WO2021096256A1 - 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법 - Google Patents

팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법 Download PDF

Info

Publication number
WO2021096256A1
WO2021096256A1 PCT/KR2020/015906 KR2020015906W WO2021096256A1 WO 2021096256 A1 WO2021096256 A1 WO 2021096256A1 KR 2020015906 W KR2020015906 W KR 2020015906W WO 2021096256 A1 WO2021096256 A1 WO 2021096256A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
separation membrane
oxygen
electrolysis
Prior art date
Application number
PCT/KR2020/015906
Other languages
English (en)
French (fr)
Inventor
민윤식
최상현
구본욱
Original Assignee
(주)금강씨엔티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)금강씨엔티 filed Critical (주)금강씨엔티
Publication of WO2021096256A1 publication Critical patent/WO2021096256A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention is a method for purifying water electrolytic hydrogen using a hydrogen separation membrane containing palladium; And a water cracking hydrogen production device.
  • Hydrogen is attracting attention as a major energy source in the future that can replace existing energy, because it is lightweight, abundant, and excellent in terms of the environment.
  • H 2 is used as a raw material for chemical synthesis, as a reducing gas in semiconductor manufacturing processes, and as fuel for fuel cells.
  • Hydrogen production methods can be largely divided into two types: a method using a hydrocarbon and a method not using a hydrocarbon.
  • Methods using hydrocarbons include SMR (Steam Methane Reforming), POX (Partial OXidation), and ATR (Auto-Thermal Reforming), and methods that do not use hydrocarbons include biological, photoelectric, thermochemical, and water electrolysis. Etc.
  • the SMR natural gas reforming method
  • PSA Pressure Swing Adoption
  • an additional refining method is indispensable, and there are problems that increase the cost.
  • Water is an ideal source of hydrogen with reproducibility that can be used repeatedly as hydrogen and oxygen.
  • Water decomposition hydrogen production technology includes a photochemical method using a photocatalyst, a biological method using microorganisms, etc., a solar thermal chemistry, and an electrolysis method.
  • a water electrolysis method that uses renewable energy sources such as solar and wind energy, or uses existing nuclear energy to generate power, and uses this power and late-night power to decompose water to produce hydrogen.
  • the water electrolysis method has low environmental pollution and high efficiency.
  • Alkaline water electrolysis technology is a technology that uses an alkaline aqueous solution (KOH, etc.) as an electrolyte and a separate membrane to separate hydrogen/oxygen, and is characterized by having an operating condition of 100°C or less, and is characterized by having a solid polymer electrolyte (PEM).
  • the water electrolysis technology is a technology that uses a solid polymer electrolyte (PEM) membrane as an electrolyte and a separator, and is characterized by having an operating condition of 200°C or less depending on the stability of the polymer membrane.
  • the high-temperature steam electrolysis technology using a solid oxide is a technology that uses an oxide film having hydrogen or oxygen ion conductivity as an electrolyte and a separator, and is characterized by having a high temperature operating condition of 700 to 900°C.
  • alkaline electrolysis is inexpensive, but because it operates at a low current density (the device is 10 times larger than PEM), it is expected to be more disadvantageous than PEM in the future price and performance competition. This is being done.
  • the cost of producing hydrogen by water electrolysis is determined by the price of the electrolyzer and the power cost. Electrolyzed hydrogen is three times more expensive than the cost of producing hydrogen using fossil fuels, and this difference cannot be overcome only by improving the efficiency of the electrolyzer, and can be overcome by lowering the cost of electricity supplied to electrolysis.
  • an electrochemical treatment method which is an advanced oxidation treatment method for removing TOC (total organic carbon), which is a biologically difficult to treat
  • the advanced wastewater treatment method using the water electrolysis method has the advantage of not only removing hardly decomposable organic substances but also producing by-product hydrogen, but requires a technology that can separate oxygen and hydrogen, which are by-product gases, and purify it into 99% or more high-purity hydrogen. Do.
  • Hydrogen concentration produced by water electrolysis reaction is within about 70%, and to produce high-purity hydrogen, it must go through a hydrogen purification device.
  • PSA Pressure Swing Absorption
  • a mixed gas containing hydrogen is selectively collected as an adsorbent in a pressurized state of 5 bar to 20 bar inside a container filled with an adsorbent, and the rest of the gas remains inside the container and operated for a certain period of time.
  • high-purity hydrogen gas is produced by lowering it to normal pressure and discharging it to remove residual gas other than the collected hydrogen. If the by-product gas generated in the water electrolysis system is produced with high purity hydrogen using this method, the hydrogen concentration of the residual gas inside the container during the PSA reaction falls within the range of 4% to 74%, which is the hydrogen explosion concentration, and there is a risk of explosion. do.
  • the by-product gases generated in the water electrolysis system are hydrogen and oxygen, there is a need for a more stable hydrogen purification method because the risk of explosion is higher than that of other hydrogen production methods.
  • Water electrolytic hydrogen contains 0.1 to 10% oxygen that is not completely separated from the electrolytic stack. It was found that when hydrogen containing oxygen is used or compressed in a fuel cell, friction between oxygen molecules and hydrogen molecules increases, resulting in a high risk of explosion. It is intended to construct a separation membrane system by purifying hydrogen while injecting gas into the hydrogen separation membrane reactor.
  • a first aspect of the present invention is a first step of decomposing water to produce hydrogen; A second step of injecting an inert gas into the hydrogen and oxygen-containing by-product gas produced in the first step; And the hydrogen and oxygen-containing mixed gas of the second step is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but the hydrogen concentration of the residual gas that has not passed through the separation membrane is adjusted through the control of the inert gas injected in the second step. It provides a hydrogen production method comprising a third step of operating lower.
  • the first step may be performed using a water electrolysis method, a photochemical method using a photocatalyst, a biological method using microorganisms, and/or a solar thermochemical and electrolysis method.
  • the first step may be to electrolyze the water.
  • the first step may be performed using alkaline water electrolysis, solid polymer electrolyte (PEM) water electrolysis, or high-temperature steam electrolysis technology using a solid oxide.
  • electric energy for water electrolysis can be supplied as renewable energy or late-night power.
  • a second aspect of the present invention is the step a of injecting an inert gas into by-product gas containing hydrogen and oxygen produced through water electrolysis; And the hydrogen and oxygen-containing mixed gas of step a is separated with a palladium-based hydrogen separation membrane and purified into high purity hydrogen, but the hydrogen concentration of the residual gas that has not passed through the separation membrane is adjusted to the inert gas injected in step a to achieve the hydrogen explosion concentration. It provides a water electrolyzed hydrogen purification method comprising the step b operating lower.
  • a third aspect of the present invention is a water cracking hydrogen production apparatus for producing hydrogen by decomposing water; And a means for injecting an inert gas into the hydrogen and oxygen-containing by-product gas produced by the water-decomposition hydrogen production device, and the mixed gas containing hydrogen and oxygen is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but does not pass through the separation membrane.
  • a hydrogen separation membrane reactor operating lower than the hydrogen explosion concentration by controlling the inert gas in which the hydrogen concentration of the residual gas is injected; Including, but when compressed using hydrogen containing oxygen provides a hydrogen production apparatus characterized in that the problem of explosion risk due to increased friction between the oxygen molecule and the hydrogen molecule is solved through the hydrogen separation membrane reactor.
  • a fourth aspect of the present invention is a water cracking hydrogen production device for producing hydrogen by decomposing water;
  • a means for injecting an inert gas into the hydrogen and oxygen-containing by-product gas produced by the water decomposition hydrogen production device is provided, and the mixed gas containing hydrogen and oxygen is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but does not pass through the separation membrane.
  • a hydrogen separation membrane reactor operating lower than the hydrogen explosion concentration through inert gas control in which the hydrogen concentration of the residual gas is injected; And a fuel cell; but, when compressed using hydrogen containing oxygen, a problem of explosion risk due to increased friction between oxygen molecules and hydrogen molecules is solved through the hydrogen separation membrane reactor. to provide.
  • palladium is contained as a hydrogen separation membrane in a shell-and-tube type hydrogen separation membrane reactor. If a dense metal film is used, 0.1-10% of oxygen that is not separated from water electrolytic hydrogen can be completely removed.
  • the hydrogen purification method using a hydrogen separation membrane has the advantage of being able to produce the purity of hydrogen in the range of 99% to 99.9995% according to the purpose of use, whereas the hydrogen recovery rate of the hydrogen separation membrane system is within 80 to 90%. Some hydrogen may be present and may fall within the explosive concentration range.
  • the separation membrane since the separation membrane must be heated to 100 ⁇ 500°C in order to operate the metal membrane, at this time, palladium acts as a combustion catalyst and there is a risk of explosion as hydrogen and oxygen react. Accordingly, it is a feature of the present invention to prevent an explosion hazard by supplying an inert gas (eg, nitrogen, helium, argon, etc.) when supplying electrolyzed hydrogen to a separator purifier.
  • an inert gas eg, nitrogen, helium, argon, etc.
  • the method of purifying by-product gas generated in a water electrolysis system with high purity hydrogen using a palladium-based hydrogen separation membrane has the advantage of being able to produce high concentration hydrogen using a separation membrane as soon as it occurs in a water electrolysis reaction. , As it is concentrated to more than 99% at the same time as the reaction, the risk of explosion can be eliminated.
  • the separation membrane system is configured to supply an inert gas according to the present invention, the hydrogen concentration of the residual gas that has not passed through the separation membrane is significantly lower than the hydrogen explosion concentration, while the system is operated and the residual gas can be discharged, thereby reducing the risk of explosion. You can get rid of it.
