiments of the present disclosure is to provide an air conditioner, so that the indoor side heat exchanger can maintain the non-stop heat in the defrosting mode and improve the thermal performance of the entire mechanism.
  • An air conditioner comprising a compressor, an indoor side heat exchanger, a flash evaporator, a throttling element, and an outdoor side heat exchanger, the compressor, the indoor side heat exchanger, the flash evaporator, a first throttling element and the outdoor side heat exchange
  • the evaporator is connected in sequence through a pipeline to form a circulation path, and a first two-way valve is also connected between the outlet of the flash evaporator and the outdoor heat exchanger.
  • a second throttling element is connected between the outlet of the flasher and the return port of the compressor.
  • a pressure valve is also provided on the pipeline at the return port of the compressor for detecting the return pressure of the compressor.
  • a third throttling element is also provided between the outlet of the indoor side heat exchanger and the inlet of the flash evaporator.
  • the compressor adopts a jet enthalpy-increasing compressor or a two-stage enthalpy-increasing compressor, and the outlet of the flash evaporator is also connected to the air supplement port of the compressor through a second two-way valve.
  • the air conditioner further includes a four-way valve, and the four ports of the four-way valve are sequentially connected to the compressor air outlet, the indoor heat exchanger inlet, the compressor return air outlet, and the outdoor heat exchanger outlet.
  • the defrosting control method of the air conditioner and the above air conditioner have the same advantages over the known technology, and will not be repeated here.
  • FIG. 1 is a schematic diagram of refrigerant circulation in the heating mode of the defrost control system according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the refrigerant circulation in the defrosting mode of the defrosting control system according to an embodiment of the disclosure
  • Fig. 3 is a flowchart of a defrost control method according to an embodiment of the disclosure.
  • 1-Two-stage enthalpy-increasing compressor 2-first solenoid valve, 3-four-way valve, 4-indoor heat exchanger, 5-first electronic expansion valve, 6-flasher, 7-third electronic expansion valve , 8-Indoor heat exchanger, 9-Second solenoid valve, 10-Second electronic expansion valve.
  • the embodiments of the present disclosure provide a defrosting control method for an air conditioner and the air conditioner.
  • the indoor side heat exchanger maintains non-stop mechanism heat, and all refrigerants participate in heat exchange, which can reduce indoor temperature fluctuations.
  • the air conditioner includes a compressor, a four-way valve, an indoor side heat exchanger, a flash evaporator, a first throttling element, a second throttling element, a third throttling element, a first two-way valve, and a second two-way valve.
  • the air conditioner defrosting control method includes:
  • the first throttling element In the heating mode, the first throttling element is turned on, the first two-way valve is closed, and the refrigerant passes through the compressor, four-way valve, indoor heat exchanger, third throttling element, and flash evaporator in sequence , The first throttling element and the outdoor side heat exchanger are returned to the compressor through the four-way valve to form a circulation path; at the same time, the second two-way set between the outlet of the flasher and the air supply port of the compressor is opened valve;
  • the first throttling element In the defrosting mode, the first throttling element is closed, the first two-way valve is opened, and the refrigerant passes through the compressor, four-way valve, indoor side heat exchanger, third throttling element, and flash evaporator in sequence , The first two-way valve and the outdoor side heat exchanger, and return to the compressor through the four-way valve to form a circulation path, and at the same time open the second throttling element between the flasher outlet and the compressor return port, and open all The second two-way valve is provided between the outlet of the flasher and the air supply port of the compressor.
  • first throttling element, the second throttling element, and the third throttling element may be throttle valves such as electronic expansion valves; the first two-way valve and the second two-way valve may be solenoid valves.
  • FIG. 1 is a schematic diagram of the refrigerant circulation of the air conditioner in the hot mode according to the embodiment of the disclosure.
  • the air conditioner of the embodiment of the present disclosure includes a two-stage enthalpy-increasing compressor 1, a first solenoid valve 2 as a first two-way valve, a four-way valve 3, and an indoor heat exchanger 4 as a first
  • the second electronic expansion valve 10 is a second throttle element.
  • the heating circuit includes a two-stage enthalpy-increasing compressor connected in sequence 1—four-way valve 3—indoor heat exchanger 8—third electronic expansion valve 7—flasher 6—first electronic expansion valve 5—outdoor side Heat exchanger 4—four-way valve 3—two-stage enthalpy-increasing compressor 1.
  • the air outlet of the two-stage enthalpy-increasing compressor 1 is connected to the first end of the four-way valve 3, and the refrigerant flows in from the first end of the four-way valve 3.
  • the second end of the valve 3 flows out, and the second end of the four-way valve 3 is connected to the inlet of the indoor heat exchanger 8.
