WO2021098039A1 - 一种快速导热的地热地板及生产工艺 - Google Patents
一种快速导热的地热地板及生产工艺 Download PDFInfo
- Publication number
- WO2021098039A1 WO2021098039A1 PCT/CN2020/072919 CN2020072919W WO2021098039A1 WO 2021098039 A1 WO2021098039 A1 WO 2021098039A1 CN 2020072919 W CN2020072919 W CN 2020072919W WO 2021098039 A1 WO2021098039 A1 WO 2021098039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- veneer
- slats
- product
- slat
- geothermal floor
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27D—WORKING VENEER OR PLYWOOD
- B27D1/00—Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
- B27D1/04—Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
- B27D1/08—Manufacture of shaped articles; Presses specially designed therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27F—DOVETAILED WORK; TENONS; SLOTTING MACHINES FOR WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES
- B27F1/00—Dovetailed work; Tenons; Making tongues or grooves; Groove- and- tongue jointed work; Finger- joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27M—WORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
- B27M3/00—Manufacture or reconditioning of specific semi-finished or finished articles
- B27M3/04—Manufacture or reconditioning of specific semi-finished or finished articles of flooring elements, e.g. parqueting blocks
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/02038—Flooring or floor layers composed of a number of similar elements characterised by tongue and groove connections between neighbouring flooring elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/04—Flooring or floor layers composed of a number of similar elements only of wood or with a top layer of wood, e.g. with wooden or metal connecting members
- E04F15/045—Layered panels only of wood
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F2201/00—Joining sheets or plates or panels
- E04F2201/02—Non-undercut connections, e.g. tongue and groove connections
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F2290/00—Specially adapted covering, lining or flooring elements not otherwise provided for
- E04F2290/02—Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
- E04F2290/023—Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating
Definitions
- the invention relates to a geothermal floor, in particular to a geothermal floor with rapid heat conduction and a production process.
- geothermal floor is heated by floor radiation, and the indoor temperature is uniform, and the temperature radiates upward from the ground and decreases from bottom to top. Since the geothermal floor has to withstand a temperature difference of 30 to 50 degrees Celsius, the technical indicators such as heat resistance, shrinkage performance, and wood density of the geothermal floor have much higher standards than ordinary floors.
- Geothermal floor includes pure solid wood geothermal floor and carbonized solid wood geothermal floor.
- Pure solid wood geothermal flooring refers to solid wood flooring that can be directly used for floor heating (geothermal) environment without changing the natural properties of solid wood flooring; carbonized solid wood geothermal flooring uses high-temperature carbonization to treat the wood blanks at a high temperature of several hundred degrees, which destroys the wood The original structure naturally deteriorates comfort after paving.
- the pure solid wood flooring and carbonized solid wood flooring applied to geothermal are thicker, the heat conduction speed is slow, and the overall thermal conductivity of the geothermal floor is poor.
- the geothermal floor needs to withstand a temperature difference of 30-50°C, after a period of use, the existing geothermal floor will be more prone to deformation. Therefore, the existing technology has the problem of slow heat conduction speed.
- the purpose of the present invention is to provide a geothermal floor with fast heat conduction and a production process.
- the invention has the characteristics of fast heat conduction speed.
- a fast thermally conductive geothermal floor including veneer, a set of slats are arranged side by side on the lower surface of the veneer, and a heat conduction groove is arranged between adjacent slats; one end of the slat is provided with a tenon, and the other slats One end is provided with a tongue and groove.
- the width of the heat conduction groove is 1.5-2mm.
- the thickness of the slats is 4-20 mm, and the width of the slats is 32-35 mm.
- the thickness of the veneer is 2-6 mm.