  • the present invention is applicable to all water electrolysis technologies, and is also applicable to advanced wastewater treatment methods using a water electrolysis method. Accordingly, the present invention can produce by-product hydrogen without risk of explosion as well as removal of hardly decomposable organic substances.
  • the hydrogen and oxygen-containing mixed gas of the second step is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but the hydrogen concentration of the residual gas that has not passed through the separation membrane is more than the hydrogen explosion concentration through the control of the inert gas injected in the second step. It includes a third stage of low operation.
  • the first step of decomposing water to produce hydrogen may be electrolyzing water.
  • a water cracking hydrogen production device that decomposes water to produce hydrogen
  • a means for injecting an inert gas into the hydrogen and oxygen-containing by-product gas produced by the water decomposition hydrogen production device is provided, and the mixed gas containing hydrogen and oxygen is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but does not pass through the separation membrane. It includes a hydrogen separation membrane reactor operating lower than the hydrogen explosion concentration by controlling the inert gas in which the hydrogen concentration of the residual gas is injected.
  • the hydrogen production apparatus of the present invention can be solved by the hydrogen separation membrane reactor, a problem of an explosion risk due to increased friction between the oxygen molecules and the hydrogen molecules when compressed using hydrogen containing oxygen.
  • the water electrolyzed hydrogen purification method of the present invention uses the above-described hydrogen production apparatus,
  • step a The hydrogen and oxygen-containing gas mixture in step a is separated by a palladium-based hydrogen separation membrane and purified into high purity hydrogen, but the hydrogen concentration of the residual gas that has not passed through the separation membrane is controlled by the inert gas injected in step a to determine the hydrogen explosion concentration.
  • Step b which operates low, can be performed.
  • the hydrogen separation method using a separation membrane has advantages such as more energy saving compared to other hydrogen separation methods such as deep cooling separation and adsorption, simple operation, and miniaturization of the equipment used.
  • a palladium based metal separation membrane has high hydrogen permeability and excellent hydrogen separation.
  • the hydrogen separation membrane using a palladium-based metal separation membrane can produce pure hydrogen usefully for fuel cells or other processes that consume hydrogen, and can be used in hydrogenation or dehydrogenation reaction processes to improve the quantity of target products. It can be applied in various ways.
  • hydrogen molecules (H 2 ) diffuse to the surface of the Pd metal membrane, and then the hydrogen molecules adsorb to the surface of the Pd metal membrane, and the adsorbed hydrogen molecules dissociate, and the Pd metal.
  • the dissociated hydrogen atoms (H) diffuse in the membrane lattice, hydrogen molecules are regenerated, and when the hydrogen molecules are regenerated, hydrogen molecules are desorbed from the surface of the Pd metal film, and hydrogen molecules are diffused. Is separated.
  • the operating temperature of the hydrogen separation membrane is 300 ⁇ 500 °C.
  • the hydrogen permeation amount is mainly the hydrogen partial pressure P1 on the raw material side, the hydrogen partial pressure P2 on the purification side, the film thickness t of the palladium-based metal separation membrane, and the membrane area of the metal separation membrane. That is, the amount of hydrogen permeation Q per unit area is Is in a relationship.
  • A varies depending on the type of the metal film or operating conditions.
  • a palladium alloy having a thin film thickness is used in combination with a porous support to supplement the mechanical strength.
  • a porous support for the palladium-based metal separation membrane.
  • a porous support It may be in the form of having a hydrogen separation membrane located on one or both sides of the porous support.
  • the porous support may be cylindrical/tubular or flat.
  • the hydrogen separation membrane manufactured using a cylindrical or tubular porous support provides the shell-and-tube type hydrogen separation membrane reactor illustrated in FIG. 1, and the third step may be performed in a shell-and-tube type hydrogen separation membrane reactor.
  • Metal or ceramic materials may be used as the porous support.
  • the material of the porous metal stainless steel, nickel, Inconel, or the like may be used.
  • As a material of the porous ceramic oxides based on Al, Ti, Zr, Si, etc. may be used.
  • a surface treatment process may be performed.
  • a polishing process such as CMP (Chemical Mechanical Polishing) or a process using plasma may be used.
  • the size of the surface pores formed in the porous support is not too large or too small.
  • the size of the surface pores of the porous support is less than 0.001 ⁇ m, the permeability of the porous support itself is low, making it difficult to function as a porous support.
  • the size of the surface pores exceeds 10 ⁇ m, the pore diameter becomes too large, so that the thickness of the hydrogen separation layer must be formed thick. Therefore, it is preferable to form the porous support so that the size of the surface pores is 0.001 to 10 ⁇ m.
  • the porous shielding layer which may be formed on the porous metal support, is capable of passing hydrogen through the pores/gap to prevent diffusion that may occur between the palladium constituting the separator layer and the metal support. It can be formed as Non-limiting examples of the shielding layer include oxide-based, nitride-based, and carbide-based ceramics including one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. have. Preferably, there is an oxide-based ceramic material such as TiO y , ZrO y , and Al 2 O z (1 ⁇ y ⁇ 2 or 2 ⁇ z ⁇ 3).
  • the shielding layer may be formed of metal oxide powder by a dry spray method, a wet spray method, or a sol-gel method.
  • the thickness of the shielding layer may be determined in consideration of manufacturing conditions and conditions of use of the hydrogen separation membrane. For example, when considering the use condition of 400° C., when forming TiOy as a shielding layer, it may be formed to a thickness of 100 to 200 nm. When ZrOy is formed as a shielding layer, it may be formed to a thickness of 500 to 800 nm.
  • the spray coating method can solve the problem of forming a support defect that may occur in the shielding layer coating, and it is easy to coat a large area.
  • a dense palladium -containing layer as a catalyst layer for hydrogen separation on the outside or inside the support.
  • the Pd -containing layer may be a palladium or a palladium alloy.
  • the palladium alloy may be an alloy of Pd and one or more metals selected from the group consisting of Au, Ag, Cu, Ni, Ru, and Rh. It is also within the scope of the present invention that the Pd?-containing layer further includes layers such as Pd/Cu, Pd/Au, Pd/Ag, Pd/Pt, etc. in a multi-layered structure.
  • the Pd -containing layer can be formed to a thickness of 0.1 to 20 ⁇ m. If the thickness is less than 0.1 ⁇ m, it is good because the hydrogen permeability is further improved, but it is difficult to manufacture the metal separation membrane densely, and thus, there is a problem that the life of the metal separation membrane is shortened. When the thickness is greater than 20 ⁇ m, the hydrogen permeability may be relatively low while it can be formed densely. In addition, there is a problem in that the overall manufacturing cost of the hydrogen separation membrane increases due to the metal separation membrane formed thicker than 20 ⁇ m using palladium, which is expensive. Preferably, considering the life characteristics of the metal separation membrane, hydrogen permeability, etc., it is preferable to form a thickness of 1 to 10 ⁇ m.
  • the hydrogen permeability through the separation membrane is also characteristic of the thinner, the higher the hydrogen permeability. Therefore, it is preferable that the thickness of the Pd -containing layer as a metal separation membrane is as thin as possible.
  • a layer of Pd or Pd alloy can be formed, but it is not limited to the use conditions and materials of each sputtering method, polishing method, and electroless plating method.
  • the electroless plating method is a technology capable of coating a large area regardless of the shape of the support. Since contamination of the separator by carbon may be a problem, it is desirable to completely exclude the carbon source. On the other hand, plating is performed at room temperature, which not only has excellent high-temperature durability, but also has a simple facility and a very economical manufacturing process.
  • the third step using a palladium-based hydrogen separation membrane can be operated at 100 ⁇ 500 °C.
  • the recovery rate of hydrogen recovered through the third step relative to the hydrogen produced in the first step may be 80 to 90%.
  • it can be purified with 99% or more high purity hydrogen.
  • PEM Electrolysis is a positive electrode, a negative electrode, and generated hydrogen. It is composed of an ion exchange membrane (electrolyte function) that allows the separation of oxygen gas and hydrogen ions from the anode to the cathode. Similar to the PEM fuel cell, PEM electrolysis uses a noble metal catalyst (Pt, Id, Ru) and a fluorocarbon-based ionomer as a polymer solid electrolyte. Each electrode reaction in PEM electrolysis is as follows.
  • PEM electrolysis is that it is possible to operate at a high current density, so the device is compact, the structure of the electrolysis cell and system is simple, and there is no corrosiveness, so a long life can be secured.
  • the core technology of PEM electrolysis is a technology related to an oxygen generating anode catalyst that accounts for more than 50% of the electrolysis voltage loss (overvoltage) generated during water electrolysis and directly affects the durability of the water electrolysis device.
  • the electrode catalyst used in PEM electrolysis since the ion exchange membrane is a strong acid electrolyte with a pH of 2 to 4, an acid-resistant platinum-based catalyst is used.
  • the oxygen generating catalyst iridium metal has the best durability, but ruthenium metal has the best efficiency.
  • Hydrogen-related catalysts include gold and palladium, platinum and bismuth alloy electrocatalysts. Hydrocarbon-based PEMs are being developed instead of fluorine-based PEMs for the purpose of reducing the manufacturing cost of water electrolysis devices.
  • connection method with renewable energy is a method of connecting the renewable energy and the electrolysis system, such as direct connection, and the method of adjusting and optimizing the power suitable for receiving and electrolysis of the renewable power source.
  • the typical technology of high-temperature water electrolysis is the application of the solid oxide fuel cell (SOFC) technology operating at 700 to 1000°C. It is called a Solid Oxide Electrolyzer Cell (SOEC). That is, a method of electrolyzing water vapor at a high temperature of 750°C or higher using stabilized zirconia (Zr) or the like as an electrolyte for an oxygen ion conductor.
