WO2021096328A2 - 타겟의 초기 위치 감지 기능을 구비한 레이저 추적 장치 및 추적 방법 - Google Patents
타겟의 초기 위치 감지 기능을 구비한 레이저 추적 장치 및 추적 방법 Download PDFInfo
- Publication number
- WO2021096328A2 WO2021096328A2 PCT/KR2020/016105 KR2020016105W WO2021096328A2 WO 2021096328 A2 WO2021096328 A2 WO 2021096328A2 KR 2020016105 W KR2020016105 W KR 2020016105W WO 2021096328 A2 WO2021096328 A2 WO 2021096328A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- target
- reflector
- center
- psd
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/69—Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
Definitions
- the present invention relates to a laser tracking device, and more particularly, a plurality of laser trackers or a single laser tracker capable of moving and disposing to a plurality of positions tracks a target to be tracked, and calculates the distance between the target and the laser tracker, and is based on this It relates to a laser tracking device for measuring the position of the target.
- the multilateration method is a method of measuring the position of the object by calculating the distance to the object to be tracked at three or four fixed points and deriving the spatial coordinates of the object based on this distance information.
- a laser tracker is used to track the target and calculate the distance.
- the laser tracker measures the distance to the target while automatically tracking the target by installing a device that adjusts the irradiation direction (altitude angle and azimuth angle) of the laser light in a laser interferometer that measures the distance to the reflector installed on the target to be tracked. can do.
- the laser trackers do not know the exact position of the target or the reflector. Therefore, the operator has the optical device of each laser tracker so that the laser optical axis of each laser tracker is directed to the center of the reflector of the target. Was set by manually adjusting. However, if the optical device is manually adjusted in this way, it takes a lot of work time, and the accuracy of matching the laser optical axis and the center of the reflector decreases, thereby reducing the accuracy of the target position measurement.
- Patent Document 1 Korean Patent Application Publication No. 2008-0096148 (published on October 30, 2008)
- Patent Document 2 Korean Patent Application Publication No. 2017-0078401 (published on July 7, 2017)
- the present invention has been devised to solve the above problem, and provides a laser tracking device having a function of automatically detecting an initial position of a target to be tracked, setting the laser trackers to face the target, and then starting a laser tracking operation. It aims to provide.
- a laser tracking device is a laser tracking device including a laser tracker for tracking a target with a laser at a plurality of positions, and a control device for controlling the driving of the laser tracker and calculating the position of the target.
- the laser tracker is a position sensor that generates position information of the laser tracker, and a laser transceiving unit that irradiates a laser toward a reflector attached to the target and receives a laser reflected from the reflector, and a laser irradiation unit of the laser transceiving unit. It may include an optical device including a camera that photographs an image in the same direction as the direction.
- the control device calculates the relative position of the target based on the position information transmitted by the target and the position information of the laser tracker, and directs the optical device to the target according to the relative position, and the image of the camera
- a laser tracker control unit for controlling a laser transmission/reception direction by using, and a position calculating unit for calculating a position of a target based on a laser irradiated by the reflector and a laser reflected by the reflector and received by the laser tracker.
- the laser tracker may include at least three or more laser trackers that track the target, or may include one laser tracker that can be moved and placed in at least three or more positions.
- the laser tracker control unit calculates a relative position of the target based on the position information transmitted by the target and the position information of the laser tracker, and a first control for directing the optical device of the laser tracker toward the target, A second control for adjusting the camera direction of the laser tracker so that the center of the reflector coincides with the center of the camera image, and a third control for adjusting the direction of the laser transceiving unit of the laser tracker so that the laser optical axis of the laser transceiving unit coincides with the center of the reflector. Control can be executed sequentially.
- the laser tracker may include a first driving unit for rotating the optical device in a horizontal direction and adjusting an azimuth angle, and a second driving unit for rotating the optical device in a vertical direction and adjusting an elevation angle.
- the laser tracker control unit includes an image signal processing unit for the second control, and the image signal processing unit zooms in the camera and at the same time, the first and second driving units so that the reflector is positioned within the camera image. It may be configured to sequentially perform the controlling step and controlling the first and second driving units so that the center of the reflector coincides with the center of the zoomed-in camera image.
- the laser transceiving unit of the laser tracker includes a position detection sensor (PSD) for detecting a part of the receiving laser, the laser tracker control unit further includes a PSD signal processing unit for the third control, and the PSD signal processing unit includes the position
- PSD position detection sensor
- the first driving unit or the second driving unit is controlled so that the PSD SUM signal representing the amount of light among the output signals of the detection sensor PSD is adjusted to a maximum value, thereby matching the laser optical axis of the laser transmission/reception unit to the center of the reflector.
- the laser transceiving unit of the laser tracker includes a position detection sensor (PSD) for detecting a part of the receiving laser, the laser tracker control unit further includes a PSD signal processing unit for the third control, and the PSD signal processing unit includes the position
- the first driving unit or the second driving unit is controlled so that the PSD voltage signals in the horizontal and vertical directions among the output signals of the detection sensor (PSD) are 0 volts, so that the laser optical axis of the laser transceiving unit is aligned with the center of the reflector Can be.
- a method of detecting an initial position of a target includes a laser tracker for tracking a target with a laser at a plurality of positions, and a control device for controlling the driving of the laser tracker and calculating the position of the target.
- a method of detecting an initial position of a target at comprising: calculating a relative position of the target based on position information transmitted by the target and position information of the laser tracker, based on the relative position, optical of the laser tracker Controlling the optical device to face the target by controlling the azimuth and elevation angles of the device, the center of the reflector attached to the target at the center of the camera image based on the image signal photographed by the camera installed in the optical device
- the step of matching, the laser transmission/reception unit installed in the optical device irradiates a laser toward the reflector and receives the laser reflected from the reflector, and detects a part of the received laser to match the laser optical axis to the center of the reflector It may include a step of.
- the step of matching the center of the reflector to the center of the camera image may include zooming in the camera and positioning the reflector in the camera image, and matching the center of the reflector to the center of the zoomed-in camera image. I can.
- the reflector of the target includes an alignment line arranged in a predetermined shape on the front side, and before the step of matching the center of the reflector to the center of the zoomed-in camera image, the center of the reflector is determined from the alignment line seen in the camera image. It may further include the step of.
- the laser optical axis of the laser transceiving unit may be aligned with the center of the reflector so that the SUM signal becomes the maximum value.
- the laser optical axis of the laser transmission/reception unit can be matched to the center of the reflector so that the PSD voltage signals for the direction are all 0 volts.
- the initial position of the target is automatically detected and the laser optical axis of the laser trackers is automatically directed toward the center of the reflector of the target, thereby significantly saving the time required for initial setting work for target tracking, and also By accurately matching the optical axis and the center of the reflector, there is an advantage that the accuracy of target position measurement can be improved.
- FIG. 1 is a diagram illustrating a laser tracking device according to an embodiment of the present invention
- FIG. 2 is a view for explaining a reflector according to an embodiment
- 3 and 4 are diagrams illustrating a laser tracker according to an embodiment
- FIG. 5 is a diagram illustrating an optical device of a laser tracker according to an embodiment
- 6 and 7 are diagrams for explaining an output signal of a PSD according to an embodiment
- FIG. 8 is a diagram illustrating a laser tracker control unit according to an embodiment
- FIG. 9 is an exemplary flowchart of a method of detecting an initial position of a target according to an embodiment
- FIG. 10 is a diagram showing an image captured by the camera when the FIG. 9 is executed.
- a laser tracking device is an integrated control device connected to communicate with each of a plurality of laser trackers 21, 22, 23, and 24 and a plurality of laser trackers. It may be composed of 30, and it is possible to detect the position of the target 10 in a three-dimensional space by tracking the target 10, which is an arbitrary target to be tracked.
- the target 10 may be an arbitrary object moving in a three-dimensional space.
- the target 10 includes a reflector 11 attached in a direction toward the laser trackers 21, 22, 23, and 24.
- the reflector 11 includes a position sensor 12 that generates a position signal.
- the position sensor 12 may be attached to the reflector 11 or may be attached to an arbitrary position of the target 10.
- the position sensor 12 may be composed of a beacon transmitter/receiver, an ultra wide-band (UWB) radar sensor, an inertial MEMES sensor (IMU) sensor, a lidar sensor, a vision sensor, and the like.
- UWB ultra wide-band
- IMU inertial MEMES sensor
- Each of the laser trackers 21, 22, 23, 24 can irradiate a laser toward the reflector 11 attached to the target 10 and receive the laser reflected from the reflector 11, and a part of the laser thus received Is transmitted to the integrated control device 30.
- Each laser tracker may detect the received laser with a position detection sensor (PSD) and transmit a detection signal by this detection to the integrated control device 30.
- PSD position detection sensor
- four laser trackers are used for tracking the position of the target, but the present invention is not limited thereto, and three laser trackers may be used in an alternative embodiment, or a larger number of lasers according to another embodiment. You can use a tracker, or you can use only one laser tracker and move and place one laser tracker to three or more locations to track the position of the target.
- Each of the laser trackers 21, 22, 23, and 24 includes a position sensor that calculates a relative position with the target 10 or the reflector 11 mounted on the target.
- the position sensor of each laser tracker 21, 22, 23, 24 is configured to calculate relative position information with position information calculated by the position sensor of the target.
- the position sensor is a beacon transceiver
- each laser tracker includes a beacon receiver (or transmitter).
- the position sensors of the laser trackers 21, 22, 23, and 24 may generate position information of the laser tracker.
- the integrated control device may calculate the relative position of the target based on the position information transmitted from the position sensor of the laser tracker and the position information transmitted by the target.
- the position information calculated by the position sensor included in the laser tracker is transmitted to the integrated control device 30, and at the same time, the position information calculated by the position sensor mounted on the target 10 is also transmitted to the integrated control device 30 to provide each position information.
- the relative position of the liver can be derived.
