WO2021097722A1 - 一种oled显示面板和显示装置 - Google Patents

一种oled显示面板和显示装置 Download PDF

Info

Publication number
WO2021097722A1
WO2021097722A1 PCT/CN2019/119775 CN2019119775W WO2021097722A1 WO 2021097722 A1 WO2021097722 A1 WO 2021097722A1 CN 2019119775 W CN2019119775 W CN 2019119775W WO 2021097722 A1 WO2021097722 A1 WO 2021097722A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
color
oled display
light
Prior art date
Application number
PCT/CN2019/119775
Other languages
English (en)
French (fr)
Inventor
徐传祥
舒适
姚琪
袁广才
岳阳
黄海涛
于勇
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/977,516 priority Critical patent/US11974459B2/en
Priority to JP2021572592A priority patent/JP2023510437A/ja
Priority to CN201980002509.0A priority patent/CN113228332A/zh
Priority to EP19945455.4A priority patent/EP4064377A4/en
Priority to PCT/CN2019/119775 priority patent/WO2021097722A1/zh
Priority to KR1020227006637A priority patent/KR20220103914A/ko
Publication of WO2021097722A1 publication Critical patent/WO2021097722A1/zh
Priority to US18/416,405 priority patent/US20240155867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an OLED display panel and a display device.
  • OLED Organic electroluminescent display
  • LCD liquid crystal display
  • the reflectivity of the external ambient light is high, so it is generally used to attach a circular polarizer to reduce the reflection of the OLED substrate to the external environment light, and, after attaching the circular polarizer, Generally, the flexible touch substrate will be attached again, but the flexible touch substrate and the circular polarizer are thicker, which will affect the flexibility and folding performance of the entire OLED module.
  • COE CF on Encapsulation
  • This structure has the advantages of reducing panel reflection, improving color purity, and reducing panel thickness. effect.
  • the display panel of this structure is in the off-screen state (also called the dark state)
  • the off-screen state also called the dark state
  • the present application discloses an OLED display panel and a display device, with the purpose of improving the color separation phenomenon of the COE OLED display panel in the dark state.
  • An OLED display panel comprising a driving backplane and an OLED light emitting device, a packaging structure and a color resistance structure arranged on the driving backplane; wherein the packaging structure and the color resistance structure are located away from the OLED light emitting device
  • the color resist structure includes a color color resist layer, a first light-shielding matrix and a second light-shielding matrix; the first light-shielding matrix is located on a side of the color color resist layer away from the driving backplane
  • the second light shielding matrix is located on the side of the color resistive layer facing the driving backplane.
  • At least one scattering layer is provided on the side of the OLED light emitting device facing away from the driving backplane, and the scattering layer includes an organic material film and scattering particles arranged in the organic material film.
  • the packaging structure has two inorganic insulating layers and a first organic insulating layer located between the two inorganic insulating layers;
  • the first organic insulating layer is configured as the scattering layer.
  • the color color resist layer is configured as the scattering layer.
  • the color color resist layer includes a red color resist, a green color resist, and a blue color resist, and the particle sizes of the scattering particles contained in the red color resist, the green color resist and the blue color resist are sequentially reduced.
  • the display panel further includes a second organic insulating layer located between the packaging structure and the color resistance structure;
  • the second organic insulating layer is configured as a scattering layer.
  • the display panel further includes a touch structure located on a side of the packaging structure away from the drive backplane; the touch structure is located between the packaging structure and the color resist structure, or The touch control structure is located on a side of the color resistance structure away from the driving backplane.
  • the display panel further includes a third organic insulating layer located between the touch structure and the color resist structure; the third organic insulating layer is configured as the scattering layer.
  • the display panel further includes a touch structure located on a side of the packaging structure away from the drive backplane, the touch structure having two layers of touch electrodes, and one located between the two layers of touch electrodes The fourth organic insulating layer between;
  • the fourth organic insulating layer is configured as the scattering layer.
  • the display panel further includes a touch structure located on a side of the packaging structure away from the drive backplane, and a fifth touch structure located on a side of the touch structure and the color resistance structure away from the drive backplane.
  • Organic insulating layer located on a side of the packaging structure away from the drive backplane, and a fifth touch structure located on a side of the touch structure and the color resistance structure away from the drive backplane.
  • the fifth organic insulating layer is configured as the scattering layer.
  • the scattering particles are inorganic scattering particles, and the inorganic scattering particles are one or a mixture of titanium oxide, zirconium oxide, silicon oxide, calcium carbonate, and barium sulfate.
  • the particle size of the inorganic scattering particles is 40 nm to 700 nm, and the mass percentage of the inorganic scattering particles in the organic material film is 1% to 15%.
  • the scattering particles are organic scattering particles
  • the ratio of the refractive index of the organic scattering particles to the organic material film is 0.7-0.99
  • the mass percentage of the organic scattering particles in the organic material film is 5% to 40%.
  • the display panel includes a touch structure, and the touch structure is located on a side of the color resist structure away from the drive backplane;
  • the display panel further includes a third light-shielding matrix on a side of the touch structure away from the driving backplane.
  • the OLED light emitting device has a first electrode layer electrically connected to the driving backplane, and a surface of the first electrode layer facing away from the driving backplane is a rough surface.
  • the driving backplane includes a flat layer facing the OLED light emitting device, and the first electrode layer of the OLED light emitting device is disposed on the flat layer;
  • the surface of the planarization layer is configured as a rough surface, so that the surface of the first electrode layer prepared and formed on the planarization layer is rough.
  • the flat layer includes two film layers.
  • the flat layer is made of silicone series, acrylic series, and epoxy series materials.
  • a display device includes the OLED display panel described in any one of the above.
  • FIG. 1 is a schematic diagram of a process in which external ambient light is reflected by the first electrode layer in each pixel of RGB in a display panel;
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional structure diagram of a display panel provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional structure diagram of a display panel provided by another embodiment of the present disclosure.
  • FIG. 9 is a histogram of the color separation degree of display panels with various settings in the dark state.
  • an embodiment of the present disclosure provides an OLED display panel, including a driving backplane 1 and an OLED light emitting device 2, an encapsulation structure 3, and a color resistance structure 4 arranged on the driving backplane 1; wherein The packaging structure 3 and the color resistance structure 4 are located on the side of the OLED light-emitting device 2 away from the driving backplane 1, and the color resistance structure 4 includes a color color resistance layer 41, a first light-shielding matrix 42 and a second light-shielding matrix 43; The first light-shielding matrix 42 is located on the side of the color resistive layer 41 facing away from the driving backplane 1, and the second light-shielding matrix 43 is located on the side of the color resistive layer 41 facing the driving backplane 1 .