  • SOEC Solid Oxide Electrolyzer Cell
  • the main components of high-temperature water electrolysis are composed of a dense ion conductive electrolyte and two porous electrodes, and the basic operating mechanism is when high-temperature water flows into the porous cathode and an electrical potential difference occurs at the anode, as shown in FIG. Water molecules react and separate into hydrogen and oxygen.
  • the electrolyte Among the constituents of high-temperature water electrolysis, the most important electrolyte must be chemically stable, have low electronic conductivity, and have good ionic conductivity. In addition, the electrolyte should be dense to prevent gas penetration to prevent hydrogen and oxygen from recombining, and should be as thin as possible to minimize resistance and voltage.
  • Electrolyte materials that can be used for SOEC include ZrO 2 based electrolytes such as YSZ (yttria stabilized sirconia) and ScSZ (Scandia stabilized zirconia), and CeO 2 based electrolytes such as GDC (Gd-doped ceria) and YDC (Y-doped ceria), LSGM.
  • LaGaO 3 based electrolytes such as ((La,Sr)(Ga, Mg)O 3) are typical.
  • ZrO 2 and CeO 2 have flurotie structures, and oxygen ions form octahedral, and oxygen ions diffuse relatively quickly due to structural voids.
  • CeO 2 has high ionic conductivity and excellent chemical stability with the cathode material, it has a disadvantage that it is difficult to use as an electrolyte due to its high electronic conductivity in a high-temperature reducing atmosphere.
  • the electrode must be chemically stable under oxidation/reduction conditions and must have high electronic conductivity.
  • the electrode should have an appropriate porosity and pore size in order to maintain gas movement between the electrode surface and the electrode-electrolyte interface and to provide a sufficient three-phase boundary of the electrolyte-electrode-gas.
  • the connector electrically connects the cell and the neighboring cell inside the stack, and blocks the movement of gas between the anode and the neighboring cathode physically.
  • These connecting materials must have high electrical and thermal conductivity, and must be chemically stable in high temperature oxidation and reduction atmospheres. It should also have high mechanical strength, have similar thermal expansion coefficients with other components, and should not react with each other.
  • a solid oxide electrolysis cell for high temperature water electrolysis has the same structure as a solid oxide fuel cell and a stack structure.
  • the structure of a solid oxide fuel cell (SOFC) is largely divided into a flat plate type and a tube type, and the tube type is further classified into a cylindrical type and a flat tube type to be made flat to facilitate stacking of cells.
  • SOFC solid oxide fuel cell
  • reducing the resistance of the cell by applying a thin film of electrolyte on the electrode support is a method commonly used to manufacture flat and tube cells.
  • a flat SOFC cell since it uses a metal or ceramic connecting plate, it is easy to stack and collect, but it is difficult to make a large-area flat cell, and a sealing material for separating the flow of fuel and air above and below the cell is required.
  • the tubular cell since the tubular cell has excellent mechanical strength and seals only both ends or one end of the tube, the sealing portion is smaller than that of the flat cell, making it easier to control the flow of gas inside and outside.
  • a metal manifold and the cell are connected by brazing or a ceramic paste containing glass is applied.
  • the subject of hydrolysis may be wastewater, and non-degradable organic substances may be removed by an electrochemical treatment method.
  • the electrolysis method quantitatively controls the treatment of high-concentration hardly decomposable wastewater, unlike the existing facility cost, operation cost, high-level manpower requirement, and difficult maintenance treatment method. It is easy to increase the treatment efficiency. Furthermore, when combined with an electrochemical method based on a modular electrolysis reactor integrated with a rectifier, it is possible to treat wastewater that is difficult to decompose, has high concentration, and is highly toxic.
  • the electrochemical water treatment method is not affected by external environment such as biotoxicity, temperature, dissolved oxygen, etc., and can treat nitrogen only by oxidation and reduction by the movement of electrons. Electrochemical treatment can also oxidize organic substances such as refractory substances, nitrogen compounds and chromaticity to carbon dioxide.
  • Electrodes used for wastewater treatment using electrochemical oxidation and reduction reactions mainly use insoluble catalytic electrodes (Dimensionally Stable Electrodes). Since the insoluble catalyst electrode is a surface reaction, it is desirable to minimize oxygen penetration into the support by achieving uniformity and density of the catalyst coating material.
  • an Iridium-based metal oxide catalyst having methanol oxidation decomposition activity may be used as an anode for treatment of electrochemical hardly decomposable wastewater.
  • the iridium oxide catalyst electrode can be prepared by thermal decomposition of a composite metal oxide on a titanium plate as a support.
  • the Iridium-based metal oxide catalyst may further include Ruthenium and/or Platinum components.
  • an Iridium oxide catalyst electrode may be manufactured using an electroplating method (Electrodeposition).
  • an insoluble catalyst electrode having high selectivity can be used for the treatment of ammonia nitrogen in wastewater.
  • the catalyst may include Ir oxide as an active metal, and Sn oxide and Ta oxide as a romoter.
  • Ir oxide as an active metal
  • Sn oxide and Ta oxide as a romoter.
  • Ti can be used as a support metal as a substrate, and can be prepared by a thermal decomposition method under Ir-Sn-Ta solution conditions.
  • An electrochemical reactor equipped with an electrode cell for wastewater treatment can maintain a constant electrode spacing and can perform batch and continuous operation.
  • the treatment efficiency of organic matter by the electrochemical oxidation process can be expressed as current efficiency (CE), and the current efficiency is calculated by the following equation.
  • C o and C f are the concentrations of influent and effluent water (mg/L)
  • V w is the capacity in the reactor (L)
  • I is the current strength (A)
  • t is the residence time (sec)
  • F is the Faraday constant. (96,500 coulombs/mol).
  • the electrolysis reactor for refractory wastewater to which a high-efficiency insoluble electrode (DSA) is applied may be a facility specialized in TN (NH 3 -N) reduction, COD removal, and chromaticity removal and sterilization.
  • TN NH 3 -N
  • non-limiting examples of wastewater include dyeing wastewater, steelmaking wastewater, semiconductor wastewater, petrochemical wastewater, RO concentrated water, high concentration nitrogen wastewater, livestock wastewater/leachate, power generation wastewater, and the like.
  • a water cracking hydrogen production device that decomposes water to produce hydrogen
  • a means for injecting an inert gas into the hydrogen and oxygen-containing by-product gas produced by the water decomposition hydrogen production device is provided, and the mixed gas containing hydrogen and oxygen is separated by a palladium-based hydrogen separation membrane and purified into high-purity hydrogen, but does not pass through the separation membrane.
  • a hydrogen separation membrane reactor operating lower than the hydrogen explosion concentration through inert gas control in which the hydrogen concentration of the residual gas is injected;
  • It includes a fuel cell.
  • the hydrogen separation membrane reactor may be a shell-and-tube type hydrogen separation membrane reactor.
  • the cylindrical or tubular hydrogen separation membrane may have the methanation catalytic activity of Reaction Formula 1 below to remove CO in the permeated hydrogen enriched gas.
  • the porous support located on the permeate-side through which hydrogen permeates may be a porous nickel support having methanation catalytic activity, or the pores of the porous support Since the surface can be modified with a methanation catalyst, when the methanation reaction of Scheme 1 is linked, the concentration of CO permeated to the palladium-based dense membrane defect can be controlled to 20 ppm or less, so that CO is a catalyst poison without a separate purification device. It can be used as a fuel for PEMFC fuel cells using a catalyst that acts as a catalyst.
  • the hydrogen separation membrane system according to the present invention constitutes a system in which hydrogen is purified while injecting an inert gas such as nitrogen into the separation membrane reactor. Since the residual gas can be discharged while operating the system with the hydrogen concentration of the residual gas significantly lower than the hydrogen explosion concentration, the risk of explosion can be virtually eliminated.
  • the hydrogen purification system connected to the electrolysis device according to the present invention can perform wastewater treatment stably and efficiently while fundamentally reducing the generation of waste including harmful exhaust gas and sludge during wastewater treatment.
  • FIG. 1 is a schematic diagram of a shell-and-tube type hydrogen separation membrane reactor provided with a means for injecting an inert gas into hydrogen and oxygen-containing by-product gas produced in a water-decomposition hydrogen production apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a hydrogen purification system in which the hydrogen separation membrane reactor of FIG. 1 is connected to an electrolysis device for treating sewage discharge water of a pilot scale, provided with an electrode cell for wastewater treatment and an electrochemical reactor.
  • Example 1 Water electrolysis system for removing refractory TOC
  • TOC Total Organic Carbon
  • the independent variables used in the central synthesis were electrode spacing, current density, and electrolyte, which are the main operating factors of the electrolysis process.
  • the concentration of was selected, and the constant speed variable was the TOC removal efficiency.
  • the optimum conditions were 50 mm electrode spacing, 10 mA/cm 2 current density, and 0.1 M electrolyte concentration. Based on the statistical results, the independent variable was analyzed to decrease in the order of electrode spacing> current density> electrolyte concentration.
  • the hydrogen explosion concentration was 4% to 74%, but the hydrogen concentration before electrode separation during the water electrolysis reaction was 66%, and there was a risk of explosion.
  • Example 2 Hydrogen purification from by-product gas of a water electrolysis system for removing hardly decomposable TOC
  • the hydrogen concentration of the by-product gas generated by the water electrolysis reaction was 66%, but without the risk of explosion.
  • a hydrogen purification system using a palladium membrane high purity hydrogen was produced at 150L/min with a purity of 99% or more. At this time, the hydrogen concentration of the residual gas discharged was less than 1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 물을 분해하여 수소를 생산하는 제1단계; 제1단계에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제2단계; 및 제2단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제2단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제3단계를 포함하는 수소 제조 방법을 제공한다. 본 발명은 수전해수소를 분리막 정제기에 공급할 때 불활성 가스를 공급하여 폭발 위험을 방지한다.

