WO2021095859A1 - 無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2021095859A1
WO2021095859A1 PCT/JP2020/042471 JP2020042471W WO2021095859A1 WO 2021095859 A1 WO2021095859 A1 WO 2021095859A1 JP 2020042471 W JP2020042471 W JP 2020042471W WO 2021095859 A1 WO2021095859 A1 WO 2021095859A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
temperature
oriented electrical
annealing
electrical steel
Prior art date
Application number
PCT/JP2020/042471
Other languages
English (en)
French (fr)
Inventor
鉄州 村川
藤村 浩志
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/641,628 priority Critical patent/US20220396846A1/en
Priority to BR112022000171A priority patent/BR112022000171A2/pt
Priority to KR1020227007397A priority patent/KR20220041205A/ko
Priority to JP2021556183A priority patent/JP7211532B2/ja
Priority to CN202080061971.0A priority patent/CN114341383B/zh
Priority to EP20888264.7A priority patent/EP4060062A4/en
Publication of WO2021095859A1 publication Critical patent/WO2021095859A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for manufacturing a non-oriented electrical steel sheet.
  • This application claims priority under Japanese Patent Application No. 2019-206630 filed in Japan on November 15, 2019 and Japanese Patent Application No. 2019-206812 filed in Japan on November 15, 2019. , The contents are used here.
  • Non-oriented electrical steel sheets are used, for example, in the iron core of motors.
  • the non-oriented electrical steel sheet has excellent magnetic properties in the average in all directions parallel to the plate surface (hereinafter, may be referred to as "overall circumference average in the plate surface (omnidirectional average)"). For example, it is required to have low iron loss and high magnetic flux density.
  • an object of the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet capable of obtaining excellent magnetic characteristics with an all-around average (omnidirectional average) in the plate surface.
  • the non-oriented electrical steel sheet is preferably a material that is easy to process when processing the iron core of the motor. Therefore, it is an object of the present invention to provide a non-oriented electrical steel sheet which can preferably obtain excellent magnetic properties with an all-around average (omnidirectional average) and has excellent workability.
  • the present inventors have conducted diligent studies to solve the above problems. As a result, the present inventors presuppose the chemical composition of the ⁇ - ⁇ transformation system in the production of the non-directional electromagnetic steel sheet capable of obtaining excellent magnetic properties on the whole circumference average in the plate surface. Overhang recrystallization by refining the crystal structure by transformation from austenite to ferrite during hot rolling, performing the first cold rolling at the desired cumulative rolling ratio, and performing intermediate annealing under the desired conditions. By generating bulging), it is easy to develop ⁇ 100 ⁇ crystal grains that are normally difficult to develop, second cold rolling (skin pass rolling) under desired conditions, and finish annealing or strain relief annealing. It was found that it is important for the ⁇ 100 ⁇ crystal grains to anneal the ⁇ 111 ⁇ crystal grains.
  • the gist of the present invention made based on the above findings is as follows.
  • (1) The method for manufacturing a non-oriented electrical steel sheet according to one aspect of the present invention is based on mass%.
  • C 0.0100% or less, Si: 1.50 to 4.00%, sol. Al: 0.0001 to 1.000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu and Au: 2.50 to 5.00% in total, Sn: 0.000 to 0.400%, Sb: 0.000 to 0.400%, P: 0.000 to 0.400%, and Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd: 0.0000 to 0.0100% in total.
  • Mn content is [Mn]
  • Ni content is [Ni]
  • Co content is [Co]
  • Pt content is [Pt]
  • Pb content is [Pb]
  • Cu content is [Cu].
  • Au content is [Au]
  • Si content is [Si]
  • sol. The Al content is [sol.
  • the final pass of finish rolling during hot rolling is performed in a temperature range of Ar1 temperature or higher.
  • the temperature is maintained in a temperature range lower than Ac1 temperature for 2 hours or less.
  • the strain-removing annealing the temperature is maintained at 600 ° C. or higher and below the Ac1 temperature for 1200 seconds or longer.
  • the steel material is mass%.
  • Sn 0.020 to 0.400%
  • Sb 0.020 to 0.400%
  • P 0.020 to 0.400%
  • Mg Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd: 0.0005 to 0.0100% in total. It may contain one or more selected from the group consisting of.
  • the intermediate annealing may be performed in a temperature range lower than the Ac1 temperature.
  • Both the finish annealing and the strain removing annealing may be performed.
  • a method for manufacturing a non-oriented electrical steel sheet capable of obtaining excellent magnetic characteristics with an all-around average (omnidirectional average) in the plate surface.
  • a non-oriented electrical steel sheet which can obtain excellent magnetic properties with an all-around average (omnidirectional average) and has excellent workability.
  • the steel material used in the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment may be simply referred to as the steel material according to the present embodiment
  • the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment The chemical composition of the non-oriented electrical steel sheet (which may be simply referred to as the non-oriented electrical steel sheet according to the present embodiment) produced by the product will be described.
  • “%” which is a unit of the content of each element contained in non-oriented electrical steel sheets or steel materials, means “mass%” unless otherwise specified.
  • the numerical limit range described below with “ ⁇ ” in between includes the lower limit value and the upper limit value. Numerical values that indicate "less than” or "greater than” do not fall within the numerical range.
  • the non-oriented electrical steel sheet and the steel material according to the present embodiment have a chemical composition capable of causing a ferrite-austenite transformation (hereinafter, ⁇ - ⁇ transformation).
  • ⁇ - ⁇ transformation a chemical composition capable of causing a ferrite-austenite transformation
  • mass% C: 0.0100% or less, Si: 1.50 to 4.00%, sol. Al: 0.0001 to 1.000%, S: 0.0100% or less, N: 0.0100% or less, Mn, Ni, Co, Pt, Pb, Cu and Au: 2.50 to 5.00 in total %, Sn: 0.000 to 0.400%, Sb: 0.000 to 0.400%, P: 0.000 to 0.400%, and Mg, Ca, Sr, Ba, Ce, La, Nd.
  • Pr, Zn and Cd A total of 0.0000 to 0.0100% is contained, and the balance has a chemical composition consisting of Fe and impurities. Furthermore, Mn, Ni, Co, Pt, Pb, Cu, Au, Si and sol. The Al content satisfies a predetermined condition described later.
  • the C content is set to 0.0100% or less.
  • the reduction of the C content also contributes to the uniform improvement of the magnetic characteristics in the all-around average in the plate surface. Therefore, the C content is preferably 0.0060% or less, more preferably 0.0040% or less, and even more preferably 0.0020% or less.
  • the lower limit of the C content is not particularly limited, it is preferably 0.0005% or more in consideration of the cost of decarburization treatment at the time of refining.
  • Si increases electrical resistance to reduce eddy current loss, reduces iron loss of non-oriented electrical steel sheets, and increases yield ratio to improve workability during punching into iron cores. .. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is 1.50% or more.
  • the Si content is preferably 2.00% or more, more preferably 2.50% or more.
  • the Si content exceeds 4.00%, the magnetic flux density of the non-oriented electrical steel sheet decreases, the workability at the time of punching decreases due to the excessive increase in hardness, and cold rolling becomes difficult. To do. Therefore, the Si content is set to 4.00% or less.
  • the Si content is preferably 3.50% or less, more preferably 3.30% or less.
  • sol.Al 0.0001 to 1.000%) sol.
  • Al increases the electrical resistance, reduces the eddy current loss, and reduces the iron loss of the non-oriented electrical steel sheet.
  • sol. Al also contributes to the improvement of the relative magnitude of the magnetic flux density B50 with respect to the saturation magnetic flux density.
  • the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A / m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Al also has a desulfurization promoting effect in steelmaking. Therefore, sol.
  • the Al content is 0.0001% or more. sol.
  • the Al content is preferably 0.005% or more, more preferably more than 0.100%, even more preferably 0.200% or more, still more preferably 0.300% or more.
  • sol. If the Al content exceeds 1.000%, the magnetic flux density of the non-oriented electrical steel sheet is lowered, the yield ratio is lowered, and the workability at the time of punching is lowered. Therefore, sol.
  • the Al content is 1.000% or less.
  • the Al content is preferably 0.500% or less, more preferably 0.400% or less.
  • sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • S is not an essential element to be contained, but is an element contained as an impurity in steel, for example.
  • S inhibits recrystallization and grain growth during annealing due to the precipitation of fine MnS.
  • the iron loss of the non-oriented electrical steel sheet increases and the magnetic flux density decreases. Therefore, the lower the S content, the more preferable.
  • the increase in iron loss and the decrease in magnetic flux density due to the inhibition of recrystallization and grain growth are remarkable when the S content exceeds 0.0100%. Therefore, the S content is set to 0.0100% or less.
  • the S content is preferably 0.0060% or less, more preferably 0.0040% or less.
  • the lower limit of the S content is not particularly limited, it is preferably 0.0003% or more in consideration of the cost of desulfurization treatment at the time of refining.
  • N (N: 0.0100% or less) Similar to C, N deteriorates the magnetic properties of the non-oriented electrical steel sheet. Therefore, the lower the N content, the more preferable. Therefore, the N content is 0.0100% or less.
  • the N content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • the lower limit of the N content is not particularly limited, it is preferably 0.0010% or more in consideration of the cost of denitrification treatment at the time of refining.
  • Mn, Ni, Co, Pt, Pb, Cu and Au are elements necessary for causing ⁇ - ⁇ transformation, at least one of these elements is contained in an amount of 2.50% or more. It is not necessary to contain all of these elements, and any one of them may have a content of 2.50% or more. The total content of these elements is preferably 3.00% or more. On the other hand, if the total content of these elements exceeds 5.00%, the cost becomes high and the magnetic flux density of the non-oriented electrical steel sheet may decrease. Therefore, the total content of these elements should be 5.00% or less. The total content of these elements is preferably 4.50% or less.
  • the total of Mn, Ni, Co, Pt, Pb, Cu and Au can be obtained by calculating the total content of Mn, Ni, Co, Pt, Pb, Cu and Au.
  • the non-oriented electrical steel sheet and the steel material according to the present embodiment have a chemical composition that further satisfies the following conditions as conditions under which ⁇ - ⁇ transformation can occur. That is, the Mn content (mass%) is [Mn], the Ni content (mass%) is [Ni], the Co content (mass%) is [Co], and the Pt content (mass%) is [Pt].
  • Pb content (mass%) is [Pb]
  • Cu content (mass%) is [Cu]
  • Au content (mass%) is [Au]
  • Si content (mass%) is [Si]
  • sol sol.
  • the Al content (% by mass) was changed to [sol. When [Al] is set, the following equation (1) is satisfied. ([Mn] + [Ni] + [Co] + [Pt] + [Pb] + [Cu] + [Au])-([Si] + [sol.Al])> 0.00% ... ( 1)
  • the left side of Eq. (1) is set to more than 0.00%.
  • the left side of the equation (1) is preferably 0.30% or more, more preferably 0.50% or more.
  • the upper limit of the left side of the equation (1) is not particularly limited, but may be 2.00% or less, or 1.00% or less.
  • the balance of the chemical composition of the non-oriented electrical steel sheet and the steel material according to this embodiment is composed of Fe and impurities.