- a production process for a fast thermally conductive geothermal floor including the following steps:
- the first step is to use SF grade coniferous board as the base material
- the base material is divided into pieces to obtain slats, the thickness of each slat is 4-20mm, and the width of the slat is 32-35mm;
- the third step is to place multiple slats in series in the mold in order to obtain product A; the spacing between adjacent slats is 1.5-2mm; to ensure the flatness of the slats and the accuracy of the arrangement of adjacent slats ;
- the fourth step put the veneer and product A into the balance kiln for balance treatment, control the temperature in the balance kiln to 40-50°C, and obtain dry veneer and product B with dry slats respectively; the dry veneer and product B
- the moisture content of the dry slats in the slats are all 5-7%; thus, the stability of the veneer and the slats in the geothermal environment can be ensured without deformation or cracking;
- the fifth step is to coat the adhesive on the back of the dry veneer, place the B product on the glued surface of the veneer and compress the B product. After the compression is completed, take out the mold in the B product to obtain the blank; use 70-75
- the temperature of °C and the pressure of 8-10MPa are used to compact the B product, and the compaction time is 6-10min; the use of low-temperature compaction technology can greatly improve the efficiency compared with cold pressing (cold pressing takes 60 minutes to complete, Low-temperature compaction can complete the same compaction effect in only 6-10 minutes, and the efficiency is greatly improved). Compared with hot pressing, low-temperature compaction can effectively control the deformation of the floor and avoid veneer cracking;
- the sixth step is to set tongue grooves and tenons on both ends of each dry slat on the blank plate to obtain the finished product.
- the veneer is made of broad-leaved veneer, and the thickness of the veneer is 2-6 mm.
- the substrate is a radial cut board.
- the solid content in the adhesive is 55%.
- the opening process of the mortise or tenon is as follows: use a saw blade to move the area where the mortise or tenon is pre-opened, complete the pre-cutting, and then proceed Corresponding slotting treatment. It can avoid the splitting and peeling of the slats, and ensure the smooth and beautiful notches.
- the present invention is composed of veneer and a group of slats arranged at intervals under the veneer.
- a heat conduction groove with a distance of 1.5-2mm is formed between adjacent slats, which determines the width of the slats.
- the geothermal floor obtained by the invention has the advantages of rapid heat conduction and good flexibility; at the same time, because the floor has good Flexibility enables the floor to fit well with the ground during installation, which can effectively reduce the hollow rate of floor installation, thereby reducing the noise generated by walking on the floor and achieving the purpose of noise reduction.
- the present invention replaces traditional monolithic wood boards with evenly spaced slats, which not only saves materials, but also effectively improves the overall flexibility of the geothermal floor, and the heat conduction groove can also relieve the stress caused by the thermal expansion of the floor. , Reduce the deformation of the floor, and improve the overall stability of the geothermal floor.
- the present invention adopts the method of arranging spaced slats under the veneer to form the geothermal floor, and by reasonably optimizing the width of the slats and the spacing between adjacent slats, the upper surface of the veneer is not stable after a period of use. Will highlight the impression of the slats.
- the present invention has the characteristic of fast heat conduction speed.
- the present invention adopts slats of radially cut plates and utilizes radial heat transfer, which can further improve the overall heat conduction effect of the floor.
- Figure 1 is a top view of the present invention
- Figure 2 is a structural view of the tenon
- Figure 3 is a structural view of the tongue and groove
- Figure 4 is a side view of the present invention.
- Example 1 A geothermal floor with rapid heat conduction, as shown in Fig. 1 to Fig. 4, comprising veneer 1, a set of slats 2 are arranged side by side on the lower surface of veneer 1, and a heat conduction groove 3 is arranged between adjacent slats 2; One end of the strip 2 is provided with a tenon 4, and the other end of the slat 2 is provided with a tenon groove 5.
- the width of the heat conducting groove 3 is 1.5-2mm.
- the thickness of the slat 2 is 4-20 mm, and the width of the slat 2 is 32-35 mm.
- the thickness of the veneer 1 is 2-6 mm.
- a production process for a fast thermally conductive geothermal floor including the following steps:
- the first step is to use SF grade coniferous board as the base material
- the base material is divided into pieces to obtain slats, the thickness of each slat is 4-20mm, and the width of the slat is 32-35mm;
- the third step is to place multiple slats in series in the mold in order to obtain product A; the spacing between adjacent slats is 1.5-2mm;
- the fourth step put the veneer and product A into the balance kiln for balance treatment, control the temperature in the balance kiln to 40-50°C, and obtain dry veneer and product B with dry slats respectively; the dry veneer and product B The moisture content of the dry slats are all 5-7%;
- the fifth step is to coat the adhesive on the back of the dry veneer, place the B product on the glued surface of the veneer and compress the B product. After the compression is completed, take out the mold in the B product to obtain the blank; use 70-75 Perform compaction operation on product B at a temperature of °C and a pressure of 8-10MPa, and the compaction time is 6-10min;
- a tongue and groove and a tenon are set on both ends of each dry slat on the blank plate to obtain the finished product.