- the position sensor is a beacon transmitter/receiver
- the laser tracker includes a beacon transmitter
- the laser tracker transmits transmission information including the transmission time to the integrated control device 30 each time a beacon signal is transmitted to the target 10
- the beacon receiver of can also transmit information about the source and the reception time to the integrated control device 30 whenever a beacon signal is received from each laser tracker.
- the laser tracker includes a beacon receiver and the target 10 includes a beacon transmitter
- the beacon transmitter of the target 10 transmits a beacon signal every predetermined time and each laser tracker receives the beacon signal.
- the reception information including the reception time may be transmitted to the integrated control device 30 each time.
- each of the laser trackers 21, 22, 23 and 24 includes a camera.
- the camera is installed to shoot in the same direction as the laser irradiation direction.
- the image (video) captured by the camera is transmitted to the integrated control device 30.
- the integrated control device 30 may include a laser light source unit 40, a laser tracker control unit 50, and a position calculation unit 60.
- the laser light source unit 40 includes a laser light source 41 and a reception light detection unit 42.
- the laser light source 41 generates laser light and transmits the laser light to each of the laser trackers 21, 22, 23 and 24 through a plurality of optical elements such as the optical fiber 70 and the couplings 71 and 72.
- Each laser tracker (21, 22, 23, 24) irradiates the laser light to the reflector 11 of the target, and the laser light reflected by the reflector 11 and returned is again an optical fiber 70, a coupling 71, etc. It is transmitted to the receiving light detection unit 42 through the optical element of.
- the position calculation unit 60 is based on the laser irradiated by the reflector 11 from each of the laser trackers 21, 22, 23, 24 and the laser reflected by the reflector 11 and received by the laser tracker.
- the distance between the ,22,23,24) and the reflector 11 may be calculated, and the position of the target 10 in the three-dimensional space cold may be calculated using a multilateral survey method.
- the laser tracker control unit 50 tracks each laser tracker (21, 22, 23, 24) to continuously irradiate the laser onto the reflector 11 of the target. Controls the driving of the trackers 21, 22, 23 and 24.
- the laser tracker control unit 50 may be wired to each of the laser trackers 21, 22, 23, and 24 by wires 80 such as the data line 81 and the control line 82.
- signals such as position information of a position sensor, a camera image signal, a position detection sensor (PSD) signal, or data related thereto may be transmitted to the laser tracker control unit 50 through the data line 81, and each laser A control signal for driving the trackers 21, 22, 23, and 24 may be transmitted to each laser tracker through the control line 82.
- each laser tracker and the laser tracker controller 50 may be configured to transmit and receive data and control signals wirelessly.
- the laser tracker control unit 50 detects the initial position of the target 10, and according to the detected initial position, each of the laser trackers 21, 22, 23, and 24 transmits the laser light of the target. It makes it possible to accurately irradiate the center of the reflector 11.
- the laser tracker control unit 50 may determine the relative position of the target 10 based on (i) the target 10 and the position information of the respective laser trackers 21, 22, 23, and 24.
- a preliminary operation for target tracking may be performed by sequentially executing the third control for adjusting the direction of the optical axis.
- Figure 2 shows an exemplary configuration of the reflector 11 according to an embodiment
- Figure 2 (a) is a schematic perspective view
- Figure 2 (b) is a side cross-sectional view
- Figure 2 (c) is viewed from the front Is shown.
- the reflecting mirror 11 is a total reflector having a characteristic of reflecting the laser light incident on the reflecting mirror in the same direction as the incoming direction, and as an example of such a total reflecting mirror, the reflecting mirror 11 shown in FIG. 2 has the same refractive index and has the same size.
- the first half sphere 111 and the second half sphere 112 having different hemispheric shapes may be combined to be manufactured.
- An anti-reflective coating is applied to the front hemisphere of the first half 111 and a reflective coating is applied to the rear hemisphere of the rear half 112. Therefore, as shown in FIG. 2(b), the first half 111 of the reflector 11 The laser light incident toward) is reflected again in the incident direction and returned.
- the alignment line 115 may be composed of a combination of a horizontal line, a vertical line, a diagonal line, etc. that cross the center of the reflector 11 or may be configured in the form of a circle or an ellipse having the center of the reflector 11 as an origin.
- the alignment line 115 may not exist in the front half 111 to which the laser light is to be irradiated.
- the alignment line 115 may be displayed by attaching a reflective tape or painting a paint, for example, and may be drawn in an arbitrary line shape such as a solid line or a dotted line. Alternatively, the alignment line 115 may be made using a plurality of light emitting diodes (LEDs).
- LEDs light emitting diodes
- the laser tracker may include a housing 210, a base 220, a rotating body 230, a support part 240, a driving motor 250, and an optical device 300.
- the housing 210 surrounds the rotating body 230 and may have a substantially cylindrical shape.
- a first driving unit (not shown) such as a motor that rotates the rotating body 230 may be disposed inside the housing 210.
- the base 220 protects the lower surface of the housing 210 and may support components such as the housing 210 and the first driving unit.
- the shaft 245 arranged horizontally is located on the upper surface of the rotating body 230 and a pair of support parts 240 are attached to the upper part of the rotating body 230 while supporting both ends of the shaft 245.
- a second driving part 250 for rotating the shaft 245 is attached to one side of the support part 240.
- the bracket 247 is coupled to the shaft 245 and the optical device 300 is attached to the bracket 247.
- the optical device 300 may be composed of a laser transceiving unit and a camera that irradiates and receives a laser, which will be described later with reference to FIG. 5.
- the laser tracker control unit 50 rotates the rotating body 230 horizontally by 360 degrees by controlling the first driving unit of the laser tracker, thereby adjusting the azimuth angle ⁇ of the optical device 300.
- the laser tracker control unit 50 controls the second driving unit 250 of the laser tracker to rotate the shaft 245 in the vertical direction in a range of 360 degrees, thereby adjusting the elevation angle ( ⁇ ) of the optical device 300. have. Therefore, the laser tracker control unit 50 controls the first driving unit and the second driving unit of each laser tracker 21, 22, 23, 24 so that the optical device 300 of each laser tracker can track the target 10. do.
- the optical device 300 includes a laser transceiving unit 310 and a camera 320, and may optionally further include a position sensor 330.
- the laser transmission/reception unit 310 irradiates a laser toward the reflector 11 attached to the target 10 and receives the laser reflected from the reflector.
- an optical fiber connector 311, a collimator 312, a beam splitter Optical elements such as 313, a lens 314, and a position detection sensor (PSD) 315 may be provided.
- the laser light generated by the laser light source unit 40 of the integrated control device 30 is transmitted to the laser transmission/reception unit 310 through the optical fiber 70 and the optical fiber connector 311, and the collimator 312 and the beam splitter 313 It is irradiated toward an external object (that is, the reflector 11) through.
- Part of the laser light reflected from the reflector 11 is split by the beam splitter 313 and re-entered the laser light source unit 40 through the collimator 312 and the optical fiber connector 311, and the position calculation unit of the integrated control device 30 At 60, it is used to calculate the distance between the reflector 11 and each laser tracker.
- the remaining laser light that has passed through the beam splitter 313 is incident on the PSD 315 through the lens 314.
- the PSD 315 senses the laser light, generates an output signal accordingly, and transmits it to the laser tracker control unit 50 of the integrated control device 30, and the laser tracker control unit 50 is based on the PSD output signal. It is determined whether or not light is irradiating the center of the reflector 11.
- FIGS. 6 and 7 are diagrams for explaining exemplary output signals of PSD.
- Fig. 6(a) when the laser light is accurately irradiated to the center of the reflector 11, the laser reflected from the reflector is also incident at the center of the PSD 315 through an optical element such as a lens 314.
- QPD Quadrant photo diode
- a voltage signal of (0, 0) (that is, both vertical and horizontal directions) is a PSD voltage signal for the horizontal and vertical directions among the PSD output signals. 0 volt (V)) is output.
- a voltage signal of 0,-2) (that is, 0 volts in the horizontal direction and -2V in the vertical direction) is output.
- This voltage signal is, for example, displayed in a red graph in the QPD generated voltage signal of FIG.
- the red signal in Fig. 7 shows the voltage signal in the vertical direction.
- the laser When the laser is attached to the center of the QPD, it outputs 0V as indicated by "Locking Point", and the voltage increases as the laser deviates from the center of the QPD. Or decrease. Therefore, in this case, since the elevation angle ⁇ of the optical device 300 of the laser tracker needs to be adjusted, the laser tracker control unit 50 generates a control signal for controlling the second driving unit 250 and transmits it to the laser tracker.
- the driving of the optical device 300 may be controlled using a PSD SUM signal representing the amount of light among the output signals of the PSD 315.
- the black signal is a PSD SUM signal indicating the amount of light received by the PSD 315, and has a maximum value when the laser is focused on the center of the PSD.
- the laser tracker control unit 50 may adjust the first driving unit and the second driving unit of the laser tracker to move the optical device 300 until the PSD SUM signal is maximized to align the laser optical axis with the center of the reflector 11.
- it since it may not know which direction to move the optical device 300 in the horizontal or vertical direction, it is recommended to align either the horizontal or vertical direction by another method and then align the other direction using the PSD SUM signal. desirable.
- the camera 320 of the optical device 300 is installed adjacent to the laser transmitting/receiving unit 310 to capture an image in the same direction as the irradiation direction of the laser.
- the camera 320 is installed on the vertical upper or lower portion of the laser transceiving unit 310 or on the left or right side in the horizontal direction, so that the center point of the camera image and the optical axis of the laser are located on the same horizontal line or on the same vertical line. desirable.
- the camera 320 is installed vertically above the laser transceiving unit 310 and indicates that the center of the image of the camera 320 and the laser optical axis are separated by a "H" distance in the vertical direction.
- the image signal captured by the camera 320 is transmitted to the laser tracker control unit 50.
- the laser tracker 50 may control a zoom-in/zoom-out function of the camera 320.
- the position sensor 330 transmits and receives a signal with the position sensor of the target 10 or transmits and receives position information to the integrated control device 30, the position sensor 330 does not necessarily need to be installed in the optical device 300.
- the position sensor 330 may be installed in an arbitrary position, such as inside or outside the housing 210 of each laser tracker.