  • Impurities include those contained in raw materials such as ore and scrap, those contained in the manufacturing process, or adversely affect the characteristics of non-oriented electrical steel sheets manufactured by the method for manufacturing grain-oriented electrical steel sheets according to the present embodiment.
  • An example is one that is permissible to the extent that it does not reach.
  • the non-oriented electrical steel sheet and steel material according to this embodiment may contain the following elements as optional elements in addition to a part of Fe.
  • the lower limit of the content when the following optional elements are not contained is 0%.
  • each arbitrary element will be described in detail.
  • Sn and Sb improve the texture after cold rolling and recrystallization, thereby improving the magnetic flux density of the non-oriented electrical steel sheet. Therefore, these elements may be contained as needed. In order to surely obtain the above effect, it is preferable that the content of even one of Sn and Sb is 0.020% or more. On the other hand, if Sn and Sb are excessively contained, the steel becomes embrittlement. Therefore, both the Sn content and the Sb content are set to 0.400% or less.
  • P may be contained in order to secure the hardness of the steel sheet after recrystallization.
  • the P content is preferably 0.020% or more.
  • the P content is set to 0.400% or less.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd react with S in the molten steel to form sulfides and / or acid sulfides during casting of the molten steel.
  • Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd may be collectively referred to as "coarse precipitate-forming element".
  • the particle size of the precipitate of the coarse precipitate-forming element is about 1 to 2 ⁇ m, which is much larger than the particle size of fine precipitates such as MnS, TiN, and AlN (about 100 nm). These fine precipitates adhere to the precipitates of coarse precipitate-forming elements, and it becomes difficult to inhibit recrystallization and growth of crystal grains in annealing such as intermediate annealing.
  • the total amount of coarse precipitate-forming elements is preferably 0.0005% or more.
  • the total content of the coarse precipitate-forming elements is 0.0100% or less.
  • the total content of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd is the content of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn and Cd. It is obtained by calculating the total value of.
  • the chemical composition of the non-oriented electrical steel sheet and the steel material according to this embodiment may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • OES emission spectroscopic analysis
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • the non-directional electromagnetic steel sheet according to the present embodiment has a chemical composition capable of causing ⁇ - ⁇ transformation, and has a first cold rolling, intermediate annealing, and a second cold rolling (2). It has a structure in which ⁇ 100 ⁇ crystal grains have grown by refining the structure by performing finish annealing or strain annealing under desired conditions after (skin pass rolling).
  • the non-oriented electrical steel sheet according to the present embodiment has, for example, an integrated strength of 5 or more in the ⁇ 100 ⁇ ⁇ 011> direction, and a magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is particularly high.
  • the magnetic flux density increases in a specific direction in this way, but a high magnetic flux density can be obtained on the average of the entire circumference in the plate surface.
  • the integrated strength in the ⁇ 100 ⁇ ⁇ 011> orientation is less than 5
  • the integrated strength in the ⁇ 111 ⁇ ⁇ 112> orientation which reduces the magnetic flux density, increases, and the magnetic flux density decreases as a whole.
  • the integrated intensity in the ⁇ 100 ⁇ ⁇ 011> direction can be measured by an X-ray diffraction method or an electron backscatter diffraction (EBSD) method. Since the angle of reflection of X-rays and electron beams from the sample differs depending on the crystal orientation, the crystal orientation intensity can be obtained from the reflection intensity or the like with reference to the random orientation sample.
  • EBSD electron backscatter diffraction
  • the non-oriented electrical steel sheet according to the present embodiment has the best magnetic characteristics in two directions in which the smaller angle of the rolling direction is 45 °.
  • the magnetic characteristics are the worst in the two directions in which the angles formed with the rolling direction are 0 ° and 90 °.
  • the 45 ° is a theoretical value, and it may not be easy to match it with 45 ° in actual manufacturing. Therefore, theoretically, if the directions in which the magnetic characteristics are the best are the two directions in which the smaller angle of the rolling direction is 45 °, the actual non-oriented electrical steel sheet is said to be 45.
  • ° shall include those that do not (exactly) match 45 °. This is the same at 0 ° and 90 °.
  • the magnetic characteristics in the two directions having the best magnetic characteristics are the same, but in actual manufacturing, it may not be easy to make the magnetic characteristics in the two directions the same. Therefore, theoretically, if the magnetic properties in the two directions having the best magnetic properties are the same, the same includes those that are not (strictly) the same. This is also the case in the two directions with the worst magnetic properties.
  • the above-mentioned angles are expressed assuming that the angles in both the clockwise and counterclockwise directions have positive values.
  • the clockwise direction is a negative direction and the counterclockwise direction is a positive direction
  • the two directions in which the smaller angle of the above-mentioned rolling directions is 45 ° are the above-mentioned rolling directions.
  • the angle with the smaller absolute value is 45 ° and ⁇ 45 ° in two directions.
  • the two directions in which the smaller angle formed with the rolling direction is 45 ° can be described as the two directions in which the angles formed with the rolling direction are 45 ° and 135 °.
  • the magnetic flux density B50 in the 45 ° direction with respect to the rolling direction is 1.700 T or more. Further, the magnetic flux density B50 of the all-around average (omnidirectional average) in the plate surface is 1.650 T or more.
  • the magnetic flux density in the 45 ° direction with respect to the rolling direction is high, but a high magnetic flux density can be obtained even in the all-around average (omnidirectional average) in the plate surface.
  • the magnetic flux density B50 is obtained by cutting out a 55 mm square sample from a non-directional electromagnetic steel plate from 45 °, 0 °, etc. with respect to the rolling direction, and using a single plate magnetic measuring device to determine the magnetic flux density in a magnetic field of 5000 A / m. Obtained by measuring.
  • the magnetic flux density B50 in the all-around average is obtained by calculating the average value of the magnetic flux densities of 0 °, 45 °, 90 ° and 135 ° with respect to the rolling direction.
  • the iron loss W10 / 400 changes depending on the thickness of the non-oriented electrical steel sheet. As the thickness of the non-oriented electrical steel sheet decreases, the iron loss W10 / 40 decreases. In the non-oriented electrical steel sheet according to the present embodiment, when the plate thickness is 0.30 to 0.40 mm, the iron loss W10 / 400 is 20.00 W / kg or less. When the strain removing annealing described later is performed, the iron loss W10 / 400 is further reduced, and when the plate thickness is 0.30 to 0.40 mm, it becomes 15.20 W / kg or less.
  • Iron loss W10 / 400 occurs when a sample collected from a non-oriented electrical steel sheet is applied with an alternating magnetic field of 400 Hz so that the maximum magnetic flux density becomes 1.0 T using a single-plate magnetic measuring device. It is obtained by measuring the energy loss (W / kg) of the whole circumference average.
  • any of hot rolling, first cold rolling, intermediate annealing, second cold rolling (skin pass rolling), and finish annealing or strain annealing Do one or both.
  • a steel material having the above-mentioned chemical composition is hot-rolled and wound in a temperature range of more than 250 ° C and less than 550 ° C.
  • the process of obtaining hot-rolled steel sheets The step of performing the first cold rolling on the hot-rolled steel sheet and A step of performing intermediate annealing after the first cold rolling and A step of performing a second cold rolling after the intermediate annealing, and After the second cold rolling, there is a step of performing one or both of finish annealing and strain relief annealing.
  • the final pass of finish rolling during hot rolling is performed in a temperature range of Ar1 temperature or higher.
  • the temperature is maintained in a temperature range lower than Ac1 temperature for 2 hours or less.
  • the strain-removing annealing it is held for 1200 seconds or more in a temperature range of 600 ° C. or higher and lower than Ac1 temperature.
  • the film in the finish annealing, may be held for 10 to 1200 seconds in a temperature range of 600 ° C. or higher and lower than Ac1 temperature. Further, in the strain-removing annealing, it may be held for 1 hour or more in a temperature range of 750 ° C. or higher and lower than Ac1 temperature.
  • cold rolling is performed at a cumulative reduction rate of 80 to 92%.
  • cold rolling may be performed at a cumulative rolling reduction of 5 to 25%.
  • the intermediate annealing may be performed in a temperature range lower than the Ac1 temperature.
  • both the finish annealing and the strain removing annealing may be performed.
  • each step will be described in detail.
  • a steel material having the above-mentioned chemical composition is heated and hot-rolled.
  • the steel material is, for example, a slab manufactured by ordinary continuous casting.
  • Rough rolling and finish rolling of hot rolling are performed in the temperature range of the ⁇ range (Ar1 temperature or higher). That is, hot rolling is performed so that the finishing temperature of the finish rolling (the temperature at the exit side of the final pass) is Ar1 temperature or higher.
  • austenite is transformed into ferrite by the subsequent cooling, and the crystal structure becomes finer.
  • bulging is likely to occur, and ⁇ 100 ⁇ crystal grains that are normally difficult to grow can be easily grown.
  • the upper limit of the finishing temperature is not particularly limited, but may be, for example, 950 ° C. or lower.
  • the heating temperature of the steel material may be, for example, 1100 to 1250 ° C. so that the finishing temperature of the finish rolling is Ar1 temperature or higher.
  • the winding is performed in a temperature range of more than 250 ° C. and 550 ° C. or lower. It is preferably 530 ° C. or lower, more preferably 500 ° C. or lower, and even more preferably 480 ° C. or lower.
  • the transformation from austenite to ferrite is completed.
  • the winding temperature is 250 ° C. or lower, recrystallization does not occur during winding and processed grains remain, so that the crystal structure is not refined. Therefore, the above-mentioned winding temperature is performed up to a temperature range of more than 250 ° C. Preferably, it is 300 ° C. or higher and 400 ° C. or higher.
  • the coil may be rewound and pickled. After the coil is rewound or pickled, the hot-rolled steel sheet is subjected to the first cold rolling.
  • the cumulative rolling reduction ratio is preferably 80 to 92%.
  • the higher the cumulative reduction rate the easier it is for ⁇ 100 ⁇ crystal grains to grow due to subsequent bulging, but it becomes more difficult to wind the hot-rolled steel sheet and the operation becomes more difficult.
  • the cumulative reduction rate referred to here is the thickness of the hot-rolled steel sheet before the first cold rolling: t 0 and the thickness of the steel sheet after the first cold rolling (cold-rolled steel sheet) t 1. It is expressed as (1-t 1 / t 0 ) ⁇ 100 (%) using and.
  • intermediate annealing is performed.
  • the annealing time of intermediate annealing is preferably 5 to 60 seconds.
  • the intermediate annealing is preferably performed at 600 ° C. or higher, and is preferably performed in a non-oxidizing atmosphere.
  • a second cold rolling (skin pass rolling).
  • skin pass rolling When cold rolling is performed in a state where bulging has occurred as described above, ⁇ 100 ⁇ crystal grains are further grown starting from the portion where bulging has occurred.