- the substrate is a radial cut plate.
- the solid content in the adhesive is 55%.
- the opening process of the mortise or tenon is as follows: the area where the mortise or tenon is pre-opened is processed with a saw blade, the pre-cut is completed, and then the corresponding grooving process is performed.
- the SF grade substrate has no or few defects such as stuttering, blue staining, and decay on the surface.
- Example 2 A geothermal floor with rapid heat conduction, as shown in Fig. 1 to Fig. 4, comprising veneer 1, a set of slats 2 are arranged side by side on the lower surface of veneer 1, and a heat conduction groove 3 is arranged between adjacent slats 2; One end of the strip 2 is provided with a tenon 4, and the other end of the slat 2 is provided with a tenon groove 5.
- the width of the heat conducting groove 3 is 1.5 mm.
- the thickness of the slat 2 is 15 mm, and the width of the slat 2 is 33 mm.
- the thickness of the veneer 1 is 4 mm.
- a production process for a fast thermally conductive geothermal floor including the following steps:
- the first step is to use SF grade coniferous board as the base material
- the substrate is divided into pieces to obtain slats, the thickness of each slat is 15mm, and the width of the slat is 33mm;
- the third step is to place multiple slats in the mold in sequence and connect them in series to obtain product A; the distance between adjacent slats is 1.5mm;
- the fourth step put the veneer and product A into the balance kiln for balance treatment, control the temperature in the balance kiln to 45°C, and obtain dry veneer and product B with dry slats; the dry veneer and product B The moisture content of the dry slats is 5%;
- the fifth step is to coat the adhesive on the back of the dry veneer, place the B product on the glued surface of the veneer and compress the B product. After the compression is completed, take out the mold in the B product to obtain the blank; use 73°C Perform compaction operation on product B at temperature and 10MPa pressure, and the compaction time is 6min;
- the sixth step is to set tongue grooves and tenons on both ends of each dry slat on the blank plate to obtain the finished product.
- Broad-leaved veneer is selected for the veneer, and the thickness of the veneer is 5 mm.
- the substrate is a radial cut plate.