Description

팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법
본 발명은 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법; 및 물 분해 수소 생산 장치에 관한 것이다.
수소는 기존 에너지를 대체할 수 있는 장래의 주요한 에너지원으로 주목을 받고 있는데, 경량(輕量)이고 풍부하며 환경 측면에서 우수하기 때문이다. H2는 케미컬 합성 원료, 반도체 제조공정에서의 환원가스 그리고 연료전지 연료로 사용된다.
수소 생산 방법으로는 크게 탄화수소를 사용하는 방법과 탄화수소를 사용하지 않는 방법 두 가지로 나눌 수 있다. 탄화수소를 사용하는 방법으로는 SMR(Steam Methane Reforming), POX (Partial OXidation), ATR (Auto-Thermal Reforming)등이 있으며, 탄화수소를 사용하지 않는 방법으로는 생물학적, 광전기적, 열화학적, 물 전기분해 등이 있다.
현재 SMR (천연가스 개질법)이 주된 생산 방법이나 SMR법은 환경오염의 문제가 있고 천연가스의 공급이 제한적이며, 생산 수소의 순도가 낮다. 수소의 순도를 확보하기 위해 추가 정제법인 PSA (Pressure Swing Adoption)가 필수적으로 필요하고 이로 인해 비용이 높아지는 문제점들이 있어 감소하는 추세이다.
물은 수소와 산소로 반복하여 이용 가능한 재생가능성을 갖는 이상적인 수소 원료이다. 물 분해 수소제조 기술에는 광촉매를 이용한 광화학적 방법, 미생물 등을 이용한 생물학적 방법, 태양열화학 및 전기 분해 방법 등이 있다. 그 중 재생에너지원인 태양, 풍력에너지를 이용하거나, 기존의 원자력에너지를 이용하여 전력을 생산하고, 이 전력과 심야 전력을 이용하여 물을 분해하여 수소를 제조하는 수전해법이 있다. 탄화수소를 사용하지 않는 방법 중 물 전기 분해법은 환경오염이 적고 효율이 높다.
전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술로는 알칼라인 수전해(AE, Alkaline Electrolysis), 고체고분자전해질(PEM) 수전해, 그리고 고체산화물을 이용한 고온수증기 전해기술로 구분된다. 알칼라인 수전해 기술은 전해질로써 알칼리 수용액(KOH 등)을 이용하고 수소/산소를 분리하기 위하여 별도의 분리막을 사용하는 기술로 100℃ 이하의 운전조건을 갖는 것을 특징으로 하며, 고체고분자전해질(PEM) 수전해 기술은 전해질과 분리막으로써 고체고분자전해질(PEM)막을 이용하는 기술로 고분자막의 안정성에 따라 200℃ 이하의 운전조건을 갖는 것을 특징으로 하고 있다. 또한, 고체산화물을 이용한 고온수증기 전해기술은 전해질과 분리막으로써 수소 또는 산소이온 전도성을 갖는 산화물 막을 이용하는 기술로 700~900℃의 고온 운전조건을 갖는 것을 특징으로 한다. 그러나, 저온 수전해 방법 중 알카라인 전해는 가격이 저렴한 반면, 저 전류밀도(장치가 10배 PEM 보다 큼)에서 운전되기 때문에, 향후 가격 및 성능 경쟁에서 PEM 보다 불리하게 될 전망으로 주로 PEM을 이용한 개발이 이루어지고 있다.
수전해에 의한 수소제조 비용은 전해장치의 가격과 전력비에 의해 결정된다. 전해수소는 화석연료를 이용한 수소 생산 비용보다 3배 정도 비싸며, 이 차이는 전해조 효율 개선만으로는 극복할 수 없고 전기분해에 공급되는 전력비를 낮추는 것으로 극복가능하다.
수소시장이 연료전지 자동차용 연료 및 재생전원을 이용한 분산전원 분야로 확대되면서 전해조 분야가 수소 경제사회에 커다란 역할을 할 것이다. 자동차용 연료로서의 수소시장에서 수전해는 저렴한 탄화수소를 개질하여 수소를 생산하는 개질방법과 경쟁을 하지만 탄소흔적(carbon-footprint)의 유무에 있어서 저탄소 흔적의 수소를 생산하기 때문에 경쟁에서 유리하다. 비록 수전해에 공급되는 전기에너지가 탄소흔적이 있더라도, 수전해는 재생 전원 또는 원자력과 연계가 가능하므로 저탄소 흔적의 수소를 생산할 수 있다. 수전해 수소는 저탄소 수소를 생산하는 일차 경로가 될 것이며, 수소가 수송연료로서의 기능을 하는 경우 저탄소 경제의 핵심이 될 것이다. 재생 전원은 간헐적 에너지이기 때문에 기존 전력망에 많은 문제를 야기할 것이며, 수용가의 부하변동에 적극적으로 대응하기 어렵다. 이러한 문제를 해결하는 수단으로 수전해에 의한 수소가 적용될 수 있다.
한편, 산업이 발전함에 따라 각 산업에서 발생되는 폐수의 성상은 더욱 다양하고 복잡하게 되었으며, 이와 관련한 환경규제는 더욱 강화되고 있다. 중금속, 질소, 유기물질 등의 성상은 다른 성분들과 복잡하게 구성되어져 일반적인 생물학적 공정이나 물리-화학적 공정으로 그 처리가 불가능한 난분해성 물질로, 기존의 생물화학적이나 물리화학적 수폐수 처리공법으로는 난분해성 물질 처리에 한계가 있으며, 환경규제의 강화로 이에 대한 대처가 곤란한 상황이다. 더욱이 유지관리가 어렵고 고비용의 투자에 비해 오염물질 처리 효율이 기대에 못 미치는 있다. 이러한 난분해성 물질 즉, 유기물을 비롯하여 고농도 염소를 함유한 물질, 중금속과 착화물을 이루는 물질, 고농도의 질소, 생물학적 처리수, 색도유발 물질들에 대하여 전기화학적인 처리방법이 시도되고 있다.
특히, 최근 환경규제의 강화로 생물학적으로 처리가 어려운 난분해성 물질인 TOC(총유기탄소)를 제거하기 위한 고도산화처리방법인 전기화학적 처리방법에 대한 필요성이 높아지고 있다. 수전해 방법을 이용한 고도폐수처리방법은 난분해성 유기물질의 제거 뿐만 아니라 부생수소를 생산할 수 있는 장점을 가지고 있으나 부생가스인 산소와 수소를 분리하여 99% 이상의 고순도 수소로 정제할 수 있는 기술이 필요하다.
수전해 반응으로 생산되는 수소농도는 약 70% 이내로 고순도의 수소를 생산하기 위해서는 수소정제장치를 거쳐야 하는데 현재 가장 상용화된 기술은 활성탄(Activated Carbon) 및 분자체(Molecular Sieve)를 흡착제로 사용하는 PSA(Pressure Swing Absorption)방식이 사용되고 있다.
PSA 방식은 흡착제가 충진된 용기 내부로 보통 5 bar에서 20 bar의 가압상태에서 수소가 포함된 혼합가스를 흡착제로 수소만 선택적으로 포집하고 나머지 가스는 용기내부에 잔류하게 되고, 일정시간을 운전한 후에는 포집된 수소 이외의 잔류가스를 제거하기 위해 상압으로 낮추어 배출하는 방식으로 고순도 수소 가스를 생산하게 된다. 이러한 방식을 이용하여 수전해 시스템에서 발생하는 부생가스를 고순도 수소로 제조하게 되면 PSA 반응 중에 용기 내부의 잔류가스의 수소농도가 수소폭발농도인 4% ~ 74% 범위에 들어가게 되어 폭발에 위험을 가지게 된다. 특히 수전해 시스템에서 발생하는 부생가스는 수소와 산소이기 때문에 다른 수소제조방법에 비해 더욱더 폭발에 위험성이 높아지기 때문에 보다 안정한 수소정제방법이 필요하다.
수전해 수소에는 수전해 스택에서 완벽하게 분리가 되지 않은 산소가 0.1~10% 포함되어 있다. 산소가 포함된 수소를 연료전지에 사용하거나 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 높다는 것을 발견하였으며, 이러한 문제를 해결하고자 보다 안전하게 운전하기 위해, 본 발명은 질소와 같은 불활성가스를 수소 분리막 반응기 내부로 주입하면서 수소를 정제하는 방식으로 분리막 시스템을 구성하고자 한다.
본 발명의 제1양태는 물을 분해하여 수소를 생산하는 제1단계; 제1단계에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제2단계; 및 제2단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제2단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제3단계를 포함하는 수소 제조 방법을 제공한다.
제1단계는 수전해법, 광촉매를 이용한 광화학적 방법, 미생물을 이용한 생물학적 방법, 및/또는 태양열화학 및 전기 분해 방법을 이용하여 수행할 수 있다.
제1단계는 물을 전기분해하는 것을 수 있다. 예컨대, 제1단계는 알칼라인 수전해, 고체고분자전해질(PEM) 수전해, 또는 고체산화물을 이용한 고온수증기 전해기술을 이용하여 수행하는 것일 수 있다. 제1단계에서 수전해를 위한 전기에너지는 재생에너지 또는 심야 전력으로 공급할 수 있다.
본 발명의 제2양태는 수전해를 통해 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제a단계; 및 제a단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제a단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제b단계를 포함하는 수전해수소 정제방법을 제공한다.