- FIG. 8 is a block diagram functionally illustrating a laser tracker control unit 50 according to an exemplary embodiment.
- the laser tracker control unit 50 receives position information, camera image signals, and PSD output signals from each laser tracker 21, 22, 23, 24 through the data line 81, and accordingly, the laser tracker control unit
- Each of the location information processing unit 510, the image signal processing unit 520, and the PSD signal processing unit 530 of 50 may generate a control signal and transmit the control signal to each laser tracker to control the movement of the laser tracker.
- the location information processing unit 510 receives location information from each laser tracker.
- the "location information” may be the coordinates of the position sensor itself, but may also be a signal including information about a location signal (eg, information including a source, a transmission time, a reception time, etc.).
- the target position calculation unit 511 of the position information processing unit 510 receives position information from all laser trackers 21, 22, 23 and 24, and the target 10 and each laser tracker 21, 22, 23, 24 The relative position of the target 10 may be calculated based on the difference in position coordinates therebetween.
- the control signal generation unit 513 is the first of each laser tracker to direct the optical device 300 of each laser tracker 21, 22, 23, 24 to the target 10 based on the calculated target relative position. And a control signal for driving the second driving unit is generated and transmitted to each laser tracker.
- the image signal processing unit 520 receives a camera image signal from each laser tracker.
- the reflector center recognition unit 521 of the image signal processing unit 520 recognizes the center of the reflector 11 in the camera image. For example, when the alignment line 115 is displayed on the reflector 11 as shown in FIG. 2, the point where the horizontal line and the vertical line of the alignment line 115 meet can be recognized as the center of the reflector.
- the camera driving signal generator 522 of the image signal processing unit 520 may generate control signals for controlling zoom-in and zoom-out operations of the camera and transmit them to each camera.
- the control signal generation unit 523 of the image signal processing unit 520 is a control signal that moves the camera 320 in the horizontal or vertical direction so that the center of the reflector 11 is located at the center of the camera image, that is, the control signal of each laser tracker.
- a control signal for controlling the first driving unit and the second driving unit is generated and transmitted to each laser tracker.
- the PSD signal processing unit 530 receives a PSD output signal from each laser tracker.
- the reflector center recognition unit 531 of the PSD signal processing unit 530 determines how far the laser optical axis deviates from the center of the reflector 11 based on the PSD output signal. That is, as described with reference to FIGS. 6 and 7, the PSD SUM signal indicating the amount of light among the PSD output signals may be measured, or the PSD voltage signal in the horizontal direction and the vertical direction among the PSD output signals may be measured. It is also possible to measure all of the PSD output signals in sequence or at the same time. Alternatively, in an alternative embodiment, a normalized signal obtained by dividing the PSD voltage signal by the PSD SUM signal may be measured, and one of the PSD voltage signal and the PSD SUM signal may be extracted and used from the normalized signal.
- the control signal generation unit 530 of the PSD signal processing unit 530 generates a control signal for driving the optical device 300 so that the laser optical axis coincides with the center of the reflector 11. That is, according to the above PSD output signal, for example, each laser tracker moves the optical device 300 in the direction in which the PSD SUM signal is maximized or in the direction in which the PSD voltage signal in the horizontal/vertical direction is (0,0) volts.
- a control signal for controlling the first driving unit and the second driving unit of may be generated and transmitted to each laser tracker.
- a method of detecting an initial target position will now be described with reference to FIG. 9. It is assumed that the laser trackers 21, 22, 23, and 24 do not recognize the position of the target or the reflector since the reflector 11 is immediately installed on the target 10, which is the target object to be tracked.
- step S10 is executed to recognize the location of the target 10 based on the location information.
- the target position calculation unit 511 of the laser tracker control unit 50 determines the relative position of the target based on the position information of the target 10 and each of the laser trackers 21, 22, 23, and 24. Can be calculated.
- the control signal generating unit 513 transmits a control signal for controlling the first and second driving units of the respective laser trackers 21, 22, 23 and 24 based on the calculated target position. It is transmitted to the tracker, and accordingly, each laser tracker 21, 22, 23, 24 moves the optical device 300 so that it faces the target 10.
- step S30 the camera 320 starts photographing.
- location measurement based on location information such as a beacon signal may have a slight (for example, a few to tens of cm) error, so when the camera 320 first starts recording an image, an image may be seen, for example, as shown in Fig. 10(a).
- Fig. 10(a) schematically shows the camera image 335, and the center of the camera image is indicated by "CI".
- the reflector 11 is slightly off the center CI, for example.
- the reflector 11 may be enlarged by zooming in the camera while continuing to position the reflector 11 in the image of the camera. That is, the reflector 11 can be enlarged while the image is zoomed in from Figs. 10(a) to 10(b).
- the center (CI) of the camera image zoomed in in step S40 and the center (CR) of the reflector are accurately matched.
- the reflector center recognition unit 521 of the laser tracker control unit 50 of FIG. 8 recognizes the center CR of the reflector 11 based on the alignment line 115 of the reflector 11, and a control signal generator ((523) transmits a control signal for controlling the first driving unit and the second driving unit to the laser tracker, and by adjusting the azimuth and elevation angles of the laser tracker, the center of the reflector 11 (CR ) And the center (CI) of the camera image can be matched, when this step (S40) is executed, for example, as shown in FIG.
- the camera 320 moves vertically upward of the laser transmitting/receiving unit 310 by the H distance.
- the laser optical axis is located below the number of pixels corresponding to the H distance from the center CI of the camera image.
- step S50 the optical device 300 irradiates the laser toward the reflecting mirror 11 and receives the laser reflected from the reflecting mirror 11, while the laser optical axis is directed toward the center of the reflecting mirror 11 ( 300)'s elevation angle or azimuth angle.
- a PSD SUM signal representing the amount of light among the PSD output signals may be measured to match the laser optical axis and the center of the reflector.
- the point at which the PSD SUM signal is maximized can be found while adjusting the elevation angle of the optical device 300.
- the camera 320 is installed on the left or right side of the laser transceiving unit 310, the laser optical axis will be located in the left or right direction from the center of the camera image. While adjusting the azimuth angle, it is possible to match the laser optical axis to the center of the reflector 11 by finding the point where the PSD SUM signal is maximized.
- an additional adjustment step (S60) of matching the center of the laser optical axis and the reflector 11 may be further performed by using the PSD voltage signal for the horizontal direction, the vertical direction, and the vertical direction among the PSD output signals.
- this step (S60) the elevation angle and the azimuth angle are finely adjusted so that the PSD voltage signal in the horizontal direction and the vertical direction outputs (0, 0) volts as described in FIG. It can be positioned exactly.
- step S50 only one of the above-described steps S50 and S60 using the PSD output signal may be executed.
- step S50 is omitted, the center of the camera image (CI) and the center (CR) of the reflector 11 are accurately aligned in step S40, and the laser Since the angle (azimuth angle or elevation angle) between the laser optical axis and the image center (CI) can be calculated based on the hydrogen or the actual distance (H) between the optical axis and the center of the image (CI), the optical device 300 By adjusting the azimuth or elevation angle, the laser optical axis can be roughly adjusted so that it faces the center of the reflector 11, and then step (S60) is executed so that the PSD voltage signal for the horizontal and vertical directions is (0,0). By finely adjusting the elevation angle and the azimuth angle to become a bolt, the laser optical axis can be accurately aligned with the center of the reflector 11.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
본 개시의 레이저 추적 장치는, 복수의 위치에서 레이저로 타겟을 추적하는 레이저 트래커와, 상기 레이저 트래커의 구동을 제어하고 타겟의 위치를 산출하는 제어장치를 구비한 레이저 추적 장치로서, 상기 레이저 트래커는, 상기 레이저 트래커의 위치 정보를 생성하는 위치센서, 및 상기 타겟에 부착된 반사경을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하는 레이저 송수신부 및 상기 레이저 송수신부의 레이저 조사 방향과 동일 방향으로 영상을 촬영하는 카메라를 구비한 광학장치를 포함할 수 있다. 상기 제어장치는, 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하고, 상기 상대위치에 따라 상기 광학장치가 상기 타겟을 향하도록 한 후 상기 카메라의 영상을 이용하여 레이저 송수신 방향을 제어하는 레이저 트래커 제어부, 및 상기 레이저 트래커에서 반사경으로 조사한 레이저와 반사경에서 반사되어 수신한 레이저에 기초하여 타겟의 위치를 산출하는 위치 산출부를 포함할 수 있다.
Description
본 발명은 레이저 추적 장치에 관한 것으로, 보다 상세하게는, 복수개의 레이저 트래커 혹은 복수 위치로 이동 및 배치가 가능한 단일 레이저 트래커가 추적대상인 타겟을 추적하면서 타겟과 레이저 트래커 사이의 거리를 산출하고 이에 기초하여 타겟의 위치를 측정하는 레이저 추적 장치에 관한 것이다.
다변측량(multilateration)법은 3개 또는 4개의 고정점에서 추적대상 물체와의 거리를 산출하고 이 거리정보에 기초하여 물체의 공간좌표를 도출하여 물체의 위치를 측정하는 방법이며, 이 때 추적대상 물체가 움직이는 경우 레이저 트래커를 사용하여 추적대상을 추적하면서 거리를 산출한다. 레이저 트래커(Laser tracker)는 추적대상인 타겟에 설치된 반사경까지의 거리를 측정하는 레이저 간섭 측정기에 레이저 광의 조사 방향(고도각과 방위각)을 조절하는 기구를 설치하여 타겟을 자동 추적하면서 타겟과의 거리를 측정할 수 있다.