  • the cumulative rolling reduction of the second cold rolling (skin pass rolling) is preferably 5 to 25%.
  • the cumulative reduction rate referred to here is (1-t) using the plate thickness of the steel plate before the second cold rolling: t 0 and the plate thickness of the steel plate after the second cold rolling t 1. It is represented by 1 / t 0 ) ⁇ 100 (%).
  • the ⁇ 100 ⁇ ⁇ 011> crystal grains have the property that strain does not easily accumulate, and the ⁇ 111 ⁇ ⁇ 112> crystal grains have the property that strain easily accumulates.
  • the ⁇ 100 ⁇ ⁇ 011> crystal grains having less strain erode the ⁇ 111 ⁇ ⁇ 112> crystal grains by using the difference in strain as a driving force.
  • ⁇ 100 ⁇ crystal grains are further grown.
  • This silkworm phenomenon that occurs with the difference in strain as the driving force is called strain-induced grain boundary movement (SIBM).
  • the cumulative rolling reduction (%) of the first cold rolling is Rm, and the second cold rolling (skin pass rolling).
  • Is Rs it is preferable that 86 ⁇ Rm + 0.2 ⁇ Rs ⁇ 92 and 5 ⁇ Rs ⁇ 20 are satisfied.
  • the non-oriented electrical steel sheet has a desired strain distribution, the magnetic characteristics of the non-oriented electrical steel sheet can be enhanced.
  • one or both of finish annealing and strain relief annealing are performed.
  • finish annealing is performed, strain relief annealing may or may not be performed after that.
  • the strain-removing annealing is performed, the finish annealing may or may not be performed before the strain-removing annealing.
  • finish annealing In finish annealing, it is held in a temperature range below Ac1 temperature for 2 hours or less. It is preferably 1 hour or less. Finish annealing is performed at a temperature at which ferrite does not transform into austenite so that the magnetic properties of the non-oriented electrical steel sheet do not deteriorate. Therefore, finish annealing is performed in a temperature range lower than the Ac1 temperature. By performing finish annealing under such conditions, the ⁇ 100 ⁇ crystal grains erode the ⁇ 111 ⁇ crystal grains, and the magnetic properties of the non-oriented electrical steel sheet can be improved.
  • the holding temperature 600 ° C. or higher, the strain generated in the second cold rolling (skin pass rolling) can be sufficiently released, and the warp when punching into a complicated shape can be suppressed, that is, The workability of non-oriented electrical steel sheets can be improved.
  • strain relief annealing is performed. In strain relief annealing, it is held for 1200 seconds or more in a temperature range of 600 ° C. or higher and lower than Ac1 temperature. By holding for 1200 seconds or more, the effect of sufficiently releasing the strain generated at the time of punching and the effect of further growing ⁇ 100 ⁇ crystal grains can be obtained. As a result, the magnetic properties of the non-oriented electrical steel sheet can be improved.
  • the holding temperature in strain relief annealing is set to less than the Ac1 temperature. Further, even if the temperature is maintained in a temperature range of less than 600 ° C., the above-mentioned effect of strain release and the effect of growing ⁇ 100 ⁇ crystal grains cannot be obtained. Therefore, the holding temperature in strain relief annealing is set to 600 ° C. or higher.
  • strain relief annealing it is preferable to keep the temperature in a temperature range of 750 ° C. or higher and less than Ac1 temperature for 1 hour or longer. By holding for 1 hour or more in a temperature range of 750 ° C. or higher, the above-mentioned strain release effect and ⁇ 100 ⁇ crystal grain growth effect can be obtained more reliably.
  • the upper limit of the holding time is not particularly limited, but may be, for example, 4 hours or less and 3 hours or less.
  • the non-oriented electrical steel sheet according to the present embodiment can be manufactured.
  • the Ar1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being cooled at an average cooling rate of 1 ° C./sec. Further, in the present embodiment, the Ac1 temperature is obtained from the change in thermal expansion of the steel material (steel plate) being heated at an average heating rate of 1 ° C./sec.
  • the non-oriented electrical steel sheet according to this embodiment is suitably applied to, for example, the iron core of a rotary electric machine.
  • individual flat plate-shaped thin plates are cut out from the non-oriented electrical steel sheets according to the present embodiment, and these flat plate-shaped thin plates are appropriately laminated to produce an iron core used for a rotary electric machine. Since a non-oriented electrical steel sheet having excellent magnetic properties is applied to this iron core, iron loss is low. As a result, a rotary electric machine having excellent torque can be obtained.
  • the finishing temperature of the finish rolling was 800 ° C., which was higher than the Ar1 temperature of all the steel sheets.
  • a steel sheet (cold-rolled steel sheet) was obtained by performing the first cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to intermediate annealing in a non-oxidizing atmosphere at 700 ° C., which is a temperature lower than the Ac1 temperature of all the steel sheets, and held for 5 to 60 seconds.
  • a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a cumulative rolling reduction of 9%.
  • the Ac1 temperature of all the examples shown in Table 1 was about 850 ° C.
  • the Ar1 temperature was determined from the change in thermal expansion of the steel plate being cooled at an average cooling rate of 1 ° C./sec, and the Ac1 temperature was determined from the change in thermal expansion of the steel plate being heated at an average heating rate of 1 ° C./sec.
  • strain relief annealing was performed by holding at 800 ° C. for 2 hours.
  • the magnetic flux density B50 was measured using a single-plate magnetic measuring device. A 55 mm square sample was sampled in two directions of 0 ° and 45 ° with respect to the rolling direction of the steel sheet, and the magnetic flux density B50 was measured. The magnetic flux density in the 45 ° direction with respect to the rolling direction was defined as the magnetic flux density B50 in the 45 ° direction.
  • the all-around average of the magnetic flux density B50 was obtained.
  • the underline in Table 2 shows the conditions outside the scope of the present invention.
  • No. which is an example of the present invention.
  • 101-No. 110, No. 112-No. 114, No. 120-No. 126, No. 128, No. 129 and No. 132 has excellent workability (good dimensional accuracy after punching, almost no floating amount), and excellent magnetic characteristics in both the 45 ° direction and the all-around average (high magnetic flux density B50 and low iron loss W10 / 400). ) Had.
  • No. 1 which is an example of the present invention.
  • 115 to 117 have excellent magnetic properties, but their workability is slightly inferior to that of other examples of the present invention.
  • No. which is a comparative example. Since the holding temperature of 111 was higher than the Ac1 temperature during finish annealing, the dimensional accuracy was deteriorated and the magnetic flux density was also deteriorated. In addition, No. 118, No. 119, No. 127 and No. In 130, the winding temperature was not appropriate, so that the magnetic flux density decreased and / or the iron loss increased.
  • the finish rolling After the finish rolling, it was water-cooled to 500 ° C., and then the hot-rolled steel sheet was wound up.
  • the finishing temperature of the finish rolling was 800 ° C., which was higher than the Ar1 temperature of all the steel sheets.
  • a steel sheet (cold-rolled steel sheet) was obtained by performing the first cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to intermediate annealing in a non-oxidizing atmosphere, which was held at 700 ° C. for 5 to 60 seconds, which is a temperature lower than the Ac1 temperature of all the steel sheets.
  • a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a cumulative rolling reduction of 9%.
  • finish annealing was performed in which all the steel sheets were held at 700 ° C., which is lower than the Ac1 temperature, for 30 seconds. Then, the workability was evaluated and the magnetic flux density B50 and the iron loss W10 / 400 were measured by the same method as in the first embodiment. The Ar1 temperature and the Ac1 temperature were measured by the same method as in the first embodiment.
  • No. 201-No. All of 216 are examples of the present invention, and all of them have excellent workability (good dimensional accuracy after punching and small levitation amount) and excellent magnetic characteristics (high magnetic flux density B50 and low iron loss W10 / 400). ) Had.
  • No. 202-No. 204 is No. 201
  • the magnetic flux density B50 was higher than that of 214.
  • No. 205-No. 214 is No. 201-No.
  • the iron loss W10 / 400 was lower than that of 204.
  • No. 215 and 216 are No.
  • the iron loss W10 / 400 was lower than that of 202, but the magnetic flux density B50 was lower.
  • the finishing temperature of the finish rolling was 800 ° C., which was higher than the Ar1 temperature of all the steel sheets.
  • a steel sheet (cold-rolled steel sheet) was obtained by performing the first cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to intermediate annealing in a non-oxidizing atmosphere at 700 ° C., which is a temperature lower than the Ac1 temperature of all the steel sheets, and held for 5 to 60 seconds.
  • a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a cumulative rolling reduction of 9%.
  • the Ac1 temperature of all the examples shown in Table 5 was about 850 ° C.
  • the underline in Table 6 shows the conditions outside the scope of the present invention.
  • No. which is an example of the present invention.
  • 301-No. 310, No. 312-No. 314, No. 320 and No. 321 has excellent workability (good dimensional accuracy after punching, almost no floating amount), and excellent magnetic characteristics in both the 45 ° direction and the all-around average (high magnetic flux density B50 and low iron loss W10 / 400). ) Had.
  • No. 1 which is an example of the present invention.
  • the magnetic properties of 315 to 317 were good, but the workability was slightly inferior to that of other examples of the present invention.
  • No. which is a comparative example. Since the holding temperature of 311 at the time of finish annealing was higher than the Ac1 temperature, the dimensional accuracy deteriorated and the magnetic flux density also deteriorated. In addition, No. 318 and No. In 319, the winding temperature was not appropriate, so that the magnetic flux density decreased and the iron loss increased.
  • the finishing temperature of the finish rolling was 800 ° C., which was higher than the Ar1 temperature of all the steel sheets.
  • a steel sheet (cold-rolled steel sheet) was obtained by performing the first cold rolling until the sheet thickness became 0.385 mm at a cumulative reduction rate of 85%.
  • the obtained steel sheet was heated and subjected to intermediate annealing in a non-oxidizing atmosphere at 700 ° C., which is a temperature lower than the Ac1 temperature of all the steel sheets, and held for 5 to 60 seconds.
  • a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm at a cumulative rolling reduction of 9%.
  • the Ac1 temperature of all the examples shown in Table 7 was about 850 ° C.
  • strain relief annealing was performed by holding at 800 ° C. for 2 hours. After the strain removing annealing was performed, the magnetic flux density B50 and the iron loss W10 / 400 were measured by the same method as in the first embodiment. The Ar1 temperature and the Ac1 temperature were measured by the same method as in the first embodiment.
  • the underline in Table 8 shows the conditions outside the scope of the present invention. No. which is an example of the present invention. 401-No. 408, No. 411 and No. The 412 had good dimensional accuracy after punching, but a slight amount of levitation occurred. In addition, it had excellent magnetic characteristics (high magnetic flux density B50 and low iron loss W10 / 400) in both the 45 ° direction and the all-around average.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この無方向性電磁鋼板の製造方法は、所定の化学組成を有する鋼材に対して熱間圧延を行う工程と、第1の冷間圧延を行う工程と、中間焼鈍を行う工程と、第2の冷間圧延を行う工程と、仕上げ焼鈍および歪取焼鈍のいずれか一方もしくは両方を行う工程と、を有し、前記仕上げ圧延の最終パスをAr1温度以上の温度域で行い、前記仕上げ焼鈍では、Ac1温度未満の温度域で2時間以下保持し、前記歪取焼鈍においては、600℃以上、Ac1温度未満の温度域で1200秒以上保持する