  • the first electrode layer 21 electrically connected to the driving backplane 1 is used for driving the backplane.
  • the structure of the source and drain electrodes (SD) 10 provided in the driving backplane 1 will cause the surface of the first electrode layer 21 to be uneven on the side of the driving backplane 1, as shown in Figure 1, then the external After the ambient light is reflected by the first electrode layer 21 in each pixel of RGB, the reflected light will have different reflection paths or spatial distribution of light intensity, so the white balance in a certain path or spatial angle may be destroyed.
  • the opening of the color resist structure has a certain diffraction effect on the reflected light, which will further strengthen the phenomenon of color separation of the reflected light. Therefore, it will cause the display panel prepared by COE (CF on Encapsulation) technology to have a more obvious effect in the dark state.
  • COE CF on Encapsulation
  • the color resistance structure 4 is designed as a color color resistance layer 41 and two light-shielding matrix layers, and The above-mentioned two-layer light-shielding matrix (the first light-shielding matrix 42 and the second light-shielding matrix 43) are arranged on both sides of the color resist layer 41 to solve the problem of color separation of the display panel in the dark state.
  • the shading matrix is arranged on the side of the color resist layer facing the driving backplane.
  • the inventor found that the double-layer shading matrix is used and the double-layer shading matrix is separately It is arranged on both sides of the color resist layer, which can significantly reduce the color separation phenomenon of the display panel in the dark state.
  • the double-layer light-shielding matrix is respectively arranged on both sides of the color resist layer, and may or may not be adjacent to the color resist layer; for example, refer to the figure 2 and the arrangement shown in Fig. 7, the first light-shielding matrix 42, the color resist layer 41, and the second light-shielding matrix 43 are arranged adjacent to each other in sequence; or, you can also refer to the arrangement shown in Fig. 4 to set the second light-shielding matrix
  • the matrix 43 is arranged between the film layers of the packaging structure, so that the second light-shielding matrix 43 is not adjacent to the color resist layer.
  • FIG. 9 is a histogram of the color separation degree of the display panel in the dark state obtained according to the experimental data analysis result.
  • ⁇ ab max represents an index of the color separation degree of the display panel in the dark state.
  • the display panel includes driving backs arranged in sequence.
  • the driving back plate includes a glass substrate and a thin film transistor array (TFT array) on the glass substrate, and the OLED light emitting device includes an anode, a light emitting structure and a cathode arranged in sequence;
  • TFT array thin film transistor array
  • the driving backplane includes a flat layer on the TFT array, the anode (ie, the first electrode layer) of the OLED light-emitting device is formed on the flat layer, and the flat layer adopts
  • the conventional acrylic series material is a single-layer film layer (ie, single-layer PLN);
  • embodiment b, the driving backplane includes a flat layer on the TFT array, the anode of the OLED light-emitting device is formed on the flat layer, and the flat layer adopts
  • the conventional acrylic series material has two film layers (ie, double-layer PLN); embodiment c, the driving backplane includes a flat layer on the TFT array,
  • each group of histograms has two experimental data, and the two experimental data are the experimental data results obtained under two different color resistance structures.
  • the specific settings of the two different color resistance structures are respectively It is: A.
  • the bottom layer BM that is, the color resistance structure includes a color color resistance layer and a layer of light-shielding matrix (BM).
  • the light-shielding matrix is located on the side of the color color resistance layer facing the driving backplane.
  • This color resistance structure is a conventional COE OLED display
  • B double-layer BM, that is, the color resistance structure includes a color color resistance layer and two light-shielding matrices, the two light-shielding matrices are respectively arranged on both sides of the color color resistance layer, this color resistance structure is the present disclosure
  • a color resistance structure of the OLED display panel of the embodiment is the present disclosure
  • the display panel of the embodiment of the present disclosure can significantly reduce the color separation degree of the reflected light in the dark state.
  • the OLED display panel provided by the embodiment of the present disclosure has at least one scattering layer 6 on the side of the OLED light emitting device 2 facing away from the driving backplane 1.
  • the layer 6 includes an organic material film and scattering particles (also called light diffusion particles) 61 arranged in the organic material film.
  • the scattering particles may be uniformly distributed in the organic material film.
  • a scattering layer 6 is provided on the light exit side of the OLED light emitting device 2, and the scattering particles 61 in the scattering layer 6 can scatter light, so that the path or path of the reflected light in each pixel is The spatial distribution of the light intensity is more uniform, so that the color separation phenomenon caused by the directional reflection of the first electrode layer 21 can be reduced, thereby achieving the effect of further improving the color separation phenomenon of the display panel.
  • the scattering particles 61 may be inorganic scattering particles, and the inorganic scattering particles may be one or a mixture of zirconia, silicon oxide, calcium carbonate, barium sulfate, and titanium dioxide (titanium oxide), which may be different.
  • the powder of the material is mixed.
  • the particle size of the inorganic scattering particles may be 40 nm to 700 nm, and the mass percentage of the inorganic scattering particles in the organic material film is 1% to 15%.
  • the scattering particles 61 may be organic scattering particles, and the organic scattering particles may be one of silicone microspheres, polyacrylic acid series, polymethylmethacrylate (PMMA), polystyrene (PS) and other microspheres.
  • the refractive index of the organic scattering particles is smaller than the refractive index of the organic material film.
  • the ratio of the refractive index of the organic scattering particles to the organic material film is between 0.7-0.99, and the refractive index may specifically be between 1.2-1.6; further optionally, the organic scattering particles are in the The mass percentage in the organic material film is between 5% and 40%.
  • the packaging structure 3 has two inorganic insulating layers 31 and a first organic insulating layer 32 located between the two inorganic insulating layers 31.
  • the first organic insulating layer 32 is configured as the scattering layer 6, that is, the first organic insulating layer 32 includes an organic material film and scattering particles 61 arranged in the organic material film.
  • the encapsulation structure 3 is not limited to only the above three layers, and may also be a structure in which three or more organic and inorganic layers alternate.
  • the color resistance structure 4 has a color color resistance layer 41.
  • the color resist layer 41 is configured as a scattering layer 6. That is, the color resist layer 41 includes an organic material film and the scattering particles 61 provided in the organic material film.