그런데 추적대상 물체인 타겟에 반사경을 설치한 초기 상태에서 레이저 트래커들은 타겟이나 반사경의 정확한 위치를 알지 못하기 때문에 각 레이저 트래커의 레이저 광축이 타겟의 반사경 중심을 향하도록 작업자가 각 레이저 트래커의 광학장치를 수동으로 조절하여 세팅을 하였다. 그러나 이렇게 수작업으로 광학장치를 조절할 경우 작업 시간이 많이 소요될 뿐 아니라 레이저 광축과 반사경 중심을 일치시키는 정확도도 떨어져 타겟 위치 측정의 정밀도가 저하하는 문제가 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허 제2008-0096148호 (2008년 10월 30일 공개)
(특허문헌 2) 한국 공개특허 제2017-0078401호 (2017년 7월 7일 공개)
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 추적대상인 타겟의 초기 위치를 자동으로 감지하여 레이저 트래커들이 타겟을 향하도록 설정한 후 레이저 추적 동작을 시작할 수 있도록 하는 기능을 구비한 레이저 추적 장치를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 레이저 추적 장치는, 복수의 위치에서 레이저로 타겟을 추적하는 레이저 트래커와, 상기 레이저 트래커의 구동을 제어하고 타겟의 위치를 산출하는 제어장치를 구비한 레이저 추적 장치로서, 상기 레이저 트래커는, 상기 레이저 트래커의 위치 정보를 생성하는 위치센서, 및 상기 타겟에 부착된 반사경을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하는 레이저 송수신부 및 상기 레이저 송수신부의 레이저 조사 방향과 동일 방향으로 영상을 촬영하는 카메라를 구비한 광학장치를 포함할 수 있다. 상기 제어장치는, 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하고, 상기 상대위치에 따라 상기 광학장치가 상기 타겟을 향하도록 한 후 상기 카메라의 영상을 이용하여 레이저 송수신 방향을 제어하는 레이저 트래커 제어부, 및 상기 레이저 트래커에서 반사경으로 조사한 레이저와 반사경에서 반사되어 수신한 레이저에 기초하여 타겟의 위치를 산출하는 위치 산출부를 포함할 수 있다.
상기 레이저 트래커는, 상기 타겟을 추적하는 적어도 3 개 이상의 레이저 트래커를 포함하거나, 적어도 3 개 이상의 위치로 이동 및 배치가 가능한 하나의 레이저 트래커를 포함할 수 있다.
상기 레이저 트래커 제어부는, 상기 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하고 상기 레이저 트래커의 광학장치가 타겟을 향하도록 하는 제1 제어, 상기 타겟의 반사경의 중심이 상기 카메라 영상의 중심에 일치하도록 레이저 트래커의 카메라 방향을 조절하는 제2 제어, 및 상기 레이저 송수신부의 레이저 광축이 반사경의 중심에 일치하도록 레이저 트래커의 레이저 송수신부의 방향을 조절하는 제3 제어를 순차적으로 실행할 수 있다.
상기 레이저 트래커는 상기 광학장치를 수평방향으로 회전시키며 방위각을 조절하는 제1 구동부 및 상기 광학장치를 수직방향으로 회전시키며 고도각을 조절하는 제2 구동부를 포함할 수 있다.
상기 레이저 트래커 제어부는 상기 제2 제어를 위한 영상신호 처리부를 포함하고, 상기 영상신호 처리부가, 카메라를 줌인(zoom-in) 함과 동시에 반사경이 카메라 영상 내에 위치하도록 상기 제1 및 제2 구동부를 제어하는 단계, 및 반사경의 중심이 줌인 된 카메라 영상의 중심에 일치하도록 상기 제1 및 제2 구동부를 제어하는 단계를 순차적으로 실행하도록 구성될 수 있다.
레이저 트래커의 레이저 송수신부는 수신 레이저의 일부를 감지하는 위치감지센서(PSD)를 구비하고, 상기 레이저 트래커 제어부는 상기 제3 제어를 위한 PSD 신호 처리부를 더 포함하며, 상기 PSD 신호 처리부는, 상기 위치감지센서(PSD)의 출력신호 중 광량을 나타내는 PSD SUM 신호가 최대값이 되도록 상기 제1 구동부 또는 제2 구동부를 제어함으로써 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키도록 구성될 수 있다.
레이저 트래커의 레이저 송수신부는 수신 레이저의 일부를 감지하는 위치감지센서(PSD)를 구비하고, 상기 레이저 트래커 제어부는 상기 제3 제어를 위한 PSD 신호 처리부를 더 포함하며, 상기 PSD 신호 처리부는, 상기 위치감지센서(PSD)의 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호가 모두 0 볼트가 되도록 상기 제1 구동부 또는 제2 구동부를 제어함으로써 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키도록 구성될 수 있다.
본 발명의 일 실시예에 따른 타겟 초기위치 감지 방법은, 복수의 위치에서 레이저로 타겟을 추적하는 레이저 트래커와 상기 레이저 트래커의 구동을 제어하고 타겟의 위치를 산출하는 제어장치를 구비한 레이저 추적 장치에서 타겟의 초기위치를 감지하는 방법으로서, 상기 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하는 단계, 상기 상대 위치에 기초하여, 상기 레이저 트래커의 광학장치의 방위각과 고도각을 제어하여 상기 광학장치가 상기 타겟을 향하도록 제어하는 단계, 상기 광학장치에 설치된 카메라가 촬영하는 영상신호에 기초하여 상기 카메라 영상의 중심에 상기 타겟에 부착된 반사경의 중심을 일치시키는 단계, 상기 광학장치에 설치된 레이저 송수신부가 상기 반사경을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하는 단계, 및 상기 수신한 레이저의 일부를 감지하여 레이저 광축을 반사경의 중심에 일치시키는 단계를 포함할 수 있다.
카메라 영상의 중심에 반사경의 중심을 일치시키는 상기 단계가, 상기 카메라를 줌인 함과 동시에 반사경을 카메라 영상 내에 위치시키는 단계, 및 상기 반사경의 중심을 줌인 된 카메라 영상의 중심에 일치시키는 단계를 포함할 수 있다.
상기 타겟의 반사경은 전면부에 소정 형상으로 배열된 정렬라인을 포함하고, 상기 반사경의 중심을 줌인 된 카메라 영상의 중심에 일치시키는 상기 단계 전에, 카메라 영상에서 보이는 상기 정렬라인으로부터 반사경의 중심을 판단하는 단계를 더 포함할 수 있다.
레이저 광축을 반사경의 중심에 일치시키는 상기 단계에서, 상기 수신한 레이저의 일부를 감지하는 위치감지센서(PSD)의 출력신호를 이용하여, 상기 위치감지센서(PSD)의 출력신호 중 광량을 나타내는 PSD SUM 신호가 최대값이 되도록 상기 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시킬 수 있다.
레이저 광축을 반사경의 중심에 일치시키는 상기 단계에서, 상기 수신한 레이저의 일부를 감지하는 위치감지센서(PSD)의 출력신호를 이용하여, 상기 위치감지센서(PSD)의 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호가 모두 0 볼트가 되도록 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시킬 수 있다.
본 발명의 실시예에 따르면 타겟의 초기 위치를 자동으로 감지하여 레이저 트래커들의 레이저 광축이 자동으로 타겟의 반사경 중심을 향하도록 함으로써 타겟 추적을 위한 초기 세팅 작업의 소요시간을 대폭 절약할 수 있고 또한 레이저 광축과 반사경 중심을 정확히 일치시킴으로써 타겟 위치 측정의 정밀도로 향상시킬 수 있는 이점이 있다.
도1은 본 발명의 일 실시예에 따른 레이저 추적 장치를 설명하는 도면,
도2는 일 실시예에 따른 반사경을 설명하는 도면,
도3 및 도4는 일 실시예에 따른 레이저 트래커를 설명하는 도면,
도5는 일 실시예에 따른 레이저 트래커의 광학장치를 설명하는 도면,
도6 및 도7은 일 실시예에 따른 PSD의 출력신호를 설명하는 도면,
도8은 일 실시예에 따른 레이저 트래커 제어부를 설명하는 도면,
도9는 일 실시예에 따라 타겟의 초기 위치를 감지하는 방법의 예시적인 흐름도,
도10은 도9의 실행시 카메라가 촬영하는 이미지를 나타내는 도면이다.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 도면을 참조하여 본 발명을 상세히 설명하도록 한다. 아래의 특정 실시예를 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는 데 있어 혼돈을 막기 위해 기술하지 않음을 미리 언급해 둔다.
한편 본 명세서에서 특별한 구별의 실익이 없는 한 '레이저', '레이저 광', '레이저 빔' 등의 용어를 동일한 의미로 사용하기로 하며 따라서 본 명세서에서 이들 용어는 서로 치환 가능하다.
도1은 본 발명의 일 실시예에 따른 레이저 추적 장치를 개략적으로 도시하였다. 도면을 참조하면 일 실시예에 따른 레이저 추적 장치(이하 간단히 "추적 장치"라고도 함)는 복수개의 레이저 트래커(21,22,23,24) 및 복수개의 레이저 트래커의 각각과 통신하도록 연결된 통합 제어장치(30)로 구성될 수 있으며, 임의의 추적대상인 타겟(10)을 추적하며 입체공간에서 타겟(10)의 위치를 검출할 수 있다.
여기서 타겟(10)은 입체공간 내에서 움직이는 임의의 물체일 수 있다. 일 실시예에서 타겟(10)은 레이저 트래커(21,22,23,24)를 향하는 방향으로 부착된 반사경(11)을 포함한다. 또한 반사경(11)은 위치신호를 생성하는 위치센서(12)를 포함한다. 위치센서(12)는 반사경(11)에 부착될 수도 있고 타겟(10)의 임의의 위치에 부착될 수도 있다. 위치센서(12)는 비콘 송/수신기, UWB(Ultra Wide-band) radar 센서, IMU(Inertial MEMES Sensor) 센서, Lidar 센서, Vision 센서 등으로 구성될 수 있다.
레이저 트래커(21,22,23,24)의 각각은 타겟(10)에 부착된 반사경(11)을 향해 레이저를 조사하고 반사경(11)에서 반사된 레이저를 수신할 수 있고 이렇게 수신한 레이저의 일부를 통합 제어장치(30)로 전달한다. 각 레이저 트래커는 수신한 레이저를 위치감지센서(PSD)로 검출하고 이 검출에 의한 검출신호를 통합 제어장치(30)로 전송할 수 있다.