본 발명의 제3양태는 물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치; 및 물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기; 를 포함하되, 산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 상기 수소 분리막 반응기를 통해 해결되는 것이 특징인 수소 제조 장치를 제공한다.
본 발명의 제4양태는 물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치; 물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기; 및 연료전지;를 포함하되, 산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 상기 수소 분리막 반응기를 통해 해결되는 것이 특징인 에너지 발생장치를 제공한다.
이하, 본 발명을 설명한다.
산소가 포함된 수소를 연료전지에 사용하거나 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 높다는 문제점을 해결하기 위해, 쉘-앤-튜브형 수소 분리막 반응기에서 수소분리막으로 팔라듐이 함유된 치밀금속막을 사용하면, 수전해 수소에서 분리되지 않은 산소 0.1~10 %를 완벽하게 제거가능하다. 그러나, 수소분리막을 이용한 수소정제방법은 사용목적에 맞게 수소의 순도를 99% ~ 99.9995% 범위로 생산이 가능한 장점을 갖는 반면 수소분리막 시스템의 수소회수율은 80~90% 이내를 갖게 되므로 배출가스 중 일부 수소가 존재하게 되어 폭발농도범위에 놓일 수 있다. 즉, 금속막을 운전하기 위하여 100 ~ 500℃로 분리막을 가열하여야 하므로, 이때 팔라듐이 연소촉매로 작용하여 수소와 산소가 반응하여 폭발 위험이 있다. 따라서, 수전해수소를 분리막 정제기에 공급할 때 불활성 가스(예, 질소, 헬륨, 아르곤 등)를 공급하여 폭발 위험을 방지하고자 하는 것이 본 발명의 특징이다.
요컨대, 본 발명에 따라 팔라듐계 수소분리막을 이용하여 수전해 시스템에서 발생하는 부생가스를 고순도 수소로 정제하는 방법은 수전해 반응으로 발생하는 즉시 분리막을 이용하여 고농도의 수소로 생산할 수 있는 장점을 가지며, 반응과 동시에 99% 이상으로 농축되므로 폭발 위험성도 해소할 수 있다. 또한, 본 발명에 따라 불활성 가스가 공급되도록 분리막 시스템을 구성하게 되면 분리막을 통과하지 않은 잔류가스의 수소농도를 수소폭발농도 보다 현격히 낮게 시스템을 운전하면서 잔류가스를 배출할 수 있어 폭발의 위험성을 거의 없앨 수 있다.
본 발명은 모든 수전해 기술에 적용가능하며, 수전해 방법을 이용한 고도폐수처리방법에도 적용가능하다. 따라서, 본 발명은 난분해성 유기물질의 제거 뿐만 아니라 폭발위험없이 부생수소를 생산할 수 있다.
본 발명의 수소 제조 방법은
물을 분해하여 수소를 생산하는 제1단계;
제1단계에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제2단계; 및
제2단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제2단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제3단계를 포함한다.
본 발명에서, 물을 분해하여 수소를 생산하는 제1단계는 물을 전기분해하는 것일 수 있다.
따라서, 본 발명의 수소 제조 장치는
물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치; 및
물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기를 포함한다.
이로인해, 본 발명의 수소 제조 장치는 산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 상기 수소 분리막 반응기를 통해 해결될 수 있다.
또한, 본 발명의 수전해수소 정제방법은, 전술한 수소 제조 장치를 사용하여,
수전해를 통해 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제a단계; 및
제a단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제a단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제b단계를 수행할 수 있다.
물과 같이 수소를 포함하는 자원으로부터 얻어지는 수소에는 산소 뿐만아니라 불순물이 포함되기 때문에, 사용 이전 단계에서 분리정제할 필요가 있다. 특히, 제1단계에서 수분해 대상은 폐수이며, 전기화학적 처리방법에 의해 난분해성 유기물질도 제거하는 것일 수 있기 때문이다.
분리막을 이용한 수소 분리법은 심냉분리법이나 흡착법 등 다른 수소 분리 방법과 비교하여 에너지를 더 절약할 수 있고, 조작이 간편하고 사용하는 기기의 소형화가 가능하다는 등의 유리한 점을 갖고 있다.
특히, 팔라듐계(palladium based) 금속 분리막은 높은 수소 투과율과 우수한 수소 분리성을 구비하고 있다. 또한, 팔라듐계 금속 분리막을 이용한 수소 분리막은 연료전지나 수소를 소비하는 다른 프로세스를 위하여 유용하게 순수한 수소를 제조할 수 있고, 대상제품의 수량을 향상시키기 위하여 수소화나 탈수소화 반응 프로세스에 사용할 수 있는 등 다양하게 응용될 수 있다.
팔라듐계 금속 분리막에서 수소가 분리되는 과정을 살펴보면, 수소분자(H2)가 Pd 금속막 표면으로 확산된 후 수소분자는 Pd 금속막 표면에 흡착하게 되고, 흡착된 수소분자가 해리되고, Pd 금속막 격자(lattice) 내에서 해리된 수소 원자(H)가 확산된 후, 수소 분자가 재생되고, 수소분자가 재생되면 Pd 금속막 표면에서 수소분자가 탈착되어, 수소분자가 확산되는 과정을 거쳐서 수소가 분리된다. 통상적으로, 수소 분리막의 작동 온도는 300 ~ 500℃이다.
팔라듐계 금속 분리막에서 수소 투과량은 원료측의 수소 분압 P1과 정제측의 수소 분압 P2와 팔라듐계 금속 분리막의 막두께 t와 이 금속 분리막의 막 면적이 주된 요소가 된다. 즉, 단위 면적당 수소 투과량 Q는 
Figure PCTKR2020015906-appb-I000001
의 관계에 있다. 상기 식 중 A는 금속막의 종류나 조작 조건 등에 따라 달라진다.
상기 식에서 알 수 있듯이, 수소 투과막의 성능을 향상시키기 위해, 즉 단위 면적당 수소 투과량을 향상시키기 위해서는, I. 합금 종류에 따라 상이한 정수 A가 큰 합금을 개발하거나, Ⅱ. 수소 투과막의 막 두께를 얇게 하거나, Ⅲ. 수소의 분압 차이를 크게 하는 것을 생각할 수 있다. 팔라듐 합금을 베이스로 한 수소 투과막에서는, 주로 막 두께를 얇게 하여 수소 투과능을 향상시키는 방법이 고려되고 있다. 그러나, 막 두께를 얇게 하면 기계 강도가 약해진다. 수소 투과량은 수소의 분압차의 영향을 받기 때문에 박막화와 강도의 양립이 요구된다. 그 때문에, 막 두께가 얇은 팔라듐 합금은 기계 강도를 보충하기 위해 다공성 지지체를 조합하여 사용된다. 모듈의 용이성 및 얇은 분리층 형성을 위하여 팔라듐계 금속 분리막은 다공성 지지체를 사용하는 것이 바람직하다. 예컨대, 다공성 지지체; 상기 다공성 지지체의 일면 또는 양면에 위치한 수소 분리막을 구비한 형태일 수도 있다.
다공성 지지체는 원통형/튜브형 또는 평판형일 수 있다. 원통형 또는 튜브형 다공성 지지체를 사용하여 제작된 수소분리막은 도 1에 예시된 쉘-앤-튜브형 수소 분리막 반응기를 제공하여, 제3단계는 쉘-앤-튜브형 수소 분리막 반응기에서 수행될 수 있다.
다공성 지지체로는 금속 또는 세라믹 소재가 사용될 수 있다. 다공성 금속의 소재로는 스테인리스 스틸, 니켈, 인코넬 등이 사용될 수 있다. 다공성 세라믹의 소재로는 Al, Ti, Zr, Si 등을 기반으로 한 산화물이 사용될 수 있다.
다공성 지지체의 표면 조도를 조절하기 위해서 표면 처리 공정을 수행할 수 있다. 표면 처리 방법으로는 CMP(Chemical Mechanical Polishing)와 같은 연마 공정이나, 플라즈마를 이용한 공정이 사용될 수 있다.
다공성 지지체에 형성된 표면 기공의 크기가 너무 크거나 너무 작지 않은 것이 바람직하다. 예컨대, 다공성 지지체의 표면기공의 크기가 0.001 ㎛ 미만인 경우에는 다공성 지지체 자체의 투과도가 낮아 다공성 지지체로서의 기능을 수행하기 어렵다. 반면에 표면 기공의 크기가 10 ㎛를 초과하는 경우에는 기공 직경이 너무 커져서 수소분리층의 두께를 두껍게 형성해야 하는 단점이 있다. 따라서 다공성 지지체의 표면 기공의 크기는 0.001 내지 10 ㎛를 갖도록 형성하는 것이 바람직하다.
선택적으로, 다공성 금속 지지체 위에 형성될 수 있는 다공성 차폐층은 분리막층 구성물질인 팔라듐과 금속지지체 사이에 발생할 수 있는 확산을 방지하기 위함으로 기공/간극을 통해 수소를 통과시킬 수 있는 것으로, 세라믹 소재로 형성될 수 있다. 차폐층의 비제한적인 예로는 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나를 포함하는 산화물계, 질화물계, 카바이드계 세라믹이 있다. 바람직하게는 TiOy, ZrOy, Al2Oz (1<y≤2 이거나 2<z≤3) 등의 산화물계 세라믹 소재가 있다. 상기 차폐층은 금속산화물 분말을 건식 스프레이방법, 습식스프레이방법 혹은 졸겔법에 의해 형성할 수 있다.