  • the color color resist layer 41 specifically includes a red color resist, a green color resist, and a blue color resist.
  • the particle size of the scattering particles 61 contained in the red color resist, the green color resist, and the blue color resist can be sequentially reduced, and specifically can be matched with the wavelength of the emitted light of each color resist, for example, the scattering particles contained in the red color resist.
  • the particle size of the particles 61 can be 1/5 ⁇ , where ⁇ is the wavelength of red light; the size of the scattering particles 61 in the green color resist and the blue color resist is set in the same way.
  • the display panel of the embodiment of the present disclosure may include a second organic insulating layer 71 located between the packaging structure 3 and the color resist structure 4.
  • the second organic insulating layer 71 is configured as the scattering layer 6, that is, the second organic insulating layer includes an organic material film and scattering particles 61 arranged in the organic material film.
  • the OLED display panel provided by the embodiment of the present disclosure may further include a touch structure 5, a touch structure located on the side of the packaging structure 3 away from the driving backplane 1. And a third organic insulating layer 72 located between the touch structure 5 and the color resistance structure 4.
  • the touch control structure 5 may be arranged between the color resistance structure 4 and the packaging structure 3, see FIGS. 2 to 6 for details; or, the touch control structure 5 may also be arranged on the color resistance structure 4 away from the packaging structure 3. On one side, see Figure 7 and Figure 8 for details.
  • the third organic insulating layer 72 is configured as the scattering layer 6, that is, the third organic insulating layer 72 includes an organic material film and scattering particles 61 disposed in the organic material film.
  • the touch structure 5 has two layers of touch electrodes 51 and a fourth organic insulating layer 52 located between the two layers of touch electrodes 51.
  • the fourth organic insulating layer 52 can also be configured as the scattering layer 6, that is, the fourth organic insulating layer 52 includes an organic material film and scattering particles 61 arranged in the organic material film.
  • the two layers of touch electrodes 51 are driving electrodes and sensing electrodes made of two layers of metal, respectively.
  • the display panel provided by the embodiment of the present disclosure may further include a touch
  • the control structure 5 is away from the third light shielding matrix 9 on the side of the driving backplane 1.
  • the third light shielding matrix 9 can block the light reflected by the touch electrode from exiting, so as to reduce the reflection of the external environment light by the display panel.
  • the OLED display panel provided by an embodiment of the present disclosure further includes a side of the color resist structure 4 and the touch structure 5 away from the drive backplane 1.
  • the fifth organic insulating layer 73 may be configured as the scattering layer 6, that is, the fifth organic insulating layer 73 includes an organic material film and scattering particles 61 arranged in the organic material film.
  • the OLED light emitting device 2 has a first electrode layer 21 electrically connected to the driving backplane 1, and the surface of the first electrode layer 21 facing away from the driving backplane 1 is a rough surface. .
  • the surface of the first electrode layer 21 facing away from the driving backplane 1 is set to be a rough surface, so that the surface is no longer smooth, so that the first electrode layer 21 diffusely reflects light , No more directional reflection, in this way, it can reduce the unevenness of the light path or the spatial distribution of the light intensity of each RGB pixel, so as to reduce the color separation phenomenon of the display panel in the dark state and improve the color separation problem of the display panel Technical effect.
  • the driving backplane 1 includes a flat layer 12 facing the OLED light-emitting device 2, and the first electrode layer 21 of the OLED light-emitting device 2 is disposed on the flat layer 12.
  • the drive backplane 1 generally includes a base substrate 11 and a thin film transistor array (TFT array) fabricated on the base substrate 11.
  • TFT array thin film transistor array
  • a flat layer 12 is provided on the TFT array, and the first electrode layer 21 generally adopts magnetron sputtering. It is prepared and formed on the planarization layer 12 through the injection process, and is electrically connected to the TFT array through the via holes in the planarization layer 12.
  • the surface of the flat layer 12 is configured as a rough surface, so that the surface of the first electrode layer 21 prepared and formed on the flat layer 12 can be roughened.
  • the first electrode layer 21 may be an anode
  • the OLED light emitting device 2 further includes a light emitting structure layer 22 and a transparent cathode 23.
  • the flat layer 12 may include two film layers, that is, two film layers are formed through two preparation processes to complete the production of the flat layer 12, so that the surface of the flat layer 12 formed can be flatter, and thus The surface of the first electrode layer 21 formed on the flat layer 12 can be made flatter, and the degree of surface unevenness can be reduced, thereby reducing the phenomenon of color separation of reflected light in the dark state.
  • the flat layer 12 is made of organic silicon series material (SOG).
  • SOG organic silicon series material
  • the flat layer 12 may also be made of acrylic series, epoxy series and other materials, which will not be repeated here.
  • FIG. 9 shows the dark state reflected light experiment in four specific embodiments of the display panel.
  • the data results specifically, as shown in Figure 9, there are four sets of histograms in the abscissa direction, which represent the experimental data results of dark-state reflected light under the following four specific examples:
  • Example a OLED light-emitting device
  • the first electrode layer is arranged on the flat layer, and the flat layer is a single-layer film layer (single-layer PLN).
  • Example b the first electrode layer of the OLED light-emitting device is arranged on the flat layer, and the flat layer has two film layers (double Layer PLN), embodiment c, the first electrode layer of the OLED light emitting device is arranged on the flat layer, and the flat layer is made of organic silicon series material (SOG PLN), embodiment d, the first electrode layer of the OLED light emitting device is directly arranged on the flat layer On the substrate (flat anode).
  • Each group of histograms has two experimental data (bottom BM and double-layer BM), and the two experimental data respectively correspond to two different color resist structures.
  • the OLED display panel provided by the embodiments of the present disclosure is a flexible foldable display panel
  • the base substrate of the driving backplane is a flexible substrate
  • the OLED display panel provided by the embodiment of the present disclosure, as shown in FIG. 2, in addition to the driving backplane 1, the OLED light emitting device 2, the packaging structure 3, the touch structure 5, and the color resistance structure 4, it may also include Other film structures, such as the upper protective layer 81 and the lower protective layer 82, will not be repeated here.
  • embodiments of the present disclosure also provide a display device, which includes any of the above-mentioned OLED display panels.
  • the display device provided in the embodiment of the present disclosure may be a product such as a smart phone, a tablet computer, and a display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种OLED显示面板和显示装置,OLED显示面板包括驱动背板(1)以及设置在驱动背板(1)上的OLED发光器件(2)、封装结构(3)和色阻结构(4);其中,封装结构(3)和色阻结构(4)位于OLED发光器件(2)背离驱动背板(1)的一侧,且色阻结构(4)包括彩色色阻层(41)、第一遮光矩阵(42)和第二遮光矩阵(43);第一遮光矩阵(42)位于彩色色阻层(41)背离驱动背板(1)的一侧,第二遮光矩阵(43)位于彩色色阻层(41)朝向驱动背板(1)的一侧。该OLED显示面板可以减弱暗态下显示面板的颜色分离现象,改善暗态下显示面板的颜色分离问题。