Description

無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板の製造方法に関する。
 本願は、2019年11月15日に、日本に出願された特願2019-206630号、および、2019年11月15日に、日本に出願された特願2019-206812に基づき優先権を主張し、その内容をここに援用する。
 無方向性電磁鋼板は、例えばモータの鉄心に使用される。無方向性電磁鋼板には、その板面に平行なすべての方向の平均(以下、「板面内の全周平均(全方向平均)」ということがある)において優れた磁気特性を有すること、例えば低鉄損及び高磁束密度を有することが要求される。
 これまで種々の技術が提案されているが、板面内の全周平均において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られない場合がある。
日本国特許第4029430号公報 日本国特許第6319465号公報
 本発明は前述の問題点に鑑み、板面内の全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することを目的とする。
 また、無方向性電磁鋼板は、生産コストを低減するために、モータの鉄心に加工する際に、加工しやすい材料であることが好ましい。そのため、本発明は、好ましくは、全周平均(全方向平均)で優れた磁気特性を得ることができ、且つ加工性に優れた無方向性電磁鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、本発明者らは、板面内の全周平均で優れた磁気特性を得ることができる無方向性電磁鋼板の製造には、α-γ変態系の化学組成を前提とすること、熱間圧延時にオーステナイトからフェライトへの変態で結晶組織を微細化すること、第1の冷間圧延を所望の累積圧下率で行うこと、中間焼鈍を所望の条件で行うことで張出再結晶(以下、バルジング)を発生させることによって、通常は発達しにくい{100}結晶粒を発達させやすくすること、所望の条件下で第2の冷間圧延(スキンパス圧延)、および仕上げ焼鈍または歪取焼鈍を行うことによって、{100}結晶粒が{111}結晶粒を蚕食することが重要であることを知見した。
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る無方向性電磁鋼板の製造方法は、質量%で、
 C:0.0100%以下、
 Si:1.50~4.00%、
 sol.Al:0.0001~1.000%、
 S:0.0100%以下、
 N:0.0100%以下、
 Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、
 Sn:0.000~0.400%、
 Sb:0.000~0.400%、
 P:0.000~0.400%、並びに
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、
 質量%で、Mn含有量を[Mn]、Ni含有量を[Ni]、Co含有量を[Co]、Pt含有量を[Pt]、Pb含有量を[Pb]、Cu含有量を[Cu]、Au含有量を[Au]、Si含有量を[Si]、sol.Al含有量を[sol.Al]と表したときに、以下の(1)式を満たし、
 残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、250℃超、550℃以下の温度域で巻き取ることで熱間圧延鋼板を得る工程と、
 前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
 前記第1の冷間圧延の後に中間焼鈍を行う工程と、
 前記中間焼鈍の後に第2の冷間圧延を行う工程と、
 前記第2の冷間圧延の後に仕上げ焼鈍および歪取焼鈍のいずれか一方もしくは両方を行う工程と、を有し、
 前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、
 前記仕上げ焼鈍においては、Ac1温度未満の温度域で2時間以下保持し、
 前記歪取焼鈍においては、600℃以上、Ac1温度未満の温度域で1200秒以上保持する。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
(2)上記(1)に記載の無方向性電磁鋼板の製造方法では、前記鋼材は、質量%で、
 Sn:0.020~0.400%、
 Sb:0.020~0.400%、
 P:0.020~0.400%、並びに
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0005~0.0100%
からなる群から選ばれる1種以上を含有してもよい。
(3)上記(1)または(2)に記載の無方向性電磁鋼板の製造方法では、
 前記仕上げ焼鈍においては、600℃以上、Ac1温度未満の温度域で10~1200秒間保持してもよい。
(4)上記(1)~(3)のいずれか1項に記載の無方向性電磁鋼板の製造方法では、
 前記歪取焼鈍においては、750℃以上、Ac1温度未満の温度域で1時間以上保持してもよい。
(5)上記(1)~(4)のいずれか1項に記載の無方向性電磁鋼板の製造方法では、
 前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、
 前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行ってもよい。
(6)上記(1)~(5)のいずれか1項に記載の無方向性電磁鋼板の製造方法では、
 前記中間焼鈍は、Ac1温度未満の温度域で行ってもよい。
(7)上記(1)~(6)のいずれか1項に記載の無方向性電磁鋼板の製造方法では、
 前記仕上げ焼鈍および前記歪取焼鈍の両方を行ってもよい。
 本発明に係る上記態様によれば、板面内の全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板の製造方法を提供することができる。
 本発明に係る上記好ましい態様によれば、全周平均(全方向平均)で優れた磁気特性を得ることができ、且つ加工性に優れた無方向性電磁鋼板を提供することができる。
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 まず、本実施形態に係る無方向性電磁鋼板の製造方法において用いられる鋼材(単に、本実施形態に係る鋼材と記載する場合がある)、および本実施形態に係る無方向性電磁鋼板の製造方法によって製造される、無方向性電磁鋼板(単に、本実施形態に係る無方向性電磁鋼板と記載する場合がある)の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。
 本実施形態に係る無方向性電磁鋼板及び鋼材は、フェライト-オーステナイト変態(以下、α-γ変態)が生じ得る化学組成である。具体的には、質量%で、C:0.0100%以下、Si:1.50~4.00%、sol.Al:0.0001~1.000%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、Sn:0.000~0.400%、Sb:0.000~0.400%、P:0.000~0.400%、並びに、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。さらに、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。
 (C:0.0100%以下)
 Cは、無方向性電磁鋼板の鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほど好ましい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の低減は、板面内の全周平均における磁気特性の均一な向上にも寄与する。そのため、C含有量は、好ましくは0.0060%以下であり、より好ましくは0.0040%以下であり、より一層好ましくは0.0020%以下である。
 なお、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
 (Si:1.50~4.00%)
 Siは、電気抵抗を増大させて、渦電流損を減少させ、無方向性電磁鋼板の鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き時の加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得ることができない。従って、Si含有量は1.50%以上とする。Si含有量は、好ましくは2.00%以上であり、より好ましくは2.50%以上である。
 一方、Si含有量が4.00%超では、無方向性電磁鋼板の磁束密度が低下したり、硬度の過度な上昇により打ち抜き時の加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。Si含有量は、好ましくは3.50%以下であり、より好ましくは3.30%以下である。
 (sol.Al:0.0001~1.000%)
 sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、無方向性電磁鋼板の鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得ることができない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。sol.Al含有量は、好ましくは0.005%以上であり、より好ましくは0.100%超であり、より一層好ましくは0.200%以上であり、更に好ましくは0.300%以上である。
 一方、sol.Al含有量が1.000%超では、無方向性電磁鋼板の磁束密度が低下したり、降伏比が低下して、打ち抜き時の加工性が低下したりする。従って、sol.Al含有量は1.000%以下とする。sol.Al含有量は、好ましくは0.500%以下であり、より好ましくは0.400%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
 (S:0.0100%以下)
 Sは、含有させることが必須の元素ではなく、例えば鋼中に不純物として含有される元素である。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。再結晶及び結晶粒の成長が阻害されると、無方向性電磁鋼板の鉄損が増し、且つ磁束密度が低下する。従って、S含有量は低ければ低いほど好ましい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0100%超で顕著である。このため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0060%以下であり、より好ましくは0.0040%以下である。