차폐층은 수소 분리막의 제조 조건 및 사용 조건을 고려하여 두께가 결정될 수 있다. 예컨대 400℃의 사용 조건을 고려할 때, 차폐층으로 TiOy을 형성하는 경우 100 내지 200nm의 두께로 형성될 수 있다. 차폐층으로 ZrOy을 형성하는 경우 500 내지 800nm의 두께로 형성될 수 있다.
한편, 지지체 표면에 확산방지층을 구성하기 위하여 대량생산이 용이한 스프레이 코팅법을 도입하는 것이 바람직하다. 스프레이 코팅법은 차폐층 코팅에서 발생할 수 있는 지지체 defect 형성문제를 해결할 수 있으며, 대면적 코팅이 용이하다.
지지체 외부 또는 내부에 수소 분리용 촉매층으로서 치밀한 팔라듐 함유층 코팅하는 것이 바람직하다.
본 발명에서  Pd 함유층은 팔라듐 또는 팔라듐 합금일 수 있다.  팔라듐 합금은 Pd와, Au, Ag, Cu, Ni, Ru 및 Rh로 구성된 군에서 선택된 하나 이상의 금속과의 합금일 수 있다. Pd 함유층이 Pd/Cu, Pd/Au, Pd/Ag, Pd/Pt 등과 같은 층을 다층구조로 더 포함하는 것도 본 발명의 범주에 속한다.
Pd 함유층은 0.1~20 ㎛ 두께로 형성할 수 있다. 두께가 0.1 ㎛ 미만이면 수소 투과율이 더욱 향상되기 때문에 좋겠지만, 금속 분리막을 조밀하게 제조하기 힘들고 이로 인해 금속 분리막의 수명이 짧아지는 문제점을 안고 있다. 두께를 20 ㎛ 초과로 형성할 경우, 조밀하게 형성할 수 있는 반면에 수소 투과율이 상대적으로 떨어질 수 있다. 또한 고가인 팔라듐을 이용하여 20 ㎛ 초과의 두껍게 형성된 금속 분리막으로 인해 전체적인 수소 분리막의 제조 비용이 증가하는 문제점을 안고 있다. 바람직하게는 금속 분리막의 수명 특성, 수소 투과율 등을 고려할 때, 1~10㎛의 두께로 형성하는 것이 바람직하다.
분리막을 통한 수소투과도 특성상 얇을수록 높은 수소투과도를 나타내므로 금속분리막으로써 Pd 함유층의 두께는 가능한 얇은 것이 바람직하다. 스퍼터링, 폴리싱과 도금용액을 사용하는 무전해도금법을 통해 Pd 함유층을 제조함으로써 층 두께를 얇게 하면서도 박막의 기계적강도는 높일 뿐 아니라 핀홀과 같은 결점이 없는 금속치밀막을 형성할 수 있다.
일반적인 스퍼터링법, 일반적인 폴리싱법 및 일반적인 무전해도금법을 사용하여, Pd 또는 Pd 합금으로 된 층을 형성할 수 있으나, 각 스퍼터링법, 폴리싱법 및 무전해도금법의 사용조건 및 재료들에 제한되지 않는다.
분리막 코팅방법 중 무전해도금법은 지지체의 형상에 구애받지 않고 대면적 코팅이 가능한 기술이다. 카본에 의한 분리막 오염이 문제될 수 있으므로, 카본소스를 완전히 배재하는 것이 바람직하다. 한편, 상온에서 도금을 진행하여 고온내구성이 우수할 뿐만 아니라 시설이 간단하고 제조공정이 매우 경제적이다.
팔라듐계 수소분리막을 사용하는 제3단계는 100~500℃에서 작동할 수 있다. 본 발명에서, 제1단계에서 생산된 수소 대비 제3단계를 통해 회수된 수소회수율은 80~90%일 수 있다. 제3단계에서 99% 이상의 고순도 수소로 정제할 수 있다.
한편, 물을 분해하여 수소를 생산하는 제1단계 및 물 분해 수소 생산 장치와 관련하여, 저온 수전해기술로서, 고분자 전해질 전해법(Polymer Electrolyte Membrane Electrolysis, PEM Electrolysis)은 양극, 음극 및 생성된 수소와 산소 가스 분리와 수소이온이 양극에서 음극으로 이동 가능하게 하는 이온 교환막(전해질 기능)으로 구성되어 있다. PEM 전해는 PEM 연료전지와 유사하게 귀금속 촉매(Pt, Id, Ru)와 고분자 고체 전해질로 불소계 이오노머(fluorocarbon-based ionomer)를 사용한다. PEM 전해에서 각각의 전극 반응은 하기와 같다.
양극(anode) : 2H2O → 4H+ + 4e- + O2
음극(cathode) : 4H+ + 4e- → 2H2
PEM 전해의 장점으로는 고전류 밀도의 운전이 가능하여 장치가 콤팩트하고, 전해셀 및 시스템의 구조가 단순하며, 부식성이 없어 장수명을 확보할 수 있다.
PEM 전해의 핵심 기술은 물 전기분해시 발생하는 전해 전압 손실(과전압)의 50% 이상을 차지하고, 수전해 장치의 내구성에 직접적 영향을 주는 산소 발생 양극 촉매 관련 기술이다. PEM 전해에 사용되는 전극촉매는 이온교환막이 pH 2~4의 강산 전해질이기 때문에 내산성의 백금 계열 촉매가 사용된다. 산소발생 촉매는 이리듐 금속이 가장 우수한 내구성을 갖지만, 루테늄 금속이 가장 우수한 효율을 갖고 있다. 수소관련 촉매로는 금과 팔라듐, 백금과 비스무스 합금 전극촉매 등이 있다. 수전해 장치의 제조비 저감을 목적으로 불소계 PEM 대신 탄화수소계 PEM 개발되고 있다.
재생에너지와의 연계방법은 재생에너지와 수전해 시스템을 연결하는 방법으로 직접연결, 재생전원을 수전해에 적합하게 전력을 조절, 최적화하여 연결하는 방법 등이 있다.
또한, 물을 분해하여 수소를 생산하는 제1단계 및 물 분해 수소 생산 장치와 관련하여, 고온 수전해의 전형적인 기술은 700~1000℃에서 작동하는 고체산화물 연료전지(SOFC) 기술을 응용한 것으로 고체산화물 전기분해셀(Solid Oxide Electrolyzer Cell - SOEC)이라 불린다. 즉 안정화 지르고니아(Zr) 등을 산소이온 전도체의 전해질로 사용하여 750℃이상의 고온에서 수증기를 전해하는 방법으로 전극반응은 다음과 같다.
음극(cathode) : H2O + 2e- → H2 + O2-
양극(anode) : O2- → 1/2 O2 + 2e-
고온 수전해의 주요구성요소는 치밀한 이온 전도성 전해질과 두 개의 다공성 전극으로 구성되며, 그 기초적인 작동 기전은 도 2에 보여지는 바와 같이 고온의 물이 다공성 cathode에 유입되고 전기적 전위차가 양극에서 발생할 대 물 분자는 반응하여 수소와 산소로 분리된다.
그 후로 수소가스는 cathode 표면으로 확산하고 산소이온은 전해질을 통해 anode로 이동한다. 이동된 산소이온은 산화하여 산소로 되어 anode으로 나온다.
작동온도가 증가함에 따라 요구되는 전기에너지의 양이 감소하고 열에너지는 증가하게 되어, 전체에너지는 작동온도에 둔감하게 된다. 따라서, 고온에서의 작동은 장점이어서 산업적인 폐열을 이용하여 수소를 생산하는데 많은 기회를 갖는다.
고온 수전해의 구성 요소 중 가장 중요한 전해질은 화학적으로 안정해야 하며 낮은 전자적 전도도를 갖는 반면 좋은 이온전도도를 가져야 한다. 또한 전해질은 수소와 산소가 다시 결합하는 것을 막기 위하여 가스의 침투를 막도록 치밀해야 하며, 저항과 전압을 최소화하도록 가능하면 얇아야 한다.
SOEC에 사용 가능한 전해질 소재로서는 YSZ(yttria stabilized sirconia), ScSZ(Scandia stabilized zirconia)와 같은 ZrO2계 전해질과 GDC(Gd - doped ceria), YDC(Y-doped ceria) 와 같은 CeO2계 전해질, LSGM((La,Sr)(Ga, Mg)O3) 와 같은 LaGaO3계 전해질 등이 대표적이다. ZrO2와 CeO2는 flurotie구조로서 산소이온이 octahedral를 이루는 가운데 구조적 void에 의해 산소이온의 확산이 비교적 빠르다. 특히, CeO2는 높은 이온전도도와 양극물질과의 화학적 안정성이 우수한 반면에 고온 환원분위기에서 전자전도도가 높아 전해질로 사용하기 어려운 단점이 있다.
전극은 산화/환원 조건에서 화학적으로 안정해야 하며 전자적 전도도가 높아야 한다. 또한, 전극표면과 전극-전해질 계면간의 가스 이동을 유지하고 충분한 전해질-전극-가스의 삼상경계를 제공하도록 전극은 적당한 기공율과 기공크기를 가져야 한다.
수전해 스택을 제조하기 위하여 중요한 핵심기술의 하나는 연결재 개발이다. HTES셀에서 연결재는 스택내부에서 셀과 이웃하는 셀을 전기적으로 연결시켜 주고 anode와 이웃하는 cathode들 간의 가스 이동을 물리적을 차단하는 역할을 한다. 이러한 연결재는 높은 전기 전도도 및 열전도도를 가져야 하며 고온의 산화 및 환원분위기에서 화학적으로 안정해야 한다. 또한 높은 기계적 강도를 가져야 하고, 다른 구성요소와 열팽창률이 비슷해야 하며, 서로 반응을 해서도 안된다.
고온 수전해용 고체산화물 전해셀(Solid Oxide Electrolysis Cell)은 고체산화물 연료전지와 같은 구조의 셀과 스택 구조를 갖는다. 고체산화물 연료전지(SOFC)의 구조는 크게 평판형과 튜브형이 있으며, 튜브형은 다시 원통형과, 셀들의 연결(stacking)이 용이하도록 납작하게 만들 평관형으로 분류된다. SOFC 셀의 출력밀도를 높이기 위해서 전극 지지체 위에 전해질을 얇게 막으로 입힘으로써 셀의 저항을 줄이는 것이 평판형과 튜브형 셀을 제작하기 위해 일반적으로 사용하는 방법이다.