Description

一种OLED显示面板和显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种OLED显示面板和显示装置。
背景技术
有机电致发光显示(OLED)由于有较快的响应速度、厚度薄、对比度高等优势,已经逐渐开始蚕食液晶显示(LCD)的市场,尤其是其能实现可弯曲、可挠曲的特点,已经成为柔性显示装置的首选技术。
由于OLED发光结构中有大量金属,对外界环境光的反射率较高,因此目前普遍采用贴附圆偏光片来降低OLED基板对外界环境光的反射,并且,在贴附完圆偏光片后,一般还会再贴附柔性触控基板,但是柔性触控基板和圆偏光片均较厚,会影响整个OLED模组的柔韧性和折叠性能,鉴于此,为了实现更好的折叠效果,减小弯折半径,目前提出了COE(CF on Encapsulation)技术,即在薄膜封装的发光器件上,采用低温黄光制程形成彩色色阻层,该结构具有降低面板反射、提高色纯度、降低面板厚度等作用。但是,该结构的显示面板在息屏状态(也称暗态)时,在点光源及线光源照射下会有颜色分离的现象,目前为止还没有明确该问题的原因和解决办法。
发明内容
本申请公开了一种OLED显示面板和显示装置,目的是改善COE OLED显示面板暗态下的颜色分离现象。
为达到上述目的,本公开提供以下技术方案:
一种OLED显示面板,包括驱动背板以及设置在所述驱动背板上的OLED发光器件、封装结构和色阻结构;其中,所述封装结构和色阻结构位于所述OLED发光器件背离所述驱动背板的一侧,且所述色阻结构包括彩色色阻层、第一遮光矩阵和第二遮光矩阵;所述第一遮光矩阵位于所述彩色色阻层背离 所述驱动背板的一侧,所述第二遮光矩阵位于所述彩色色阻层朝向所述驱动背板的一侧。
可选的,在所述OLED发光器件背离所述驱动背板的一侧具有至少一层散射层,所述散射层包含有机材料膜和设置在所述有机材料膜中的散射粒子。
可选的,所述封装结构具有两层无机绝缘层以及位于所述两层无机绝缘层之间的第一有机绝缘层;
所述第一有机绝缘层被配置为所述散射层。
可选的,所述彩色色阻层被配置为所述散射层。
可选的,所述彩色色阻层包含红色色阻、绿色色阻和蓝色色阻,所述红色色阻、绿色色阻和蓝色色阻中分别包含的散射粒子的粒径依次减小。
可选的,所述显示面板还包括位于所述封装结构和所述色阻结构之间的第二有机绝缘层;
所述第二有机绝缘层被配置为散射层。
可选的,所述显示面板还包括位于所述封装结构背离所述驱动背板一侧的触控结构;所述触控结构位于所述封装结构和所述色阻结构之间,或者,所述触控结构位于所述色阻结构背离所述驱动背板的一侧。
可选的,所述显示面板还包括位于所述触控结构和所述色阻结构之间的第三有机绝缘层;所述第三有机绝缘层被配置为所述散射层。
可选的,所述显示面板还包括位于所述封装结构背离所述驱动背板一侧的触控结构,所述触控结构具有两层触控电极、以及位于所述两层触控电极之间的第四有机绝缘层;
所述第四有机绝缘层被配置为所述散射层。
可选的,所述显示面板还包括位于所述封装结构背离所述驱动背板一侧的触控结构、以及位于所述触控结构和色阻结构背离所述驱动背板一侧的第五有机绝缘层;
所述第五有机绝缘层被配置为所述散射层。
可选的,所述散射粒子为无机散射粒子,所述无机散射粒子为氧化钛、 氧化锆、氧化硅、碳酸钙、硫酸钡中的一种或几种的混合物。
可选的,所述无机散射粒子的粒径为40nm~700nm,所述无机散射粒子在所述有机材料膜中的质量百分比为1%~15%。
可选的,所述散射粒子为有机散射粒子,所述有机散射粒子与所述有机材料膜的折射率之比为0.7-0.99,所述有机散射粒子在所述有机材料膜中的质量百分比为5%~40%。
可选的,所述显示面板包括触控结构,所述触控结构位于所述色阻结构背离所述驱动背板的一侧;
所述显示面板还包括位于所述触控结构背离所述驱动背板一侧的第三遮光矩阵。
可选的,所述OLED发光器件具有与所述驱动背板电连接的第一电极层,所述第一电极层背离所述驱动背板的一侧表面为粗糙面。
可选的,所述驱动背板包括面向所述OLED发光器件的平坦层,所述OLED发光器件的第一电极层设置在所述平坦层上;
所述平坦层的表面配置为粗糙面,以使得在该平坦化层上制备形成的所述第一电极层的表面粗糙。
可选的,所述平坦层包括两层膜层。
可选的,所述平坦层为有机硅系列、丙烯酸系列、环氧树脂系列材料。
一种显示装置,包括上述任一项所述的OLED显示面板。
附图说明
图1为外部环境光被显示面板中RGB各像素内的第一电极层反射的过程示意图;
图2为本公开实施例提供的一种显示面板的截面结构示意图;
图3为本公开另一实施例提供的一种显示面板的截面结构示意图;
图4为本公开另一实施例提供的一种显示面板的截面结构示意图;
图5为本公开另一实施例提供的一种显示面板的截面结构示意图;
图6为本公开另一实施例提供的一种显示面板的截面结构示意图;
图7为本公开另一实施例提供的一种显示面板的截面结构示意图;
图8为本公开另一实施例提供的一种显示面板的截面结构示意图;
图9为多种不同设置的显示面板在暗态下的颜色分离程度直方图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图2和图7所示,本公开实施例提供了一种OLED显示面板,包括驱动背板1以及设置在驱动背板1上的OLED发光器件2、封装结构3和色阻结构4;其中,封装结构3和色阻结构4位于OLED发光器件2背离驱动背板1的一侧,且所述色阻结构4包括彩色色阻层41、第一遮光矩阵42和第二遮光矩阵43;所述第一遮光矩阵42位于所述彩色色阻层41背离所述驱动背板1的一侧,所述第二遮光矩阵43位于所述彩色色阻层41朝向所述驱动背板1的一侧。
发明人经研究发现,OLED发光器件2中的电极层表面光滑,相当于一个反射镜,对光线为定向的镜面反射,其中与驱动背板1电连接的第一电极层21是在驱动背板1上制备形成的,而驱动背板1中设置的源漏电极(SD)10等结构会导致第一电极层21背离驱动背板1的一侧表面凹凸不平,如图1所示,那么外部环境光被RGB各像素内的第一电极层21反射后,其反射光就会有不同的反射路径或光强度的空间分布,因此在某一路径或空间角度上的白平衡就可能被破坏,从而会在不同的位置看见不同的颜色,进而容易导致息屏状态下显示面板的反射光颜色分离。另外,色阻结构的开口对反射光具有一定的衍射作用,这会进一步加强反射光颜色分离的现象,因此,将导致采用COE(CF on Encapsulation)技术制备的显示面板在暗态下具有较明显 的颜色分离现象。