- the solid content in the adhesive is 55%.
- the opening process of the mortise or tenon is as follows: the area where the mortise or tenon is pre-opened is processed with a saw blade, the pre-cut is completed, and then the corresponding grooving process is performed.
- SF grade substrate means that the surface of the substrate has no or few defects such as stuttering, blue staining, and decay.
- the thermal conductivity of the geothermal floor prepared in this embodiment has been tested. Under the same test environment, taking a room of 20m 2 as an example, it takes 50-60 minutes for the traditional geothermal floor to adjust the temperature in the room to 35°C. With the geothermal floor of the present invention, the temperature in the room can be adjusted to 35°C in only 30 minutes.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Forests & Forestry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Floor Finish (AREA)
Abstract
本发明公开了一种快速导热的地热地板及生产工艺,包括木皮,木皮下表面并排设有一组木条,相邻木条之间设有导热槽;所述木条一端设有榫头,木条另一端设有榫槽;生产工艺包括以下步骤:第一步、选用SF级针叶型板材作为基材;第二步、对基材进行分片,得到板条;第三步、将多片板条按顺序放置于模具中进行串联,得到A品;第四步、将木皮和A品放入平衡窑内作平衡处理,分别得到干燥木皮以及具有干燥板条的B品;第五步、在干燥木皮的背面涂覆胶粘剂,将B品放置在木皮的涂胶面并对B品进行压紧,得到坯板;第六步、分别在坯板上每片干燥板条的两端开设榫槽和榫头,得到成品。本发明具导热速度快的特点。
Description
本发明涉及一种地热地板,特别是一种快速导热的地热地板及生产工艺。
地热地板是通过地板辐射采暖,室内温度均匀,温度从地面向上辐射,由下而上递减。由于地热地板要承受30至50摄氏度的温差,对地热地板的耐热能力、收缩性能、木材密度等技术指标都具有比普通地板高得多的标准。地热地板包括纯实木地热地板和碳化实木地热地板。纯实木地热地板是指不改变实木地板自然属性的基础上能直接用于地采暖(地热)环境的实木地板;碳化实木地热地板用高温炭化对木材坯料进行几百度的高温处理,破坏了木材的原有结构,铺装后舒适感自然变差。但是,由于应用于地热的纯实木地板和碳化实木地板的厚度均较厚,导致其热传导速度较慢,从而使得地热地板整体的导热效果较差。另外,由于地热地板需要承受30-50℃的温差,使用一段时间后,现有的地热地板也会比较容易发生变形现象。因此,现有的技术存在着导热速度慢的问题。
发明内容
本发明的目的在于,提供一种快速导热的地热地板及生产工艺。 本发明具有导热速度快的特点。
本发明的技术方案:一种快速导热的地热地板,包括木皮,木皮下表面并排设有一组板条,相邻板条之间设有导热槽;所述板条一端设有榫头,板条另一端设有榫槽。
前述的一种快速导热的地热地板中,导热槽的宽度为1.5-2mm。
前述的一种快速导热的地热地板中,所述板条的厚度为4-20mm,板条的宽度为32-35mm。
前述的一种快速导热的地热地板中,所述木皮的厚度为2-6mm。
一种快速导热的地热地板的生产工艺,包括以下步骤:
第一步、选用SF级针叶型板材作为基材;
第二步、对基材进行分片,得到板条,每片板条的厚度为4-20mm,所述板条的宽度为32-35mm;
第三步、将多片板条按顺序放置于模具中进行串联,得到A品;相邻板条之间的间距为1.5-2mm;确保板条的平整度和相邻板条排布的精度;
第四步、将木皮和A品放入平衡窑内作平衡处理,控制平衡窑内的温度为40-50℃,分别得到干燥木皮以及具有干燥板条的B品;所述干燥木皮和B品中的干燥板条的含水率均为5-7%;从而可以保证木皮和板条在地热的使用环境下的稳定性,既不会变形也不会开裂;
第五步、在干燥木皮的背面涂覆胶粘剂,将B品放置在木皮的涂胶面并对B品进行压紧,压紧完成后取出B品中的模具,得到坯板;采用70-75℃的温度、8-10MPa的压力对B品进行压紧作业,压紧的 时间为6-10min;采用低温压紧工艺,相对冷压而言,能够大幅提高效率(冷压需60分钟完成,而低温压紧只需6-10分钟就能够完成同等的压紧效果,效率大幅度提升),相对热压而言,低温压紧能够有效控制地板变形,避免木皮开裂;