 なお、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
 (N:0.0100%以下)
 NはCと同様に、無方向性電磁鋼板の磁気特性を劣化させるので、N含有量は低ければ低いほど好ましい。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0050%以下であり、より好ましくは0.0030%以下である。
 なお、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
 (Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%)
 Mn、Ni、Co、Pt、Pb、CuおよびAuは、α-γ変態を生じさせるために必要な元素であることから、これらの元素の少なくとも1種を2.50%以上含有させる。これらの元素の全てを含有させる必要はなく、いずれか1種でもその含有量が2.50%以上であればよい。これらの元素の含有量の総計は、好ましくは3.00%以上である。
 一方で、これらの元素の含有量の総計が5.00%を超えると、コスト高となり、無方向性電磁鋼板の磁束密度が低下する場合がある。したがって、これらの元素の含有量の総計は5.00%以下とする。これらの元素の含有量の総計は、好ましくは4.50%以下である。
 なお、Mn、Ni、Co、Pt、Pb、CuおよびAuの総計は、Mn、Ni、Co、Pt、Pb、CuおよびAuの含有量の合計値を算出することで得られる。
 本実施形態に係る無方向性電磁鋼板および鋼材は、α-γ変態が生じ得る条件として、さらに以下の条件を満たす化学組成を有する。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たす。
 ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
 前述の(1)式を満たさない場合には、α-γ変態が生じないため、無方向性電磁鋼板の磁束密度が低くなる。そのため、(1)式の左辺は0.00%超とする。(1)式の左辺は、好ましくは0.30%以上であり、より好ましくは0.50%以上である。
 (1)式の左辺の上限は特に限定しないが、2.00%以下、または1.00%以下としてもよい。
 本実施形態に係る無方向性電磁鋼板および鋼材の化学組成の残部は、Feおよび不純物からなる。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、あるいは本実施形態に係る無方向性電磁鋼板の製造方法によって製造された、無方向性電磁鋼板の特性に悪影響を及ぼさない範囲で許容されるものが例示される。
 本実施形態に係る無方向性電磁鋼板および鋼材は、Feの一部に加え、以下の元素を任意元素として含有してもよい。下記任意元素を含有させない場合の含有量の下限は0%である。以下、各任意元素について詳細に説明する。
 (Sn:0.000~0.400%、Sb:0.000~0.400%、P:0.000~0.400%)
 SnおよびSbは冷間圧延および再結晶後の集合組織を改善することで、無方向性電磁鋼板の磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよい。上記効果を確実に得るためには、SnおよびSbのうち1種でもその含有量を0.020%以上とすることが好ましい。一方、SnおよびSbが過剰に含まれると鋼が脆化する。したがって、Sn含有量およびSb含有量はいずれも0.400%以下とする。
 また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよい。この効果を確実に得るためには、P含有量を0.020%以上とすることが好ましい。一方、Pが過剰に含まれると鋼の脆化を引き起こす。したがって、P含有量は0.400%以下とする。
 (Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%)
 Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物および/または酸硫化物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。
 粗大析出物生成元素の析出物の粒径は1~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。これら微細析出物は粗大析出物生成元素の析出物に付着し、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、粗大析出物生成元素の総計は0.0005%以上であることが好ましい。なお、上記作用を十分に得るためには、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdのうち全てを含有する必要はなく、いずれか1種でもその含有量が0.0005%以上であることが好ましい。
 一方、粗大析出物生成元素の総計が0.0100%を超えると、硫化物および/または酸硫化物の総量が過剰となり、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量の総計は0.0100%以下とする。
 なお、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdの含有量の総計は、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCdの含有量の合計値を算出することで得られる。
 本実施形態に係る無方向性電磁鋼板および鋼材の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)や発光分光分析(OES:Optical Emission Spectroscopy)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。
 次に、本実施形態に係る無方向性電磁鋼板の集合組織について説明する。製造方法の詳細については後述するが、本実施形態に係る無方向性電磁鋼板はα-γ変態が生じ得る化学組成であり、第1の冷間圧延、中間焼鈍、第2の冷間圧延(スキンパス圧延)を経て、所望の条件で仕上げ焼鈍または歪取焼鈍を行うことで組織を微細化することによって、{100}結晶粒が成長した組織を有する。これにより、本実施形態に係る無方向性電磁鋼板は例えば{100}<011>方位の集積強度が5以上となり、圧延方向に対して45°方向の磁束密度B50が特に高くなる。本実施形態に係る無方向性電磁鋼板では、このように特定の方向で磁束密度が高くなるが、板面内の全周平均で高い磁束密度が得られる。{100}<011>方位の集積強度が5未満になると、磁束密度を低下させる{111}<112>方位の集積強度が高くなり、全体的に磁束密度が低下してしまう。
 {100}<011>方位の集積強度は、X線回折法又は電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線及び電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。
 次に、本実施形態に係る無方向性電磁鋼板の磁気特性について説明する。本実施形態に係る無方向性電磁鋼板は、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向において、磁気特性が最も優れる。一方、圧延方向となす角度が0°、90°の2つの方向において、磁気特性が最も劣る。ここで、当該45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる方向が、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であれば、実際の無方向性電磁鋼板においては、当該45°は、(厳密に)45°に一致していないものも含むものとする。このことは、当該0°、90°においても同じである。
 また、理論的には、磁気特性が最も優れる2つの方向の磁気特性は同じになるが、実際の製造に際しては当該2つの方向の磁気特性を同じにすることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる2つの方向の磁気特性が同じであれば、当該同じは、(厳密に)同じでないものも含むものとする。このことは、磁気特性が最も劣る2つの方向においても同じである。
 なお、上述の角度は、時計回りおよび反時計回りの何れの向きの角度も正の値を有するものとして表記したものである。時計回りの方向を負の方向とし、反時計回りの方向を正の方向とする場合、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、前述した圧延方向となす角度のうち絶対値の小さい方の角度が45°、-45°となる2つの方向となる。
 前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、圧延方向となす角度が45°、135°となる2つの方向とも表記できる。
 本実施形態に係る無方向性電磁鋼板の磁束密度を測定すると、圧延方向に対して45°方向の磁束密度B50が1.700T以上となる。また、板面内の全周平均(全方向平均)の磁束密度B50が1.650T以上となる。本実施形態に係る無方向性電磁鋼板では、圧延方向に対して45°方向の磁束密度が高いものの、板面内の全周平均(全方向平均)でも高い磁束密度が得られる。
 磁束密度B50は、無方向性電磁鋼板から、圧延方向に対して45°、0°方向等から55mm角の試料を切り出し,単板磁気測定装置を用いて、5000A/mの磁場における磁束密度を測定することで得られる。全周平均(全方向平均)での磁束密度B50は、圧延方向に対して、0°、45°、90°および135°の磁束密度の平均値を算出することで得られる。
 鉄損W10/400は、無方向性電磁鋼板の板厚により変化する。無方向性電磁鋼板の板厚が減少する程、鉄損W10/40は低くなる。
 本実施形態に係る無方向性電磁鋼板では、板厚が0.30~0.40mmの場合、鉄損W10/400は20.00W/kg以下となる。後述する歪取焼鈍を行うと、鉄損W10/400はより低減され、板厚が0.30~0.40mmの場合には15.20W/kg以下となる。
 鉄損W10/400は、無方向性電磁鋼板から採集した試料に対し、単板磁気測定装置を用いて、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけたときに生じる、全周平均のエネルギーロス(W/kg)を測定することで得られる。