鉴于此发现,本公开实施例提供的OLED显示面板中,如图2和图7所示,采用将色阻结构4设计为一层彩色色阻层41和两层遮光矩阵层的形式,并将上述两层遮光矩阵(第一遮光矩阵42和第二遮光矩阵43)分别设置在彩色色阻层41的两侧的设置,来解决显示面板在暗态下的颜色分离问题。
常规COE OLED显示面板中,仅具有一层遮光矩阵,该遮光矩阵设置在彩色色阻层朝向驱动背板的一侧,经发明人研究发现,采用双层遮光矩阵、并将双层遮光矩阵分别设置在彩色色阻层的两侧,可以显著地减弱暗态下显示面板的颜色分离现象。
具体的,本公开实施例提供的OLED显示面板中,双层遮光矩阵分别设置在彩色色阻层的两侧,既可以与彩色色阻层相邻,也可以不相邻;例如,可以参考图2和图7中所示的设置,将第一遮光矩阵42、彩色色阻层41和第二遮光矩阵43依次相邻设置;或者,也可以参考图4中所示的设置,将第二遮光矩阵43设置在封装结构的膜层之间,使得第二遮光矩阵43与彩色色阻层不相邻。
具体的,图9为根据实验数据分析结果得到的显示面板在暗态下的颜色分离程度的直方图。其中,ΔΕab max表征显示面板在暗态下的颜色分离程度指标。图9中沿横坐标方向上共有四组直方图,分别表征的是四种显示面板具体实施例的暗态反射光实验数据结果,该四种具体实施例中,显示面板包括依次设置的驱动背板、OLED发光器件、封装结构和色阻结构;驱动背板包括玻璃衬底和位于玻璃衬底上的薄膜晶体管阵列(TFT阵列),OLED发光器件包括依次设置的阳极、发光结构和阴极;上述四种具体实施例的显示面板区别在于:实施例a、驱动背板包括位于TFT阵列上的平坦层,OLED发光器件的阳极(即第一电极层)形成在该平坦层上,该平坦层采用常规的丙烯酸系列材料,为单层膜层(即单层PLN);实施例b、驱动背板包括位于TFT阵列上的平坦层,OLED发光器件的阳极形成在该平坦层上,该平坦层采用常规的丙烯酸系列材料,具有两层膜层(即双层PLN);实施例c、驱动背板中 包括位于TFT阵列上的平坦层,OLED发光器件的阳极形成在该平坦层上,该平坦层为单层膜层,采用有机硅系列材料(即SOG PLN);实施例d、OLED发光器件的阳极直接形成在驱动背板的玻璃衬底上,膜层表面非常平坦(即平坦阳极)。
具体的,图9中,每组直方图具有两个实验数据,所述两个实验数据分别为两种不同色阻结构下所得到的实验数据结果,该两种不同色阻结构的具体设置分别为:A、底层BM,即色阻结构包括彩色色阻层和一层遮光矩阵(BM),该遮光矩阵位于彩色色阻层朝向驱动背板的一侧,此色阻结构为常规COE OLED显示面板的色阻结构;B、双层BM,即色阻结构包括彩色色阻层和两层遮光矩阵,该两层遮光矩阵分别设置在彩色色阻层的两侧,此色阻结构为本公开实施例的OLED显示面板的一种色阻结构。
如图9所示,通过对四组直方图内A、B两个数据之间进行比较可以看出,每组实验数据中数据B的ΔΕab max相对于数据A都具有明显的降低,其中a、c、d三组直方图中数据B的ΔΕab max大致为数据A的1/2,b组直方图中数据B的ΔΕab max甚至接近于数据A的1/3;由上述数据结果可以直接得出,双层BM这种设置相对于底层BM这种设置可以显著地减小暗态下显示面板反射光的颜色分离程度,换句话说,相对于仅在彩色色阻层朝向驱动背板的一侧设置一层BM这种常规设置,采用双层BM层分别设置在彩色色阻层两侧这种设置,可以有效地减小暗态下显示面板反射光的颜色分离程度。由此可以验证,本公开实施例的显示面板可以显著地减小暗态下反射光的颜色分离程度。
一种具体的实施例中,如图3至图8所示,本公开实施例提供的OLED显示面板,在OLED发光器件2背离驱动背板1的一侧具有至少一层散射层6,该散射层6包含有机材料膜和设置在有机材料膜中的散射粒子(又称光扩散粒子)61。可选的,散射粒子可以均匀分布在有机材料膜中。
本公开实施例提供的OLED显示面板中,在OLED发光器件2的出光侧设置有散射层6,散射层6中的散射粒子61可以对光线进行散射,以使得每 个像素中反射光的路径或光强空间分布更均匀,从而可以减弱由于第一电极层21定向反射所导致的颜色分离现象,从而达到进一步改善显示面板颜色分离现象的效果。
可选的,散射粒子61可以为无机散射粒子,无机散射粒子可以是氧化锆、氧化硅、碳酸钙、硫酸钡、钛白粉(氧化钛)中的一种或几种的混合物,具体可以是不同材料的粉末混合而成。
可选的,无机散射粒子的粒径可以为40nm~700nm,无机散射粒子在有机材料膜中的质量百分比为1%~15%。
可选的,散射粒子61可以为有机散射粒子,有机散射粒子可以为有机硅微球、聚丙烯酸系列、聚甲基丙烯酸甲酯类(PMMA)、聚苯乙烯(PS)等微球中的一种或几种的混合物,有机散射粒子的折射率小于所述有机材料膜的折射率。
可选的,有机散射粒子与所述有机材料膜的折射率之比在0.7-0.99之间,其折射率具体可以为1.2-1.6之间;进一步可选的,所述有机散射粒子在所述有机材料膜中的质量百分比为5%~40%之间。
一种具体的实施方式中,如图2、图3和图7所示,封装结构3具有两层无机绝缘层31以及位于两层无机绝缘层31之间的第一有机绝缘层32。
可选的,如图3所示,该第一有机绝缘层32被配置为散射层6,即第一有机绝缘层32包含有机材料膜和设置在有机材料膜中的散射粒子61。
当然,封装结构3不限于仅上述三层,也可以是三层以上的有机和无机层交替的结构。
一种具体的实施方式中,如图2、图4和图7所示,色阻结构4具有彩色色阻层41。
可选的,如图4所示,该彩色色阻层41被配置为散射层6。即彩色色阻层41包含有机材料膜和设置在有机材料膜中的散射粒子61。
示例性的,彩色色阻层41具体包括红色色阻、绿色色阻和蓝色色阻。具体的,红色色阻、绿色色阻和蓝色色阻中分别包含的散射粒子61的粒径可以 依次减小,具体可与各色阻的出射光的波长匹配,例如,红色色阻中包含的散射粒子61的粒径可以是1/5λ~λ,其中λ是红光波长;绿色色阻和蓝色色阻中的散射粒子61尺寸设置同理。这样,可以使得各色光在遇到散射粒子1时不仅会产生散射效果,还可以发生衍射现象,从而进一步增加每个像素中反射光的路径或光强空间分布的均匀性,以达到进一步改善显示面板颜色分离现象的效果。