第六步、分别在坯板上每片干燥板条的两端开设榫槽和榫头,得到成品。
前述的一种快速导热的地热地板的生产工艺中,所述木皮选用阔叶型木皮,木皮的厚度为2-6mm。
前述的一种快速导热的地热地板的生产工艺中,所述基材为径切板材。
前述的一种快速导热的地热地板的生产工艺中,所述胶粘剂中的固含量为55%。
前述的一种快速导热的地热地板的生产工艺中,所述的榫槽或榫头的开设过程为:用锯刀对预开设榫槽或榫头的区域进行走刀处理,完成预切割,然后在进行相应的开槽处理。能够避免板条劈裂、掉皮,保证槽口光滑和美观。
与现有技术相比,本发明由木皮和一组设置在木皮下方呈间隔分布的板条组成,相邻的板条之间形成有间距为1.5-2mm的导热槽,对板条的宽度作了合理优化限定,通过上述的相互配合,既保证了板条与木皮之间的接触面积,也为地板弯曲提供了充足空间,从而在能够保证地板整体强度的前提下还可以提高地板整体的韧性;通过设置导热槽,使得部分区域经空气直接传热,减少热损,从而可以有效的提 高地热地板整体的导热效率,进而实现地热地板的快速传热,经测试,导热效率可以提高30%;本发明通过木皮和板条之间的特殊结构以及板条的厚度、宽度之间的相互配合,得到的地热地板既具有快速导热的优点,又具有良好的柔韧性;同时,由于地板具有良好的柔韧性,使得地板在安装时能够与地面良好的贴合,从而可以有效的降低地板安装的空鼓率,进而可以减少在地板上走动所产生的噪音,起到降噪的目的。另外,本发明以均匀间隔分布的板条来取代传统的整体式木板,既可以节省材料,又可以有效的提高地热地板整体的柔韧性,而且导热槽还可以缓解释放地板热胀所产生的应力,减少地板的变形,改善地热地板整体的稳定性能。而且,本发明采用在木皮下方设置间隔分布的板条的方式来组成地热地板,并通过合理优化板条的宽度和相邻板条间距,使其在使用一段时间后,木皮的上表面也不会凸显板条的印子。综上所述,本发明具有导热速度快的特点。
另外,本发明采用径切板材的板条,利用径向传热,从而可以进一步的提高地板整体的导热效果。
图1是本发明的俯视图;
图2是榫头的结构视图;
图3是榫槽的结构视图;
图4是本发明的侧视图;
附图中的标记为:1-木皮,2-木条,3-导热槽,4-榫头,5-榫槽。
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例1。一种快速导热的地热地板,构成如图1至图4所示,包括木皮1,木皮1下表面并排设有一组板条2,相邻板条2之间设有导热槽3;所述板条2一端设有榫头4,板条2另一端设有榫槽5。
导热槽3的宽度为1.5-2mm。
所述板条2的厚度为4-20mm,板条2的宽度为32-35mm。
所述木皮1的厚度为2-6mm。
一种快速导热的地热地板的生产工艺,包括以下步骤:
第一步、选用SF级针叶型板材作为基材;
第二步、对基材进行分片,得到板条,每片板条的厚度为4-20mm,所述板条的宽度为32-35mm;
第三步、将多片板条按顺序放置于模具中进行串联,得到A品;相邻板条之间的间距为1.5-2mm;
第四步、将木皮和A品放入平衡窑内作平衡处理,控制平衡窑内的温度为40-50℃,分别得到干燥木皮以及具有干燥板条的B品;所述干燥木皮和B品中的干燥板条的含水率均为5-7%;
第五步、在干燥木皮的背面涂覆胶粘剂,将B品放置在木皮的涂胶面并对B品进行压紧,压紧完成后取出B品中的模具,得到坯板;采用70-75℃的温度、8-10MPa的压力对B品进行压紧作业,压紧的时间为6-10min;
第六步、分别在坯板上每片干燥板条的两端开设榫槽和榫头,得 到成品。
所述木皮选用阔叶型木皮,木皮的厚度为2-6mm。
所述基材为径切板材。
所述胶粘剂中的固含量为55%。
所述的榫槽或榫头的开设过程为:用锯刀对预开设榫槽或榫头的区域进行走刀处理,完成预切割,然后在进行相应的开槽处理。
SF级基材的表面结巴、蓝变、腐朽等缺陷没有或者很少。
实施例2。一种快速导热的地热地板,构成如图1至图4所示,包括木皮1,木皮1下表面并排设有一组板条2,相邻板条2之间设有导热槽3;所述板条2一端设有榫头4,板条2另一端设有榫槽5。
导热槽3的宽度为1.5mm。
所述板条2的厚度为15mm,板条2的宽度为33mm。
所述木皮1的厚度为4mm。
一种快速导热的地热地板的生产工艺,包括以下步骤:
第一步、选用SF级针叶型板材作为基材;
第二步、对基材进行分片,得到板条,每片板条的厚度为15mm,所述板条的宽度为33mm;
第三步、将多片板条按顺序放置于模具中进行串联,得到A品;相邻板条之间的间距为1.5mm;
第四步、将木皮和A品放入平衡窑内作平衡处理,控制平衡窑内的温度为45℃,分别得到干燥木皮以及具有干燥板条的B品;所述干燥木皮和B品中的干燥板条的含水率均为5%;
第五步、在干燥木皮的背面涂覆胶粘剂,将B品放置在木皮的涂胶面并对B品进行压紧,压紧完成后取出B品中的模具,得到坯板;采用73℃的温度、10MPa的压力对B品进行压紧作业,压紧的时间为6min;
第六步、分别在坯板上每片干燥板条的两端开设榫槽和榫头,得到成品。
所述木皮选用阔叶型木皮,木皮的厚度为5mm。
所述基材为径切板材。
所述胶粘剂中的固含量为55%。
所述的榫槽或榫头的开设过程为:用锯刀对预开设榫槽或榫头的区域进行走刀处理,完成预切割,然后在进行相应的开槽处理。
SF级基材是指基材表面结巴、蓝变、腐朽等缺陷没有或者很少。
该实施例制得的地热地板,其导热效果经测试,在相同的测试环境下,以20m