 次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態に係る無方向性電磁鋼板の製造方法では、熱間圧延、第1の冷間圧延、中間焼鈍、第2の冷間圧延(スキンパス圧延)、および、仕上げ焼鈍または歪取焼鈍のいずれか一方もしくは両方を行う。
 具体的には、本実施形態に係る無方向性電磁鋼板の製造方法は、上述した化学組成を有する鋼材に対して熱間圧延を行い、250℃超、550℃以下の温度域で巻き取ることで熱間圧延鋼板を得る工程と、
 前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
 前記第1の冷間圧延の後に中間焼鈍を行う工程と、
 前記中間焼鈍の後に第2の冷間圧延を行う工程と、
 前記第2の冷間圧延の後に、仕上げ焼鈍および歪取焼鈍のいずれか一方もしくは両方を行う工程と、を有し、
 前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、
 前記仕上げ焼鈍においては、Ac1温度未満の温度域で2時間以下保持し、
 前記歪取焼鈍においては、600℃以上、Ac1温度未満の温度域で1200秒以上保持する。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記仕上げ焼鈍においては、600℃以上、Ac1温度未満の温度域で10~1200秒間保持してもよい。
 また、前記歪取焼鈍においては、750℃以上、Ac1温度未満の温度域で1時間以上保持してもよい。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、
 前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行ってもよい
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記中間焼鈍は、Ac1温度未満の温度域で行ってもよい。
 本実施形態に係る無方向性電磁鋼板の製造方法では、前記仕上げ焼鈍および前記歪取焼鈍の両方を行ってもよい。
 以下、各工程について詳細に説明する。
 まず、上述した化学組成を有する鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。熱間圧延の粗圧延および仕上げ圧延はγ域(Ar1温度以上)の温度域で行う。つまり、仕上げ圧延の仕上温度(最終パスの出側温度)がAr1温度以上となるように熱間圧延を行う。これにより、その後の冷却によってオーステナイトがフェライトへと変態し、結晶組織が微細化する。結晶組織が微細化された状態で冷間圧延を施すと、バルジングが発生しやすく、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。仕上温度の上限は特に限定しないが、例えば950℃以下とすればよい。
 仕上げ圧延の仕上温度がAr1温度以上となるように、鋼材の加熱温度は、例えば1100~1250℃とすればよい。
 また、本実施形態では、巻取りは、250℃超、550℃以下の温度域で行う。好ましくは530℃以下、より好ましくは500℃以下、より一層好ましくは480℃以下である。550℃以下の温度域まで冷却すれば、オーステナイトからフェライトへの変態は完了する。
 巻取り温度が250℃以下であると、巻取り中に再結晶をせず、加工粒が残存するため、結晶組織の微細化がされない。そのため、上述の巻取り温度は、250℃超の温度域まで行う。好ましくは、300℃以上、400℃以上である。
 その後、必要に応じて、コイルを巻き戻して、酸洗を行ってもよい。コイルを巻き戻した後、または酸洗を行った後は、熱間圧延鋼板に対して第1の冷間圧延を行う。
 第1の冷間圧延では累積圧下率を80~92%とすることが好ましい。なお、累積圧下率が高いほど、その後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板の巻取りが困難になり、操業が困難になりやすくなる。第1の冷間圧延における累積圧下率を上述の範囲内とすることで、その後のバルジングによる{100}結晶粒の成長を好ましく制御することができる。
 なお、ここでいう累積圧下率は、第1の冷間圧延前の熱間圧延鋼板の板厚:tと、第1の冷間圧延後の鋼板(冷間圧延鋼板)の板厚tとを用いて、(1-t/t)×100(%)で表される。
 第1の冷間圧延の後は、中間焼鈍を行う。本実施形態では、フェライトからオーステナイトへと変態しない温度域で中間焼鈍を行うことが好ましい。つまり、中間焼鈍をAc1温度未満の温度域で行うことが好ましい。このような条件で中間焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、中間焼鈍の焼鈍時間(Ac1温度未満の温度域での保持時間)は、5~60秒とすることが好ましい。また、中間焼鈍は600℃以上で行うことが好ましく、また無酸化雰囲気にて行うことが好ましい。
 中間焼鈍の後は、第2の冷間圧延(スキンパス圧延)を行う。上述したようにバルジングが発生した状態で冷間圧延を行うと、バルジングが発生した部分を起点に{100}結晶粒がさらに成長する。第2の冷間圧延(スキンパス圧延)の累積圧下率は5~25%とすることが好ましい。
 なお、ここでいう累積圧下率は、第2の冷間圧延前の鋼板の板厚:tと、第2の冷間圧延後の鋼板の板厚tとを用いて、(1-t/t)×100(%)で表される。
 {100}<011>結晶粒には歪が溜まりにくく、{111}<112>結晶粒には歪が溜まりやすい性質がある。第2の冷間圧延を行った後、焼鈍を行うことで、歪の少ない{100}<011>結晶粒が歪の差を駆動力として{111}<112>結晶粒を蚕食する。これにより、{100}結晶粒がさらに成長する。歪の差を駆動力にして発生するこの蚕食現象は歪誘起粒界移動(SIBM)と呼ばれる。
 第2の冷間圧延における累積圧下率を5%以上とすることで、十分な歪量を確保でき、その後の焼鈍で歪誘起粒界移動(SIBM)が起き、{100}<011>結晶粒を大きく成長させることができる。
 また、第2の冷間圧延における累積圧下率を25%以下とすることで、歪量が多くなり過ぎることを抑制できる。その結果、{111}<112>結晶粒の中から新しい結晶粒が生まれる再結晶核生成(Nucleation)が発生することを抑制できる。この再結晶核生成では、生成される結晶粒の大部分が{111}<112>結晶粒のため、再結晶核生成が発生すると無方向性電磁鋼板の磁気特性が劣化する場合がある。
 本実施形態に係る無方向性電磁鋼板において所望の歪分布を有するように制御する場合には、第1の冷間圧延の累積圧下率(%)をRm、第2の冷間圧延(スキンパス圧延)の累積圧下率(%)をRsとした場合に、86<Rm+0.2×Rs<92、かつ5<Rs<20を満たすことが好ましい。無方向性電磁鋼板が所望の歪分布を有することで、無方向性電磁鋼板の磁気特性を高めることができる。
 第2の冷間圧延(スキンパス圧延)を施した後は、仕上げ焼鈍および歪取焼鈍のいずれか一方もしくは両方を行う。仕上げ焼鈍を行う場合は、その後に歪取焼鈍を行ってもよく、行わなくてもよい。また、歪取焼鈍を行う場合は、歪取焼鈍の前に仕上げ焼鈍を行ってもよく、行わなくてもよい。
 仕上げ焼鈍および歪取焼鈍の両方を行えば、より磁気特性に優れた無方向性電磁鋼板を製造することができる。
 所望の条件で仕上げ焼鈍を行うことで、第2の冷間圧延時に生じた歪を解放して無方向性電磁鋼板の加工性および磁気特性を向上することができる。
 また、所望の条件で歪取焼鈍を行うことで、打ち抜き加工により生じた歪を解放する効果および{100}結晶粒を更に成長させる効果を得ることができ、無方向性電磁鋼板の磁気特性を高めることができる。
 仕上げ焼鈍では、Ac1温度未満の温度域で2時間以下の間保持する。好ましくは1時間以下である。仕上げ焼鈍は、無方向性電磁鋼板の磁気特性が低下しないように、フェライトがオーステナイトへ変態しない温度とする。そのため、仕上げ焼鈍はAc1温度未満の温度域で行う。このような条件で仕上げ焼鈍を行うことによって、{100}結晶粒が{111}結晶粒を蚕食し、無方向性電磁鋼板の磁気特性を向上させることができる。
 仕上げ焼鈍では、600℃以上、Ac1温度未満の温度域で10~1200秒間保持することが好ましい。保持時間を10秒以上とすることで、第2の冷間圧延(スキンパス圧延)で生じた歪を十分に解放でき、複雑な形状に打ち抜く際の反りを抑制することができる、すなわち無方向性電磁鋼板の加工性を向上することができる。
 保持時間を1200秒以下とすることで、結晶粒が粗大になり過ぎることを抑制できる。その結果、打ち抜き時にダレが大きくなり、打ち抜き精度が低下することを抑制できる、すなわち無方向性電磁鋼板の加工性を向上することができる。
 また、保持する温度を600℃以上とすることで、第2の冷間圧延(スキンパス圧延)で生じた歪を十分に解放することができ、複雑な形状に打ち抜く際の反りを抑制できる、すなわち無方向性電磁鋼板の加工性を向上することができる。
 仕上げ焼鈍後、または(仕上げ焼鈍を省略した場合は)第2の冷間圧延後は、必要に応じて打ち抜き加工が行われる。これにより、無方向性電磁鋼板が所望の形状に加工される。
 第2の冷間圧延後、または仕上げ圧延後は、歪取焼鈍を行う。
 歪取焼鈍では、600℃以上、Ac1温度未満の温度域で1200秒以上保持する。1200秒以上保持することによって、打ち抜き時に生じた歪が十分に解放される効果、および{100}結晶粒が更に成長する効果を得ることができる。その結果、無方向性電磁鋼板の磁気特性を高めることができる。
 Ac1温度以上の温度域で保持すると、フェライトの一部若しくは全てがオーステナイトに変態してしまい、そのオーステナイトが保持後の冷却時にフェライトに変態する。その結果、{100}<011>方位が著しく減少することで、無方向性電磁鋼板の磁気特性が劣化する。そのため、歪取焼鈍における保持温度はAc1温度未満とする。
 また、600℃未満の温度域で保持しても、上述の歪解放の効果および{100}結晶粒の成長効果を得ることができない。そのため、歪取焼鈍における保持温度は600℃以上とする。
 歪取焼鈍では、750℃以上、Ac1温度未満の温度域で1時間以上保持することが好ましい。750℃以上の温度域で1時間以上の保持を行うことで、上述の歪解放の効果および{100}結晶粒の成長効果をより確実に得ることができる。
 保持時間の上限は特に限定しないが、例えば4時間以下、3時間以下とすればよい。
 以上の方法により、本実施形態に係る無方向性電磁鋼板を製造することができる。
 なお、本実施形態においてAr1温度は、1℃/秒の平均冷却速度で冷却中の鋼材(鋼板)の熱膨張変化から求める。また、本実施形態においてAc1温度は、1℃/秒の平均加熱速度で加熱中の鋼材(鋼板)の熱膨張変化から求める。