一种具体的实施方式中,如图7所示,本公开实施例的显示面板可以包括位于封装结构3和色阻结构4之间的第二有机绝缘层71。该第二有机绝缘层71被配置为散射层6,即该第二有机绝缘层包含有机材料膜和设置在有机材料膜中的散射粒子61。
一种具体的实施方式中,如图2、图6和图8所示,本公开实施例提供的OLED显示面板,还可以包括位于封装结构3背离驱动背板1一侧的触控结构5、以及位于触控结构5和色阻结构4之间的第三有机绝缘层72。
示例性的,触控结构5可以设置在色阻结构4和封装结构3之间,具体可以参看图2至图6;或者,触控结构5也可以设置在色阻结构4背离封装结构3的一侧,具体可以参看图7和图8。
示例性的,如图6和图8所示,第三有机绝缘层72被配置为散射层6,即第三有机绝缘层72包含有机材料膜和设置在有机材料膜中的散射粒子61。
示例性的,如图2和图7所示,触控结构5具有两层触控电极51、以及位于两层触控电极51之间的第四有机绝缘层52。
可选的,也可以将该第四有机绝缘层52配置为散射层6,即第四有机绝缘层52包含有机材料膜和设置在有机材料膜中的散射粒子61。
示例性的,两层触控电极51分别是两层金属制备的驱动电极和感应电极。
一种具体的实施方式中,如图7和图8所示,当触控结构5位于色阻结构4背离封装结构3的一侧时,本公开实施例提供的显示面板还可以包括位于该触控结构5背离驱动背板1一侧的第三遮光矩阵9。具体的,该第三遮光矩阵9可以阻挡被触控电极反射后的光线出射,以降低显示面板对外界环境 光的反射。
一种具体的实施方式中,如图2、图5和图7所示,本公开实施例提供的OLED显示面板,还包括位于色阻结构4和触控结构5背离驱动背板1一侧的第五有机绝缘层73。
示例性的,如图5所示,可以将第五有机绝缘层73配置为散射层6,即第五有机绝缘层73包含有机材料膜和设置在有机材料膜中的散射粒子61。
一种具体的实施例中,如图2所示,OLED发光器件2具有与驱动背板1电连接的第一电极层21,第一电极层21背离驱动背板1的一侧表面为粗糙面。
本公开实施例提供的OLED显示面板中,将第一电极层21背离驱动背板1的一侧表面设置呈粗糙面,使其表面不再光滑,以使得第一电极层21对光线进行漫反射,不再定向的进行反射,这样,可以减小RGB各像素反射光的路径或光强空间分布的参差不齐,从而达到减弱暗态下显示面板的颜色分离现象、改善显示面板颜色分离问题的技术效果。
一种具体的实施例中,如图2所示,驱动背板1包括面向OLED发光器件2的平坦层12,OLED发光器件2的第一电极层21设置在平坦层12上。
具体的,驱动背板1一般包括衬底基板11和制作在衬底基板11上的薄膜晶体管阵列(TFT阵列),在TFT阵列上设置有平坦层12,第一电极层21一般采用磁控溅射工艺制备形成在平坦层12上,并通过平坦层12中的过孔与TFT阵列电连接。
示例性的,平坦层12的表面配置为粗糙面,进而可以使得在该平坦层12上制备形成的第一电极层21的表面粗糙。
示例性的,第一电极层21可以为阳极(Anode),OLED发光器件2还包括发光结构层22和透明阴极23。
一种具体的实施例中,平坦层12可以包括两层膜层,即通过两次制备工艺形成两层膜层,以完成平坦层12的制作,这样形成的平坦层12表面可以更加平坦,进而可以使得形成在平坦层12上的第一电极层21的表面更加平坦,降低表面凹凸程度,从而减弱暗态下的反射光颜色分离的现象。
进一步的,平坦层12为有机硅系列材料(SOG)。同理,采用有机硅系列材料制备形成的平坦层12,表面会更加平坦,从而可以使得第一电极层21的表面更加平坦,进而达到减弱暗态下反射光颜色分离现象的效果。
示例性的,平坦层12也可以采用丙烯酸系列、环氧树脂系列等材料,在此不一一赘述。
具体的,为了更直观的体现本公开各实施例提供的显示面板对于在暗态下的颜色分离现象的改善效果,图9中给出了四种显示面板具体实施例下的暗态反射光实验数据结果,具体的,如图9所示,横坐标方向上共有四组直方图,分别表征的是以下四种具体实施例下的暗态反射光实验数据结果:实施例a、OLED发光器件的第一电极层设置在平坦层上,平坦层为单层膜层(单层PLN),实施例b、OLED发光器件的第一电极层设置在平坦层上,平坦层具有两层膜层(双层PLN),实施例c、OLED发光器件的第一电极层设置在平坦层上,平坦层采用有机硅系列材料(SOG PLN),实施例d、OLED发光器件的第一电极层直接设置在平坦的衬底上(平坦阳极)。其中每组直方图中具有两个实验数据(底层BM和双层BM),该两个实验数据分别对应于两种不同的色阻结构。
如图9所示,通过将b、c、d各组直方图分别与a组进行比较(将同种色阻结构的数据之间进行比较)可以看出,b、c、d各组直方图的ΔΕab max相对于a组的ΔΕab max均具有明显的降低,其中c、d两组直方图中的ΔΕab max甚至小于a组ΔΕab max的1/2,由此可以得出:相对于单层PLN这种常规显示面板的设置,将PLN设置为双膜层、选择有机硅系列材料制备PLN、或者其他能够使得阳极表面平坦的方式,均可以有效减小暗态下显示面板反射光的颜色分离程度,且使得阳极表面越平坦,减小颜色分离程度的效果越好。综上实验数据分析结果可以直观的得出,本公开各实施例提供的显示面板可以显著地减小暗态下反射光的颜色分离程度。
示例性的,本公开实施例提供的OLED显示面板为柔性可折叠显示面板,驱动背板的衬底基板为柔性基板。
示例性的,本公开实施例提供的OLED显示面板,如图2所示,除了包括驱动背板1、OLED发光器件2、封装结构3、触控结构5及色阻结构4外,还可以包括其它膜层结构,如上保护层81及下保护层82,在此不再赘述。
另外,本公开实施例还提供一种显示装置,该显示装置包括上述任一项的OLED显示面板。
示例性的,本公开实施例提供的显示装置,可以是智能手机、平板电脑、显示器等产品。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种OLED显示面板,包括驱动背板以及设置在所述驱动背板上的OLED发光器件、封装结构和色阻结构;其中,所述封装结构和色阻结构位于所述OLED发光器件背离所述驱动背板的一侧,且所述色阻结构包括彩色色阻层、第一遮光矩阵和第二遮光矩阵;所述第一遮光矩阵位于所述彩色色阻层背离所述驱动背板的一侧,所述第二遮光矩阵位于所述彩色色阻层朝向所述驱动背板的一侧。