2的房间为例,传统的地热地板将房间内的温度调节至35℃时需要50-60分钟,而采用本发明的地热地板,只需30分钟就能够将房间内温度调节至35℃。
Claims (9)
- 一种快速导热的地热地板,其特征在于:包括木皮(1),木皮(1)下表面并排设有一组板条(2),相邻板条(2)之间设有导热槽(3);所述板条(2)一端设有榫头(4),板条(2)另一端设有榫槽(5)。
- 根据权利要求1所述的一种快速导热的地热地板,其特征在于:导热槽(3)的宽度为1.5-2mm。
- 根据权利要求1所述的一种快速导热的地热地板,其特征在于:所述板条(2)的厚度为4-20mm,板条(2)的宽度为32-35mm。
- 根据权利要求1所述的一种快速导热的地热地板,其特征在于:所述木皮(1)的厚度为2-6mm。
- 生产权利要求1-4中任一项所述的一种快速导热的地热地板的工艺,其特征在于,包括以下步骤:第一步、选用SF级针叶型板材作为基材;第二步、对基材进行分片,得到板条,每片板条的厚度为4-20mm,板条的宽度为32-35mm;第三步、将多片板条按顺序放置于模具中进行串联,得到A品;相邻板条之间的间距为1.5-2mm;第四步、将木皮和A品放入平衡窑内作平衡处理,控制平衡窑内的温度为40-50℃,分别得到干燥木皮以及具有干燥板条的B品;所述干燥木皮和B品中的干燥板条的含水率均为5-7%;第五步、在干燥木皮的背面涂覆胶粘剂,将B品放置在木皮的涂胶面并对B品进行压紧,压紧完成后取出B品中的模具,得到坯板;采用70-75℃的温度、8-10MPa的压力对B品进行压紧作业,压紧的时间为6-10min;第六步、分别在坯板上每片干燥板条的两端开设榫槽和榫头,得到成品。
- 根据权利要求5所述的一种快速导热的地热地板的生产工艺,其特征在于:所述木皮选用阔叶型木皮,木皮的厚度为2-6mm。
- 根据权利要求5所述的一种快速导热的地热地板的生产工艺,其特征在于:所述基材为径切板材。
- 根据权利要求5所述的一种快速导热的地热地板的生产工艺,其特征在于:所述胶粘剂中的固含量为55%。
- 根据权利要求5所述的一种快速导热的地热地板的生产工艺,其特征在于:所述的榫槽或榫头的开设过程为:用锯刀对预开设榫槽或榫头的区域进行走刀处理,完成预切割,然后在进行相应的开槽处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911139030.XA CN110792242A (zh) | 2019-11-20 | 2019-11-20 | 一种快速导热的地热地板及生产工艺 |
CN201911139030.X | 2019-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021098039A1 true WO2021098039A1 (zh) | 2021-05-27 |
Family
ID=69445526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/072919 WO2021098039A1 (zh) | 2019-11-20 | 2020-01-19 | 一种快速导热的地热地板及生产工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110792242A (zh) |
WO (1) | WO2021098039A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112780646B (zh) * | 2021-01-19 | 2022-08-16 | 安徽省大愿工坊木业有限公司 | 一种榫卯结构连接的木质家具及其制造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309070A (ja) * | 2006-05-16 | 2007-11-29 | Meisan:Kk | 暖房機能内蔵畳 |
CN201059049Y (zh) * | 2007-07-13 | 2008-05-14 | 南京明霖木业有限公司 | 多层实木复合地热地板 |
CN101372863A (zh) * | 2008-09-18 | 2009-02-25 | 张勇 | 二层炭化实木地热复合地板 |
CN202882320U (zh) * | 2012-10-29 | 2013-04-17 | 绍兴市彬彬木业有限公司 | 具有深槽结构的实木地热地板 |
CN203613767U (zh) * | 2013-12-20 | 2014-05-28 | 董忠诚 | 三层实木地板 |
CN204174871U (zh) * | 2014-09-05 | 2015-02-25 | 浙江福马地暖科技有限公司 | 实木拼花地热地板 |
CN105256978A (zh) * | 2015-10-29 | 2016-01-20 | 浙江大东吴绿家木业有限公司 | 一种两层结构实木复合地板及制作方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2725417Y (zh) * | 2004-07-29 | 2005-09-14 | 杨述 | 抗热高密度实木复合地板 |
CN100371553C (zh) * | 2005-06-20 | 2008-02-27 | 南京林业大学 | 复合地热地板 |