도시한 실시예에서는 타겟의 위치 추적을 위해 4개의 레이저 트래커를 사용하였지만 본 발명은 이에 한정되지 않으며, 대안적 실시예에서 3개의 레이저 트래커를 사용할 수도 있고 또 다른 실시 형태에 따라 더 많은 개수의 레이저 트래커를 사용하거나 혹은 1개의 레이저 트래커만을 사용하고 1개의 레이저 트래커를 3개 이상의 위치로 이동 및 배치하여 타겟의 위치를 추적하도록 할 수도 있다.
각각의 레이저 트래커(21,22,23,24)는 타겟(10) 혹은 타겟에 장착된 반사경(11)과의 상대 위치를 산출하는 위치센서를 포함한다. 각 레이저 트래커(21,22,23,24)의 위치센서는 타겟의 위치센서에서 산출된 위치정보와의 상대적인 위치정보를 산출하도록 구성된다. 예컨대 위치센서가 비콘 송수신기인 경우, 타겟 혹은 반사경에 비콘 송신기(혹은 수신기)가 부착되면 각 레이저 트래커는 비콘 수신기(혹은 송신기)를 포함한다. 실시예에 따라 레이저 트래커(21,22,23,24)의 위치센서는 레이저 트래커의 위치정보를 생성할 수도 있다. 이 경우 통합 제어 장치는 레이저 트래커의 위치센서로부터 전달된 위치정보와 타겟이 송신한 위치정보에 기초하여 타겟의 상대위치를 산출할 수 있다.
레이저 트래커가 포함하는 위치센서에서 산출된 위치정보는 통합 제어장치(30)에 전달되고 동시에 타겟(10)에 장착된 위치센서에서 산출된 위치정보도 통합 제어장치(30)에 전달되어 각 위치정보 간의 상대적 위치를 도출 할 수 있다. 예컨대 위치센서가 비콘 송/수신기일 때, 레이저 트래커가 비콘 송신기를 포함하는 경우 레이저 트래커는 비콘 신호를 송신할 때마다 송신 시각을 포함한 송신 정보를 통합 제어장치(30)에 전달하고 타겟(10)의 비콘 수신기도 각 레이저 트래커로부터 비콘 신호를 수신할 때마다 발신원에 관한 정보와 수신 시각을 통합 제어장치(30)로 전달할 수 있다. 또한 대안적으로, 레이저 트래커가 비콘 수신기를 포함하고 타겟(10)이 비콘 송신기를 포함하는 경우 타겟(10)의 비콘 송신기는 소정 시간마다 비콘 신호를 발신하고 각각의 레이저 트래커는 비콘 신호를 수신할 때마다 수신 시각을 포함한 수신 정보를 통합 제어장치(30)로 전달할 수 있다.
또한 일 실시예에서 각각의 레이저 트래커(21,22,23,24)는 카메라를 포함한다. 카메라는 레이저를 조사하는 방향과 동일한 방향으로 촬영하도록 설치된다. 카메라가 촬영한 이미지(영상)는 통합 제어장치(30)로 전달된다.
통합 제어장치(30)는 레이저 광원부(40), 레이저 트래커 제어부(50), 및 위치 산출부(60)를 포함할 수 있다. 레이저 광원부(40)는 레이저 광원(41)과 수신광 검출부(42)를 포함한다. 레이저 광원(41)은 레이저 광을 생성하여 광섬유(70)와 커플링(71,72) 등 다수의 광학소자를 통해 레이저 광을 각각의 레이저 트래커(21,22,23,24)에 전달한다. 각 레이저 트래커(21,22,23,24)는 이 레이저 광을 타겟의 반사경(11)에 조사하고, 반사경(11)에 반사되어 되돌아온 레이저 광은 다시 광섬유(70)와 커플링(71) 등의 광학소자를 거쳐 수신광 검출부(42)로 전달된다.
위치 산출부(60)는 각각의 레이저 트래커(21,22,23,24)에서 반사경(11)으로 조사한 레이저와 반사경(11)에서 반사되어 레이저 트래커가 수신한 레이저에 기초하여 각 레이저 트래커(21,22,23,24)와 반사경(11) 사이의 거리를 산출하고 다변측량법을 이용하여 입체공간 냉에서 타겟(10)의 위치를 산출할 수 있다.
레이저 트래커 제어부(50)는 타겟(10)이 움직일 때 각 레이저 트래커(21,22,23,24)가 타겟(10)을 추적하여 레이저를 타겟의 반사경(11)에 계속 조사할 수 있도록 각 레이저 트래커(21,22,23,24)의 구동을 제어한다. 이를 위해 일 실시예에서 레이저 트래커 제어부(50)는 데이터라인(81) 및 제어라인(82) 등의 전선(80)으로 각 레이저 트래커(21,22,23,24)에 유선으로 연결될 수 있다. 이 경우 예를 들어 위치센서의 위치정보, 카메라 영상 신호, 위치감지센서(PSD) 신호 등의 신호나 이에 관한 데이터가 데이터라인(81)을 통해 레이저 트래커 제어부(50)로 전송될 수 있고 각 레이저 트래커(21,22,23,24)의 구동하기 위한 제어신호가 제어라인(82)을 통해 각 레이저 트래커로 전송될 수 있다. 또한 대안적 실시예에서 각 레이저 트래커와 레이저 트래커 제어부(50) 사이에 무선으로 데이터와 제어신호를 송수신하도록 구성할 수도 있다.
본 발명의 바람직한 일 실시예에서 레이저 트래커 제어부(50)는 타겟(10)의 초기 위치를 감지하고 이 감지된 초기 위치에 따라 각 레이저 트래커(21,22,23,24)가 레이저 광을 타겟의 반사경(11) 중심에 정확히 조사할 수 있도록 한다. 예를 들어, 일 실시예에서 레이저 트래커 제어부(50)는, (i) 타겟(10)과 각 레이저 트래커(21,22,23,24)의 위치정보에 기초하여 타겟(10)의 상대위치를 산출하고 각 레이저 트래커(21,22,23,24)의 광학장치가 타겟을 향하도록 하는 제1 제어, (ii) 반사경(11)의 중심이 카메라 영상의 중심에 일치하도록 각 레이저 트래커(21,22,23,24)의 카메라 방향을 조절하는 제2 제어, 및 (iii) 각 레이저 트래커(21,22,23,24)의 레이저 광축이 반사경(11)의 중심에 일치하도록 각 레이저 트래커의 레이저 광축 방향을 조절하는 제3 제어를 순차적으로 실행함으로써 타겟 추적을 위한 예비 동작을 수행할 수 있다.
도2는 일 실시예에 따른 반사경(11)을 예시적 구성을 도시한 것으로 도2(a)는 개략적인 사시도이고 도2(b)는 측단면도, 그리고 도2(c)는 정면에서 바라본 모습을 도시하였다.
바람직한 실시예에서 반사경(11)은 반사경에 입사한 레이저 광을 들어온 방향 그대로 반사하는 특성을 갖는 전반사경이며, 이러한 전반사경의 한 예로서 도2에 도시한 반사경(11)은 굴절률이 동일하고 크기가 서로 다른 반구 형태인 전반구(111)와 후반구(112)가 결합되어 제작될 수 있다. 전반구(111)의 전방의 반구면에는 무반사 코팅이 되고 후반구(112)의 후방 반구면에는 반사 코팅이 되어 있으며, 따라서 도2(b)에 도시한 것처럼 반사경(11)의 전반구(111)를 향해 입사한 레이저 광이 입사한 방향 그대로 다시 반사되어 되돌아가게 된다.
한편 도2(c)에 도시한 것처럼 일 실시예에서 반사경(11)의 전방에는 레이저 트래커(21,22,23,24)의 카메라가 반사경(11)의 중심을 인식할 수 있도록 하는 정렬라인(115)이 형성되어 있다. 일 실시예에서 정렬라인(115)은 반사경(11)의 중앙을 가로지르는 가로선, 세로선, 대각선 등의 조합으로 구성되거나 반사경(11) 중앙을 원점으로 하는 원, 타원 형태로 구성될 수 있으며, 단 레이저 광이 조사되어야 하는 전반구(111)에는 정렬라인(115)이 존재하지 않을 수 있다. 정렬 라인(115)은 예를 들어 반사 테이프를 부착하거나 페인트 등을 칠하여 표시할 수 있으며 실선이나 점선 등의 임의의 라인 형상으로 그려질 수 있다. 또는 대안적으로 다수의 발광 다이오드(LED)를 이용하여 정렬 라인(115)을 만들 수도 있다.
도3은 일 실시예에 따른 레이저 트래커의 예시적 구성을 도시하였다. 도시한 실시예에서 레이저 트래커는 하우징(210), 베이스(220), 회전체(230), 지지부(240), 구동모터(250), 및 광학장치(300)를 포함할 수 있다. 하우징(210)은 회전체(230)를 둘러싸며 대략 원통 형상을 가질 수 있다. 하우징(210) 내부에는 회전체(230)를 회전시키는 모터 등의 제1 구동부(도시 생략)가 배치될 수 있다. 베이스(220)는 하우징(210)의 하부면을 보호하며 하우징(210) 및 제1 구동부 등의 구성요소를 지지할 수 있다.
회전체(230)의 상부면에는 가로로 배열된 샤프트(245)가 위치하고 한 쌍의 지지부(240)가 샤프트(245)의 양 단을 지지하면서 회전체(230) 상부에 부착되어 있다. 또한 지지부(240)의 한쪽에는 샤프트(245)를 회전시키는 제2 구동부(250)가 부착된다. 또한 샤프트(245)에 브라켓(247)이 결합되어 있고 브라켓(247)에는 광학장치(300)가 부착되어 있다. 광학장치(300)는 레이저를 조사하고 수신하는 레이저 송수신부 및 카메라로 구성될 수 있으며 이에 대해서는 도5를 참조하여 후술하기로 한다.