  2. 如权利要求1所述的OLED显示面板,其中,在所述OLED发光器件背离所述驱动背板的一侧具有至少一层散射层,所述散射层包含有机材料膜和设置在所述有机材料膜中的散射粒子。
  3. 如权利要求2所述的OLED显示面板,其中,所述封装结构具有两层无机绝缘层以及位于所述两层无机绝缘层之间的第一有机绝缘层;
    所述第一有机绝缘层被配置为所述散射层。
  4. 如权利要求2所述的OLED显示面板,其中,所述彩色色阻层被配置为所述散射层。
  5. 如权利要求4所述的OLED显示面板,其中,所述彩色色阻层包含红色色阻、绿色色阻和蓝色色阻,所述红色色阻、绿色色阻和蓝色色阻中分别包含的散射粒子的粒径依次减小。
  6. 如权利要求2所述的OLED显示面板,其中,还包括位于所述封装结构和所述色阻结构之间的第二有机绝缘层;
    所述第二有机绝缘层被配置为散射层。
  7. 如权利要求2所述的OLED显示面板,其中,还包括位于所述封装结构背离所述驱动背板一侧的触控结构;所述触控结构位于所述封装结构和所述色阻结构之间,或者,所述触控结构位于所述色阻结构背离所述驱动背板的一侧。
  8. 如权利要求7所述的OLED显示面板,其中,还包括位于所述触控结 构和所述色阻结构之间的第三有机绝缘层;
    所述第三有机绝缘层被配置为所述散射层。
  9. 如权利要求7所述的OLED显示面板,其中,所述触控结构具有两层触控电极、以及位于所述两层触控电极之间的第四有机绝缘层;
    所述第四有机绝缘层被配置为所述散射层。
  10. 如权利要求7所述的OLED显示面板,其中,还包括位于所述触控结构和色阻结构背离所述驱动背板的一侧的第五有机绝缘层;
    所述第五有机绝缘层被配置为所述散射层。
  11. 如权利要求2所述的OLED显示面板,其中,所述散射粒子为无机散射粒子,所述无机散射粒子为氧化钛、氧化锆、氧化硅、碳酸钙、硫酸钡中的一种或几种的混合物。
  12. 如权利要求11所述的OLED显示面板,其中,所述无机散射粒子的粒径为40nm~700nm,所述无机散射粒子在所述有机材料膜中的质量百分比为1%~15%。
  13. 如权利要求2所述的OLED显示面板,其中,所述散射粒子为有机散射粒子,所述有机散射粒子与所述有机材料膜的折射率之比为0.7-0.99,所述有机散射粒子在所述有机材料膜中的质量百分比为5%~40%。
  14. 如权利要求1-13任一项所述的OLED显示面板,其中,包括触控结构,所述触控结构位于所述色阻结构背离所述驱动背板的一侧;
    所述显示面板还包括位于所述触控结构背离所述驱动背板一侧的第三遮光矩阵。
  15. 如权利要求1-13任一项所述的OLED显示面板,其中,所述OLED发光器件具有与所述驱动背板电连接的第一电极层,所述第一电极层背离所述驱动背板的一侧表面为粗糙面。
  16. 如权利要求15所述的OLED显示面板,其中,所述驱动背板包括面向所述OLED发光器件的平坦层,所述OLED发光器件的第一电极层设置在所述平坦层上;
    所述平坦层的表面配置为粗糙面,以使得在该平坦化层上制备形成的所述第一电极层的表面粗糙。
  17. 如权利要求16所述的OLED显示面板,其中,所述平坦层包括两层膜层。
  18. 如权利要求16所述的OLED显示面板,其中,所述平坦层为有机硅系列、丙烯酸系列、环氧树脂系列材料。
  19. 一种显示装置,包括如权利要求1-18任一项所述的OLED显示面板。
PCT/CN2019/119775 2019-11-20 2019-11-20 一种oled显示面板和显示装置 WO2021097722A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/977,516 US11974459B2 (en) 2019-11-20 2019-11-20 OLED display panel and display device
JP2021572592A JP2023510437A (ja) 2019-11-20 2019-11-20 Oledディスプレイパネルおよびディスプレイデバイス
CN201980002509.0A CN113228332A (zh) 2019-11-20 2019-11-20 一种oled显示面板和显示装置
EP19945455.4A EP4064377A4 (en) 2019-11-20 2019-11-20 OLED DISPLAY PANEL AND DISPLAY DEVICE
PCT/CN2019/119775 WO2021097722A1 (zh) 2019-11-20 2019-11-20 一种oled显示面板和显示装置
KR1020227006637A KR20220103914A (ko) 2019-11-20 2019-11-20 Oled 디스플레이 패널 및 디스플레이 장치
US18/416,405 US20240155867A1 (en) 2019-11-20 2024-01-18 Oled display panel and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119775 WO2021097722A1 (zh) 2019-11-20 2019-11-20 一种oled显示面板和显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/977,516 A-371-Of-International US11974459B2 (en) 2019-11-20 2019-11-20 OLED display panel and display device
US18/416,405 Continuation US20240155867A1 (en) 2019-11-20 2024-01-18 Oled display panel and display device