 本実施形態に係る無方向性電磁鋼板は、例えば回転電機の鉄心に好適に適用される。この場合、本実施形態に係る無方向性電磁鋼板から個々の平板状薄板を切り出し、これらの平板状薄板を適宜積層することにより、回転電機に用いられる鉄心が作製される。この鉄心は、優れた磁気特性を有する無方向性電磁鋼板が適用されているため、鉄損が低い。その結果、優れたトルクを有する回転電機を得ることができる。
 次に、本発明の実施形態に係る無方向性電磁鋼板の製造方法について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板の製造方法のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板の製造方法が下記の例に限定されるものではない。
 (第1の実施例)
 溶鋼を鋳造することにより、以下の表1に示す化学組成のスラブを作製した。表中の式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したスラブを1150℃まで加熱し、表2中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。
 仕上げ圧延の仕上温度は800℃であり、全ての鋼板のAr1温度よりも高い温度であった。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで第1の冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である700℃で、5~60秒保持する中間焼鈍を行った。次いで、9%の累積圧下率で板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 なお、表1に示す全ての例のAc1温度は約850℃であった。Ar1温度は、1℃/秒の平均冷却速度で冷却中の鋼板の熱膨張変化から求め、Ac1温度は、1℃/秒の平均加熱速度で加熱中の鋼板の熱膨張変化から求めた。
 第2の冷間圧延(スキンパス圧延)を行った後、仕上げ焼鈍を行った。この時の到達温度(保持温度)および保持時間を表2に示す。
 無方向性電磁鋼板の加工性を評価するために、仕上げ焼鈍後に、打ち抜き精度を評価する試験を行った。試験では、3mm×50mmの打ち抜き金型を用い、打ち抜いた材料の形状を測定した。打ち抜きは、長辺方向が鋼板の圧延方向と平行になるように行った。形状測定では打ち抜いた材料の長辺および短辺を測定し、且つ長辺方向の片方の端を指で押さえてもう一端の浮き上がり量を測定した。
 仕上げ焼鈍を行った後、800℃で2時間保持する、歪取焼鈍を行った。歪取焼鈍を行った後は、単板磁気測定装置を用いて磁束密度B50を測定した。55mm角の試料を鋼板の圧延方向に対し0°および45°の2種類の方向に採取し、磁束密度B50を測定した。圧延方向に対して、45°方向の磁束密度を45°方向の磁束密度B50とした。圧延方向に対して、0°、45°、90°および135°の磁束密度の平均値を算出することで、磁束密度B50の全周平均を得た。
 また、無方向性電磁鋼板から採集した試料に対し、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけたときに生じる、全周平均のエネルギーロス(W/kg)を測定することで鉄損W10/400を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2中の下線は、本発明の範囲から外れた条件を示している。本発明例であるNo.101~No.110、No.112~No.114、No.120~No.126、No.128、No.129およびNo.132は、加工性に優れ(打ち抜き後の寸法精度も良く、浮上り量もほとんどなく)、かつ45°方向及び全周平均共において優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)を有していた。また、本発明例であるNo.115~117は、優れた磁気特性を有するが、加工性は他の本発明例と比べるとやや劣位であった。
 一方、比較例であるNo.111は仕上げ焼鈍時の保持温度がAc1温度よりも高かったため、寸法精度は劣化し、磁束密度も劣化した。また、比較例であるNo.118、No.119、No.127およびNo.130は、巻取り温度が適切ではなかったため、磁束密度が低下し、および/または鉄損が高くなった。
 (第2の実施例)
 溶鋼を鋳造することにより、以下の表3に示す化学組成のスラブを作製した。表中の式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したスラブを1150℃まで加熱し、表4中に示す条件で熱間圧延を行うことで、板厚2.5mmになるように熱間圧延鋼板を得た。
 仕上げ圧延後は500℃まで水冷し、その後熱間圧延鋼板を巻き取った。
 仕上げ圧延の仕上温度は800℃であり、全ての鋼板のAr1温度よりも高い温度であった。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで第1の冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である、700℃で5~60秒間保持する中間焼鈍を行った。次いで、9%の累積圧下率で板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 第2の冷間圧延(スキンパス圧延)を行った後、全ての鋼板のAc1温度よりも低いである700℃で、30秒間保持する仕上げ焼鈍を行った。その後、第1の実施例と同様の方法により、加工性評価、並びに、磁束密度B50および鉄損W10/400の測定を行った。なお、Ar1温度およびAc1温度は第1の実施例と同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 No.201~No.216は全て本発明例であり、いずれも加工性に優れ(打ち抜き後の寸法精度が良好であり、浮上り量が小さく)、且つ優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)を有していた。特に、No.202~No.204はNo.201、No.205~No.214よりも磁束密度B50が高かった。No.205~No.214はNo.201~No.204よりも鉄損W10/400が低かった。No.215、216はNo.202よりも鉄損W10/400は低かったが、磁束密度B50は低かった。
 (第3の実施例)
 溶鋼を鋳造することにより、以下の表5に示す化学組成のスラブを作製した。表中の式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したスラブを1150℃まで加熱し、表6中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。
 仕上げ圧延の仕上温度は800℃であり、全ての鋼板のAr1温度よりも高い温度であった。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで第1の冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である700℃で、5~60秒保持する中間焼鈍を行った。次いで、9%の累積圧下率で板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 なお、表5に示す全ての例のAc1温度は約850℃であった。
 第2の冷間圧延(スキンパス圧延)を行った後、仕上げ焼鈍を行った。この時の到達温度(保持温度)および保持時間を表6に示す。その後、第1の実施例と同様の方法により、加工性評価、並びに、磁束密度B50および鉄損W10/400の測定を行った。なお、Ar1温度およびAc1温度は第1の実施例と同様の方法により測定した。
 なお、本実施例において歪取焼鈍は行わなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6中の下線は、本発明の範囲から外れた条件を示している。本発明例であるNo.301~No.310、No.312~No.314、No.320およびNo.321は、加工性に優れ(打ち抜き後の寸法精度も良く、浮上り量もほとんどなく)、かつ45°方向及び全周平均共において優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)を有していた。また、本発明例であるNo.315~317は、磁気特性は良好であるが、加工性は他の本発明例と比べるとやや劣位であった。
 一方、比較例であるNo.311は仕上げ焼鈍時の保持温度がAc1温度よりも高かったため、寸法精度は劣化し、磁束密度も劣化した。また、比較例であるNo.318およびNo.319は、巻取り温度が適切ではなかったため、磁束密度が低下し、鉄損が高くなった。
 (第4の実施例)
 溶鋼を鋳造することにより、以下の表7に示す化学組成のスラブを作製した。表中の式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したスラブを1150℃まで加熱し、表8中に示す条件で熱間圧延を行うことで、板厚2.5mmの熱間圧延鋼板を得た。
 仕上げ圧延の仕上温度は800℃であり、全ての鋼板のAr1温度よりも高い温度であった。
 次に、得られた熱間圧延鋼板に対し、酸洗を行うことでスケールを除去した。その後、85%の累積圧下率で板厚が0.385mmになるまで第1の冷間圧延を行うことで鋼板(冷間圧延鋼板)を得た。得られた鋼板を加熱し、無酸化雰囲気中で、全ての鋼板のAc1温度よりも低い温度である700℃で、5~60秒保持する中間焼鈍を行った。次いで、9%の累積圧下率で板厚が0.35mmになるまで第2の冷間圧延(スキンパス圧延)を行った。
 なお、表7に示す全ての例のAc1温度は約850℃であった。
 第2の冷間圧延(スキンパス圧延)を行った後、第1の実施例と同様の方法により、加工性評価を行った。
 なお、本実施例において仕上げ焼鈍は行わなかった。
 加工性評価の試験後、800℃で2時間保持する、歪取焼鈍を行った。歪取焼鈍を行った後は、第1の実施例と同様の方法により、磁束密度B50および鉄損W10/400の測定を行った。なお、Ar1温度およびAc1温度は第1の実施例と同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表8中の下線は、本発明の範囲から外れた条件を示している。本発明例であるNo.401~No.408、No.411およびNo.412は、打ち抜き後の寸法精度は良好であったが、浮上り量はやや発生した。また、45°方向及び全周平均共において優れた磁気特性(高い磁束密度B50および低い鉄損W10/400)を有していた。
 一方、比較例であるNo.409およびNo.410は、巻取り温度が適切ではなかったため、磁束密度が低下し、鉄損が高くなった。