  • the indoor heat exchanger 8 uses the high-temperature and high-pressure refrigerant discharged from the compressor to heat the indoor air and raise the room temperature; the outlet of the indoor heat exchanger 8 is connected to the third electronic expansion valve 7, and the third electronic expansion
  • the valve 7 is connected to the inlet of the flash evaporator 6, and the flash evaporator 6 performs gas-liquid separation of the incoming refrigerant, wherein a part of the refrigerant passes through the first outlet (outlet) of the flash evaporator 6, the second solenoid valve 9 and the gas-liquid separation
  • the parts return to the injection enthalpy supplementary port of the two-stage enthalpy increasing compressor 1.
  • the medium temperature and medium pressure refrigerant enters the supplementary gas port of the two-stage enthalpy increasing compressor 1 for compression, completing the heating cycle of the branch; flashing another part
  • the refrigerant passes through the second outlet (liquid outlet) of the evaporator 6 and enters the first electronic expansion valve 5.
  • the first electronic expansion valve 5 is throttled and pressure-reduced to obtain a low-pressure and low-temperature refrigerant.
  • the first electronic expansion valve 5 is connected to the outdoor side The heat exchanger 4, the low-pressure low-temperature refrigerant exchanges heat with the outdoor air through the outdoor side heat exchanger 4 to complete the heat absorption process; the outdoor side heat exchanger 4 is connected to the air return port of the two-stage enthalpy compressor 1 The refrigerant absorbs heat at the outdoor side heat exchanger 4 and then enters the air return port of the two-stage enthalpy-increasing compressor 1, and returns to the liquid storage tank of the two-stage enthalpy-increasing compressor 1, to complete the heating cycle.
  • Fig. 2 is a schematic diagram of refrigerant circulation in the defrosting mode of the defrosting control system according to the embodiment of the disclosure.
  • the first electronic expansion valve 5 connected between the outdoor heat exchanger 4 and the second outlet of the flash evaporator 6 is closed, and the first solenoid valve 2 Open, the remaining branches remain open, and the four-way valve 3 does not change direction, that is, when the heating mode and the defrosting mode are switched between, the communication mode of the four-way valve remains unchanged, and the communication mode is the compressor outlet connection
  • the inlet of the indoor side heat exchanger and the outlet of the outdoor side heat exchanger are connected to the compressor return port.
  • the indoor side heat exchanger keeps constant heat, and all refrigerant enters the indoor side heat exchanger to participate in heat exchange, so the indoor side temperature fluctuation can be reduced and the heating comfort can be improved.
  • a branch is provided between the first outlet of the flasher 6 and the outdoor heat exchanger 4, and the first solenoid valve 2 controls the communication and
  • a branch is set between the third outlet of the flasher 6 and the return port of the two-stage enthalpy compressor 1, and the second electronic expansion valve 10 controls the flow rate and opening of the valve for defrosting Increase the pressure and temperature of the refrigerant on the side of the air return port in the mode.
  • the first solenoid valve 2 is connected between the air outlet of the flash evaporator 6 and the outdoor heat exchanger 4; in other embodiments, the first solenoid valve 2 may also be connected to the flash evaporator 6 between the liquid outlet and the outdoor side heat exchanger 4. Defrosting is achieved by using a medium pressure refrigerant on the outdoor side, while ensuring that the pressure of the compressor's return port and supplementary port is not too low, thereby improving the heating performance of the entire air conditioner.
  • the first outlet of the flash evaporator 6, the first solenoid valve 2, the outdoor side heat exchanger 4 and the compressor return port form the first defrosting branch to defrost the outdoor side heat exchanger 4;
  • the branch formed by the third outlet (liquid outlet) of the evaporator 6 and the second electronic expansion valve 10 is also connected to the compressor return port, forming a second defrosting branch, and returning to the first defrosting branch after defrosting
  • the low pressure refrigerant at the return port is mixed to increase the pressure of the low pressure refrigerant.
  • the outdoor side heat exchanger 4 uses a medium pressure refrigerant to defrost, and the refrigerant of the second defrosting branch does not pass through the outdoor side and directly mixes with the refrigerant flowing out of the first defrosting branch, so the pressure of the refrigerant on the return side of the compressor does not reach If the temperature is too low, after the refrigerant is sucked in by the compressor, the medium temperature and high pressure refrigerant enters the evaporator to exchange heat, which improves the heating performance of the air conditioning system.
  • the first solenoid valve 2 of the first defrosting branch is opened, and the second electronic expansion valve 10 of the second defrosting branch is opened, and its opening is determined by the return air temperature after defrosting.
  • the return air superheat is determined to control the pressure and temperature of the refrigerant on the return air side to ensure system operation reliability and compressor heat output;
  • the third electronic expansion valve 7 is opened, and its opening is determined by the temperature of the inner and outer disks. Maintain the indoor side heat exchange temperature and control the outdoor side defrosting time.
  • the pipeline at the air return port is also provided with a pressure valve for detecting return air pressure.