CN203271049U (zh) * | 2013-04-09 | 2013-11-06 | 江苏南洋木业有限公司 | 地暖地板 |
CN103395101B (zh) * | 2013-07-19 | 2016-01-20 | 大亚(江苏)地板有限公司 | 同树种三层实木复合地板的生产工艺 |
CN106049821A (zh) * | 2016-07-13 | 2016-10-26 | 浙江福马地暖科技有限公司 | 一种双层实木复合地板及其制造方法 |
CN110409751B (zh) * | 2019-08-29 | 2024-05-24 | 南京林业大学 | 实木地板电热系统及其安装方法 |
-
2019
- 2019-11-20 CN CN201911139030.XA patent/CN110792242A/zh active Pending
-
2020
- 2020-01-19 WO PCT/CN2020/072919 patent/WO2021098039A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309070A (ja) * | 2006-05-16 | 2007-11-29 | Meisan:Kk | 暖房機能内蔵畳 |
CN201059049Y (zh) * | 2007-07-13 | 2008-05-14 | 南京明霖木业有限公司 | 多层实木复合地热地板 |
CN101372863A (zh) * | 2008-09-18 | 2009-02-25 | 张勇 | 二层炭化实木地热复合地板 |
CN202882320U (zh) * | 2012-10-29 | 2013-04-17 | 绍兴市彬彬木业有限公司 | 具有深槽结构的实木地热地板 |
CN203613767U (zh) * | 2013-12-20 | 2014-05-28 | 董忠诚 | 三层实木地板 |
CN204174871U (zh) * | 2014-09-05 | 2015-02-25 | 浙江福马地暖科技有限公司 | 实木拼花地热地板 |
CN105256978A (zh) * | 2015-10-29 | 2016-01-20 | 浙江大东吴绿家木业有限公司 | 一种两层结构实木复合地板及制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110792242A (zh) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102554980B (zh) | 一种单板层积材的制造方法 | |
CN101036994B (zh) | 竹黄芯层和竹青底层的层压板及其加工方法 | |
CN103481348B (zh) | 一种整体强化实木型材及其制造方法 | |
CN100392200C (zh) | 一种炭化木复合地板及其制造方法 | |
CN201833452U (zh) | 一种多功能竹材弧形重组高频拼板机 | |
CN104608211B (zh) | 一种芯层超厚的胶合板及其制备工艺 | |
CN102229170A (zh) | 一种高品质杨木复合材料的制造方法 | |
CN102248569B (zh) | 一种定向刨花箱板及其加工工艺 | |
CN103266742B (zh) | 四层实木复合地热地板及其生产工艺 | |
WO2021098039A1 (zh) | 一种快速导热的地热地板及生产工艺 | |
CN103171013A (zh) | 一种木材深度碳化的工艺 | |
CN203867136U (zh) | 地暖地板结构 | |
CN206571095U (zh) | 一种新型发热地板 | |
CN102139501A (zh) | 高频预压处理无醛豆胶环保型杉木地板基材方法 | |
CN104802232B (zh) | 一种碳化胶合板及其制备方法 | |
CN202969850U (zh) | 一种表面炭化的实木复合地热地板 | |
CN103963373B (zh) | 一种基于clt板的电热地板坯料及其制造方法 | |
CN115383847A (zh) | 一种均质胶膜纸饰面生态板及其制作工艺 | |
CN110682378A (zh) | 用于浸渍胶膜纸饰面细木工板上的芯板及其制作方法 | |
CN109808011A (zh) | 一种加压浸渍阻燃剂式胶合竹构件及其制备方法 | |
CN102966230B (zh) | 一种表面炭化的实木复合地热地板及制造方法 | |
CN108608525A (zh) | 一种竹木复合层积材制造方法 | |
CN100408288C (zh) | 提高实木复合板材稳定性的热压工艺 | |
CN107932651A (zh) | 节能环保型纯实木无变形厚芯多功能板材常温压制工艺 | |
CN211250419U (zh) | 用于浸渍胶膜纸饰面细木工板上的芯板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20889248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20889248 Country of ref document: EP Kind code of ref document: A1 |