Claims (7)

  1.  質量%で、
     C:0.0100%以下、
     Si:1.50~4.00%、
     sol.Al:0.0001~1.000%、
     S:0.0100%以下、
     N:0.0100%以下、
     Mn、Ni、Co、Pt、Pb、CuおよびAu:総計で2.50~5.00%、
     Sn:0.000~0.400%、
     Sb:0.000~0.400%、
     P:0.000~0.400%、並びに
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0000~0.0100%を含有し、
     質量%での、Mn含有量を[Mn]、Ni含有量を[Ni]、Co含有量を[Co]、Pt含有量を[Pt]、Pb含有量を[Pb]、Cu含有量を[Cu]、Au含有量を[Au]、Si含有量を[Si]、sol.Al含有量を[sol.Al]と表したときに、以下の(1)式を満たし、
     残部がFeおよび不純物からなる化学組成を有する鋼材に対して熱間圧延を行い、250℃超、550℃以下の温度域で巻き取ることで熱間圧延鋼板を得る工程と、
     前記熱間圧延鋼板に対して第1の冷間圧延を行う工程と、
     前記第1の冷間圧延の後に中間焼鈍を行う工程と、
     前記中間焼鈍の後に第2の冷間圧延を行う工程と、
     前記第2の冷間圧延の後に、仕上げ焼鈍および歪取焼鈍のいずれか一方もしくは両方を行う工程と、を有し、
     前記熱間圧延時の仕上げ圧延の最終パスをAr1温度以上の温度域で行い、
     前記仕上げ焼鈍においては、Ac1温度未満の温度域で2時間以下保持し、
     前記歪取焼鈍においては、600℃以上、Ac1温度未満の温度域で1200秒以上保持する
    ことを特徴とする無方向性電磁鋼板の製造方法。
     ([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0.00%   ・・・(1)
  2.  前記鋼材が、質量%で、
     Sn:0.020~0.400%、
     Sb:0.020~0.400%、
     P:0.020~0.400%、並びに
     Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、ZnおよびCd:総計で0.0005~0.0100%
    からなる群から選ばれる1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
  3.  前記仕上げ焼鈍においては、600℃以上、Ac1温度未満の温度域で10~1200秒間保持することを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。
  4.  前記歪取焼鈍においては、750℃以上、Ac1温度未満の温度域で1時間以上保持することを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板の製造方法。
  5.  前記第1の冷間圧延を行う工程においては、累積圧下率80~92%で冷間圧延を行い、
     前記第2の冷間圧延を行う工程においては、累積圧下率5~25%で冷間圧延を行うことを特徴とする請求項1~4のいずれか1項に記載の無方向性電磁鋼板の製造方法。
  6.  前記中間焼鈍は、Ac1温度未満の温度域で行うことを特徴とする請求項1~5のいずれか1項に記載の無方向性電磁鋼板の製造方法。
  7.  前記仕上げ焼鈍および前記歪取焼鈍の両方を行うことを特徴とする請求項1~6のいずれか1項に記載の無方向性電磁鋼板の製造方法。
PCT/JP2020/042471 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法 WO2021095859A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/641,628 US20220396846A1 (en) 2019-11-15 2020-11-13 Method for manufacturing non-oriented electrical steel sheet
BR112022000171A BR112022000171A2 (pt) 2019-11-15 2020-11-13 Método para fabricar uma chapa de aço elétrico não orientado
KR1020227007397A KR20220041205A (ko) 2019-11-15 2020-11-13 무방향성 전자 강판의 제조 방법
JP2021556183A JP7211532B2 (ja) 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法
CN202080061971.0A CN114341383B (zh) 2019-11-15 2020-11-13 无方向性电磁钢板的制造方法
EP20888264.7A EP4060062A4 (en) 2019-11-15 2020-11-13 PROCESS FOR MANUFACTURING NON-CORNORIATED ELECTRICAL STEEL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-206630 2019-11-15
JP2019-206812 2019-11-15
JP2019206812 2019-11-15
JP2019206630 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095859A1 true WO2021095859A1 (ja) 2021-05-20

Family

ID=75912747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042471 WO2021095859A1 (ja) 2019-11-15 2020-11-13 無方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20220396846A1 (ja)
EP (1) EP4060062A4 (ja)
JP (1) JP7211532B2 (ja)
KR (1) KR20220041205A (ja)
CN (1) CN114341383B (ja)
BR (1) BR112022000171A2 (ja)
TW (1) TWI755150B (ja)
WO (1) WO2021095859A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319465B2 (ja) 1982-10-15 1988-04-22 Matsushita Electric Works Ltd
JP2001107202A (ja) * 1999-10-14 2001-04-17 Nippon Steel Corp 磁気シールド構造用鋼板およびその製造方法
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20140084895A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
WO2018135414A1 (ja) * 2017-01-17 2018-07-26 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法
JP2019206630A (ja) 2018-05-29 2019-12-05 株式会社パイロットコーポレーション 筆記具用水性ボールペン用インキ組成物、それを用いたボールペン、および筆記具用水性ボールペン用インキ組成物の製造方法
JP2019206812A (ja) 2018-05-28 2019-12-05 株式会社錢高組 スラブ支持構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2602335T3 (pl) * 2010-08-04 2020-07-27 Nippon Steel Corporation Sposób wytwarzania niezorientowanej blachy ze stali elektrotechnicznej
CN107002160A (zh) * 2014-05-08 2017-08-01 材料开发中心股份公司 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法
KR101963056B1 (ko) * 2014-10-30 2019-03-27 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 무방향성 전기 강판의 제조 방법
RU2674373C1 (ru) * 2015-02-24 2018-12-07 ДжФЕ СТИЛ КОРПОРЕЙШН Способ получения листов из нетекстурированной электротехнической стали
KR20180034573A (ko) 2015-10-02 2018-04-04 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판 및 그 제조 방법
JP6593555B2 (ja) * 2017-01-16 2019-10-23 日本製鉄株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319465B2 (ja) 1982-10-15 1988-04-22 Matsushita Electric Works Ltd
JP4029430B2 (ja) 1995-09-20 2008-01-09 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2001107202A (ja) * 1999-10-14 2001-04-17 Nippon Steel Corp 磁気シールド構造用鋼板およびその製造方法
KR20140084895A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2017193731A (ja) * 2016-04-18 2017-10-26 新日鐵住金株式会社 電磁鋼板、及びその製造方法
WO2018135414A1 (ja) * 2017-01-17 2018-07-26 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2019178380A (ja) * 2018-03-30 2019-10-17 日本製鉄株式会社 電磁鋼板、及び、電磁鋼板の製造方法
JP2019206812A (ja) 2018-05-28 2019-12-05 株式会社錢高組 スラブ支持構造
JP2019206630A (ja) 2018-05-29 2019-12-05 株式会社パイロットコーポレーション 筆記具用水性ボールペン用インキ組成物、それを用いたボールペン、および筆記具用水性ボールペン用インキ組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060062A4

Also Published As

Publication number Publication date
JPWO2021095859A1 (ja) 2021-05-20
EP4060062A4 (en) 2023-01-18
JP7211532B2 (ja) 2023-01-24
US20220396846A1 (en) 2022-12-15
TWI755150B (zh) 2022-02-11
TW202132578A (zh) 2021-09-01
BR112022000171A2 (pt) 2022-05-24
KR20220041205A (ko) 2022-03-31
EP4060062A1 (en) 2022-09-21
CN114341383A (zh) 2022-04-12
CN114341383B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
JP7352082B2 (ja) 無方向性電磁鋼板
JP7211532B2 (ja) 無方向性電磁鋼板の製造方法
JP7047983B2 (ja) 無方向性電磁鋼板の製造方法
JP7415135B2 (ja) 無方向性電磁鋼板の製造方法
JP7415134B2 (ja) 無方向性電磁鋼板の製造方法
JP7415136B2 (ja) 無方向性電磁鋼板の製造方法
JP7288215B2 (ja) 無方向性電磁鋼板
JP7428872B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7415138B2 (ja) 無方向性電磁鋼板の製造方法
JP7295465B2 (ja) 無方向性電磁鋼板
JP7428873B2 (ja) 無方向性電磁鋼板及びその製造方法
US20240153683A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
KR20230144606A (ko) 무방향성 전자 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556183

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000171

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227007397

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022000171

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220105

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888264

Country of ref document: EP

Effective date: 20220615