  • a pressure valve for detecting return air pressure.
  • the air conditioner adopts a two-stage enthalpy-increasing compressor system.
  • the air conditioner may also adopt other compressor systems such as jet enthalpy-increasing compressors.
  • a defrosting control method for an air conditioner is provided.
  • Fig. 3 is a flowchart of a defrost control method according to an embodiment of the disclosure. As shown in Figure 3, the defrost control method of this embodiment includes:
  • the first electronic expansion valve 5 is opened, the first solenoid valve 2 is closed, and the refrigerant sequentially passes through the two-stage enthalpy compressor 1, the indoor heat exchanger 8, the flash evaporator 6, and the second An electronic expansion valve 5 and an outdoor side heat exchanger 4 are returned to the two-stage enthalpy-increasing compressor 1 to form a circulation path;
  • the first electronic expansion valve 5 is closed, the first solenoid valve 2 is opened, and the refrigerant sequentially passes through the two-stage enthalpy increasing compressor 1, the indoor heat exchanger 8, the flash evaporator 6, and the second A solenoid valve 2 and an outdoor side heat exchanger 4 return to the two-stage enthalpy-increasing compressor 1 to form a circulation path.
  • the outdoor heat exchanger 4 and the flash evaporator 6 are connected by the first defrosting branch, and the flash evaporator 6 and the return port of the two-stage enthalpy compressor 1 are connected by the second defrosting branch.
  • the first defrosting branch includes a first solenoid valve 2
  • the second defrosting branch includes a second electronic expansion valve 10;
  • the first defrosting branch is used to defrost the outdoor heat exchanger 4.
  • the refrigerant flowing out of the flash evaporator 6 is not throttled and reduced, and the medium pressure refrigerant flowing out of the flash evaporator 6 directly participates in the defrosting process.
  • the first outlet of the flash evaporator 6, the first solenoid valve 2, the outdoor side heat exchanger 4 and the first branch of the return port of the two-stage enthalpy compressor 1 form a loop to defrost the outdoor side heat exchanger;
  • the third outlet of the flash evaporator 6, the second electronic expansion valve 10, and the second branch of the compressor return port in the defrosting branch form a circulation loop, which is used to interact with the second branch of the return port of the two-stage enthalpy compressor 1 after defrosting.
  • the refrigerant mixes in one path to increase the low pressure.
  • control method further includes: in the defrosting mode, adjusting the opening of the second electronic expansion valve 10 to control the pressure and temperature of the refrigerant on the return side, and the opening of the second electronic expansion valve 10 is determined by The return air temperature and return air superheat after defrosting are determined.
  • the return air pressure is obtained through a pressure valve provided in the pipeline at the return air port of the two-stage enthalpy increasing compressor 1 for adjusting the opening degree of the second electronic expansion valve 10.
  • control method further includes: in the defrosting mode, adjusting the opening of the third electronic expansion valve 7 between the outlet of the indoor heat exchanger 8 and the inlet of the flasher 6 to maintain the indoor heat exchange temperature And to control the outdoor side defrosting time, the opening degree of the third electronic expansion valve 7 is determined by the temperature of the inner and outer plates.
  • the method further includes: all the refrigerant flowing out of the outlet of the two-stage enthalpy increasing compressor 1 enters the indoor side heat exchanger 8 for heat exchange.
  • the four-way valve 3 does not change direction, and its communication mode is still that the compressor outlet is connected to the inlet of the indoor heat exchanger, and the outlet of the outdoor heat exchanger is connected to the compressor return.