도4는 레이저 트래커(21,22,23,24)의 광학장치(300)의 구동 범위를 나타낸다. 도면에서 X축과 Y축은 수평으로 서로 직교하며 Z축은 X-Y 평면에 수직인 방향을 나타낸다. 레이저 트래커 제어부(50)는 레이저 트래커의 제1 구동부를 제어하여 회전체(230)를 수평방향으로 360도 회전시키며 이에 의해 광학장치(300)의 방위각(θ)을 조절할 수 있다. 또한 레이저 트래커 제어부(50)는 레이저 트래커의 제2 구동부(250)를 제어하여 샤프트(245)를 수직방향으로 360도 범위에서 회전시키며 이에 의해 광학장치(300)의 고도각(δ)을 조절할 수 있다. 따라서 레이저 트래커 제어부(50)는 각 레이저 트래커(21,22,23,24)의 제1 구동부와 제2 구동부를 제어하여 각 레이저 트래커의 광학장치(300)가 타겟(10)을 추적할 수 있도록 한다.
도5는 일 실시예에 따른 레이저 트래커의 광학장치(300)의 구성을 개략적으로 도시하였다. 도면을 참조하면, 일 실시예에 따른 광학장치(300)는 레이저 송수신부(310)와 카메라(320)를 포함하며, 선택적으로 위치센서(330)를 더 포함할 수 있다.
레이저 송수신부(310)는 타겟(10)에 부착된 반사경(11)을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하며, 이를 위해 예컨대 광섬유 커넥터(311), 콜리메이터(312), 빔스플리터(313), 렌즈(314), 위치감지센서(PSD)(315) 등의 광학소자를 구비할 수 있다. 통합 제어장치(30)의 레이저 광원부(40)에서 생성된 레이저 광이 광섬유(70)와 광섬유 커넥터(311)를 통해 레이저 송수신부(310)로 전송되고, 콜리메이터(312)와 빔스플리터(313)를 거쳐 외부의 대상(즉, 반사경(11))을 향해 조사된다.
반사경(11)에서 반사된 레이저 광의 일부는 빔스플리터(313)에서 분할되어 콜리메이터(312)와 광섬유 커넥터(311)를 거쳐 레이저 광원부(40)로 다시 들어가며, 통합 제어장치(30)의 위치 산출부(60)에서 반사경(11)과 각 레이저 트래커 사이의 거리를 산출하는데 사용된다. 빔스플리터(313)를 통과한 나머지 레이저 광은 렌즈(314)를 거쳐 PSD(315)에 입사된다.
PSD(315)는 레이저 광을 감지하고 이에 따른 출력신호를 생성하고 이를 통합 제어장치(30)의 레이저 트래커 제어부(50)로 전달하며, 레이저 트래커 제어부(50)는 이 PSD 출력신호에 기초하여 레이저 광이 반사경(11)의 중심을 조사하고 있는지를 판단한다.
이와 관련하여 도6과 도7은 PSD의 예시적인 출력신호를 설명하는 도면이다. 도6(a)에 도시한 것처럼 레이저 광이 반사경(11)의 중심에 정확히 조사되면 반사경에서 반사된 레이저도 렌즈(314) 등의 광학소자를 거쳐 PSD(315)의 정 중앙에 입사된다. 이 때 PSD(315)의 한 종류로서 QPD(Quadrant photo diode)를 사용하였는데, QPD는 4개의 분할소자로 나누어져 있어서 수평방향과 수직방향 각각에 대해 중심에서 벗어난 정도를 전압신호로 출력할 수 있다.
예를 들어 도6(a)와 같이 레이저가 QPD의 정 중앙에 입사되면 PSD 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호로서 (0,0)라는 전압신호(즉, 수직 및 수평방향 모두 0 볼트(V))가 출력된다. 그러나 도6(b)와 같이 레이저의 조사 위치가 반사경(11)의 중심에서 약간 벗어나면 반사된 레이저도 PSD(315)의 중심에서 약간 편심되어 입사되며 예컨대 도6(b)에 도시한 것처럼 (0,-2)라는 전압신호(즉 수평방향은 0볼트, 수직방향은 -2V)가 출력된다.
이러한 전압신호는 예컨대 도7의 QPD 생성 전압신호에서 빨간색의 그래프로 표시된다. 도7의 빨간색 신호는 일 예로서 수직방향에 대한 전압신호를 나타내었는데, 레이저가 QPD의 중심에 맺히게 되면 "Locking Point"로 표시한 것처럼 0V를 출력하고 레이저가 QPD의 중심에서 벗어날수록 전압이 증가하거나 감소한다. 따라서 이 경우 레이저 트래커의 광학장치(300)의 고도각(δ)을 조절하여야 하므로 레이저 트래커 제어부(50)는 제2 구동부(250)를 제어하는 제어신호를 생성하여 레이저 트래커로 전송한다.
또 다른 예로서, PSD(315)의 출력신호 중 광량을 나타내는 PSD SUM 신호를 사용하여 광학장치(300)의 구동을 제어할 수도 있다. 도7의 그래프에서 검은색 신호는 PSD(315)가 받는 광량을 나타내는 PSD SUM 신호이며, 레이저가 PSD의 중심에 맺힐 때 최대값을 가진다. 따라서 레이저 트래커 제어부(50)는 레이저 트래커의 제1 구동부와 제2 구동부를 제어하여 PSD SUM 신호가 최대가 될때까지 광학장치(300)를 움직여 레이저 광축을 반사경(11)의 중심에 맞출 수 있다. 다만 이 경우 광학장치(300)를 수평이나 수직 방향 중 어느 방향으로 움직여야 할지 모를 수 있기 때문에, 수평이나 수직 방향 중 어느 한쪽 방향을 다른 방법에 의해 맞춘 후 나머지 방향을 PSD SUM 신호를 사용하여 맞추는 것이 바람직하다.
다시 도5를 참조하면, 광학장치(300)의 카메라(320)는 레이저 송수신부(310)에 인접하여 레이저의 조사 방향과 동일한 방향으로 영상을 촬영하도록 설치된다. 카메라(320)는 레이저 송수신부(310)의 수직방향 상부나 하부 또는 수평방향 좌측이나 우측에 설치되어 카메라 영상의 중심점과 레이저의 광축이 동일 수평선상에 위치하거나 동일 수직선상에 위치하도록 배치되는 것이 바람직하다. 도시한 실시예에서는 카메라(320)가 레이저 송수신부(310)의 수직 상부에 설치되었고 카메라(320)의 영상의 중심과 레이저 광축이 수직 방향으로 "H"거리만큼 이격되었음을 나타낸다.
카메라(320)가 촬영한 영상신호는 레이저 트래커 제어부(50)로 전송된다. 일 실시예에서 레이저 트래커(50)는 카메라(320)의 줌인/줌아웃 기능을 제어할 수 있다.
위치센서(330)는 타겟(10)의 위치센서와 신호를 송수신하거나, 통합 제어장치(30)로 위치 정보를 송수신하기 때문에 위치센서(330)가 반드시 광학장치(300)에 설치될 필요는 없으며 위치센서(330)는 각 레이저 트래커의 하우징(210) 내부나 외부 등 임의의 위치에 설치되어도 무방하다.
도8은 일 실시예에 따른 레이저 트래커 제어부(50)를 기능적으로 설명하는 블록도이다.
도면을 참조하면, 레이저 트래커 제어부(50)는 데이터라인(81)을 통해 각 레이저 트래커(21,22,23,24)로부터 위치정보, 카메라 영상 신호, PSD 출력신호를 수신하고 이에 따라 레이저 트래커 제어부(50)의 위치정보 처리부(510), 영상신호 처리부(520), 및 PSD신호 처리부(530)의 각각이 제어신호를 생성하여 각 레이저 트래커로 전송하여 레이저 트래커의 움직임을 제어할 수 있다.
도시한 실시예에서 위치정보 처리부(510)는 각 레이저 트래커로부터 위치정보를 수신한다. 여기서 "위치정보"는 위치센서 좌표 그 자체일 수도 있지만 위치 신호에 관한 정보(예컨대 발신원, 발신시각, 수신시각 등을 포함하는 정보)를 포함하는 신호일 수도 있다. 위치정보 처리부(510)의 타겟 위치 산출부(511)는 모든 레이저 트래커(21,22,23,24)로부터 위치정보를 수신하고 타겟(10)과 각 레이저 트래커(21,22,23,24) 사이의 위치 좌표차에 기초하여 타겟(10)의 상대위치를 산출할 수 있다. 제어신호 생성부(513)는 산출된 타겟 상대위치에 기초하여 각 레이저 트래커(21,22,23,24)의 광학장치(300)가 타겟(10)을 향하도록 하기 위해 각 레이저 트래커의 제1 및 제2 구동부를 구동하는 제어신호를 생성하여 각 레이저 트래커로 전송한다.
영상신호 처리부(520)는 각 레이저 트래커로부터 카메라 영상 신호를 수신한다. 영상신호 처리부(520)의 반사경 중심 인식부(521)는 카메라 영상 내에서 반사경(11)의 중심을 인식한다. 예를 들어 도2에 도시한 것처럼 반사경(11)에 정렬라인(115)을 표시한 경우 이 정렬라인(115)의 가로선과 세로선이 만나는 지점을 반사경의 중심으로 인식할 수 있다.
영상신호 처리부(520)의 카메라 구동신호 생성부(522)는 카메라의 줌인과 줌아웃 동작을 제어하는 제어신호를 생성하여 각 카메라로 전송할 수 있다. 영상신호 처리부(520)의 제어신호 생성부(523)는 반사경(11)의 중심이 카메라 영상의 중심에 위치하도록 카메라(320)를 좌우방향이나 상하방향으로 움직이는 제어신호, 즉 각 레이저 트래커의 제1 구동부와 제2 구동부를 제어하는 제어신호를 생성하여 각 레이저 트래커로 전송한다.