평판형 SOFC 셀의 경우, 금속이나 세라믹 연결판을 이용하기 때문에 적층과 집전이 용이하나 대면적의 평판형 셀을 만들기 어렵고 셀 상하의 연료와 공기의 흐름을 분리하기 위한 밀봉재가 별도로 필요한 단점이 있다. 반면, 튜브형 셀은 기계적 강도가 우수하며 튜브의 양끝 또는 한쪽 끝만을 밀봉하기 때문에 평판형 셀에 비해 밀봉부위가 작아 내부와 외부의 가스 흐름을 제어하기 쉽다. 튜브형 SOFC 셀에 유체통로를 연결하기 위해서는 금속 매니폴드와 셀을 브레이징하여 연결하거나 혹은 유리질을 포함하는 세라믹 페이스트를 바르는 방법이 사용된다.
제1단계에서 수분해 대상은 폐수일 수 있으며, 전기화학적 처리방법에 의해 난분해성 유기물질도 제거가능하다.
물을 분해하여 수소를 생산하는 제1단계 및 물 분해 수소 생산 장치와 관련하여, 전기분해법은 기존의 시설비, 운영비, 고급인력 소요 및 유지관리가 어려운 처리방법과 달리 고농도 난분해성 폐수처리 시 정량적 제어가 용이하여 처리효율을 증대할 수 있다. 나아가, 정류기 일체형 모듈 전기분해 반응기를 기반으로 하여 전기화학적 방법과 결합하면, 난분해성갋고농도갋고독성의 폐수처리도 가능하다.
전기화학적 수처리 방법은 생물독성, 온도, 용존산소 등 외부 환경에 영향을 받지 않고 오직 전자의 이동에 의한 산화 및 환원에 의하여 질소를 처리할 수 있다. 전기화학적 처리는 난분해성 물질, 질소 화합물 및 색도와 같은 유기물들도 이산화탄소로 산화시킬 수 있다.
전기화학적 산화 및 환원 반응을 이용하여 폐수처리에 사용되는 전극은 불용성 촉매전극(Dimensionally Stable Electrode)을 주로 사용한다. 불용성 촉매 전극은 표면 반응이기 때문에 촉매 코팅물질의 균일성과 치밀도를 이루어 지지체로의 산소침투를 최소화하는 것이 바람직하다.
전기화학적 난분해성 폐수 처리용 양극으로, 메탄올 산화분해 활성이 있는 Iridium계 금속산화물 촉매를 사용할 수 있다.
Iridium계 산화물 촉매전극은 지지체로 titanium plate에 복합 금속산화물을 열분해법(Thermal Decomposition)으로 제조할 수 있다. 이때, Iridium계 금속산화물 촉매는 Ruthenium 및/또는 Platinum 성분을 추가로 더 포함할 수 있다.
또 다른 제조 방법으로 전기도금법(Electrodeposition)을 이용한 Iridium 산화물 촉매 전극을 제조할 수 있다.
또한, 폐수 중 암모니아성 질소처리에 선택성이 높은 불용성촉매전극(양극)을 사용할 수 있다. 상기 촉매는 active metal로는 Ir oxide, romoter로 Sn oxide와 Ta oxide를 포함할 수 있다. 예컨대, Support metal로는 Ti를 substrate로 사용하여 Ir-Sn-Ta 용액 조건에서 Thermal decomposition방법에 의하여 제조할 수 있다.
폐수처리를 위한 전극셀을 구비한 전기화학반응조는 전극간격을 일정하게 유지할 수 있으며 회분식 및 연속식 운전을 수행할 수 있다.
전기화학적 산화공정에 의한 유기물의 처리효율은 전류효율(current efficiency, CE)로서 표현할 수 있는데, 전류효율은 다음 식에 의하여 계산된다.
Figure PCTKR2020015906-appb-I000002
여기서, Co와 Cf는 유입수와 유출수의 농도(mg/L), Vw는 반응기내의 용량(L), I는 전류의 세기(A), t는 체류시간(sec) 및 F는 패러데이 상수(96,500coulombs/mol)이다.
고효율 불용성 전극(DSA)를 적용한 난분해성 폐수용 전기분해 반응기는 TN(NH3-N) 저감, COD 제거, 색도 제거 살균에 특화된 설비일 수 있다.
전기분해를 통한 산화, 환원, 흡착반응에 의해 난분해성 COD 유기물을 처리하고 전극에서의 방전이 콜로이드 또는 플록의 전위를 저하시켜 응집함으로써 유해 중금속 처리가 가능하며, 색도 유발물질을 산화 및 환원, 응집을 통해 제거할 수 있다. 전기분해된 전자에 의해 질소와 수소로 전환하여 질소를 제거하고 인산염으로 전환되는 응집반응을 통해 인을 제거할 수 있다.
본 발명에서, 폐수의 비제한적인 예로는 염색폐수, 제철폐수, 반도체폐수, 석유화학폐수, RO농축수, 고농도 질소폐수, 축산폐수/침출수, 발전폐수 등이 있다.
나아가, 산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 수소 분리막 반응기를 통해 해결되는 본 발명에 따른 에너지 발생장치는,
물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치;
물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기; 및
연료전지;를 포함한다.
여기서, 물 분해 수소 생산 장치 및 수소 분리막 반응기에 대한 설명은 전술한 바와 같다.
특히, 수소 분리막 반응기는 쉘-앤-튜브형 수소 분리막 반응기일 수 있다.
일구체예에서, 원통형 또는 튜브형 수소분리막은 투과한 수소 농축 가스내 CO를 제거하는 하기 반응식 1의 메탄화 촉매 활성이 있는 것일 수 있다.
[반응식 1]
CO+ 3H2 ↔ CH4 + H2O ΔH=-206 kJ/mol
본 발명의 일구체예에 따라 팔라듐계 치밀막에서의 수소투과 분리막 공정 이후 수소가 투과한 permeate-side에 위치한 다공성 지지체가 메탄화 촉매활성이 있는 다공성 니켈 지지체일 수 있고, 또는 다공성 지지체의 기공이 메탄화 촉매로 표면개질될 수 있어서, 상기 반응식 1의 메탄화 반응이 연계되면, 팔라듐계 치밀막 결함(defect)으로 투과한 CO 농도를 20ppm 이하로 제어 가능하여 별도의 정제장치 없이도 CO 가 촉매독으로 작용하는 촉매를 사용하는 PEMFC 연료전지의 연료로 사용가능하다.
본 발명에 따른 수소 분리막 시스템은, 물을 분해하여 생산된 수소 이용시 보다 안전하게 운전하기 위해, 질소와 같은 불활성가스를 분리막 반응기 내부로 주입하면서 수소를 정제하는 방식으로 시스템을 구성하여 분리막을 통과하지 않은 잔류가스의 수소농도를 수소폭발농도 보다 현격히 낮게 시스템을 운전하면서 잔류가스를 배출할 수 있어 폭발의 위험성을 거의 없앨 수 있다.
또한, 본 발명에 따른 전기분해장치에 연결되어 있는 수소 정제 시스템은 폐수처리과정에서 유해 배가스 및 슬러지를 포함한 폐기물발생을 근본적으로 감소시키면서 안정적이고 효율적으로 폐수처리를 수행할 수 있다.
도 1은 본 발명의 일구체예에 따라, 물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단이 구비된, 쉘-앤-튜브형 수소 분리막 반응기 모식도이다.
도 2는 SOEC 수소 생산 개념도이다.
도 3은 폐수처리를 위한 전극셀 및 전기화학반응조를 구비한, pilot scale의 하수방류수 처리용 전기분해장치에 도 1의 수소 분리막 반응기가 연결되어 있는 수소 정제 시스템의 모식도이다.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.
실시예 1: 난분해성 TOC 제거용 수전해 시스템
2013년 환경 정책 개정에 따라 총유기탄소(TOC) 항목이 수질 및 수생태계보전에 관한 법률에 도입되었으며, 이러한 정책시행에 따라 공공하수처리시설에서의 TOC에 대한 수질관리의 필요성이 대두되었다. 본 실시예는 도 3의 실험실 규모 전기분해공정에서 전기화학적 반응을 이용하여 하수방류수 내 TOC 제거특성을 살펴보았다.
실험실 규모의 전기분해공정에서의 실험 결과를 반응표면법에 적용하여 방류수 내 TOC 제거 특성분석을 실시한 결과, 중심합성에 사용된 독립변수로는 전해공정의 주요 운전인자인 전극간격, 전류밀도, 전해질의 농도를 선정하였으며, 정속변수로는 TOC 제거효율이다. 전해공정에서 최적화 조건은 전극간격 50mm, 전류밀도 10mA/cm2, 전해질의 농도 0.1M로 조사되었다. 통계학적 결과를 바탕으로 독립변수는 전극간격 > 전류밀도 > 전해질농도의 순으로 작아지는 것으로 분석되었다.
수소폭발농도는 4% 내지 74%이나, 수전해 반응시 전극분리 이전 수소농도는 66%로 폭발의 위험성이 있었다.
실시예 2: 난분해성 TOC 제거용 수전해 시스템의 부생가스에서 수소정제
고도폐수처리용 수전해 시스템에서 발생하는 부생가스인 산소와 수소를 분리하기 위한 처리장치로 팔라듐 분리막을 이용한 쉘-앤-튜브형 수소 분리막 반응기에서 수소정제기의 적용성 평가를 수행하였다.
직경 1inch, 길이 45cm의 팔라듐 분리막 3개가 적용된 도 1의 쉘-앤-튜브형 수소정제 시스템을 사용하여, 수전해 부생가스 중의 수소정제반응을 수행하였다.
도 3에 도시된 pilot scale의 하수방류수 처리용 전기분해장치에서 발생하는 부생가스에 대하여 수소정제 성능평가를 진행한 결과, 수전해 반응으로 생성된 부생가스의 수소농도는 66%이었으나, 폭발위험없이 팔라듐 분리막을 적용한 수소정제 시스템으로 순도 99% 이상으로 150L/min으로 고순도의 수소를 생산하였다. 이때 배출되는 잔류가스의 수소농도는 1% 이하였다.