  • the indoor side heat exchanger maintains non-stop mechanism heat, which can keep the indoor side heating continuously, reduce indoor side temperature fluctuations, and improve heating comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器化霜控制方法及空调器,所述空调器包括压缩机(1)、室内侧换热器(8)、闪蒸器(6)、第一节流元件(5)、第一二通阀(2)和室外侧换热器(4),所述化霜控制方法包括:在制热模式下,开启所述第一节流元件(5),关闭所述第一二通阀(2),冷媒依次经过所述压缩机(1)、室内侧换热器(8)、闪蒸器(6)、第一节流元件(5)和室外侧换热器(4),并回到所述压缩机(1)内形成循环通路;在化霜模式下,关闭所述第一节流元件(5),开启所述第一二通阀(2),冷媒依次经过所述压缩机(1)、室内侧换热器(8)、闪蒸器(6)、第一二通阀(2)和室外侧换热器(4),并回到所述压缩机(1)内形成循环通路。所述空调器化霜控制方法,在化霜模式下室内侧换热器(8)保持不停机制热,且所有冷媒均参与换热,能够降低室内温度波动,提升制热舒适性。

Description

空调器化霜控制方法及空调器
本申请要求于2019年3月15日提交的中国专利申请第201910196574.3的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开实施例涉及一种空调器化霜控制方法及空调器。
背景技术
已知空调在制热低温运行时,由于室外侧蒸发温度低于0℃,常常会导致室外侧换热器结霜,导致制热量衰减。为保证制热效果,空调需要阶段性进行除霜,除霜时通常需要制热循环系统的四通阀换向,内风机停机,因此在除霜过程中,室内侧换热器没有热量输出,会造成室内温度下降。
发明内容
有鉴于此,本公开实施例旨在提出一种空调器化霜控制方法,从而在化霜模式下室内侧换热器能够保持不停机制热,并提升整机制热性能。
为达到上述目的,本公开的技术方案是这样实现的:
一种空调器化霜控制方法,空调器包括压缩机、室内侧换热器、闪蒸器、第一节流元件、第一二通阀和室外侧换热器,所述空调器化霜控制方法包括:
在制热模式下,开启所述第一节流元件,关闭所述第一二通阀,冷媒依次经过所述压缩机、室内侧换热器、闪蒸器、第一节流元件和室外侧换热器,并回到所述压缩机内形成循环通路;
在化霜模式下,关闭所述第一节流元件,开启所述第一二通阀,冷媒依次经过所述压缩机、室内侧换热器、闪蒸器、第一二通阀和室外侧换热器,并回到所述压缩机内形成循环通路。
进一步的,在化霜模式下,开启所述设置于闪蒸器出口与压缩机回气口之间的第二节流元件,形成一支路,该支路中的冷媒与所述室外侧换热器输 出的化霜后的冷媒在所述压缩机回气口处混合。
进一步的,在化霜模式下,调节所述第二节流元件的开度,控制回气侧冷媒压力和温度。
进一步的,所述第二节流元件的开度由化霜后的回气温度、回气过热度确定。
进一步的,通过设置于压缩机回气口处管路的压力阀获得回气压力,用于调节所述第二节流元件的开度。
进一步的,在化霜模式下,调节所述室内侧换热器出口与闪蒸器入口之间的第三节流元件的开度,保持室内侧换热温度和控制室外侧化霜时间。
进一步的,所述第三节流元件的开度由内外盘温度确定。
进一步的,所述空调器化霜控制系统还包括四通阀,在制热模式及化霜模式相互转换时,所述四通阀连通方式不变,其连通方式均为压缩机出气口连接室内侧换热器入口,室外侧换热器出口连接压缩机回气口。
进一步的,在化霜模式下,所有冷媒均进入室内侧换热器参与换热。
进一步的,在所述制热模式及所述化霜模式下,开启所述闪蒸器的出口与压缩机的补气口之间设置的第二二通阀。
相对于已知技术,本公开实施例所述的空调器化霜控制方法具有以下优势:
(1)本公开实施例所述的空调器化霜控制方法,由于在化霜模式下室内侧换热器能够保持不停机制热,同时四通阀不换向,且所有冷媒均参与换热,因此能降低室内温度波动,提升制热舒适性;
(2)本公开实施例所述的空调器化霜控制方法,通过在外侧利用中压冷媒实现化霜的同时,第二化霜支路的冷媒不经过室外侧直接与第一化霜支路流出的冷媒混合,因此保证压缩机回气侧的冷媒压力不至过低,冷媒被压缩机吸入后,中温高压冷媒进入蒸发器换热,从而提升了空调器整机的制热性能。
本公开实施例的另一目的在于提出一种空调器,以在化霜模式下室内侧换热器能够保持不停机制热,并提升整机制热性能。
为达到上述目的,本公开的技术方案是这样实现的:
一种空调器,包括压缩机、室内侧换热器、闪蒸器、节流元件和室外侧 换热器,所述压缩机、室内侧换热器、闪蒸器、第一节流元件和室外侧换热器通过管路依次连接形成循环通路,且闪蒸器的出口与室外侧换热器之间还连接有第一二通阀。
进一步的,所述闪蒸器的出口与压缩机回气口之间还连接有第二节流元件。
进一步的,所述压缩机回气口处管路上还设置有压力阀,用于检测压缩机回气压力。
进一步的,所述室内侧换热器出口与所述闪蒸器入口之间还设置有第三节流元件。