Publications (1)

Publication Number Publication Date
WO2021097722A1 true WO2021097722A1 (zh) 2021-05-27

Family

ID=75980351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119775 WO2021097722A1 (zh) 2019-11-20 2019-11-20 一种oled显示面板和显示装置

Country Status (6)

Country Link
US (2) US11974459B2 (zh)
EP (1) EP4064377A4 (zh)
JP (1) JP2023510437A (zh)
KR (1) KR20220103914A (zh)
CN (1) CN113228332A (zh)
WO (1) WO2021097722A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235439A (zh) * 2013-04-08 2013-08-07 北京京东方光电科技有限公司 一种对盒基板及制备方法、触摸屏、显示装置
US20150318447A1 (en) * 2014-04-30 2015-11-05 Lg Display Co., Ltd. Display Apparatus and Method of Manufacturing the Same
CN105098095A (zh) * 2015-07-27 2015-11-25 京东方科技集团股份有限公司 一种有机发光二极管器件及其制作方法、显示装置
CN205900543U (zh) * 2016-05-18 2017-01-18 武汉华星光电技术有限公司 一种oled显示面板
CN108054191A (zh) * 2018-01-11 2018-05-18 京东方科技集团股份有限公司 一种显示面板及显示装置
CN108336119A (zh) * 2018-03-20 2018-07-27 京东方科技集团股份有限公司 像素单元、像素结构和显示面板
KR20190080312A (ko) * 2017-12-28 2019-07-08 엘지디스플레이 주식회사 블랙 뱅크 절연막을 포함하는 유기 발광 표시 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257662A (ja) 2002-03-04 2003-09-12 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置及びその製造方法
US7245065B2 (en) * 2005-03-31 2007-07-17 Eastman Kodak Company Reducing angular dependency in microcavity color OLEDs
JP2007207509A (ja) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP5470813B2 (ja) 2008-11-20 2014-04-16 ソニー株式会社 反射板、表示装置およびその製造方法
KR101114916B1 (ko) 2010-12-27 2012-02-14 주식회사 엘지화학 유기발광소자용 기판 및 그 제조방법
JP2016134293A (ja) * 2015-01-20 2016-07-25 株式会社ジャパンディスプレイ 表示装置
JP2017027872A (ja) * 2015-07-27 2017-02-02 ソニー株式会社 表示装置
WO2017037560A1 (en) 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US20170213872A1 (en) * 2016-01-27 2017-07-27 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20180047559A (ko) 2016-10-31 2018-05-10 엘지디스플레이 주식회사 유기 발광 표시 장치
KR20180076689A (ko) 2016-12-28 2018-07-06 엘지디스플레이 주식회사 표시 장치
KR20180082661A (ko) 2017-01-09 2018-07-19 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN107394052B (zh) * 2017-08-31 2024-01-09 京东方科技集团股份有限公司 一种有机发光二极管器件及其制备方法、显示装置
KR102623429B1 (ko) * 2017-12-27 2024-01-09 엘지디스플레이 주식회사 표시 장치
KR20190093131A (ko) * 2018-01-30 2019-08-08 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN108933153B (zh) * 2018-07-27 2021-02-02 上海天马微电子有限公司 显示面板及其制作方法、显示装置
KR20200098749A (ko) * 2019-02-11 2020-08-21 삼성디스플레이 주식회사 표시 장치
KR20200115761A (ko) * 2019-03-25 2020-10-08 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235439A (zh) * 2013-04-08 2013-08-07 北京京东方光电科技有限公司 一种对盒基板及制备方法、触摸屏、显示装置
US20150318447A1 (en) * 2014-04-30 2015-11-05 Lg Display Co., Ltd. Display Apparatus and Method of Manufacturing the Same
CN105098095A (zh) * 2015-07-27 2015-11-25 京东方科技集团股份有限公司 一种有机发光二极管器件及其制作方法、显示装置
CN205900543U (zh) * 2016-05-18 2017-01-18 武汉华星光电技术有限公司 一种oled显示面板
KR20190080312A (ko) * 2017-12-28 2019-07-08 엘지디스플레이 주식회사 블랙 뱅크 절연막을 포함하는 유기 발광 표시 장치
CN108054191A (zh) * 2018-01-11 2018-05-18 京东方科技集团股份有限公司 一种显示面板及显示装置
CN108336119A (zh) * 2018-03-20 2018-07-27 京东方科技集团股份有限公司 像素单元、像素结构和显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064377A4 *

Also Published As

Publication number Publication date
KR20220103914A (ko) 2022-07-25
US20230125717A1 (en) 2023-04-27
JP2023510437A (ja) 2023-03-14
CN113228332A (zh) 2021-08-06
EP4064377A4 (en) 2023-03-08
US20240155867A1 (en) 2024-05-09
US11974459B2 (en) 2024-04-30
EP4064377A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
CN104076554B (zh) 反射式液晶显示装置和电子设备
US8610845B2 (en) Display device having color filter and polymer-dispersed liquid crystal (PDLC) layer
WO2015188474A1 (zh) 显示基板、显示面板及显示装置
US20110261294A1 (en) Color filter and display device employing the same
WO2016015385A1 (zh) 一种透明显示面板及其制作方法、透明显示装置
JP2004086108A (ja) 液晶表示装置
CN112558337B (zh) 视角可切换的液晶显示装置及其驱动方法
US20180224698A1 (en) Color filter substrate, display panel and display device
CN108878684B (zh) 一种胶层、显示面板及显示装置
WO2020238768A1 (zh) 显示面板、显示装置及其控制方法
WO2022257167A1 (zh) 显示面板及电子装置
US20220246697A1 (en) Display panel and display device
KR102653279B1 (ko) 유기전계발광 표시장치
KR20210047499A (ko) 가변 차광 블랙 매트릭스층을 구비하는 표시 장치
CN110673411A (zh) 显示面板及显示装置
CN204289453U (zh) 一种有机发光显示器件
WO2021097722A1 (zh) 一种oled显示面板和显示装置
US7345721B2 (en) Transflective liquid crystal display and color filter with two kinds of color resists for the same
CN110928043A (zh) 透明显示面板和电子设备
US20130016521A1 (en) Backlight unit and display apparatus using the same
TW200424564A (en) Optical element, planar lighting unit and liquid crystal display unit
CN114167656A (zh) 无机电致变色器件和显示装置
WO2020124714A1 (zh) 彩色滤光基板、液晶显示面板及液晶显示装置
JPH10268301A (ja) 液晶表示装置
WO2020103286A1 (zh) 具有照明功能的 oled 显示设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945455

Country of ref document: EP

Effective date: 20220620