Claims (16)

  1. 물을 분해하여 수소를 생산하는 제1단계;
    제1단계에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제2단계; 및
    제2단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제2단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제3단계
    를 포함하는 수소 제조 방법.
  2. 제1항에 있어서, 제1단계는 물을 전기분해하는 것이 특징인 수소 제조 방법.
  3. 제2항에 있어서, 제1단계에서 수전해를 위한 전기에너지는 재생에너지 또는 심야 전력으로 공급하는 것이 특징인 수소 제조 방법.
  4. 제1항에 있어서, 제1단계에서 수분해 대상은 폐수이며, 전기화학적 처리방법에 의해 난분해성 유기물질도 제거하는 것이 특징인 수소 제조 방법.
  5. 제1항에 있어서, 제3단계는 쉘-앤-튜브형 수소 분리막 반응기에서 수행되는 것이 특징인 수소 제조 방법.
  6. 제1항에 있어서, 제1단계에서 생산된 수소 대비 제3단계를 통해 회수된 수소회수율은 80~90% 인 것이 특징인 수소 제조 방법.
  7. 제1항에 있어서, 제3단계에서 99% 이상의 고순도 수소로 정제하는 것이 특징인 수소 제조 방법.
  8. 제1항에 있어서, 제3단계는 100~500℃에서 작동하는 것이 특징인 수소 제조 방법.
  9. 제1항에 있어서, 제1단계는 수전해법, 광촉매를 이용한 광화학적 방법, 미생물을 이용한 생물학적 방법, 및/또는 태양열화학 및 전기 분해 방법을 이용하여 수행하는 것이 특징인 수소 제조 방법.
  10. 제2항에 있어서, 제1단계는 알칼라인 수전해, 고체고분자전해질(PEM) 수전해, 또는 고체산화물을 이용한 고온수증기 전해기술을 이용하여 수행하는 것이 특징인 수소 제조 방법.
  11. 수전해를 통해 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 제a단계; 및
    제a단계의 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 제a단계에서 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 제b단계
    를 포함하는 수전해수소 정제방법.
  12. 물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치; 및
    물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기; 를 포함하되,
    산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 상기 수소 분리막 반응기를 통해 해결되는 것이 특징인 수소 제조 장치.
  13. 제12항에 있어서, 물 분해 수소 생산 장치는 수전해 장치인 것이 특징인 수소 제조 장치.
  14. 제12항에 있어서, 물 분해 수소 생산 장치는 전기분해공정에서 전기화학적 반응을 통해 유기물을 제거하는 난분해성 폐수용 전기분해장치인 것이 특징인 수소 제조 장치.
  15. 제12항에 있어서, 제1항 내지 제10항 중 어느 한 항에 기재된 수소 제조 방법을 수행하는 것이 특징인 수소 제조 장치.
  16. 물을 분해하여 수소를 생산하는 물 분해 수소 생산 장치;
    물 분해 수소 생산 장치에서 생산된 수소 및 산소 함유 부생가스에 불활성가스를 주입하는 수단을 구비하고, 수소 및 산소 함유 혼합가스를 팔라듐계 수소분리막으로 분리하여 고순도 수소로 정제하되, 분리막을 통과하지 않은 잔류가스의 수소농도를 주입한 불활성가스 조절을 통해 수소폭발농도 보다 낮게 운용하는 수소 분리막 반응기; 및
    연료전지;를 포함하되,
    산소가 포함된 수소를 사용하여 압축할 경우 산소분자와 수소분자 간의 마찰이 증가하여 폭발위험이 있는 문제점이 상기 수소 분리막 반응기를 통해 해결되는 것이 특징인 에너지 발생장치.
PCT/KR2020/015906 2019-11-13 2020-11-12 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법 WO2021096256A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190145138A KR20210058106A (ko) 2019-11-13 2019-11-13 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법
KR10-2019-0145138 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021096256A1 true WO2021096256A1 (ko) 2021-05-20

Family

ID=75912224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015906 WO2021096256A1 (ko) 2019-11-13 2020-11-12 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법

Country Status (2)

Country Link
KR (1) KR20210058106A (ko)
WO (1) WO2021096256A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195686A (ja) * 1997-01-07 1998-07-28 Permelec Electrode Ltd 水素化方法及び電解槽
JP2009228044A (ja) * 2008-03-21 2009-10-08 Kurita Water Ind Ltd 水素含有ガスの処理方法
KR20130041415A (ko) * 2011-10-17 2013-04-25 한국세라믹기술원 관형의 수소분리막모듈 및 그 제조방법
KR101314238B1 (ko) * 2013-01-11 2013-10-02 주식회사 엑스에프씨 원자력 발전 설비, 수전해 설비 및 연료전지 발전 설비와 연계된 고온증기 전기분해 장치를 이용한 수소 생산 시스템
KR20160047386A (ko) * 2014-10-22 2016-05-02 한국에너지기술연구원 쉘-앤-튜브형 천연가스 개질용 반응기 및 이를 이용한 합성가스 또는 수소가스의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195686A (ja) * 1997-01-07 1998-07-28 Permelec Electrode Ltd 水素化方法及び電解槽
JP2009228044A (ja) * 2008-03-21 2009-10-08 Kurita Water Ind Ltd 水素含有ガスの処理方法
KR20130041415A (ko) * 2011-10-17 2013-04-25 한국세라믹기술원 관형의 수소분리막모듈 및 그 제조방법
KR101314238B1 (ko) * 2013-01-11 2013-10-02 주식회사 엑스에프씨 원자력 발전 설비, 수전해 설비 및 연료전지 발전 설비와 연계된 고온증기 전기분해 장치를 이용한 수소 생산 시스템
KR20160047386A (ko) * 2014-10-22 2016-05-02 한국에너지기술연구원 쉘-앤-튜브형 천연가스 개질용 반응기 및 이를 이용한 합성가스 또는 수소가스의 제조방법

Also Published As

Publication number Publication date
KR20210058106A (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
KR101935075B1 (ko) 전기화학 전지를 이용하는 효율적인 폐수 처리
JP6728226B2 (ja) 二酸化炭素および硫化水素を共処理する方法
US7670475B2 (en) Fluorine separation and generation device
JP2002524234A (ja) 電気化学ガス清浄化装置
WO2005078160A1 (ja) 水素の製造方法及び装置
JP2018519414A5 (ko)
WO2017023029A1 (ko) 기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 방법
WO2018029994A1 (ja) 水素処理装置
US20080217176A1 (en) Portable oxygen maintenance and regulation concentrator apparatus
WO2021096256A1 (ko) 팔라듐이 포함된 수소분리막을 이용한 수전해수소 정제방법
AU2011217490B2 (en) Method and system for purification of gas streams for solid oxide cells
KR101459403B1 (ko) 막 전극 복합체, 연료 전지, 가스 제해 장치 및, 막 전극 복합체의 제조 방법
KR102470199B1 (ko) 물 전기분해를 이용한 수소 생산 시스템에서의 수소 정제장치
JP4416503B2 (ja) 燃料電池への水素の供給装置及び方法並びに車両の電気駆動のための燃料電池の使用
US20060118409A1 (en) Chemical reaction system of electrochemical cell type, method for activation thereof and method for reaction
JPH09316675A (ja) 高純度酸素の製法および電解セル
WO2022181875A1 (ko) 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치
WO2024090780A1 (ko) 이산화탄소 전환시스템
WO2024076112A1 (ko) 전기분해 장치 및 이의 작동 방법
WO2022114638A1 (ko) 과산화수소를 이용한 저전압 수소 발생 시스템
JP2004154657A (ja) 酸化還元反応器による反応方法
CN115181983A (zh) 电化学纯化堆、电化学纯化装置及含杂质气体的纯化方法
CN116083938A (zh) 一种全分解硫化氢制取氢气和硫磺的高温电化学方法及装置
CN115991456A (zh) 一种电化学纯化系统及含杂质气体的纯化方法
JP2012028088A (ja) 膜電極複合体、燃料電池、ガス除害装置、および膜電極複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: OTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20888441

Country of ref document: EP

Kind code of ref document: A1