进一步的,所述压缩机采用喷气增焓压缩机或双级增焓压缩机,所述闪蒸器的出口还通过第二二通阀连接到所述压缩机的补气口。
进一步的,所述空调器还包括四通阀,所述四通阀的四个端口依次连接压缩机出气口、室内侧换热器入口、压缩机回气口、室外侧换热器出口。
所述空调器与上述空调器的化霜控制方法相对于已知技术所具有的优势相同,在此不再赘述。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本发明的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所述的化霜控制系统在制热模式下冷媒循环的示意图;
图2为本公开实施例所述的化霜控制系统在化霜模式下冷媒循环的示意图;
图3为本公开实施例化霜控制方法的流程图。
附图标记说明:
1-双级增焓压缩机,2-第一电磁阀,3-四通阀,4-室内侧换热器,5-第一电子膨胀阀,6-闪蒸器,7-第三电子膨胀阀,8-室内侧换热器,9-第二电磁阀,10-第二电子膨胀阀。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本公开实施例提供了一种空调器化霜控制方法及空调器,在化霜模式下室内侧换热器保持不停机制热,且所有冷媒均参与换热,能够降低室内温度波动。其中,所述空调器包括压缩机、四通阀、室内侧换热器、闪蒸器、第一节流元件、第二节流元件、第三节流元件、第一二通阀、第二二通阀和室外侧换热器,所述空调器化霜控制方法包括:
在制热模式下,开启所述第一节流元件,关闭所述第一二通阀,冷媒依次经过所述压缩机、四通阀、室内侧换热器、第三节流元件、闪蒸器、第一节流元件和室外侧换热器,并通过四通阀回到所述压缩机内形成循环通路;同时开启所述闪蒸器的出口与压缩机的补气口之间设置的第二二通阀;
在化霜模式下,关闭所述第一节流元件,开启所述第一二通阀,冷媒依次经过所述压缩机、四通阀、室内侧换热器、第三节流元件、闪蒸器、第一二通阀和室外侧换热器,并通过四通阀回到所述压缩机内形成循环通路,同时开启闪蒸器出口与压缩机回气口之间的第二节流元件,以及开启所述闪蒸器的出口与压缩机的补气口之间设置的第二二通阀。
其中,所述第一节流元件、第二节流元件、第三节流元件可以采用电子膨胀阀等节流阀;所述第一二通阀、第二二通阀可以采用电磁阀。
在本发明一个示意性实施例中,提供了一种空调器。图1为本公开实施例空调器在热模式下冷媒循环的示意图。如图1所示,本公开实施例的空调器,包括双级增焓压缩机1,作为第一二通阀的第一电磁阀2,四通阀3,室内侧换热器4,作为第一节流元件的第一电子膨胀阀5,闪蒸器6,作为第三节流元件的第三电子膨胀阀7,室内侧换热器8,作为第二二通阀的第二电磁阀9,作为第二节流元件的第二电子膨胀阀10。其中,所述制热回路包括依次连接的双级增焓压缩机1—四通阀3—室内换热器8—第三电子膨胀阀7—闪蒸器6—第一电子膨胀阀5—室外侧换热器4—四通阀3—双级增焓压缩机1。
具体地,在制热模式下,所述双级增焓压缩机1的出气口连接四通阀3的第一端,冷媒从所述四通阀3的第一端流入,从所述四通阀3的第二端流 出,所述四通阀3的第二端连接室内换热器8的进口,由双级增焓压缩机1送出的空调系统的全部冷媒都参与室内换热器8处的换热,室内换热器8采用压缩机排出的高温高压冷媒放热将室内空气加热,提升室温;所述室内换热器8的出口连接第三电子膨胀阀7,所述第三电子膨胀阀7连接到闪蒸器6的入口,所述闪蒸器6对流入的冷媒进行气液分离,其中,一部分冷媒经过闪蒸器6的第一出口(出气口)、第二电磁阀9及气液分离件回到双级增焓压缩机1的喷焓补气口,此时,中温中压的冷媒进入双级增焓压缩机1的补气口进行压缩,完成该支路的制热循环;闪另一部分冷媒经过蒸器6的第二出口(出液口),进入第一电子膨胀阀5,在第一电子膨胀阀5进行节流降压得到低压低温冷媒,所述第一电子膨胀阀5连接室外侧换热器4,所述低压低温冷媒通过室外侧换热器4与室外侧空气进行换热,完成吸热过程;所述室外侧换热器4连接到双级增焓压缩机1的回气口的第一支路,冷媒于室外侧换热器4处吸热后进入双级增焓压缩机1的回气口,回到双级增焓压缩机1的储液罐,完成制热循环。
图2为本公开实施例化霜控制系统在化霜模式下冷媒循环的示意图。如图2所示,在化霜模式下,所述制热回路中,连接于室外侧换热器4与闪蒸器6第二出口之间的第一电子膨胀阀5关闭、第一电磁阀2开启,其余支路保持开启,并且四通阀3不换向,即在制热模式及化霜模式相互转换时,所述四通阀连通方式不变,其连通方式均为压缩机出气口连接室内侧换热器入口,室外侧换热器出口连接压缩机回气口。在化霜模式下,室内侧换热器保持不停机制热,且所有冷媒均进入室内侧换热器参与换热,因此能够降低室内侧温度波动,提升制热舒适性。
具体地,为了实现室外侧换热器的化霜功能,本实施例中在闪蒸器6的第一出口与室外侧换热器4之间设置一个支路,由第一电磁阀2控制连通和断开;同时,在闪蒸器6的第三出口与双级增焓压缩机1回气口之间设置一个支路,由第二电子膨胀阀10控制阀流量大小和开度,用于在化霜模式下提高回气口侧的冷媒压力和温度。本实施例中,所述第一电磁阀2连接于所述闪蒸器6的出气口与室外侧换热器4之间;其他实施例中,所述第一电磁阀2还可以连接于闪蒸器6的出液口与室外侧换热器4之间。通过在室外侧利用中压冷媒实现化霜,同时保证压缩机回气口和补气口的压力不至于过低, 从而提升了空调器整机的制热性能。