PSD 신호 처리부(530)는 각 레이저 트래커로부터 PSD 출력신호를 수신한다. PSD 신호 처리부(530)의 반사경 중심 인식부(531)는 PSD 출력신호에 기초하여 레이저 광축이 반사경(11)의 중심에서 어느정도 벗어났는지 판단한다. 즉 도6과 도7을 참조하여 설명한 것처럼, PSD 출력신호 중 광량을 나타내는 PSD SUM 신호를 측정할 수도 있고 PSD 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호를 측정할 수도 있고, 위 두가지 종류의 PSD 출력신호를 순차적으로 또는 동시에 모두 측정할 수도 있다. 또는 대안적 실시예에서, PSD 전압신호를 PSD SUM신호로 나눈 정규화된(normalized) 신호를 측정할 수도 있으며 이 정규화된 신호로부터 PSD 전압신호와 PSD SUM 신호 중 하나를 추출하여 사용할 수도 있다.
PSD 신호 처리부(530)의 제어신호 생성부(530)는 레이저 광축이 반사경(11)의 중심과 일치하도록 광학장치(300)를 구동하는 제어신호를 생성한다. 즉 위의 PSD 출력신호에 따라 예컨대 PSD SUM 신호가 최대가 되는 방향으로 또는 수평/수직 방향의 PSD 전압신호가 (0,0) 볼트가 나오는 방향으로 광학장치(300)를 움직이기 위해 각 레이저 트래커의 제1 구동부와 제2 구동부를 제어하는 제어신호를 생성하여 각 레이저 트래커로 전송할 수 있다.
이제 도9를 참조하여 본 발명의 일 실시예에 따른 타겟 초기 위치를 감지 방법을 설명하기로 한다. 추적대상 물체인 타겟(10)에 반사경(11)을 설치한 직후이므로 각 레이저 트래커(21,22,23,24)가 타겟이나 반사경의 위치를 인식하지 못하는 상태라고 전제한다.
이 상태에서 우선 단계(S10)를 실행하여 위치정보에 기초하여 타겟(10)의 위치를 인식한다. 예컨대 도8을 참조하여 설명한 것처럼 레이저 트래커 제어부(50)의 타겟 위치 산출부(511)가 타겟(10)과 각 레이저 트래커(21,22,23,24)의 위치정보에 기초하여 타겟의 상대위치를 산출할 수 있다. 그 후 단계(S20)에서, 제어신호 생성부(513)가 산출된 타겟 위치에 기초하여 각 레이저 트래커(21,22,23,24)의 제1 및 제2 구동부를 제어하는 제어신호를 각 레이저 트래커로 전송하고 이에 따라 각 레이저 트래커(21,22,23,24)가 광학장치(300)를 움직여서 타겟(10)을 향하도록 한다.
다음으로, 단계(S30)에서 카메라(320)가 촬영을 시작한다. 일반적으로 비콘 신호 등 위치정보에 의한 위치 측정은 약간의(예컨대 수 내지 수십 cm 가량의) 오차가 있을 수 있으므로 카메라(320)가 처음 영상 촬영을 시작하면 예컨대 도10(a)처럼 영상이 보일 수 있다. 도10(a)은 카메라 영상(335)을 개략적으로 나타낸 것으로, 카메라 영상 내의 중심을 "CI"로 표시하였다. 이 영상에서 반사경(11)은 예컨대 중심(CI)에서 약간 벗어나 있다. 그 후 반사경(11)을 카메라의 영상 내에 계속 위치시키면서 카메라를 줌인하여 반사경(11)을 확대시킬 수 있다. 즉 도10(a)에서 도10(b)까지 영상을 줌인하면서 반사경(11)을 확대할 수 있다.
그 후 단계(S40)에서 줌인 된 카메라 영상의 중심(CI)과 반사경의 중심(CR)을 정확히 일치시킨다. 예를 들어 도8의 레이저 트래커 제어부(50)의 반사경 중심 인식부(521)가 반사경(11)의 정렬라인(115)에 기초하여 반사경(11)의 중심(CR)을 인식하고 제어신호 생성부((523)가 제1 구동부와 제2 구동부를 제어하는 제어신호를 레이저 트래커로 전송하고 레이저 트래커의 방위각과 고도각을 조절함으로써 도10(c)에 도시한 것처럼 반사경(11)의 중심(CR)과 카메라 영상의 중심(CI)을 일치시킬 수 있다. 이 단계(S40)까지 실행했을 때, 예컨대 도5에서와 같이 카메라(320)가 레이저 송수신부(310)의 수직 상방향으로 H거리만큼 떨어져서 설치된 경우, 도10(c)에서 카메라 영상의 중심(CI)에서 H거리에 대응하는 화소(pixel)수 만큼 아래쪽에 레이저 광축이 위치함을 알 수 있다.
다음으로, 단계(S50)에서 광학장치(300)가 반사경(11)을 향해 레이저를 조사하고 반사경(11)에서 반사된 레이저를 수신하면서 레이저 광축이 반사경(11)의 중심을 향하도록 광학장치(300)의 고도각 또는 방위각을 조절한다.
예를 들어 이 단계(S50)에서 PSD 출력신호 중 광량을 나타내는 PSD SUM 신호를 측정하여 레이저 광축과 반사경 중심을 일치시킬 수 있다. 도시한 실시예의 경우 도10(c)에서 광축이 카메라 영상의 중심(CI)의 수직방향 아래쪽에 있으므로, 광학장치(300)의 고도각을 조절하면서 PSD SUM 신호가 최대가 되는 지점을 찾을 수 있다. 대안적 실시예에서, 만일 카메라(320)가 레이저 송수신부(310)의 좌측이나 우측에 설치된 경우 레이저 광축이 카메라 영상의 중심에서 좌측이나 우측 방향에 위치할 것이므로 이 경우에는 광학장치(300)의 방위각을 조절하면서 PSD SUM 신호가 최대가 되는 지점을 찾음으로써 레이저 광축을 반사경(11)의 중심에 일치시킬 수 있다.
그 후 필요에 따라 PSD 출력신호 중 수평방향과 수직방향과 수직방향에 대한 PSD 전압신호를 이용하여 레이저 광축과 반사경(11)의 중심을 일치시키는 추가 조정 단계(S60)를 더 실행할 수 있다. 이 단계(S60)에서는 도6에서 설명한 것처럼 수평방향과 수직방향에 대한 PSD 전압신호가 (0,0) 볼트를 출력하도록 고도각과 방위각을 각각 미세 조절하여 레이저 광축을 반사경(11)의 정 중앙에 정확히 위치시킬 수 있다.
대안적 실시예에서 PSD 출력신호를 이용하는 상술한 단계(S50,S60) 중 하나의 단계만 실행할 수도 있다. 예를 들어 단계(S50)를 생략할 경우, 단계(S40)에서 카메라 영상의 중심(CI)과 반사경(11)의 중심(CR)을 정확히 맞춘 상태이고, 도10(c)에 도시한 것처럼 레이저 광축과 영상의 중심(CI)간의 화수소 또는 실제 거리(H)에 기초하여 레이저 광축과 영상 중심(CI) 사이의 각도(방위각 또는 고도각)를 계산할 수 있으므로, 이에 기초하여 광학장치(300)의 방위각 또는 고도각을 조절하여 레이저 광축이 반사경(11)을 중심을 바라보도록 대략적으로 조절할 수 있고, 그 후 단계(S60)를 실행하여 수평방향과 수직방향에 대한 PSD 전압신호가 (0,0) 볼트가 되도록 고도각과 방위각을 미세 조정하여 레이저 광축을 반사경(11) 중심에 정확히 일치시킬 수 있다.
이상과 같이 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 명세서의 기재로부터 다양한 수정 및 변형이 가능함을 이해할 수 있다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
[부호의 설명]
10: 타겟 11: 반사경
21,22,23,24: 레이저 트래커 30: 통합 제어장치
40: 레이저 광원부 50: 레이저 트래커 제어부
60: 위치 산출부 300: 광학장치
310: 레이저 송수신부 320: 카메라
330: 위치센서 510: 위치정보 처리부
520: 영상신호 처리부 530: PSD 신호 처리부
Claims (12)
- 복수의 위치에서 레이저로 타겟을 추적하는 레이저 트래커와, 상기 레이저 트래커의 구동을 제어하고 타겟의 위치를 산출하는 제어장치를 구비한 레이저 추적 장치로서,상기 레이저 트래커는,상기 레이저 트래커의 위치 정보를 생성하는 위치센서; 및상기 타겟에 부착된 반사경을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하는 레이저 송수신부 및 상기 레이저 송수신부의 레이저 조사 방향과 동일 방향으로 영상을 촬영하는 카메라를 구비한 광학장치;를 포함하고,상기 제어장치는,타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하고, 상기 상대위치에 따라 상기 광학장치가 상기 타겟을 향하도록 한 후 상기 카메라의 영상을 이용하여 레이저 송수신 방향을 제어하는 레이저 트래커 제어부, 및상기 레이저 트래커에서 반사경으로 조사한 레이저와 반사경에서 반사되어 수신한 레이저에 기초하여 타겟의 위치를 산출하는 위치 산출부를 포함하는, 레이저 추적 장치.
- 제 1 항에 있어서,상기 레이저 트래커는, 상기 타겟을 추적하는 적어도 3 개 이상의 레이저 트래커를 포함하거나, 적어도 3 개 이상의 위치로 이동 및 배치가 가능한 하나의 레이저 트래커를 포함하는, 레이저 추적 장치.
- 제 1 항에 있어서,상기 레이저 트래커 제어부는,상기 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하고 상기 레이저 트래커의 광학장치가 타겟을 향하도록 하는 제1 제어,상기 타겟의 반사경의 중심이 상기 카메라 영상의 중심에 일치하도록 레이저 트래커의 카메라 방향을 조절하는 제2 제어, 및상기 레이저 송수신부의 레이저 광축이 반사경의 중심에 일치하도록 레이저 트래커의 레이저 송수신부의 방향을 조절하는 제3 제어를 순차적으로 실행하는, 레이저 추적 장치.
- 제 3 항에 있어서,상기 레이저 트래커는 상기 광학장치를 수평방향으로 회전시키며 방위각을 조절하는 제1 구동부 및 상기 광학장치를 수직방향으로 회전시키며 고도각을 조절하는 제2 구동부를 포함하는, 레이저 추적 장치.