在化霜模式下,由于第一电子膨胀阀5关闭,所述第一电磁阀2连通,由闪蒸器6流出的冷媒不经过节流减压,因此闪蒸器6流出的中压冷媒直接参与化霜过程,此时闪蒸器6的第一出口、第一电磁阀2、室外侧换热器4与压缩机回气口形成第一化霜支路对室外侧换热器4进行化霜;同时闪蒸器6的第三出口(出液口)、第二电子膨胀阀10形成的支路也连接到压缩机回气口,形成第二化霜支路,与第一化霜支路化霜后回到回气口的低压冷媒混合,从而提升低压冷媒的压力。室外侧换热器4采用中压冷媒化霜,而第二化霜支路的冷媒不经过室外侧直接与第一化霜支路流出的冷媒混合,因此压缩机回气侧的冷媒压力不至过低,冷媒被压缩机吸入后,中温高压冷媒进入蒸发器换热,提升了空调系统的制热性能。
在化霜模式下,所述第一化霜支路的第一电磁阀2打开,所述第二化霜支路的第二电子膨胀阀10开启,其开度由化霜后的回气温度、回气过热度确定,用于控制回气侧冷媒压力和温度,保证系统运行可靠性和压缩机热量输出;所述第三电子膨胀阀7开启,其开度由内外盘温度确定,用于保持室内侧换热温度和控制室外侧化霜时间。
可选地,所述回气口处管路还设置有压力阀,用于检测回气压力,通过配合调节第二电子膨胀阀10的开度,能够更精准地控制系统回气支路的流量和压力。
在上述实施例中,所述空调器采用双级增焓压缩机系统,在其他一些实施例中,所述空调器还可以采用喷气增焓压缩机等其他压缩机系统。
在本发明又一个示意性实施例中,提供了一种空调器化霜控制方法。图3为本公开实施例化霜控制方法的流程图。如图3所示,本实施例化霜控制方法包括:
在制热模式下,开启所述第一电子膨胀阀5,关闭所述第一电磁阀2,冷媒依次经过所述双级增焓压缩机1、室内侧换热器8、闪蒸器6、第一电子膨胀阀5和室外侧换热器4,并回到所述双级增焓压缩机1内形成循环通路;
在化霜模式下,关闭所述第一电子膨胀阀5,开启所述第一电磁阀2,冷媒依次经过所述双级增焓压缩机1、室内侧换热器8、闪蒸器6、第一电磁阀2和室外侧换热器4,并回到所述双级增焓压缩机1内形成循环通路。
在化霜模式下,室外换热器4与闪蒸器6之间采用第一化霜支路连通,闪蒸器6与双级增焓压缩机1的回气口之间采用第二化霜支路连通;其中第一化霜支路包括第一电磁阀2,第二化霜支路包括第二电子膨胀阀10;
其中,第一化霜支路用于对室外换热器4进行化霜,此时由闪蒸器6流出的冷媒不经过节流减压,闪蒸器6流出的中压冷媒直接参与化霜过程,闪蒸器6的第一出口、第一电磁阀2、室外侧换热器4与双级增焓压缩机1回气口的第一支路形成一个回路对室外侧换热器进行化霜;第二化霜支路中闪蒸器6的第三出口、第二电子膨胀阀10、压缩机回气口的第二支路形成循环回路,用于与化霜之后双级增焓压缩机1回气口的第一支路的冷媒混合,提升低压。
进一步地,所述控制方法还包括:在化霜模式下,调节所述第二电子膨胀阀10的开度,控制回气侧冷媒压力和温度,所述第二电子膨胀阀10的开度由化霜后的回气温度、回气过热度确定。
可选地,通过设置于双级增焓压缩机1回气口处管路的压力阀获得回气压力,用于调节所述第二电子膨胀阀10的开度。
进一步地,所述控制方法还包括:在化霜模式下,调节所述室内侧换热器8出口与闪蒸器6入口之间的第三电子膨胀阀7的开度,保持室内侧换热温度和控制室外侧化霜时间,所述第三电子膨胀阀7的开度由内外盘温度确定。
进一步地,该方法还包括:所述双级增焓压缩机1出口流出的冷媒全部进入室内侧换热器8进行换热。在化霜模式下,所述制热回路中,四通阀3不换向,其连通方式仍为压缩机出气口连接室内侧换热器入口,室外侧换热器出口连接压缩机回气口,同时室内侧换热器保持不停机制热,可以保持室内侧持续制热,降低室内侧温度波动,提升制热舒适性。
以上所述仅为本发明的一些实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种空调器化霜控制方法,其中,空调器包括压缩机、室内侧换热器、闪蒸器、第一节流元件、第一二通阀和室外侧换热器,所述空调器化霜控制方法包括:
    在制热模式下,开启所述第一节流元件,关闭所述第一二通阀,冷媒依次经过所述压缩机、室内侧换热器、闪蒸器、第一节流元件和室外侧换热器,并回到所述压缩机内形成循环通路;
    在化霜模式下,关闭所述第一节流元件,开启所述第一二通阀,冷媒依次经过所述压缩机、室内侧换热器、闪蒸器、第一二通阀和室外侧换热器,并回到所述压缩机内形成循环通路。
  2. 根据权利要求1所述的空调器化霜控制方法,其中,在化霜模式下,开启所述设置于闪蒸器出口与压缩机回气口之间的第二节流元件,形成一支路,该支路中的冷媒与所述室外侧换热器输出的化霜后的冷媒在所述压缩机回气口处混合。
  3. 根据权利要求1或2所述的空调器化霜控制方法,其中,在化霜模式下,调节所述第二节流元件的开度,控制回气侧冷媒压力和温度。
  4. 根据权利要求3所述的空调器化霜控制方法,其中,所述第二节流元件的开度由化霜后的回气温度、回气过热度确定。