- 제 4 항에 있어서,상기 레이저 트래커 제어부는 상기 제2 제어를 위한 영상신호 처리부를 포함하고,상기 영상신호 처리부가, 카메라를 줌인(zoom-in) 함과 동시에 반사경이 카메라 영상 내에 위치하도록 상기 제1 및 제2 구동부를 제어하는 단계, 및 반사경의 중심이 줌인 된 카메라 영상의 중심에 일치하도록 상기 제1 및 제2 구동부를 제어하는 단계를 순차적으로 실행하도록 구성된, 레이저 추적 장치.
- 제 4 항에 있어서,레이저 트래커의 레이저 송수신부는 수신 레이저의 일부를 감지하는 위치감지센서(PSD)를 구비하고,상기 레이저 트래커 제어부는 상기 제3 제어를 위한 PSD 신호 처리부를 더 포함하며,상기 PSD 신호 처리부는, 상기 위치감지센서(PSD)의 출력신호 중 광량을 나타내는 PSD SUM 신호가 최대값이 되도록 상기 제1 구동부 또는 제2 구동부를 제어함으로써 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키도록 구성된, 레이저 추적 장치.
- 제 4 항에 있어서,레이저 트래커의 레이저 송수신부는 수신 레이저의 일부를 감지하는 위치감지센서(PSD)를 구비하고,상기 레이저 트래커 제어부는 상기 제3 제어를 위한 PSD 신호 처리부를 더 포함하며,상기 PSD 신호 처리부는, 상기 위치감지센서(PSD)의 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호가 모두 0 볼트가 되도록 상기 제1 구동부 또는 제2 구동부를 제어함으로써 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키도록 구성된, 레이저 추적 장치.
- 복수의 위치에서 레이저로 타겟을 추적하는 레이저 트래커와 상기 레이저 트래커의 구동을 제어하고 타겟의 위치를 산출하는 제어장치를 구비한 레이저 추적 장치에서 타겟의 초기위치를 감지하는 방법으로서,상기 타겟이 송신한 위치정보와 상기 레이저 트래커의 위치정보에 기초하여 상기 타겟의 상대위치를 산출하는 단계;상기 상대 위치에 기초하여, 상기 레이저 트래커의 광학장치의 방위각과 고도각을 제어하여 상기 광학장치가 상기 타겟을 향하도록 제어하는 단계;상기 광학장치에 설치된 카메라가 촬영하는 영상신호에 기초하여 상기 카메라 영상의 중심에 상기 타겟에 부착된 반사경의 중심을 일치시키는 단계;상기 광학장치에 설치된 레이저 송수신부가 상기 반사경을 향해 레이저를 조사하고 이 반사경에서 반사된 레이저를 수신하는 단계; 및상기 수신한 레이저의 일부를 감지하여 레이저 광축을 반사경의 중심에 일치시키는 단계;를 포함하는 타겟 초기위치 감지 방법.
- 제 8 항에 있어서,카메라 영상의 중심에 반사경의 중심을 일치시키는 상기 단계가,상기 카메라를 줌인 함과 동시에 반사경을 카메라 영상 내에 위치시키는 단계; 및상기 반사경의 중심을 줌인 된 카메라 영상의 중심에 일치시키는 단계;를 포함하는, 타겟 초기위치 감지 방법.
- 제 9 항에 있어서,상기 타겟의 반사경은 전면부에 소정 형상으로 배열된 정렬라인을 포함하고,상기 반사경의 중심을 줌인 된 카메라 영상의 중심에 일치시키는 상기 단계 전에, 카메라 영상에서 보이는 상기 정렬라인으로부터 반사경의 중심을 판단하는 단계를 더 포함하는 타겟 초기위치 감지 방법.
- 제 9 항에 있어서,레이저 광축을 반사경의 중심에 일치시키는 상기 단계에서,상기 수신한 레이저의 일부를 감지하는 위치감지센서(PSD)의 출력신호를 이용하여,상기 위치감지센서(PSD)의 출력신호 중 광량을 나타내는 PSD SUM 신호가 최대값이 되도록 상기 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키는, 타겟 초기위치 감지 방법.
- 제 9 항에 있어서,레이저 광축을 반사경의 중심에 일치시키는 상기 단계에서,상기 수신한 레이저의 일부를 감지하는 위치감지센서(PSD)의 출력신호를 이용하여,상기 위치감지센서(PSD)의 출력신호 중 수평방향과 수직방향에 대한 PSD 전압신호가 모두 0 볼트가 되도록 레이저 송수신부의 레이저 광축을 반사경의 중심에 일치시키는, 타겟 초기위치 감지 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0146610 | 2019-11-15 | ||
KR1020190146610A KR102270254B1 (ko) | 2019-11-15 | 2019-11-15 | 타겟의 초기 위치 감지 기능을 구비한 다변측량 레이저 추적 장치 및 추적 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021096328A2 true WO2021096328A2 (ko) | 2021-05-20 |
WO2021096328A3 WO2021096328A3 (ko) | 2021-07-08 |
Family
ID=75913131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/016105 WO2021096328A2 (ko) | 2019-11-15 | 2020-11-16 | 타겟의 초기 위치 감지 기능을 구비한 레이저 추적 장치 및 추적 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102270254B1 (ko) |
WO (1) | WO2021096328A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518214A (zh) * | 2021-05-25 | 2021-10-19 | 上海哔哩哔哩科技有限公司 | 全景视频数据处理方法及装置 |
CN114325994A (zh) * | 2022-01-12 | 2022-04-12 | 中山金汇金属制造有限公司 | 光纤安装设备 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102552580B1 (ko) * | 2021-12-09 | 2023-07-05 | 양일식 | 바닥재 시공용 재단 가이드장치 |
KR102524093B1 (ko) * | 2022-12-01 | 2023-04-21 | 엘텍코리아 주식회사 | 야간 원거리 촬영을 위한 감시카메라장치 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100885642B1 (ko) | 2007-04-27 | 2009-02-25 | 유영기 | Psd센서를 이용한 위치 측정 장치 및 방법 |
KR101247964B1 (ko) * | 2009-01-22 | 2013-04-03 | 고려대학교 산학협력단 | 비콘을 이용한 전파식별 리더의 위치 측정 방법 및 그를 위한 전파식별 시스템 |
EP2602641B1 (de) * | 2011-12-06 | 2014-02-26 | Leica Geosystems AG | Lasertracker mit positionssensitiven Detektoren zur Suche eines Ziels |
KR101890314B1 (ko) | 2015-12-29 | 2018-09-28 | 한국기계연구원 | 레이저 트래커 |
KR20170140009A (ko) * | 2016-06-10 | 2017-12-20 | 안태휘 | 비콘태그를 이용한 측정장치 |
KR20190064972A (ko) * | 2017-12-01 | 2019-06-11 | 주식회사 케이티 | 트래커 장치를 탐지하는 사용자 단말 및 방법 |
-
2019
- 2019-11-15 KR KR1020190146610A patent/KR102270254B1/ko active IP Right Grant
-
2020
- 2020-11-16 WO PCT/KR2020/016105 patent/WO2021096328A2/ko active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518214A (zh) * | 2021-05-25 | 2021-10-19 | 上海哔哩哔哩科技有限公司 | 全景视频数据处理方法及装置 |
CN113518214B (zh) * | 2021-05-25 | 2022-03-15 | 上海哔哩哔哩科技有限公司 | 全景视频数据处理方法及装置 |
CN114325994A (zh) * | 2022-01-12 | 2022-04-12 | 中山金汇金属制造有限公司 | 光纤安装设备 |
Also Published As
Publication number | Publication date |
---|---|
WO2021096328A3 (ko) | 2021-07-08 |
KR20210059314A (ko) | 2021-05-25 |
KR102270254B1 (ko) | 2021-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021096328A2 (ko) | 타겟의 초기 위치 감지 기능을 구비한 레이저 추적 장치 및 추적 방법 | |
US9778037B2 (en) | Scanner for space measurement | |
EP3457080B1 (en) | Surveying instrument | |
US8681317B2 (en) | Tracking method and measuring system having a laser tracker | |
CN113074669B (zh) | 具有闪光对准的激光投影仪 | |
CN1092792C (zh) | 测量仪 | |
US8125629B2 (en) | Tracking method and measuring system comprising a laser tracker | |
US20040169860A1 (en) | Optical alignment apparatus and method using visual optical source and image | |
US9482756B2 (en) | Tracker unit and method in a tracker unit | |
JP2006503275A (ja) | 測定器用電子ディスプレイおよび制御装置 | |
US11619481B2 (en) | Coordinate measuring device | |
CN108387175A (zh) | 具有自动目标物体识别的坐标测量装置 | |
US9864062B2 (en) | Laser tracker with hybrid imaging method for extending the measuring range | |
WO2017171140A1 (ko) | 오목 반사 미러를 가지는 스캐닝 라이다 | |
US9506746B2 (en) | Device for determining the location of mechanical elements | |
JP2022120895A (ja) | 三次元位置の計測システム,計測方法,および計測マーカー | |
WO2022114455A1 (ko) | 노면 영상정보를 이용한 자율주행 차량의 위치신호 보정장치 | |
WO2017204459A1 (ko) | 개선된 구조를 갖는 라이다 광학장치 | |
WO2015178575A1 (ko) | 3차원 시간 비행 이미지 획득 장치 | |
KR101755328B1 (ko) | 듀얼 레이저 기술을 이용한 이동식 속도검지기 | |
JP2014081244A (ja) | 追尾式レーザー装置、及び測定装置 | |
JP3359241B2 (ja) | 撮像方法および装置 | |
WO2019240347A1 (ko) | 패닝 및 틸팅 제어가 되는 카메라의 프라이버시 마스크 최적화방법 및 프라이버시 마스크 최적화가 적용된 촬상장치 | |
CN218272896U (zh) | 一种图像全站仪光学系统 | |
WO2022080855A1 (ko) | 의료용 3차원 영상 측정 장치 및 의료 영상 정합 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20887188 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20887188 Country of ref document: EP Kind code of ref document: A2 |