  5. 根据权利要求3所述的空调器化霜控制方法,其中,通过设置于压缩机回气口处管路的压力阀获得回气压力,用于调节所述第二节流元件的开度。
  6. 根据权利要求1或2所述的空调器化霜控制方法,其中,在化霜模式下,调节所述室内侧换热器出口与闪蒸器入口之间的第三节流元件的开度,保持室内侧换热温度和控制室外侧化霜时间。
  7. 根据权利要求6所述的空调器化霜控制方法,其中,所述第三节流元件的开度由内外盘温度确定。
  8. 根据权利要求1所述的空调器化霜控制方法,其中,所述空调器化霜控制系统还包括四通阀,在制热模式及化霜模式相互转换时,所述四通阀连通方式不变,其连通方式均为压缩机出气口连接室内侧换热器入口,室外侧换热器出口连接压缩机回气口。
  9. 根据权利要求1所述的空调器化霜控制方法,其中,在化霜模式下,所有冷媒均进入室内侧换热器参与换热。
  10. 根据权利要求1所述的空调器化霜控制方法,其中,在所述制热模式及所述化霜模式下,开启所述闪蒸器的出口与压缩机的补气口之间设置的第二二通阀。
  11. 一种空调器,其中,所述空调器包括压缩机、室内侧换热器、闪蒸器、节流元件和室外侧换热器,所述压缩机、室内侧换热器、闪蒸器、第一节流元件和室外侧换热器通过管路依次连接形成循环通路,且闪蒸器的出口与室外侧换热器之间还连接有第一二通阀。
  12. 根据权利要求11所述的空调器,其中,所述闪蒸器的出口与压缩机回气口之间还连接有第二节流元件。
  13. 根据权利要求12所述的空调器,其中,所述压缩机回气口处管路上还设置有压力阀,用于检测压缩机回气压力。
  14. 根据权利要求11或12所述的空调器,其中,所述室内侧换热器出口与所述闪蒸器入口之间还设置有第三节流元件。
  15. 根据权利要求11或12所述的空调器,其中,所述压缩机采用喷气增焓压缩机或双级增焓压缩机,所述闪蒸器的出口还通过第二二通阀连接到所述压缩机的补气口。
  16. 根据权利要求11或12所述的空调器,其中,所述空调器还包括四通阀,所述四通阀的四个端口依次连接压缩机出气口、室内侧换热器入口、压缩机回气口、室外侧换热器出口。
PCT/CN2020/070924 2019-03-15 2020-01-08 空调器化霜控制方法及空调器 WO2020186906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910196574.3 2019-03-15
CN201910196574.3A CN109990429B (zh) 2019-03-15 2019-03-15 一种空调器化霜控制方法及空调器

Publications (1)

Publication Number Publication Date
WO2020186906A1 true WO2020186906A1 (zh) 2020-09-24

Family

ID=67129719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070924 WO2020186906A1 (zh) 2019-03-15 2020-01-08 空调器化霜控制方法及空调器

Country Status (2)

Country Link
CN (1) CN109990429B (zh)
WO (1) WO2020186906A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990429B (zh) * 2019-03-15 2021-04-09 奥克斯空调股份有限公司 一种空调器化霜控制方法及空调器
CN110736208B (zh) * 2019-09-26 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736211B (zh) * 2019-09-26 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736217B (zh) * 2019-09-27 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN112050292B (zh) * 2020-08-24 2021-08-03 珠海格力电器股份有限公司 一种空调系统、空调系统控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203132224U (zh) * 2013-01-31 2013-08-14 广东美的制冷设备有限公司 空调器
CN203231582U (zh) * 2013-04-11 2013-10-09 东华大学 一种设经济器及采用热气旁通法除霜的双级压缩热泵系统
CN103644690A (zh) * 2013-12-02 2014-03-19 陈志强 空气源热泵除霜系统
CN206018784U (zh) * 2016-09-13 2017-03-15 北京金万众空调制冷设备有限责任公司 适用于北方农村的低温空气源热泵机组
CN106524610A (zh) * 2016-11-22 2017-03-22 广东美的暖通设备有限公司 空调系统和空调
KR101737365B1 (ko) * 2016-01-28 2017-05-29 엘지전자 주식회사 공기조화기
CN107144123A (zh) * 2017-07-18 2017-09-08 合肥万都云雅制冷科技股份有限公司 一种热泵烘干机系统
CN109990429A (zh) * 2019-03-15 2019-07-09 奥克斯空调股份有限公司 一种空调器化霜控制方法及空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111288B2 (ja) * 1985-09-20 1995-11-29 株式会社日立製作所 空気調和機
CN103375935B (zh) * 2012-04-25 2016-03-23 珠海格力电器股份有限公司 二级压缩循环系统及具有其的空调器的控制方法
CN104729161B (zh) * 2013-12-19 2018-08-24 珠海格力电器股份有限公司 空调器及其控制方法
CN106016535B (zh) * 2016-05-31 2019-01-08 广东美的制冷设备有限公司 喷气增焓空调系统及其除霜控制方法
CN106885405B (zh) * 2017-04-24 2019-09-10 深圳创维空调科技有限公司 一种空调器系统及其除霜方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203132224U (zh) * 2013-01-31 2013-08-14 广东美的制冷设备有限公司 空调器
CN203231582U (zh) * 2013-04-11 2013-10-09 东华大学 一种设经济器及采用热气旁通法除霜的双级压缩热泵系统
CN103644690A (zh) * 2013-12-02 2014-03-19 陈志强 空气源热泵除霜系统
KR101737365B1 (ko) * 2016-01-28 2017-05-29 엘지전자 주식회사 공기조화기
CN206018784U (zh) * 2016-09-13 2017-03-15 北京金万众空调制冷设备有限责任公司 适用于北方农村的低温空气源热泵机组
CN106524610A (zh) * 2016-11-22 2017-03-22 广东美的暖通设备有限公司 空调系统和空调
CN107144123A (zh) * 2017-07-18 2017-09-08 合肥万都云雅制冷科技股份有限公司 一种热泵烘干机系统
CN109990429A (zh) * 2019-03-15 2019-07-09 奥克斯空调股份有限公司 一种空调器化霜控制方法及空调器

Also Published As

Publication number Publication date
CN109990429B (zh) 2021-04-09
CN109990429A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020186906A1 (zh) 空调器化霜控制方法及空调器
WO2015188656A1 (zh) 双级压缩空调系统及其控制方法
WO2019128516A1 (zh) 空调器系统
WO2019134509A1 (zh) 室外机、空调系统及控制方法
WO2014020651A1 (ja) 空気調和装置
WO2013111177A1 (ja) 空気調和装置
CN110332635B (zh) 一种双级压缩多补气制冷热泵系统、控制方法和空调器
KR101872784B1 (ko) 실외 열교환기
CN110425764B (zh) 换热系统及控制方法
WO2020192202A1 (zh) 制冷系统及化霜控制方法
WO2020048551A1 (zh) 一种空调器
WO2015140951A1 (ja) 空気調和装置
JP2006170608A (ja) 空気調和機の熱交換器
CN113154522B (zh) 一种多联空调机系统及除霜控制方法
WO2020088425A1 (zh) 空调机及其控制方法
WO2019091240A1 (zh) 空调制热循环系统及空调器
JP2023503192A (ja) 空気調和装置
KR20040080863A (ko) 냉난방시스템
KR101872783B1 (ko) 실외 열교환기
CN210154145U (zh) 空调系统
KR101187709B1 (ko) 공기조화기 및 그 배관 압평형 제어방법
WO2019128517A1 (zh) 空调器系统
CN211424782U (zh) 热氟除霜装置及空调机组
CN110986440B (zh) 热氟除霜装置、空调机组及除霜控制方法
CN113432172A (zh) 热泵机组室内单元和热泵机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773107

Country of ref document: EP

Kind code of ref document: A1